
 

 

Learning to Play Games from Multiple
Imperfect Teachers

Master’s Thesis in Complex Adaptive Systems

JOHN KARLSSON

Department of Computer Science & Engineering

Chalmers University of Technology

Gothenburg, Sweden 2014



The Author grants to Chalmers University of Technology and University of Gothen-
burg the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the
Work does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for
example a publisher or a company), acknowledge the third party about this agreement.
If the Author has signed a copyright agreement with a third party regarding the Work,
the Author warrants hereby that he/she has obtained any necessary permission from
this third party to let Chalmers University of Technology and University of Gothenburg
store the Work electronically and make it accessible on the Internet

Learning to Play Games from Multiple Imperfect Teachers

John Karlsson

c© John Karlsson, June 2014.

Examiner: CHRISTOS DIMITRAKAKIS

Chalmers University of Technology
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering

Göteborg, Sweden June 2014



Abstract

This project evaluates the modularity of a recent Bayesian Inverse Reinforcement
Learning approach [1] by inferring the sub-goals correlated with winning board games
from observations of a set of agents. A feature based architecture is proposed together
with a method for generating the reward function space, making inference tractable in
large state spaces and allowing for the combination with models that approximate state-
action values. Further, a policy prior is suggested that allows for least squares policy
evaluation using sample trajectories. The model is evaluated on randomly generated
environments and on Tic-tac-toe, showing that a combination of the intentions inferred
from all agents can generate strategies that outperform the corresponding strategies from
each individual agent.





Contents

1 Introduction 1
1.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation from related fields . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Theory 4
2.1 Decision making under uncertainty . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Markov decision processes . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 Bellman Optimality Equations . . . . . . . . . . . . . . . . . . . . 8

2.3 Temporal Difference learning . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.1 Least-squares methods . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Learning from demonstrations . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.1 Bayesian multitask inverse reinforcement learning . . . . . . . . . . 15

3 Model 19
3.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.1 Reward function feature representation . . . . . . . . . . . . . . . 20
3.2 Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 Random MDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.2 Tic-tac-toe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Generation of demonstrations . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Policy space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4.1 Loss calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5 Reward function space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Experiments 26
4.1 Random MDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Tic-tac-toe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

i



CONTENTS

5 Conclusions 32
5.1 Discussion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Bibliography 36

ii



1

Introduction

S
everal board games have remained as important targets in the field of Artificial
Intelligence for being well defined environments with simplistic sets of rules, yet
still being unsolved after decades of research. In the recent years, the surge of
big data applications have made unsupervised learning techniques increasingly

popular. Many games have extensive and growing databases of expert play available,
and this has become an interesting source for knowledge extraction.

Multitask inverse reinforcement learning is concerned with inferring the motivations
of different agents trying to solve the same task in a dynamic environment. The solutions
that the agents choose are biased by their different preferences. By studying databases of
game records, it is possible to infer the preferences that motivate the agents’ behaviour.

This work focuses on inferring the motivations of multiple imperfect teachers whose
preferences have formed during interaction with the complex and adaptive system repre-
sented by a community of co-evolving agents. Over time, the game playing agents reach
equilibrium where their sets of preferences no longer change. This makes reinforcement
learning techniques applicable, which generally assume a stationary, Markovian environ-
ment.

1.1 Problem formulation

The benefits of board games is that values can be assigned to any terminal state (final
position) in terms of a win, loss, draw, or by a scoring mechanism defined by the game
rules. Via backward induction, the expected value for any state in the game can be
calculated. This allows for the construction of an optimal strategy that uses one step
lookahead to choose the action (move) that maximises the expected value of the next
state. However, due to time and space constraints, the value calculation is generally

1



1.2. MOTIVATION FROM RELATED FIELDS CHAPTER 1. INTRODUCTION

infeasible. A few notable examples of game state-space complexities1 are Go (10171),
Chess (1047), Havannah (10127), Hex (1057) and Othello (1028). The fact that definite
goals exist only as terminal states also becomes the largest difficulty.

By utilising demonstrations made by experts in the game, it is possible to perform
inference on their intrinsic sub-goals that correlate with winning outcomes. Unfortu-
nately, none of the experts are infallible, and any statistical approaches used must take
sub-optimality, even with regards to the experts own intentions, into account. In fact, in
a recent Bayesian approach [1], this is attempted for general environments that are not
necessarily board games, by repeatedly solving for the optimal strategy given different
proposed sub-goals, to be formalised later.

In large state spaces, clever methods must be incorporated to make such approaches
feasible. Also, in board games, it is assumed that all experts share some common goals,
which converge to one single goal near terminal states. The purpose of this project is to
implement the algorithm in [1] and to extend it to large state spaces and to further utilise
the structure of game trees to make the fully Bayesian approach feasible for inferring
experts’ intentions.

1.2 Motivation from related fields

One way of transferring knowledge is by demonstrations, such as in the field of Program-
ming by Demonstration (PbD) [3] where an engineer may demonstrate to a robot how
to perform a task, rather than having to perform the often hard and time consuming
work of engineering the behaviour by hand. This concept allows for agents to request
demonstrations and exchange advice between each other, combining it with individual
experiences acquired through interaction with the environment [4]. The goal of transfer
learning is to share knowledge learned within and between different domains [5]. As an
example, we might want to perform training in one domain while all the training data
resides in another domain with a different feature space and distribution; e.g. in an-
other agent’s memory of experiences. A motivation in this field is the need for machine
learning methods to retain and reuse knowledge [5].

An agent may have have cognitive or emotional limitations of information processing
that limits its ability to act and plan perfectly according to its own preferences. The
field of preference elicitation is concerned with extracting the preferences of an agent for
the purpose of constructing decision support systems such as recommender systems and
personalised marketing systems [6]. Utility based approaches have been made to link
the theory to applications such as (inverse) reinforcement learning [7] and e-commerce
recommender systems [8].

A difficulty in learning to play games is that it usually requires a long sequence
of moves before any definite success or failure can be determined, often referred to as
the credit assignment problem [9]. When children learn a task, they quickly manage
to deduce which actions correlate with a positive outcome, and consequently proceed

1State-space complexity — The number of positions reachable from the initial position of the game
[2].

2



1.2. MOTIVATION FROM RELATED FIELDS CHAPTER 1. INTRODUCTION

to take those actions more often. The task of dopamine neurons is to associate stimuli
in the environment with bodily needs [10]; this is the biological solution to the credit
assignment problem. When making faulty predictions, the dopamine neurons react by
propagating the information about the presence or absence of a reward. This form of
message passing is a way of learning to predict the timing and magnitude of future
rewards [11], which has a close resemblance to temporal difference learning — one of the
most central classes of reinforcement learning algorithms [12, 13].

3



2

Theory

R
einforcement Learning is an area of machine learning where an agent acting
in a (potentially unknown) environment must learn an optimal strategy in a
feedback loop of signals transmitted between them. The agent’s input from
the environment are (1) reinforcement signals referred to as rewards and (2)

sensory information about current state that the environment is said to be in. The
agent’s output signals are referred to as actions.

Although there is a notion of rewards, the reinforcement learning problem is dif-
ferent from supervised learning problems in the following sense. Improving knowledge
about optimal actions in stochastic environments entails trial and error via multiple in-
teractions. This carries the problem of balancing between exploration — improving the
certainty about current beliefs, and exploitation — taking those actions that have been
found to be effective in the past.

In a machine learning setting, the agent’s interaction with the environment is modeled
as a Markov decision process (MDP) (Section 2.1.1), where it is to maximize an inherent
and to the agent subjective utility (Section 2.1.2) which is a function of the rewards.

Also, the actions may affect not only immediate rewards, but all subsequent rewards
as well. In many cases, the rewards are delayed until several actions have been made,
leading to the credit assignment problem where the agent must learn which actions are
to be assigned credit or blame for the final outcome (see Section 2.3).

In Inverse reinforcement learning (Section 2.4.1), the agent is referred to as an expert

or demonstrator of a certain task (modeled as an MDP) and the problem is to infer the
parameters of the environment (i.e. the reinforcement learning problem) as the agent
perceives it. In short, the problem is to infer the agent’s motivations (utility) given some
data generated by the agent.

4



2.1. DECISION MAKING UNDER UNCERTAINTY CHAPTER 2. THEORY

2.1 Decision making under uncertainty

This section treats decision making in Markov decision processes and the formalisation
of agent strategies.

Decision theory is concerned with the optimisation of utility : a subjective measure
inherent in the decision maker. When faced with a decision under uncertanty, expected
utility is defined as the sum of all possible outcomes weighed by their relative likelihoods
(which may also be subjective), acting as a basis framework for the formalisation of
rationality in agents.

2.1.1 Markov decision processes

AMarkov decision process (MDP) is a Markov process1 whose transitions are conditioned
on a decision — the agent’s action — made in every state. It is defined by a tuple
µ = (S,A,T ,ρ) whose elements are described as follows.
S is a set of states which may be either discrete or continuous. In every time step t,

the Markov process is in a state st ∈ S, and transitions to a state st+1 ∈ S. Although
the focus will be exclusively on discrete state spaces, the size will still be too large for
practical enumeration in the algorithms considered here (Section 2.2). This calls for a
feature representation of the state space (Section 2.3.1), which is a method that easily
translates to continuous state spaces as well.
A is the set of actions, on which the stochastic transitions of the MDP are condi-

tioned. Like the state space, the set of actions may also be continuous, for example when
the action represents the amount of force to apply in a control problem. All methods
presented here will however assume that there is a small, discrete set of actions available
in each state.

The transition kernel T , {τa(· | s) : s ∈ S, a ∈ A} defines a set of |S ×A| functions
for the transition probabilities from state s to successor states s′ given action a, s.t.
∀(s,a) ∈ S × A :

∑
s′∈S τa(s

′ | s) = 1. A convenient alternative representation with
many practical advantages from linear algebra is to define T as a set of |A| matrices
τa(s

′ | s) ∈ R
|S|×|S|.

A reward function ρ : S → R defines the numerical reward ρ(s) generated by the
transition to state s ∈ S.2

Example MDP

A deterministic mapping π : S → A from states to actions results in a single strategy-
induced transition matrix T

π which defines the kernel of a regular Markov chain. As
an example of the dynamics of a simple MDP with 3 states and 2 actions, Figure 2.1
shows a pictorial representation of the two different Markov chains induced by the two

1Markov process — A stochastic process which has the Markov property, i.e. being memoryless, s.t.
transitions between states depend solely on the current state that the system is in.

2Sometimes more general definitions are used, such as the reward function ρ : S ×A×S → R defined
on the space of all possible transitions st

at−→ st+1.

5



2.1. DECISION MAKING UNDER UNCERTAINTY CHAPTER 2. THEORY

strategies π1(·) = a1 and π2(·) = a2. In this example, T π1 and T
π2 are given by:

T
π1 =



1/2 1/2 0

0 1 0

1 0 0


 T

π2 =




1 0 0

1/2 0 1/2

1/2 0 1/2


 (2.1)

s.t. element (st,st+1) denotes the transition probabilities between those states. Thus,
T

π for any particular strategy π is then a mixture of the two.

+10

-5 +1

1

1/2

1/2

1

+10

-5 +1

1/2 1/2

1/2

1/2
1

Figure 2.1: A pictorial representation of an MDP where arrows indicate transition prob-
abilities for a1 (left) and a2 (right). Rewards are shown inside the nodes and are supposed
to be identical in the two images.

2.1.2 Policies

To be able to formulate an optimal policy, i.e. an optimal strategy for an agent acting
in an MDP, it is necessary to make assumptions regarding the objective function being
optimised.

Since the preferences of an agent are indeed subjective, decision theory handles the
problem by formalising the notion of an agent’s utility as a function U : R → R, where
R can formally be seen as the set of all possible reward sequences of different lengths.
It is then said that if an agent prefers a reward r1 to r2, then E

[
U(r1)

]
> E

[
U(r2)

]
; also

known as the expected utility hypothesis [14].
Further, the following assumption is a common one to make, which is found in most

literature on MDPs [15].

Assumption 1 (Agent utility). The agent acts to maximize the discounted sum of future

rewards

Ut ,

∞∑

k=1

γk−1rt+k, (2.2)

6



2.2. OPTIMALITY CHAPTER 2. THEORY

where γ ∈ (0,1] is a discount factor and rt = ρ(st) is the deterministic reward received

at time t upon reaching state st.

This is an important assumption in Inverse Reinforcement Learning (Section 2.4.1)
when observing an agent that acts in an environment since it connects preference elici-
tation with the problem of inferring ρ |D for some agent demonstrations D.

Definition 1 (Policy). A stationary policy π ∈ P defines a probability distribution over

the set of actions given a particular state:

π(a | s) = P(at = a | st = s), a ∈ A, s ∈ S (2.3)

which can be seen as a strategy used by an agent acting in an MDP.

The most general form of policies are those that are stochastic and history-dependent
[16]; whereas the most specific are stationary deterministic policies. A stationary policy
is one that is time-invariant, i.e. its memoryless distribution over actions depends only
on the current state, and not on the actions or observations made in previous time steps:

π(a | st, st−1, . . . , s0) = π(a | st), a ∈ A (2.4)

For the calculation of optimal policies (Section 2.2) in discounted infinite-horizon MDPs,
it is sufficient to consider only such stationary policies (see [16] pp. 152), since the
optimality conditions imply the existence of an optimal stationary policy. However,
since board games are undiscounted and finite-horizon MDPs, the policy evaluation
algorithms reviewed in Section 2.3.1 are restricted to policies that are proper, meaning
that they are guaranteed to reach a terminal state.

2.2 Optimality

To construct optimal policies it is needed to evaluate a policy based on the expected
utility hypothesis. The objective function is the expectation of the assumed utility in
(2.2) given some starting state st = s:

E[Ut | st = s] ≡ E

[
∞∑

k=1

γk−1rt+k

∣∣∣ st = s

]
.

The joint dynamics of µ and π are then used to enumerate all possible transitions on
which the reward function ρ(st

at−→ st+1) = ρ(st+1) is defined. This leads to the following
recursive formulation where E[Ut] is defined in terms of E[Ut+1]:

E
π
µ

[
Ut | st = s

]
=

∑

s′∈S

P(st+1 = s′ | st = s)
(
ρ(s′) + γEπ

µ

[
Ut+1 | st+1 = s′

])
, (2.5)

7



2.2. OPTIMALITY CHAPTER 2. THEORY

where the indices µ and π indicate that the expectation is over the dynamics of the MDP
st+1 | st ∼ τat and the actions of the policy at | st ∼ π s.t.

P(st+1 | st) =
∑

a∈A

P(st+1 | st,at = a)P(at = a | st)

≡
∑

a∈A

τa(st+1 | st)π(at = a | st).

This is a good time to introduce the value function which serves a more intuitive
notation:

V π
µ (s) , E

π
µ

[
Ut | st = s

]

=
∑

s′∈S

∑

a∈A

π(a | s)τa(s
′ | s)

(
ρ(s′) + γV π

µ (s′)
)
, (2.6)

From here on, the subscript µ will be dropped whenever it is clear from context. Later,
however, when the need arises to distinguish between the values in different tasks
(MDPs), the only varying element will be ρ ∈ µ and the notation V π

ρ will be used

instead. An optimal policy π∗ has the property V π∗

= V ∗ where

V ∗(s) , max
a

{
∑

s′∈S

Pa(s
′ | s)

(
ρ(s′) + γV ∗(s′)

)}
, ∀s ∈ S (2.7)

Another common notation is the Q-value of a state-action pair (s,a), defined as the
expected utility conditioned on action a taken in state s:

Qπ(s,a) , E
[
U | s,a

]
(2.8)

= E
[
ρ(s′) | s,a

]
+ γ

∑

s′∈S

τa(s
′ | s)

∑

a′∈A

π(a′ | s)Q(s′,a′) (2.9)

=
∑

s′∈S

τa(s
′ | s)

(
ρ(s′) + γV π(s′)

)
(2.10)

and Q∗(s,a) , Qπ∗

(s,a), (2.11)

s.t. V ∗(s) ≡ max
a

{
Q∗(s,a)

}
(2.12)

2.2.1 Bellman Optimality Equations

The value of a policy in (2.6) and that of the optimal policy in (2.7) are the two equations
known as the Bellman equation and Bellman optimality equation respectively [17], which
form the basis of the policy evalutation and value iteration algorithms. These algorithms
both apply the respective equation as an update rule to all possible states until the values
of all states no longer change.

Consider the MDP from the previous example in Figure 2.1 and assume an infinite
horizon and γ = 1

2 for simplicity, and focus on the left side induced by the policy π1(·) =
a1. The value V

π1(s2) of the top right state denoted by s2 for this policy is the easiest to

8



2.3. TEMPORAL DIFFERENCE LEARNING CHAPTER 2. THEORY

calculate, since it is given by the geometric series V π1(s2) = 1× (ρ(s2) + γV π1(s2)) = 2.
By backtracking to the top left state, denoted by s1, there is only one unknown variable
(value) which can be solved by V π1(s1) = 1

2 × (−5 + γV π1(s2)) +
1
2 × (1 + γV π1(s1)),

giving V π1(s1) = −2. Similarly, V π1(s3) = −6.
At a more general note, Equation (2.6) forms a linear system of equations:

vπ = T
πr + γT πvπ, (2.13)

which has the solution given by the policy evaluation step:

vπ = (I − γT π)−1
T

πr. (2.14)

In the case discussed above, the value function is vπ1 = (−2, 2,−6)⊤. In other words,
given the policy π1 that only chooses action a1, the bottom state is not very good. A
policy improvement step would update the policy similarly to Equation (2.7):

πn+1(s) = argmax
a

{
∑

s′∈S

Pa(s
′ | s)

(
ρ(s′) + γVn(s

′)
)}

, ∀s ∈ S

⇔

πn+1 = argmax
π

{
T

π(r + γvn)
}
,

(2.15)

where the subscript n denotes the iteration index. In this case, the updated policy would
be πn+1((s1, s2, s3)

⊤) = (a1, a1, a2)
⊤, i.e. where the action changed only in s3 from a1

to a2, giving vπn+1 = (−2, 2, 83)
⊤. The policy induced transition kernel T πn+1 is then

constructed by choosing rows 1,2 from T
π1 and row 3 from T

π2 . In yet another and
final iteration in the same manner, the algorithm would converge to the optimal policy
denoted by π∗ = πn+2((s1, s2, s3)

⊤) = (a1, a2, a2)
⊤, giving the optimal value function

v∗ = vπ∗

= (2, 83 ,
8
3)

⊤. This concludes the example of the policy iteration algorithm.
Policy iteration iteratively performs steps (2.14) and (2.15) until convergence, i.e.

until ‖vn − vn+1‖ ≤ ε (which is also implied when πn+1 = πn).
Value iteration combines these steps such that the policy is not queried, but the

maximum over actions is taken in each iteration, see Algorithm 1.

2.3 Temporal Difference learning

Temporal Difference (TD) learning methods [12, 18] attempt to estimate the value func-
tion V π(·) for a given policy π:

V π(st) = ρ(st+1) + γV π(st+1), (2.16)

given one or more finite sample trajectories of kind {st}
T
t=1 generated by π, where sT is

a terminal state with a reward (outcome) ρ(sT ). They attempt to solve the (temporal)
credit assignment problem inherent in problems with delayed rewards [9], such as board
games where the reinforcement is usually delayed until the very last (terminal) states.

9



2.3. TEMPORAL DIFFERENCE LEARNING CHAPTER 2. THEORY

Algorithm 1: Value Iteration

Input: MDP µ Discount factor γ, Precision parameter ε
Result: Vector v s.t. vs = V ∗

µ (s), ∀s ∈ S
v0 ← 0
n← 0
repeat

n← n+ 1
foreach s ∈ S do

vn(s)← max
a

{
∑

s′∈S

τa(s
′ | s)

(
ρ(s′) + γvn−1(s

′)
)}

end

until ‖vn − vn−1‖ ≤ ε;
return vn

The method attempts to match current estimates V (st) with (hopefully) more accurate
beliefs about the values for future states V (sk), k > t. This takes advantage of the
assumption that subsequent values V (st), V (st+1), . . . are correlated.

A regular Monte Carlo (MC) learning method would approximate the value V (st)
by generating a rollout3 sample Ut and applying the update rule:

V̂ (st)← V̂ (st) + α
(
Ut − V̂ (st)

)
, (2.17)

where α is a step size parameter. Clearly, if the current prediction V̂t matches the target
value E[Ut], the value function has been learned and only fluctuates depending on the
step size α. The issue with this method, however, is that a full trajectory needs to be
generated for every sample of Ut. TD-methods instead attempt to minimize the TD-error

between subsequent states by applying the update rule:

V̂ (st)← V̂ (st) + α
(
ρ(st+1) + γV̂ (st+1)− V̂ (st)

)
. (2.18)

The target instead becomes E
[
ρ(st+1)+γV (st+1)

]
, which, since V̂ (st+1) is itself a current

estimate maintained by the algorithm, makes TD-learning a bootstrapping method.
Algorithm 2 presents a version of this method which queries the policy in an on-line

fashion, updating the value function as the trajectory is being generated.
For the coming section, it is instructive to use the state-action value notation Qπ(s,a)

and to briefly introduce on-policy and off-policy learning, for which two common exam-
ples (among TD-methods) are Sarsa [12, 19] and Q-learning [20] respectively. Both of
these methods attempt to learn an optimal value function, whereas the former of the two
works nearly identically to Algorithm 2 apart from two modifications. First, to choose
actions at,at+1, . . . , Sarsa queries a policy πQπ that chooses its actions based on the

3Rollout - sample trajectory from a starting state following some policy π until a terminal state is
reached, resulting in a sampled cumulative sum of returns Ut.

10



2.3. TEMPORAL DIFFERENCE LEARNING CHAPTER 2. THEORY

Algorithm 2: TD-learning of V π

Input: MDP µ, Policy π, Discount factor γ, Precision parameter ε
Result: Vector v s.t. vs ≈ V

π
µ (s), ∀s ∈ S

v ← 0
repeat

t← 0
s0 ← starting state
δmax ← 0
repeat

at ∼ π(· | st)
st+1 ∼ τa(st)
δ ← ρ(st+1) + γvst+1 − vst
vst ← vst + αδ
δmax ← max

{
|δ|, δmax

}

t← t+ 1
until st is terminal ;

until δmax ≤ ε;
return v

current belief over the state-action values Qπ. The convergence properties to Q∗ rely
on the policy’s ability to balance between exploration and exploitation [12], and most
importantly, that π is gradually tuned to be more greedy w.r.t. Qπ. The update is then
done on the these state-action values:

Qπ
st,at ← Qπ

st,at + α
(
ρ(st+1) + γQπ

st+1,at+1
−Qπ

st,at

)
. (2.19)

In Q-learning, the difference is subtle; the definition of an off-policy method is that it
does not learn the value function of the policy followed. In this case, the value function
learned is still Q∗ but the only requirement on the policy is that all state-action pairs
are visited and updated. The update is then given by:

Qst,at ← Qst,at + α
(
ρ(st+1) + γmax

a
Qst+1,a −Qst,at

)
. (2.20)

2.3.1 Least-squares methods

This section describes least-squares methods of approximating the value function of a
policy. This is the same task as the previously mentioned algorithms are solving, but
the solutions presented here are adapted to handle large state spaces.

Feature representation

From here on, the value functions will be approximated with feature representations of
the state-action pairs, mainly so that large state spaces can be handled more efficiently.

11



2.3. TEMPORAL DIFFERENCE LEARNING CHAPTER 2. THEORY

For the state-action value function used in this section, the approximation is defined by
the linear combination

Q̂(s,a) , φ(s,a)⊤w, φ(s,a),w ∈ R
k, (2.21)

or by the more compact notation

q̂ = Φw, Φ ∈ R
|S||A|×k,w ∈ R

k. (2.22)

Where each feature vector, given by the function φ : S × A → R
k, is comprised of k

different, generally nonlinear, functions of the state-action pairs. The symbol q will be
used to denote any value function, and q̂ to denote a value function that lies in the
subspace spanned by Φ.

Bellman residual minimisation

This section acts as a bridge to the explanation of the LSTDQ algorithm presented
in the next section, and it partly follows the presentation made by its authors in [21].
It is a natural extension to solving the linear system for the value function when it is
approximated by a linear combination of features.

Recall the Bellman equation for Qπ(s,a) in Equation (2.9) and note that it has the
linear system representation

qπ = r + γT πqπ, (2.23)

where q, r ∈ R
|S||A|, r(s,a) = E

[
ρ(s′) | s,a

]
and T

π ∈ R
|S||A|×|S||A|. In this context, T π

is the policy induced transition kernel of a Markov chain with transitions of the kind
(s,a) → (s′,a′) with probability T π

(s,a),(s′,a′). The summation over pairs (s′,a′) in (2.9),

where the expectation is given a state-action pair (s,a), can be seen as T πq = T Ππq
π

where T(s,a),s′ = τa(s
′ | s) and Πs′,(s′,a′) = π(a′ | s′).

The right hand side of the linear system in (2.23) is often defined as the Bellman

operator Lπ applied to the left hand side. In other words, a shorthand for the linear
system is qπ = Lπq

π, and in an iterative policy evaluation scheme the updates are
qn+1 ← Lπqn.

Replacing qπ with Φwπ gives an overconstrained system (since k < |S||A|) with the
least-squares solution:

wπ =
(
(Φ− γT πΦ)⊤(Φ− γT πΦ)⊤

)−1
(Φ− γT πΦ)⊤r (2.24)

This is a natural approach that mimics everything that we have learned so far; the only
difference being that a linear feature approximation makes the system overconstrained.
The interesting property to remember, however, is that the solution minimises the Bell-

man residual, i.e. the L2 distance taken by Lπ when applied to Φw. This helps in
understanding why LSTDQ takes a different approach; and why that approach may be
better.

12



2.3. TEMPORAL DIFFERENCE LEARNING CHAPTER 2. THEORY

Least-squares Temporal Difference Learning (LSTDQ)

Note that the Bellman operator applied to Φw, a point in the feature plane, gives a
resulting point that is generally outside that plane. The Bellman residual minimisation

above minimises this distance, but LSTDQ attempts to find a solution such that, when
the Bellman operator is applied to it, the resulting vector is still in the feature plane:

q̂ ≈ Lπq̂. (2.25)

The equation can then be expressed as follows. The value function should be invariant
to the combined operation of applying the Bellman operator and then projecting the
result onto the feature plane:

q̂π = PΦLπq̂
π, (2.26)

where the orthogonal projection PΦ onto the subspace spanned by Φ is given by
Φ(Φ⊤Φ)−1Φ⊤ (cf. [22] pp. 430 eq. (5.13.3)). The solution to this system is

wπ =
(
Φ⊤

(
Φ− γT πΦ

))−1
Φ⊤r, (2.27)

whose derivation can be found in [21] and is left out here for brevity. This method tries
to find the point in the feature plane closest to the true value function. If the real value
function is actually inside the feature plane, the two different methods give the same
result.

The algorithm proceeds as follows. Given some data D =
{
(si, ai, s

′
i, ri)

}L

i=1
of

transitions, let f : |S||A| → R be a probability distribution over the state-action pairs,
s.t. fD is the true distribution of D, and let ∆f be a diagonal matrix with elements
f(s,a). Then the LSTDQ algorithm builds empirical estimates of

A = Φ⊤∆fD

(
Φ− γT πΦ

)
, and (2.28)

b = Φ⊤∆fDr (2.29)

given by

Ã =
1

L

L∑

i=1

φ(si,ai)
(
φ(si,ai)− γφ(s

′
i, π(s

′
i))

)⊤
, and (2.30)

b̃ =
1

L

L∑

i=1

φ(si,ai)ri (2.31)

s.t. the solution is given by w̃π = Ã
−1

b̃. In the limit of L → ∞, this gives the true
solution biased by the distribution of the data fD. LSTDQ is summarised in Algorithm
3.

13



2.3. TEMPORAL DIFFERENCE LEARNING CHAPTER 2. THEORY

Algorithm 3: LSTDQ

Input: Data D, Basis functions φ, Discount factor γ, Policy π
Result: Vector w s.t. Qπ(s,a) ≈ φ(s,a)⊤w
Ã← 0
b̃← 0
foreach (s,a,s′,r) ∈D do

Ã← Ã+ φ(s,a)
(
φ(s,a)− γφ(s′,π(s′))

)⊤

b̃← b̃+ φ(s,a)r
end

return w̃π = Ã
−1

b̃

Least-squares Policy Iteration (LSPI)

LSTDQ is an extension of LSTD from previous work in [23, 24] which is based on state
values V . The issue with LSTD, as argued by [21], is that it cannot be used for action
selection without a model of the underlying process. For instance, had the model T ∈ µ
been given, together with a value function V a policy π with the property V ≡ V π

can always be constructed as π(s) = argmaxa
{∑

s′∈S τa(s
′ | s)

(
ρ(s′) + γV (s′)

)}
. This

concern is relevant in board games, where the actions made by the opponent are an
unknown stochastic part of the model.

When state-action values Q are given, the policy can be constructed directly by
π(s) = argmaxa

{
Q(s,a)

}
. To demonstrate the benefits, the authors also suggest a

model-free policy iteration algorithm for finding an optimal4 policy by using LSTDQ. The
algorithm is named Least Squares Policy Iteration (LSPI) and is presented in Algorithm
4.

Algorithm 4: LSPI

Input: Data D, Basis functions φ, Discount factor γ, Precision parameter ε,
Initial policy π0

Result: Policy π
π′ ← π0
repeat

π ← π′

π′ ← LSTDQ (D,φ,γ,w)

until ‖wπ −wπ′

‖ < ε;
return π

4The performance of the policy π returned by LSPI is bounded by ‖Q̂π −Q∗‖∞ ≤ 2γε
(1−γ)2

, details

given in [21].

14



2.4. LEARNING FROM DEMONSTRATIONS CHAPTER 2. THEORY

2.4 Learning from demonstrations

A value function roughly states how to accomplish a task, since it directly defines a
deterministic policy. For example, in large and complex environments the goal may be
to reach a specific terminal state, such as escaping a maze, retrieving an item or winning
a board game. The value function then measures the proximity of such a goal. Stating
a value function manually is thus a difficult task subject to bias in the resulting policy.
Algorithms learning the value function directly also need to worry about generalising
well to unseen states.

The reward function is a natural abstraction that instead states what to accomplish,
e.g. by assigning a numerical reward of +1 to goal states and 0 to all others. This allows
the algorithms discussed so far to find optimal value functions and optimal policies
with no bias. However, for long and complex tasks in large environments, they become
inefficient unless a proper set of subgoals can be defined. If certain subgoals do indeed
signify progress towards the end goal, they could be assigned positive rewards; but
identifying such subtasks is a difficult problem.

Inverse reinforcement learning [25, 26] is concerned with inferring the inherent pref-
erences of a demonstrator or expert from its observed interactions with an environment.
Constructing good reward functions thus becomes an inference task. This section ex-
plains IRL techniques for construction of reward functions through the use of unlabeled
data, which is the common approach since data where the goals have been labeled is
much less common.

When multiple experts act in the same environment, their individual subgoals may be
different and the method explained here infer them in a multiple task setting. The main
focus is on the multitask Bayesian approach proposed in [7]; an extension of its single
task counterpart in [1]. This is reviewed in the next section. Some previous multitask
Bayesian approaches include [27, 28, 29] but are not covered here.

2.4.1 Bayesian multitask inverse reinforcement learning

When dealing with IRL it is instructive to separate the MDP tuple into the parts
µ = (ν, ρ, γ), where ν = (S,A,T ) is a controlled Markov process (CMP) defining the
dynamics of the game/system. In this framework, we will distinguish between M dif-
ferent tasks {µm = (ν, ρm, γ)}

M
m=1 so that the only varying element between tasks is the

reward function. For each task m, there is a set of demonstrations dm, s.t. the complete
dataset is denoted by D = {dm}

M
m=1. The corresponding sets of (unknown) reward

functions and policies are denoted by ρ = {ρm}
M
m=1 and π = {πm}

M
m=1 respectively.

The following model employs a hierarchical Bayesian approach with a hyperprior η on
the joint reward-policy priors φ. Since η is defined on the joint reward-policy distribution

function space, rather than on the parameters of some fixed functions’ parameters, it
becomes the only parameter to the model in a very general sense.

As the first of two examples demonstrated in [1], if η is chosen as the distribution on
a product prior φ on reward functions and policy Softmax temperatures (i.e. noise levels,
see Section 3.3), it then jointly determines unique policies for which the likelihood of the

15



2.4. LEARNING FROM DEMONSTRATIONS CHAPTER 2. THEORY

data is well defined. This is clear because a sampled reward function ρ gives rise to an
optimal value function Q∗

ρ which induces a policy π that follows Q∗
ρ according to a well

defined probability with noise. From here on, the notation Qρ , Qµ, where µ = (ν,ρ,γ),
will be used to emphasis the dependency on ρ.

The second formulation, to be used here, lets η be a distribution on priors φ on policy

functions and on the optimality of the policies, leading to an implicit distribution on
reward functions conditional on policies. The posterior probability of a reward function
can then be calculated as the marginal over a set of sampled posterior policies. This is
the heart of the algorithm, to be made more clear here.

Model

The joint reward prior ψ and policy prior ξ, denoted by φ, is sampled from the hyperprior
η. The notation φ will not be used very much, but it is connected to the individual priors
in the sense that φ is a probability measure on the reward-policy product space R× P
according to φ(R,P | ν) ,

∫
R ξ(P | ν)dψ(ρ | ν) for R ⊂ R and P ⊂ P. ψ(ρm = ρ | ν)

denotes the prior probability that the m:th reward function is ρ, and ξ(πm = π | ν)
denotes the prior probability that them:th policy is π. The dependencies on ν will be left
out for clarity, since it stays constant throughout the different tasks. The corresponding
posteriors are denoted by ψ(· |D) and ξ(· |D). The model is shown in Figure 2.2.

η φ ρm

πm

dm

M

Figure 2.2: Graphical model of the reward-policy priors. Darker color indicates observ-
ables. Here, ρm,πm is sampled jointly from φ, indicated by the undirected edge between
them. The data dm is generated by the m:th demonstrator’s policy πm.

Derivation

The purpose of Bayesian IRL is to calculate the posterior probability ψ(· |D) on reward
functions. As mentioned, this model does so by approximating the marginal over policy
posteriors

ψ(ρ |D) =
∑

π∈P

ψ(ρ | π)ξ(π |D) (2.32)

by sampling from ξ(· | D). The policy posterior is simple to calculate if, for instance,
ξ ∼ Dir(α) is chosen. Thus, the main goal is to find a way to express and approximate
ψ(ρ | π).

16



2.4. LEARNING FROM DEMONSTRATIONS CHAPTER 2. THEORY

Let the loss of policy π w.r.t. reward function ρ be defined as

ℓρ(π) , max
s

∥∥V ∗
ρ (s)− V

π
ρ (s)

∥∥. (2.33)

A policy is said to be ε-optimal w.r.t. ρ if ℓρ(π) < ε. Let the prior probability that
ℓρ(π) = ε be given by β(ε | π) for any ρ, and assume β(ε | π) = β(ε)5. Then β([0,ε])
is the prior probability that the policy is ε-optimal. This opens up the possibility to
calculate ψ(ρ | π) via

ψ(ρ | π) =

∫ ∞

0
ψ(ρ | ε,π)dβ(ε), (2.34)

where ψ(ρ | ε,π) can be interpreted as a prior probability measure on R given that π is
ε-optimal. The marginal posterior (2.32) can then be written as

ψ(ρ |D) =
∑

π∈P

(∫ ∞

0
ψ(ρ | ε,π)dβ(ε)

)
ξ(π |D). (2.35)

The next task is then to find a motivated expression for ψ(ρ | ε,π). Let Rπ
ε ,

{ρ ∈ R : ℓρ(π) < ε} be the set of reward functions for which π is ε-optimal. Then the
following definition is motivated in [1] by using a counting measure on R:

ψ(ρ | ε,π) ,
✶Rπ

ε
(ρ)

|Rπ
ε |

, (2.36)

which can be seen as an unnormalised prior on reward functions.

Assuming that some finite setR is given, and thatK policies π(1), . . . ,π(k), . . . ,π(K) iid
∼

ξ(· | D) are sampled from the posterior, a loss matrix L ∈ R
K×|R| can be constructed

from (2.33). One final observation remains for (2.32) to be approximated. Let (εi)
K×|R|
i=1

be a monotonically increasing sequence of the elements of L. Then ψ(ρ | ε,π) = ψ(ρ |
ε′,π) for any ε,ε′ ∈ [εi,εi+1], and the approximation is finally given by:

ψ̂(ρ |D) =
K∑

k=1

K|R|∑

i=1

ψ(ρ | ǫi,π
(k))β([ǫi,ǫi+1]) (2.37)

=

K∑

k=1

K|R|∑

i=1

✶
Rπ(k)

εi

(ρ)

|Rπ(k)

εi |
β([ǫi,ǫi+1]). (2.38)

Algorithm

The end result is a Monte Carlo approximation scheme shown in Algorithm 5; K being
the number of MC samples. Here, the hyperprior generates ξ (i.e. α if ξ ∼ Dir(α)) and
a parameter for the chosen form of the optimality prior β.

5This is not to be confused with the Beta distribution. In fact, later, β is chosen to be the exponential
distribution.

17



2.4. LEARNING FROM DEMONSTRATIONS CHAPTER 2. THEORY

Algorithm 5: Bayesian Multitask IRL - Monte Carlo approximation

Input: Reward functions R
for k = 1, . . . ,K do

(ξ(k),β(k)) ∼ η
for m = 1, . . . ,M do

π
(k)
m ∼ ξ(· | dm)

end

end

Calculate ψ̂(· | dm) from (2.37) and
{
π
(k)
m

}K

k=1
for all m

18



3

Model

This chapter explains the choices required to implement the Bayesian multitask Inverse
Reinforcement Learning algorithm (BMTIRL) (Algorithm 5).

Since the algorithm calculates a probability distribution on the reward space R, the
expected reward function

ρ̂m ,
∑

ρ∈R

ψ(ρ | dm)ρ (3.1)

and its corresponding optimal policy π̂∗m , π∗ρ̂m , where π
∗
ρ , π∗µ=(ν,ρ,γ), will be used

to denote the outputs of the algorithm. The true m:th reward function denoted by ρm
represents them:th expert’s intrinsic goals, and technically means that the agent believes
that it is interacting with the environment µm = (ν,ρm,γ) in which it is not necessarily
optimal. All experts are however acting in the same real environment µ = (ν,ρ,γ) and it
is assumed that each ρm is drawn from some distribution with mean ρ. To approximate
ρ, the combined reward function across all experts will be used and is denoted by

ρ̂ ,
1

M

M∑

m=1

ρ̂m, (3.2)

with the corresponding optimal policy denoted by π̂∗ , π∗ρ̂.
Section 3.5 discusses how to construct R when there exists some approximation of

the optimal value function. The hope is that the value V ∗
ρ̂ of the optimal policy inferred

from all experts is somehow closer to the true optimal value function V ∗
ρ than any (or

most) of the individual value functions V ∗
ρ̂m

. This may be due to the fact that different
experts contribute to different parts of the feature vector that is used to approximate V .
Figure 3.1 shows a schematic representation of this assumption.

19



3.1. FEATURES CHAPTER 3. MODEL

¶m2

V
Ρ

*

V
Ρ
`
*

V
Ρm2

*

V
Ρ
`

m2

*

VΡm2

Πm2

V
Ρm1

*

V
Ρ
`

m1

*

VΡm1

Πm1

¶m1

V
Ρ
`

m2

Π dm2

V
Ρ
`

m1

Π dm1

Figure 3.1: A schematic representation of the assumed relationship between the value
functions for the different environments considered in the inference process. In the center
of the figure lies the true value function V ∗

ρ of optimal play, and close to it are two different
experts’ intended value functions Vρm1,2

. Implied by the colored areas around the experts’

actual values V
πm1,2

ρm1,2
are all possible value functions from pairs of sampled policies and

reward functions. The approximated optimal value V ∗

ρ̂ derived from ρ̂m1,2
is assumed to lie

close to the true optimal value V ∗

ρ .

3.1 Features

Although features for state-action pairs have been mentioned, a definition has not been
chosen yet. In many board games an action implies a local interaction within a subregion
of the board. It is thus a natural choice for a state-action feature vector to be composed
of features from this region only. However, for simplicity, the choice made here is to define
the state-action feature vector as the expected vector given by transition probabilities
for action a in state s:

φ(s,a) ,
∑

s′∈S

τa(s
′ | s)φ(s), (3.3)

where φ(s) is a set of nonlinear functions of the state s independent of the previous
action. This method of averaging feature vectors has some convenient properties, as
shall be seen later. The chosen features for the different environments are explained in
Section 3.2.

3.1.1 Reward function feature representation

Recall that the rewards are chosen as a function of the state transitioned to, although
in the most general case they may be a function of all parameters from the transition

20



3.2. ENVIRONMENTS CHAPTER 3. MODEL

(such as the action). Regarding the argument made in Section 3.1 above, this would
have allowed for the combination of state-action features and rewards defined on them.
For the applications discussed here, however, it will be sufficient to continue with the
current convention and to choose the definition:

ρw(s) , φ(s)⊤w. (3.4)

3.2 Environments

This section explains the MDP environments that will be examined.

3.2.1 Random MDP

The feature vector of a state in the Random MDP state space is chosen to have the same
length as the feature space |S| and to have the following one-hot encoding representation:

φi(s) ,




1 if i = s

0 otherwise
(3.5)

Note that, together with (3.3), this definition leads to the property that φs′(s,a) ≡ τa(s
′ |

s), i.e. that the state-action feature vector is a list of transition probabilities for the given
action.

The transition kernel T will be sampled so that the τ ∈ T are given by τ a(·, s)
iid
∼

Dir(α) for all (a,s) ∈ A× S.
The reward function is sampled according to Equation (3.4) and w ∼ Dir(α). Note

that, together with (3.3) and (3.5), this implies that ρw(s) ≡ ws.

3.2.2 Tic-tac-toe

Tic-tac-toe is the famous game where two players, referred to as X and O, take turns
placing symbols on a board of size 3 × 3 until either one player has three symbols in a
row (in any orientation) or the board is filled without a winner (a tie).

Tic-tac-toe is chosen for its state space being large enough for approximation by
value iteration to be impractical, but small enough for having a known optimal policy
and natural features. Although the state space can in fact be reduced to manageable
sizes by considering equivalent reflections and rotations of the board, this is not the
purpose of the work and will not be done here. It will be handled as though the state
space is indeed of size 39 = 19683, i.e. by representing the state by an integer in the
range [0,19683], although most of those states are not even legal positions. The number
of legal actions varies between 0 to 9 depending on the number of occupied locations of
the board (of size 3× 3).

To make the translation to an MDP simpler, the dynamics will have player X in focus,
so that every transition leads to a state where it is X’s turn to play unless the game ends.

21



3.3. GENERATION OF DEMONSTRATIONS CHAPTER 3. MODEL

The opponent is the random player, so that the transition probabilities given a move by
X are uniformly distributed by the available remaining moves for O.

An optimal strategy is given by a heuristic set of rules in [30], which will be referred
to as the programmatic optimal policy.1

Features

The feature vector for a state in the Tic-tac-toe environment is chosen to be a subset of
the features discussed in [31], namely, for each player X and O: the number of singlets
(lines in any orientation with exactly one symbol), doublets (like singlets but exactly two

identical symbols), triplets (three identical symbols in a row), crosspoints (the number
of empty points that belong to at least two singlets), corners (the number of occupied
corners), and finally a center occupation feature with value in {−1,0,1} for O, empty and
X respectively. Apart from these features, an extra fork feature is added, defined as the
number of distinct doublets - 1. Apart from the center occupation feature, all features
are defined for both players, which makes a total of k = 13 features.

The choice of adding the fork feature was made so that the programmatic optimal
policy could be implemented by the use of features and one step lookahead alone.

Rewards

True rewards are given in the terminal states (win or tie) as {−1,0,1} for a loss, tie and
win respectively. Let x be the index of the triplets feature for X and o the corresponding
index for O, then the true reward function ρw is defined by

wi =





1 if i = x,

−1 if i = o,

0 otherwise.

(3.6)

Naturally, when a reward function ρ ∈ R during inference in BMTIRL is considered, it
will be used instead of (3.6).

3.3 Generation of demonstrations

Recall that an optimal policy given a value function Q(s,a) is based on the maximisation
π∗Q(s) , argmaxa{Q(s,a)}. A common alternative [13] that makes the policy (infinitely)
differentiable is to define a Softmax policy according to

π
Softmax(c)
Q (a | s) ,

eQ(s,a)/c

∑
a′∈A eQ(s,a′)/c

, (3.7)

1As is also referenced and reviewed in http://en.wikipedia.org/wiki/Tic-tac-toe#Strategy; ac-
cessed at 2014-05-10.

22

http://en.wikipedia.org/wiki/Tic-tac-toe#Strategy


3.4. POLICY SPACE CHAPTER 3. MODEL

where c is a temperature parameter with the properties limc→0 π
Softmax(c)
Q = π∗Q and

that limc→∞ π
Softmax(c)
Q is the uniformly random policy. It will be used here to generate

demonstrations so that the noise level can be controlled. No real data from human play
will be used.

Each expert m generates a dataset dm (see Figure 2.2) consisting of N independent
trajectories of total lengths T1, . . . ,Tn, . . . ,TN :

dm =

{(
(s

(n)
t ,a

(n)
t )

)Tn

t=1

}N

n=1

. (3.8)

Each trajectory n starts in a state s0 drawn from some initial state distribution, actions

are sampled by at ∼ π
Softmax(c)
Q (· | st) and states by st+1 ∼ τat(· | st) until st = sTn .

The termination may be chosen either by setting a fixed demonstration length or by just
following the policy until a terminal state is reached2.

3.4 Policy space

The approximation of the posterior reward distribution in Equation (2.37) relies on

samples π
(k)
m from πm | dm, where the policy prior is chosen s.t. πm(· | s) ∼ Dir(α) for

all s ∈ S.
For a state s, the updates of the Dirichlet parameters α

(s)
a for each action a is given

by simply adding the count of the number of times that (s,a) was observed in dm:

α(s)
a = α(s)

a +
N∑

n=1

Tn∑

t=1

✶

{
s
(n)
t = s ∧ a

(n)
t = a : (s

(n)
t , a

(n)
t ) ∈ dm

}
, (3.9)

which applies for all (s,a) ∈ S ×A. At a first glance, this requires the enumeration of all

parameters α
(s)
a , which would be intractable since this work focuses on too large state

spaces. However, it is still possible for a lazy3 representation in the following sense. For
every expert m, the posterior is stored as counts of observed state-action pairs in dm,

and for every sampled policy π
(k)
m , a multinomial is sampled and stored only once for

every s upon the querying of π
(k)
m (· | s).

3.4.1 Loss calculation

The loss calculation ℓρ(π) in (2.33) amounts to estimating V π
ρ and V ∗

ρ for all states, but
since all states cannot be enumerated, a subset S ⊂ S has to be used instead. Also, due
to that the posterior policy will have updated parameters only in observed states, this
motivates the choice of using S = {s : s ∈ dm} for each expert m.

2This assumes that policy is proper and is guaranteed to reach a terminal state, which holds trivially
for the MDPs focused on here.

3Lazy initialisation — An object is not calculated before it is requested.

23



3.5. REWARD FUNCTION SPACE CHAPTER 3. MODEL

To actually estimate V π
ρ , LSTDQ (Algorithm 3) is used to get a vector of weights

w for which Qπ
ρ ≈ φ(s,a)⊤w. Similarly, LSPI (Algorithm 4) is used to retrieve π∗ρ and

Q∗
ρ. As LSTDQ relies on sampled transitions from some distribution (where the only

requirement is that the distribution visits all states), a completely random policy will be
used to generate the LSTDQ-specific demonstrations for the random MDP.

3.5 Reward function space

This section connects the assumed value function space in Figure 3.1 with the generation
of the reward space R. If an approximation of the optimal value function exists, the
experts’ intended value functions should also be close. Using a Gaussian approximation
on state-action values, the distribution on the reward space can be solved for and the
discrete reward space R can be sampled.

In Equation (2.23), the linear system qπ = r + γT πqπ was based on Equation (2.9)
where r(s,a) = E[ρ(s′) | s,a]. Using definitions (3.4) and (3.3) for the reward function

and state-action feature function respectively results in the equivalences r(s,a) , E[ρ(s′) |

s,a] ≡ φ(s,a)⊤w and r ≡ Φw, where Φ ∈ R
|S||A|×k as in Section 2.3.1.4

Let r = q − γT πq denote the target values in a linear system r = Φw, so that its
least-squares soluton is w = (Φ⊤Φ)−1Φr. Now assume that there exists some multi-
variate normal approximation q̃ of q with known correlations. With assumpions on the
game dynamics, this induces a transformed distribution for r̃ denoted by µr,Σr.

This is different from regular Bayesian linear regression since, there, it is assumed
that every single target value ri has some unknown univariate i.i.d. noise εi ∼ N (0,σ2)
added to it. In the above context, (µr,Σr) is already given and the problem is to
calculate (µw,Σw). The solution is calculated in [32] where the following expressions
are given by (14.11) and (14.12) in the cited work:

µw = (Φ⊤Σ−1
r Φ)−1Φ⊤Σ−1

r µr, (3.10)

Σw = (Φ⊤Σ−1
r Φ)−1. (3.11)

Each reward function ρi ∈ R, where ρi(s) = φ(s)⊤wi, is thus sampled according to:

wi
iid
∼ N (µw,Σw), (3.12)

which is equivalent to the slower procedure of — for every sample i — first sampling a
set of values q ∈ R

|S||A| for some S ⊂ S, and then solving the linear system mentioned
above.

One limitation of BMTIRL is that it has to operate on a finite reward space R, which
makes generating it an important task. The above procedure motivates why it can be
sampled using random playouts. In fact, in a message passing framework employed in

4Take careful note, however, that the weight vector w used in ρw is not the same as the one used
in Section 2.3.1 for value functions. Throughout this chapter, w is used only to describe the reward
function, hence a minimal risk for confusion.

24



3.5. REWARD FUNCTION SPACE CHAPTER 3. MODEL

[33], they motivate that only one random playout is necessary under the assumption that
terminal states with similar outcomes are clustered. The same approach will be used
here to build estimates of the values.

25



4

Experiments

The general setup of the experiments are as follows.
Given an increasing amount of data from each expert, the quality of the inference

was examined. In particular, the model (3.1) assumes that each expert m may have
a different distribution on reward functions, and it does not know whether the experts
act in the same or similar environments (same or different ρm). Thus, convergence is
shown for all experiments by measuring the loss ℓρm(π̂

∗
m) of the m:th inferred optimal

policy (that is optimal w.r.t. the estimated reward function for each individual expert
ρ̂m), evaluated in the m:th true environment given by ρm. When all experts use the
same reward function, this simplifies somewhat to the single task setting where the true
reward function ρm = ρ will be chosen for all experts. The convergence measure is then
(equivalently) ℓρ(π̂

∗
m).

The performance is shown by measuring the loss ℓρ(π̂
∗) of the policy π̂∗ (that is

optimal w.r.t. the inferred expected reward function ρ̂ from (3.2)), evaluated in the
true environment given by ρ. Note the similarity to the convergence measure in the
previous paragraph, and that in the single task setting the convergence and performance
are measured in the same space and can be viewed together, whereas in the multitask
setting these spaces are different and are viewed side by side.

4.1 Random MDP

The first experiment was to evaluate the algorithm a small randomly constructed MDP
with 20 states and 5 actions available in each state. Each transition probability vector

was sampled according to τa(· | s)
iid
∼ Dir(α = 1.0), ∀a ∈ A, and the true reward function

ρw was sampled by w ∼ Dir(α = 1.0). The set of proposal reward functions consisted
of |R| = 20 i.i.d. samples from the same distribution as the true reward function. The
optimality prior β was set to the exponential distribution with parameter λ = 10.0,
which roughly sets a cumulative probability to a loss < 0.05 to approximately 40%. A

26



4.1. RANDOM MDP CHAPTER 4. EXPERIMENTS

ææ

æææ

æ

æ

æ

æ
æ

æ

à

ààà

à

à

à
à

à

à à

ì

ì

ì

ìì

ì

ì

ì ì

ì ì

ò

ò

òò

ò

ò
ò ò

ò ò

ò

ôô

ô

ô

ô

ô ô ô

ô ô

ô

æææ

ææ

æ

æ

æ

æ æ æ

0 500 1000 1500 2000
ÈdmÈ0.00

0.05

0.10

0.15

{

æ {ΡHΠ
`*L

æ {ΡHΠ
`

1
*L

à {ΡHΠ
`

2
*L

ì {ΡHΠ
`

3
*L

ò {ΡHΠ
`

4
*L

ô {ΡHΠ
`

5
*L

{ΡHΠ1L

{ΡHΠ2L

{ΡHΠ3L

{ΡHΠ4L

{ΡHΠ5L

(a) Losses of policies derived from inferred reward functions,
where the policy derived from the average reward function is
shown in dashed, blue.

a1

a2

a3

a4

a5

0.0 0.2 0.4 0.6 0.8 1.0

ΠHa È s5, DL

Expert 1 H~optimalL

Expert 5 H~randomL

(b) The posterior action
probability for two different
experts in state s5.

Figure 4.1: Single task convergence (a) of random MDP with 20 states and 5 actions, 5
experts, γ = 0.90, K = 30 and |R| = 20. The choice of parameters makes the first expert
nearly optimal and the last expert close to random as shown in in (b), due to Softmax action
probabilities ∝ eQ(s,a)/c depending implicitly on the MDP parameters via the magnitudes
of the value function.

discounting of γ = 0.9 was used.
The first experiment examined the single task setting (ρm = ρ, ∀m) for 5 differ-

ent experts by setting the m:th expert’s Softmax temperature to cm = {0.001, 0.005,
0.01, 0.015, 0.02}m. The experiment was repeated many times, and the results presented
in Figure 4.1 were representative. Increasing the size of the reward function space by
20→ 60 gave improved results shown in Figure 4.2. In another experiment not reported
here, the number was increased even further to 120, without any difference in results.

The multitask setting and the hypothesised relationship between value functions
(Figure 3.1) were examined by perturbing the weight vector of the reward function of
each expert by adding i.i.d. Gaussian noise with variance σ2 = 4.0 to each element,
i.e. ρ = ρw, ρm = ρwm and wm ∼ N (w, 4.0). This value was chosen so that the
performance ℓρ(πm) of the experts’ policies πm (which are optimal w.r.t. ρm) would be
signifinantly different than those of π∗ρ. The results presented in Figure 4.3 show that it
is now possible to achieve a higher performance (lower loss) in comparison to those of
the individual experts.

27



4.1. RANDOM MDP CHAPTER 4. EXPERIMENTS

æ

æ

æ

æ

æ

æ

æ æ æ æ æ

à

à

à

à

à

à à à
à

à

à

ì

ì
ì

ì

ì ì

ì ì

ì

ì ì

ò

ò
ò

ò

ò

ò
ò

ò

ò
ò

ò

ô

ô
ô

ô

ô

ô

ô ô

ô
ô

ô

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ æ

0 500 1000 1500 2000
ÈdmÈ0.00

0.05

0.10

0.15

{

æ {ΡHΠ
`*L

æ {ΡHΠ
`

1
*L

à {ΡHΠ
`

2
*L

ì {ΡHΠ
`

3
*L

ò {ΡHΠ
`

4
*L

ô {ΡHΠ
`

5
*L

{ΡHΠ1L

{ΡHΠ2L

{ΡHΠ3L

{ΡHΠ4L

{ΡHΠ5L

Figure 4.2: Random MDP with 20 states and 5 actions, 5 experts, γ = 0.90. The number
of reward functions is increased to |R| = 60, leading to lower losses reached.

æ

æ

ææ

æ

æ

æ æ æ

æ

à

à

à

à

à

à

à à

à à

ì

ì

ì

ì

ì

ì

ì
ì

ì ì

ò

ò

òò

ò ò
ò ò ò ò

ô

ô

ô

ô

ô

ô

ô ô ô ô

0 200 400 600 800 1000
ÈdmÈ0

2

4

6

8

10

12

14
{

æ {Ρ1
HΠ
`

1
*L

à {Ρ2
HΠ
`

2
*L

ì {Ρ3
HΠ
`

3
*L

ò {Ρ4
HΠ
`

4
*L

ô {Ρ5
HΠ
`

5
*L

(a) Multitask convergence of losses.

æ

æ

ææ

æ æ

æ æ

æ æ

0 200 400 600 800 1000
ÈdmÈ0.14

0.16

0.18

0.20

0.22

0.24

0.26
{

{ΡHΠ1L

{ΡHΠ2L

{ΡHΠ3L

{ΡHΠ4L

{ΡHΠ5L

æ {ΡHΠ
`*L

(b) Multitask optimal policy π̂∗ performance in
true MDP compared to each expert.

Figure 4.3: Inference in the multitask setting where each expert has its own reward function
ρwm

where wm ∼ N (w,4.0) and ρw is the true reward function. Parameters are K =
10,|R| = 20,γ = 0.90 and all expert temperatures are set to 0.001.

28



4.2. TIC-TAC-TOE CHAPTER 4. EXPERIMENTS

Feature Prog. LSPI

Singlets X 0.151 0.190

Doublets X 0.212 0.306

Triplets X 0.879 0.884

Crosspoints X 0.004 0.009

Corners X 0.072 0.068

Forks X 0.153 0.280

Singlets O 0.186 0.370

Doublets O -0.063 -0.040

Triplets O -1.352 -1.518

Crosspoints O -0.258 -0.428

Corners O 0.100 0.099

Forks O -0.921 -1.434

Center occupation 0.030 0.013

Table 4.1: Weights found by evaluating the programmatic optimal policy (Prog.) using
LSTDQ, and those found by letting LSPI converge to an optimal policy from initial weights
w0 = 0.

4.2 Tic-tac-toe

The second experiment involved evaluating the multitask setting of the algorithm in the
Tic-tac-toe domain. First it was asserted that the programmatic optimal policy and the
policy returned by LSPI had similar weights in their resulting value function. A number
of 5000 random playouts were generated as data for LSTDQ. This gave the weights
presented in Table 4.1. Some discrepancy does exist, but no further analysis was made
as to why. Both policies have roughly the same win rate against the random policy, but
their strategies may be different.

Each reward function was sampled by first sampling a set of state-action values and
then solving the linear system given by those values, as explained in Section 3.5. The
state-action values were sampled for every (s,a) ∈ X where X was the demonstrations
from 10 completely random playouts. To approximate the value of each (s,a) ∈ X, the
terminal reward from 1 random playout was used. A number of R = 60 reward functions
were sampled this way.

The experts were then defined as Softmax policies similar to the previous exper-
iments, with low to zero noise for easier observation of results. The experts’ value
functions were derived from an approximative reward function sampled according to the
above mentioned procedure (for a larger set of size |X| = 200), but where some weights

29



4.2. TIC-TAC-TOE CHAPTER 4. EXPERIMENTS

Feature Expert 1 Expert 2 Expert 3

Singlets X 1

Doublets X 1

Triplets X

Crosspoints X 1

Corners X 1 1

Forks X 1

Singlets O 1

Doublets O 1

Triplets O

Crosspoints O 1

Corners O 1 1

Forks O 1

Center occupation 1 1 1

Table 4.2: Factors of the reward weightsw used for each expert’s individual reward function
ρw. The base reward function was a random sample using the procedure described in the
text. This method represents missing knowledge where the weights are 0 (empty table
elements).

were set to 0 to simulate lack of information processing capabilities. For instance, if the
weight for ”Triplets X” were set to 0, the expert would not know how to win, but play
optimally up until the last move (and then possibly win by pure chance). The purpose
was to construct experts whose scoring were not too high, and the feature weights were
chosen arbitrarily to achieve this. The factors of the weights per expert’s reward function
is presented in Table 4.2.

The expert’s demonstrations dm were used as samples for the LSTDQ policy evalu-
ation step as explained in Section 3.4.

The convergence of the multitask experiment is presented in Figure 4.4. The perfor-
mance results presented in Figure 4.5 is measured in terms of the score being the average
reward ∈ {−1,0,1} of random playouts from the initial (empty) state, facing an opponent
that plays randomly unless it can win in 1 move. Here it is shown that it is possible for
the derived policy π̂∗ to outperform those inferred from the individual experts.

The following other experiments, explained only briefly, involved different methods
of sampling reward functions and different construction of expert policies that did not
do as well.

Retaining only one dimension of the sampled reward function was tested, hoping that
this would allow for further combinations within each task m and also between tasks.

30



4.2. TIC-TAC-TOE CHAPTER 4. EXPERIMENTS

æ

æ
æ
æ

æ

æ

æ
æ

æ

æ
æ
æ
ææ æ

æ
æ æ æ æ æ æ

æ

ææææææææ æ

à

à

à

à

à
à

à

à

à
à
à
à

à à

à
à

à à à
à à

ì

ì

ì

ì

ì

ì
ì

ì ì ì ì ì
ì

ì

500 1000 1500 2000
ÈdmÈ

0.05

0.10

0.15

0.20

{

æ {Ρ1
HΠ
`

1
*L

à {Ρ2
HΠ
`

2
*L

ì {Ρ3
HΠ
`

3
*L

(a) First run

æ

ææ

æ
æ

æ
æ

ææ

æ

æ
æ
æ
æ

æ
æ æ æ æ æ æ æ

æ æ

à

àà
à
ààààà

à à
à
à à à à à à à à à à

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ìì
ì

ì

ì ì

ì ì ì
ì ì

200 400 600 800 1000
ÈdmÈ

0.02

0.04

0.06

0.08

0.10

{

æ {Ρ1
HΠ
`

1
*L

à {Ρ2
HΠ
`

2
*L

ì {Ρ3
HΠ
`

3
*L

(b) Second run

Figure 4.4: Convergence of the loss of each inferred policy π̂∗

m in the truem:th environment
ρm.

æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ æ

æ æ

æ

ææææ

à

à

à

à

à

à

à

à

à

à

à
à

à à à
à

à

à à à à à

ì

ì

ì

ì

ì

ì

ì

ì

ìì

ì
ì

ì

ì ì ì
ì ì ì

ì ì

ì

ò

ò

ò

òò

òòò
òòò

òòò ò
ò ò ò ò ò ò ò

ò

500 1000 1500 2000
ÈdmÈ

0.5

0.6

0.7

0.8

0.9

score

æ sHΠ
`

1
*L

à sHΠ
`

2
*L

ì sHΠ
`

3
*L

ò sHΠ
`*L

(a) First run

æ

æ

æ

æ

æ

ææ

æ

æ æ

æ æ

æ

æ

æ æ
æ

æ

æ

æ

ææ æ

à

à

à

à

à

à

à

àà
à

à

à
à

à

à

à

à

à à
à à

à

ì

ì

ì

ì

ìì

ì
ì

ì

ì

ì

ì

ì

ì ì
ì

ì

ì ì ì

ò
ò

ò
òòòòò

ò

ò

ò

ò
ò

ò ò

ò

ò
ò

ò
ò

ò ò

200 400 600 800 1000
ÈdmÈ

0.86

0.88

0.90

0.92

0.94

0.96
score

æ sHΠ
`

1
*L

à sHΠ
`

2
*L

ì sHΠ
`

3
*L

ò sHΠ
`*L

(b) Second run

Figure 4.5: The solid green score s(π̂∗) on top is the optimal policy derived from ρ̂ =
1
M

∑M
m=1 ρ̂m, showing that the combined policy can outperform each individually inferred

optimal policy π̂∗

m.

However, many of them resulted in nonsense optimal policies. For instance, if only the
singlets feature was retained, the policy would avoid making doublets since that would
eliminate the singlet. Also tested was to use the same Dirichlet sampling procedure as in
Section 4.1, but since this method had litte correspondence to actually play the game, it
could not be used. The prior in Section 3.5 was developed specifically for this purpose,
and allows for weights wi ∈ (−∞,∞).

Optimal experts using values from the weights from Table 4.1 were tested, but only
resulted in too fast convergence; the reward functions in R that best explained the
real game would be inferred as most likely, and the corresponding optimal policies were
optimal given only little amounts of data. Instead, learning from imperfect teachers
was better for the evaluation of the proposed algorithm. Also, controlling the inference
procedure was easier if the experts were defined in terms of a reward function rather
than the value function.

31



5

Conclusions

The output of the algorithm is used to construct a deterministic policy which does not
change beyond the early stages in the small MDP with 20 states and 5 actions. Although
the posterior policy samples converge to the demonstrator’s policies (not shown), the
resulting deterministic policy is still identical when adding more data.

In the first experiments, each reward function is sampled from the simplex and all
experts use the same reward function with different noise. This gave a loss ℓρ(π̂

∗) of

the policy derived from ρ̂ = 1
M

∑M
m=1 ρ̂m which does not improve on the best loss in

{ℓρ(π̂
∗
m)}Mm=1. The loss ℓρ(π̂

∗) is essentially an average across the losses of the indidivual
experts. In other words, it seems as though, in practice, the performance is bounded by
that of the best ρ ∈ R.

A reason not to expect further variations when adding more data is that, in the limit
of increased number of demonstrations or increased demonstration length, each sample
from the policy posterior are identical points. This effectively lowers the importance
of the number of Monte Carlo samples K, s.t. the BMTIRL approximation in (2.37)
becomes a mean of of K identical values.

The model was quite sensitive to parameter tuning and since its inner workings are
based on loss calculations, domain specific knowledge of the value function magnitude is
required. The choice of norms ℓ2 or ℓ∞ also had a large effect on what values appeared in
the loss matrix; the variation in magnitude of the supremum norm (the latter of the two)
can be hard to anticipate. A choice to switch to ℓ2 was made since it made observing
the algorithm’s behaviour easier, but if high dimensionality feature vectors are to be
considered, this choice may need revision.

When moving to the true multitask setting, where there are M reward functions
instead of only 1, it is possible to surpass the experts within environment ρ. This required
the assumption that each ρm is generated with mean ρ. Similarly, the performance of
the combined reward function for Tic-tac-toe outperforms that of each individual expert
since the same assumptions hold here also.

32



5.1. DISCUSSION AND FUTURE WORK CHAPTER 5. CONCLUSIONS

5.1 Discussion and Future Work

Reinforcement learning techniques are very modular, and the contributions made here
have mostly been to evaluate this modularity with large state spaces as a main consid-
eration. The project involved the combination and implementation of work from several
different papers, and much time was spent on evaluating different techniques.

The enumeration of reward functions and repeated solving of the reinforcement learn-
ing problem associated with calculating value functions for reward-policy pairs is slow
and a potential problem in larger domains. BMTIRL would have to be modified on a
greater extent than was done here to fully utilize knowledge of values near terminal states
for improved sampling. It would benefit to develop methods for calculating the poste-
rior reward distribution based on a parameterisation rather than performing discrete
enumeration.

Inference was made possible in large domains thanks to the combination of the chosen
policy space and the fact that LSTDQ to some extent mitigated having observations in
only a small part of the state space. However, it is not clear how this scales to more
complex domains, where trajectories are more spread apart and an insufficient set of
features will have a much larger impact on the ability to differentiate between policies.
Thus, future work would involve a focus on feature engineering and the development of a
feature based policy prior that does not depend on state-action counts. It is tempting to
use the Softmax policy prior but it does not allow for a closed form posterior calculation.1

An interesting observation during the construction of the experts was that when
combining two mutually exclusive (in weights) reward functions, the optimal policy of
the combined reward functions could in some cases have worse performance than those
of its individual parts. This relates to the discussion in Section 2.4 about the sensi-
tivity of the construction of reward functions. Future work in this area would involve
further investigation on how the combination of reward functions affects the resulting
optimal policies. This is necessary if one wants to take advantage of the value function
relationship assumed in Figure 3.1.

The Tic-tac-toe results motivate the development of more complex generative models
for how the experts choose their reward functions; there should be alot of structure and
they are not independent, there might be clusters and so on. This is certainly one of the
more interesting paths for future work.

1A Softmax policy prior would on the other hand allow for using a MAP approach such as in [34]
at the expense of not being fully Bayesian. For convexity and to likely be solvable by gradient based
techniques it also requires that the prior on reward parameters is flat. In this model, the reward prior
from Section 3.5 is Gaussian and can be combined with existing techniques that approximate state-action
values.

33



Bibliography

[1] C. Dimitrakakis, C. A. Rothkopf, Bayesian multitask inverse reinforcement learning,
in: Recent Advances in Reinforcement Learning, Springer, 2012, pp. 273–284.

[2] V. L. Allis, Searching for solutions in games and artificial intelligence, Ph.D. thesis,
Universiteit Maastricht (1994).

[3] S. Calinon, Robot programming by demonstration, in: Springer handbook of
robotics, Springer, 2008, pp. 1371–1394.

[4] B. D. Argall, S. Chernova, M. Veloso, B. Browning, A survey of robot learning from
demonstration, Robotics and autonomous systems 57 (5) (2009) 469–483.

[5] S. J. Pan, Q. Yang, A survey on transfer learning, Knowledge and Data Engineering,
IEEE Transactions on 22 (10) (2010) 1345–1359.

[6] L. Chen, P. Pu, Survey of preference elicitation methods, Tech. rep., Technical Re-
port IC/200467, Swiss Federal Institute of Technology in Lausanne (EPFL) (2004).

[7] C. A. Rothkopf, C. Dimitrakakis, Preference elicitation and inverse reinforcement
learning, in: Machine Learning and Knowledge Discovery in Databases, Springer,
2011, pp. 34–48.

[8] S.-l. Huang, Designing utility-based recommender systems for e-commerce: Evalu-
ation of preference-elicitation methods, Electronic Commerce Research and Appli-
cations 10 (4) (2011) 398–407.

[9] M. Minsky, Steps toward artificial intelligence, Proceedings of the IRE 49 (1) (1961)
8–30.

[10] W. Schultz, Predictive reward signal of dopamine neurons, Journal of neurophysi-
ology 80 (1) (1998) 1–27.

[11] W. Schultz, P. Dayan, P. R. Montague, A neural substrate of prediction and reward,
Science 275 (5306) (1997) 1593–1599.

34



BIBLIOGRAPHY BIBLIOGRAPHY

[12] R. S. Sutton, Learning to predict by the methods of temporal differences, Machine
learning 3 (1) (1988) 9–44.

[13] A. G. Barto, Reinforcement learning: An introduction, MIT press, 1998.

[14] M. Friedman, L. J. Savage, The expected-utility hypothesis and the measurability
of utility, The Journal of Political Economy (1952) 463–474.

[15] J. Wal, J. Wessels, Markov decision processes, Statistica Neerlandica 39 (2) (1985)
219–233.

[16] M. L. Puterman, Markov decision processes: discrete stochastic dynamic program-
ming, Vol. 414, John Wiley & Sons, 2009.

[17] R. Bellman, The theory of dynamic programming, Tech. rep., DTIC Document
(1954).

[18] I. H. Witten, An adaptive optimal controller for discrete-time markov environments,
Information and control 34 (4) (1977) 286–295.

[19] G. A. Rummery, M. Niranjan, On-line Q-learning using connectionist systems, Uni-
versity of Cambridge, Department of Engineering, 1994.

[20] C. J. Watkins, P. Dayan, Q-learning, Machine learning 8 (3-4) (1992) 279–292.

[21] M. G. Lagoudakis, R. Parr, Least-squares policy iteration, The Journal of Machine
Learning Research 4 (2003) 1107–1149.

[22] C. D. Meyer, Matrix analysis and applied linear algebra, Vol. 2, Siam, 2000.

[23] J. A. Boyan, Least-squares temporal difference learning, in: ICML, Citeseer, 1999.

[24] S. J. Bradtke, A. G. Barto, Linear least-squares algorithms for temporal difference
learning, Machine Learning 22 (1-3) (1996) 33–57.

[25] A. Y. Ng, S. J. Russell, et al., Algorithms for inverse reinforcement learning., in:
Icml, 2000, pp. 663–670.

[26] P. Abbeel, A. Y. Ng, Apprenticeship learning via inverse reinforcement learning, in:
Proceedings of the twenty-first international conference on Machine learning, ACM,
2004, p. 1.

[27] A. Wilson, A. Fern, S. Ray, P. Tadepalli, Multi-task reinforcement learning: a
hierarchical bayesian approach, in: Proceedings of the 24th international conference
on Machine learning, ACM, 2007, pp. 1015–1022.

[28] A. Lazaric, M. Ghavamzadeh, et al., Bayesian multi-task reinforcement learning, in:
ICML-27th International Conference on Machine Learning, 2010, pp. 599–606.

35



BIBLIOGRAPHY

[29] T. Heskes, Solving a huge number of similar tasks: A combination of multi-task
learning and a hierarchical bayesian approach., in: ICML, Vol. 15, Citeseer, 1998,
pp. 233–241.

[30] K. Crowley, R. S. Siegler, Flexible strategy use in young children’s tic-tac-toe, Cog-
nitive Science 17 (4) (1993) 531–561.

[31] W. Konen, T. Bartz-Beielstein, Reinforcement learning for games: failures and
successes, in: Proceedings of the 11th Annual Conference Companion on Genetic
and Evolutionary Computation Conference: Late Breaking Papers, ACM, 2009, pp.
2641–2648.

[32] A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, D. B. Rubin,
Bayesian data analysis, CRC press, 2003.

[33] P. Hennig, D. Stern, T. Graepel, Coherent inference on optimal play in game trees.

[34] A. C. Tossou, C. Dimitrakakis, Probabilistic inverse reinforcement learning in un-
known environments, arXiv preprint arXiv:1307.3785.

36


	Introduction
	Problem formulation
	Motivation from related fields

	Theory
	Decision making under uncertainty
	Markov decision processes
	Policies

	Optimality
	Bellman Optimality Equations

	Temporal Difference learning
	Least-squares methods

	Learning from demonstrations
	Bayesian multitask inverse reinforcement learning


	Model
	Features
	Reward function feature representation

	Environments
	Random MDP
	Tic-tac-toe

	Generation of demonstrations
	Policy space
	Loss calculation

	Reward function space

	Experiments
	Random MDP
	Tic-tac-toe

	Conclusions
	Discussion and Future Work

	 Bibliography

