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Introduction

Beliefs, preferences and models

The problem of drawing conclusions from evidence

How can we test the main assumptions in a behavioural experiment?

How can we examine multiple hypotheses in a unified framework?

How can we draw conclusions from experiments in a small group?
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Beliefs, preferences and models

The problem of drawing conclusions from evidence

How can we test the main assumptions in a behavioural experiment?

How can we examine multiple hypotheses in a unified framework?

How can we draw conclusions from experiments in a small group?

Assumptions + Evidence → Conclusion

Bayesian inference.

Dempster-Shafer theory of evidence.

Plausibility theory.

Drawing conclusions is not always the same as making reject/accept decisions
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Introduction

Bayesian inference

γ θ x

Figure: Graphical model for known prior, single subject.

A study involving one subject.

The subject provides us with observations x .

We assume that the observations are generated x | θ ∼ P(· | θ).

The unknown θ fully characterises the subject with respect to our observations x .

We assume that θ | γ ∼ Q(· | γ).
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Figure: Graphical model for known prior, single subject.

A study involving one subject.

The subject provides us with observations x .

We assume that the observations are generated x | θ ∼ P(· | θ).

The unknown θ fully characterises the subject with respect to our observations x .

We assume that θ | γ ∼ Q(· | γ).

Known γ, use Bayes’ theorem

We only need to condition the distribution of θ to the data of the subject:

Q(θ | x , γ) =
P(x | θ, γ)Q(θ | γ)

∫

Θ
P(x | θ′, γ)Q(θ′ | γ) dθ′
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Introduction

Bayesian inference

γ θ x

Figure: Graphical model for known prior, single subject.

Example

x = x1, . . . , xT , and x ∈ {0, 1}, i.e. 0 = failure, 1 = success.

θ ∈ [0, 1]: probability of success, so: xt | θ ∼ Bern(θ).

Prior for Bernoulli parameters: θ | γ ∼ Beta(αγ , βγ).

In this case the posterior is:

θ | γ, x ∼ Beta(αγ +
∑

t

xt , βγ + T −
∑

t

xt)
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Introduction
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Figure: An example

Christos Dimitrakakis (FIAS) Bayesian modelling of groups and individuals 12/4/2011 4 / 13



Introduction

Overview

A study involving n subjects.

The k-th subject provides us with observations xk .

We assume that each observation is generated as xk | θk ∼ P(· | θk).

The unknown θk fully characterise each subject with respect to the study.

We assume that θk | γ ∼ Q(· | γ).

Known γ

We only need to condition the distribution of θk to the data of the k-th subject:

Q(θk | xk , γ)

γ θk xk

θk+1 xk+1

Figure: Graphical model for known case
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The model

A general model

π γ θk xk

θk+1 xk+1

Figure: Graphical model for unknown case

Let θ = θ1, . . . , θn and x = x1, . . . , xn. Our model is as follows:

γ ∼ π (3.1)

θk | γ ∼ Q(· | γ), ∀k ∈ {1, . . . , n} (3.2)

xk | θk ∼ P(· | θk), ∀k ∈ {1, . . . , n} (3.3)

Known gamma: Use Bayes’ theorem directly

π(θ | x , γ) =
π(x | θ, γ)π(θ | γ)

π(x | γ)
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The model

A general model

π γ θk xk

θk+1 xk+1

Figure: Graphical model for unknown case

Known gamma: Use Bayes’ theorem directly

π(θ | x , γ) =
π(x | θ, γ)π(θ | γ)

π(x | γ)

This is fully factorisable:

π(x | θ, γ) =
∏

k

P(xk | θk), π(θ | γ) =
∏

k

Q(θk | γ), π(x | γ) =
∏

k

π(xk | γ).
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A general model

π γ θk xk
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Figure: Graphical model for unknown case

Known gamma: Use Bayes’ theorem directly

π(θ | x , γ) =
π(x | θ, γ)π(θ | γ)

π(x | γ)
=

∏

k

π(θk | γ, xk).

This is fully factorisable:

π(x | θ, γ) =
∏

k

P(xk | θk), π(θ | γ) =
∏

k

Q(θk | γ), π(x | γ) =
∏

k

π(xk | γ).

Christos Dimitrakakis (FIAS) Bayesian modelling of groups and individuals 12/4/2011 6 / 13



The model

A general model

π γ θk xk

θk+1 xk+1

Figure: Graphical model for unknown case

Known gamma: Use Bayes’ theorem directly

π(θ | x , γ) =
π(x | θ, γ)π(θ | γ)

π(x | γ)
=

∏

k

π(θk | γ, xk).

Unknown gamma.

Empirical Bayes: Find best γ in a restricted class, according to some criterion.

Hierarchical Bayes: Estimate full joint distribution π(θ, γ | x).
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The model

A test with known γ and a glimpse of Empirical Bayes.
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Figure: Samples from 10 subjects, 40 trials each.
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Hierarchical Bayes

Hierarchical Bayes and Gibbs samplers

Theorem

Let a joint distribution P(x , y). The following Markov chain, Qt(x , y):

x
(t) ∼ P(x | y (t−1)), y

(t) ∼ P(y | x (t))

converges to P(x , y), under suitable conditions:

lim
t→∞

‖P(x , y)− Qt(x , y)‖ = 0.

Thus, we can estimate P(x , y) by sampling alternately from P(x | y) and P(y | x).
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Hierarchical Bayes

Bi-variate normal density

f (x , y ; ρ) =
1

2π
√

1− ρ2
exp(−

1

2(1− ρ2)
· (x2 + y

2 − 2ρxy))

To generate samples from the joint distribution:

x
(t) ∼ N (ρy (t−1)

,
√

1− ρ2) (4.1)

y
(t) ∼ N (ρx (t)

,
√

1− ρ2). (4.2)
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Hierarchical Bayes

A Gibbs sampler for population data

θ
(t)
k

∼ π(θk | γ(t)
, xk), (4.3)

γ
(t+1) ∼ π(γ | θ(t)). (4.4)

π γ θk xk

θk+1 xk+1

Figure: Graphical population model
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Hierarchical Bayes

A simple example

xk | θk ∼ Bern(· | θk) (4.5)

θk | γ ∼ Beta(· | γ) (4.6)

γ ∼ Exp(· | 1). (4.7)
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Figure: Samples from π(γ | x) when γ = (4, 2).
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Hierarchical Bayes

A simple example
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Figure: Marginal posterior π(θ | x).
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Hierarchical Bayes

Going further

Given two groups A,B we can analyse the posteriors π(γ | xA), π(γ | xB).

We can also do a Bayesian hypothesis test:

H0 = {γA, γB : ‖γA − γB‖ ≤ ǫ} , H1 = {γA, γB : ‖γA − γB‖ > ǫ} . (4.5)
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Hierarchical Bayes

Going further

Given two groups A,B we can analyse the posteriors π(γ | xA), π(γ | xB).

We can also do a Bayesian hypothesis test:

H0 = {γA, γB : ‖γA − γB‖ ≤ ǫ} , H1 = {γA, γB : ‖γA − γB‖ > ǫ} . (4.5)

π(H0 | x) =
π(x | H0)π(H0)

∑

i
π(x | Hi )π(Hi )

, (4.6)

π(x | Hi ) =

∫

Hi

π(γA, γb | xA, xB) d(γA, γB) (4.7)
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Hierarchical Bayes

Going further

Given two groups A,B we can analyse the posteriors π(γ | xA), π(γ | xB).

We can also do a Bayesian hypothesis test:

H0 = {γA, γB : ‖γA − γB‖ ≤ ǫ} , H1 = {γA, γB : ‖γA − γB‖ > ǫ} . (4.5)

Any models could be used, depending on the nature of the experimental data.
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Hierarchical Bayes

Further material

Books

Optimal statistical decisions.

Bayesian data analysis.

Statistical decision theory and Bayesian analysis.

Monte Carlo statistical methods.

Introducing Monte Carlo methods with R.

Bayesian computation with R.

Sofware

R

BUGS
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