
INVERSE REINFORCEMENT
LEARNING FOR HELPER-AI DESIGN

April-August 2017

Raphaël Duroselle

Advisor: Christos Dimitrakakis

Inverse Reinforcement learning for Helper-AI
design

DÉCLARATION D’INTÉGRITÉ RELATIVE AU PLAGIAT

Je soussigné Raphaël Duroselle certifie sur l’honneur:

1. Que les résultats décrits dans ce rapport sont l’aboutissement de mon travail.

2. Que je suis l’auteur de ce rapport.

3. Que je n’ai pas utilisé des sources ou résultats tiers sans clairement les citer et les référencer
selon les règles bibliographiques préconisées.

2/42

Inverse Reinforcement learning for Helper-AI de-
sign

Abstract

We consider a two-player game played by two cooperative agents. They disagree on the under-
lying Markovian model of the world and thus achieve a suboptimal equilibrium. The Helper-AI
team at Harvard University has shown that, if one player knows the difference between the models
used by the agents, the loss can be reduced. In this work we focus on the estimating problem of
the model of the second agent by the first one.

We first propose a simple way of choosing the likeliest model among a finite set and then show
the failure of the classical Inverse Reinforcement Learning methods to predict future behavior of the
second agent. Based on a small number of observations and on general hypothesis about the agent’s
behavior, we provide an exact description of the set of models consistent with the observations.
When the number of observations increases, our parametrization is not efficient and we have to use
some heuristics to find a realistic model of the world.

Finally we show empirically that some models are strictly equivalent: they produce exactly the
same behavior in every situation. As a consequence, we propose to use a classification method
among the set of equivalence classes. We can predict the future behavior of the agent without
knowing its underlying model, whose estimation is impossible.

3/42

Inverse Reinforcement learning for Helper-AI
design

ACKNOWLEDGMENTS

I would like to thank Christos Dimitrakakis, my supervisor for this internship. He made me work on
an interesting problem and gave me good insights. He let me the freedom to explore the directions I
chose but always helped me when I was lost.

Thank you to David Parkes, head of the EconCS group at the School of Engineering and Applied
Science of Harvard University, for welcoming me to his group. I am very grateful to all members of
the group for the fantastic atmosphere of work in this laboratories, particularly to the members of the
Helper-AI team with whom I have been working for a few months: Goran Radanovic and Paul Tylkin.
I also want to mention Thibaut Horel with whom I had very inspiring discussions even though he was
not part of this project.

Thank you to Aristide Tossou and Hannes Eriksson, PhD students at Chalmers University, who
welcomed me to Sweden at the beginning of my internship. Finally I thank all the people that helped
me with the administrative work, before and during the internship: Rebecca Cyren, Gina Scribner
and Ann Marie King.

4/42

Inverse Reinforcement learning for Helper-AI de-
sign

TABLE OF CONTENTS

1 Formulation of the problem 7
1.1 Motivation: the Helper-AI framework . 7
1.2 Model and definitions . 7

1.2.1 Markov Decision Process . 7
1.2.2 Strategies and state values . 8
1.2.3 Optimal strategy . 9
1.2.4 Markov Decision Process for two cooperative players 10
1.2.5 Human point of view . 10

1.3 Previous results in the Helper-AI problem . 11
1.4 Estimating problem . 12

2 Choice of a model in a finite set 13
2.1 Observations . 13
2.2 Idea of the estimating process . 13
2.3 A softmax model for the human . 13
2.4 Results . 14
2.5 Conclusion . 15

3 Classical inverse reinforcement learning 17
3.1 Observation of the optimal policy of the human . 17

3.1.1 Expression of the values and Q-values . 17
3.1.2 Set of admissible reward vectors . 17
3.1.3 Choice of a rewards vector . 18

3.2 Observation of a softmax policy . 18
3.2.1 Stochastic human policies . 18
3.2.2 Constraints over the rewards vector . 18
3.2.3 Enlargement of the rewards vector space . 19

3.3 Conclusion . 20

4 Estimation of the transition matrix for one observation 21
4.1 Partition function and value . 21
4.2 Parametrization of the set of admissible transition matrices by the value function . . . 22
4.3 Admissible value functions . 22

4.3.1 Auxiliary variables . 22
4.3.2 Parametrization by the worst and the best states 23

4.4 Set of admissible models . 24
4.5 Choice of the estimated transition matrix . 24

4.5.1 Closest transition matrix . 24
4.5.2 Prior on the value function . 24
4.5.3 Partially known transition matrix . 25
4.5.4 Lower bound on the transition matrix . 25
4.5.5 Upper bound on the transition matrix . 25

4.6 Conclusion . 26

5/42

Inverse Reinforcement learning for Helper-AI
design

5 The Helper-AI framework 27
5.1 Several observations . 27

5.1.1 Application of the results for the single player MDP 27
5.1.2 Independent observations . 27
5.1.3 Larger number of observations . 28

5.2 Error measure . 28
5.3 Successive projections . 29
5.4 Gradient descent . 29
5.5 L2 error . 31
5.6 Comparison of the methods . 33

5.6.1 Gradient descents . 33
5.6.2 Gradient descent and probabilistic method . 33

5.7 Conclusion . 35

6 Equivalence classes and indistinguishability 36
6.1 Formalization . 36
6.2 Construction of an equivalence curve . 36
6.3 Regression point of view . 39

6/42

Inverse Reinforcement learning for Helper-AI de-
sign

1
FORMULATION OF THE PROBLEM

1.1 Motivation: the Helper-AI framework

We consider systems where an artificial intelligence (AI) interacts with an human being. Both AI and
human are able to make decisions that affect the world. Each of them will be in consequence affected
by the succession of states of the world. If they behave rationally, they will attempt to lead the world
to a satisfying state (for themselves). In a game framework, for instance when a human plays chess
against a computer program, the human player wants the system to converge to a winning position
whereas the computer tries to defeat him.

We want to design a system where the AI helps the human. Consequently the AI adopts the same
goal as the human. It aims at reaching the same ’satisfying states’. Then if AI and human agree on
their goals, why do we need an artificial intelligence? Both agents should make the same decisions.
We observe that in a lot of practical cases, human beings do not behave optimally according to their
own goals. In other words, they have a wrong belief about the consequences of their decisions. They
may use a simplified model of reality because of their lack of perception or of computing power. They
might also be fundamentally wrong. For instance in an autonomous plane, the on-board computer
could have more information than the pilot about the weather and the state of the motor (temperature
of different parts, oil consumption, resistances). Moreover the belief over the system of an experienced
pilot would surely have some bias.

Knowing that fact, if we want the system to evolve optimally according to the model of the world
used by the AI (that we assume to be accurate), the AI should make all decisions. Nevertheless the
danger of such a system is clear. It is almost certain that the human would stop a self-driving car
if it behaved very strangely in comparison with a human driver. By definition our intelligent system
will use a model of the world that could be wrong and the human being must be free to behave in a
different way.

Consequently, from an AI designer point of view, we want to create an helper-AI that would take
into account the fact that it collaborates with a human who uses a different model of the world. The
first step in the design of the system is the estimation of the model of the world used by the human.

1.2 Model and definitions

We use a classical model in Reinforcement Learning: Markov Decision Processes ([Put05]). We first
define a Markov Decision Process for one player and then show how it can be generalized to a two-
player game. Finally we define precisely the estimation problem we want to solve.

1.2.1 • Markov Decision Process

A Markov Decision Process (MDP) controls the evolution of an agent within a set of states S. In each
state s ∈ S, there is a set of allowed actions As. For any state s ∈ S, the agent chooses an action
a ∈ As, there is a probability distribution Ps,a over the set S such that, from the state s and taking

7/42

Inverse Reinforcement learning for Helper-AI
design

the action a, the agent will go to the state s′ ∈ S with probability Ps,a(s′). In addition, he will receive
a reward Rs,a,s′ (that could depend only on s, (s, a) or (s, a, s′)).

In this work, we focus on finite MDPs where both sets of states and actions are finite. We also
make the assumption that the set of allowed actions As does not depend on the state s ∈ S. This
hypothesis is not restrictive and only aims at simplifying the notations.

Definition 1. A Markov Decision Process (MDP) over a finite states set S and a finite actions set
A is a tuple (P,R) ∈MS×A,S(R)× RS×A×S.

P is the transition matrix. In particular, we have:

∀(s, a, s′) ∈ S ×A× S, 0 ≤ Ps,a(s′) ≤ 1

∀(s, a) ∈ S ×A,
∑
s′∈S

Ps,a(s′) = 1

R is the rewards vector.

1.2.2 • Strategies and state values
Definition 2. Let (P,R) be a MDP over the states set S and actions set A. A sequence (st, at)t∈N ∈
(S ×A)N is called a path in the MDP (P,R).

Definition 3. Let (P,R) be a MDP and (s, a)t∈N a path. Given a discount factor γ ∈ [0, 1[, the
cumulative reward associated with the path (s, a)t∈N is given by:

RC =
∑
t∈N

γtRst,at,st+1

A rational agent evolving in a given MDP, tries to maximize the cumulative reward he gets over
time. The discount factor represents the preference of the agent for an immediate over a future reward.
The agent only acts through the choice of the actions. In this work, we assume that the agent behaves
like if he knew perfectly the parameters of the MDP (P,R). As a consequence, its behavior does not
change with time, he uses a Markovian strategy.

Definition 4. Given a state set S and an action set A, a Markovian strategy (or policy) is the list of
|S| probability distributions over A.

In the state s ∈ S, the agent chooses the action a ∈ A with probability πs(a)
Π is the set of all Markovian strategies over the sets (S,A).
ΠD is the subset of Π that contains all deterministic policies.

Definition 5. Given a strategy π, the value Vπ(s) of a state s is the total expected reward of an agent
starting from the state s and playing the strategy π.

∀s ∈ S, Vπ(s) = E
∑
t∈N

γtRst,at,st+1

where the expectation is taken over all paths with the constraint s0 = s. The probability of a given
path depends on the policy π. More precisely:

∀s ∈ S, Vπ(s) =
∑

t∈N,(s1,...st+1)∈St,(a0,...at)∈At
γtRst,at,st+1

t∏
t′=1

Pst′ ,at′ (st′)πst′ (at′)

8/42

Inverse Reinforcement learning for Helper-AI de-
sign

Definition 6. Let π be a policy of the agent. The associated expected reward vector Rπ ∈ RS is given
by:

∀s ∈ S,Rπ(s) =
∑

(a,s′)∈A×S
πs(a)Ps,a(s′)Rs,a,s′

We remark that if R does not depend on the action and the arrival state, then for every policy π,
Rπ = R.

Definition 7. Let π be a policy of the agent. The associated transition matrix Pπ is given by:

∀(s, s′) ∈ S2, Pπ(s, s′) =
∑
a∈A

πs(a)Ps,a(s′)

Theorem 1. Given a Markovian strategy π, the associated value function is the unique solution of
the system known as Bellman equation:

Vπ = Rπ + γPπVπ

It gives:
Vπ = (I − γPπ)−1Rπ

Proof. Since Pπ is a transition matrix, all its eigenvalues’ modules are 1. As a consequence the matrix
(I − γPπ) is invertible for |γ| < 1.

Definition 8. The Q-function associated to the policy π is the vector Q ∈ RS×A that gives the expected
cumulative reward obtained from the policy π after playing action a in state s.

∀(s, a) ∈ S ×A,Qs(a) =
∑
s′∈S

Ps,a(s′)(Rs,a,s′ + γVπ(s′))

1.2.3 • Optimal strategy
Definition 9. In order to compare value functions, we take the classical definition of order between
two vectors. Let n ∈ N∗, (v, v′) ∈ Rn. v is said superior to v′ if:

∀i ∈ {1, . . . n}, vi ≥ v′i

Then we use the notation v ≥ v′.

Theorem 2. Let (P,R) be a MDP over a finite states set S and a finite actions set A. Let γ be a
discount factor. Then there exists an optimal strategy π∗ such that:

∀π ∈ Π, Vπ∗ ≥ Vπ

We use the notation V ∗ = Vπ∗.
V ∗ is the unique solution of the system:

∀s ∈ S, V (s) = max
a∈A

∑
s′∈S

Ps,a(s′)(Rs,a,s′ + γV (s′))

and:
∀(s, a) ∈ S ×A, π∗s(a) 6= 0⇔ a ∈ argmax

a′∈A

∑
s′∈S

Ps,a′(s′)(Rs,a′,s′ + γV (s′)

9/42

Inverse Reinforcement learning for Helper-AI
design

Theorem 3. An approximation of V ∗ can be computed with arbitrary precision ε > 0 thanks to the
following value iteration algorithm:

1. Initialize the vector V ∈ RS to some arbitrary value.

2. ∀s ∈ S, V ′(s) = maxa∈A
∑
s′∈S Ps,a(s′)(Rs,a,s′ + γV (s′))

3. if ||V − V ′||∞ > ε(1−γ)
2γ , V = V ′ and go back to step 2.

4. Return V ′.
Proof. The proof of the two previous theorems can be found in [Put05]. They are based on an
attractive fixed point argument.

Definition 10. The Q-value vector Q∗ ∈ RS×A is defined by:

∀(s, a) ∈ S ×A,Q∗s(a) =
∑
s′∈S

Ps,a(s′)(Rs,a,s′ + γV ∗(s′))

1.2.4 • Markov Decision Process for two cooperative players
A Markov Decision Process (MDP) controls the evolution of the system within a set of states S. The
first agent will be called the AI, and the second agent the human. In each state s ∈ S, there is a set
of allowed actions AAI for the AI and AH for the human.. For any state s ∈ S and any pair of actions
(a, b) ∈ AAI × AH there is a probability distribution Ps,a,b over the set S such that, from the state
s and taking the actions (a, b), the system will go to the state s′ ∈ S with probability Ps,a,b(s′). In
addition, the human and AI receive a reward Rs,a,b,s′ .

In this work, we focus on finite MDPs where both sets of states and actions are finite. Both agents
know perfectly the reward vector R but they have potentially different beliefs over the transition
matrix P , respectively PAI and PH .
Definition 11. A multi-view MDP over the finite states set S and the finite actions sets AAI and AH
is the tuple (R,PAI , PH , γ) ∈ RS×A×S ×MS×AAI×AH ,S(R)×MS×AAI×AH ,S(R)× [0, 1[.

R is the rewards vector, shared by both agents.
PAI is the transition matrix of the AI. We assume it is the real transition matrix of the system.
PH is the belief of the human over the transition matrix, potentially different from PAI .
γ is the discount factor.

1.2.5 • Human point of view

When both agents know the transition matrix of the system (i.e. PAI = PH = P), since they receive
the same reward, they can achieve an optimal joint policy. Nevertheless, when one of the agent has a
wrong belief about the transition matrix of the system, he may use a suboptimal policy. We assume
that the human uses a wrong model of the system, ie PH 6= P .

More precisely, the AI will commit to a policy πAI , i.e. in the state s the AI will choose action
a ∈ AAI with probability πAIs (a). Then the human will face a new MDP P ′ where he knows exactly
the behavior of the AI. We have:

∀(s, b, s′) ∈ S ×AH × S, P ′s,b(s′) =
∑

a∈AAI
πAIs (a)PHs,a,b(s′)

In this MDP, he will behave according to his belief about the world. We observe his answer policy
πH .

10/42

Inverse Reinforcement learning for Helper-AI de-
sign

1.3 Previous results in the Helper-AI problem

The Helper-AI team at Harvard University has shown bounds over the loss in term of value functions
that is created by a difference between the models of the AI and the human, when both players play
optimally according to their own model. The results have not been published yet ([PDRT]).

Theorem 4. In a MDP (R,PAI , PH , γ), there exists an optimal joint policy (that maximizes the
values vector).

Proof. Consider the MDPM = (R′, P ′) over the sets S′ = S and A′ = AAI ×AH with:

∀(s, a, b, s′) ∈ S ×AAI ×AH × S,R′s,(a,b),s′ = Rs,a,b,s′

and
P ′s,(a,b)(s

′) = Ps,a,b(s′)

The theorem 2 gives the existence of an optimal policy π′∗ forM. Let (π∗AI , π∗H) = π′∗ is the optimal
joint policy for the original two-player MDP.

Definition 12. An optimal uninformed policy of the AI is a policy πAI such as there exists an optimal
joint policy of the MDP π′ and a policy of the human πH such that (πAI , πH) = π′.

Definition 13. One optimal answer for the human to the policy of the AI πAI is one optimal policy
in the MDP (RπAI , PHπAI , γ). We use the notation π∗H(πAI , PH).

For each policy of the AI πAI , the human plays the optimal answer according to his own model:
π∗H(πAI , PH). Nevertheless the AI expects the human to play optimally according to the real model, it
expects the policy π∗H(πAI , PAI). Consequently he chooses its policy π∗AI ∈ argmaxπAI VπAI ,π∗H(πAI ,PAI):
he chooses an optimal uninformed policy.

It generates a loss:

L = Vπ∗AI ,π
∗
H(π∗AI ,PAI) − Vπ∗AI ,π∗H(π∗AI ,PH)

Nonetheless, if the AI knew the transition matrix of the human, it could choose π∗AI ∈ argmaxπAI VπAI ,π∗H(πAI ,PH)
and consequently reduce the loss L.

In the example shown in the figures 1 and 2, both agents receive a reward of +1 in state 1 and
0 in state 0. The optimal joint policy is then the action a for both AI and human in state 0 and
action a for the AI and b for the human in state 1. Nevertheless, according to the human’s belief, the
trajectory does not depend on AI’s actions. As a consequence the human will always play the same
policy: action b in state 0 and action a in state 1. As a consequence, the optimal policy of the AI that
takes into account the model of the human is action b in state 0 and action b in state 1. As shown in
the table 1, it leads to an important increase of the expected cumulative reward.

Policy of the AI Value of state 0 Value of state 1
Optimal uninformed policy 0 1
Optimal informed policy 1.3 2.9

Table 1: Value gain brought by the knowledge of human’s model with a discount factor of 0.9.

11/42

Inverse Reinforcement learning for Helper-AI
design

Figure 1: Real MDP, known by the AI.

Figure 2: Model used by the human. A pair
(a, b) indicates that AI plays action a and hu-
man plays action b. When the arrow points
two different states, it means that the joint ac-
tion will lead to one of the two states with a
probability 1

2

1.4 Estimating problem

In order to choose the best policy for the AI, we want to be able to predict the answer policy of the
human.

How much information does the tuple (πAI , πH) give about the human belief? Is it possible to
determine with a given precision what is the transition matrix used by the human? If so, how many
observations do we need, and otherwise what useful information can we extract?

The set of observations is a list of tuples (πAI , πH) where πH is the human policy answer to the
policy πAI of the AI. We aim at describing the set of transition matrix that are consistent with these
observations. Such an admissible transition matrix or any other way of predicting the behavior of
the human will be evaluated by the measure of the difference for other policies of the AI between the
predicted policy of the human and his actual policy.

In the second section we show that we can efficiently pick the best model among a finite set.
Afterwards, we try to generate a good model thanks to the classical Inverse Reinforcement Learning
method of estimation of the transition matrix in the third section. In the fourth part we give a
parametrization of the set of admissible models for one observations and in the fifth section we give
some heuristics to find an element of the intersection of this sets for several observations. Finally, we
discuss in the last section the limits to the information given by observations and propose a prediction
method without estimating the model of the human.

12/42

Inverse Reinforcement learning for Helper-AI de-
sign

2
CHOICE OF A MODEL IN A FINITE SET

We first assume that the transition matrix of the human P belongs to a finite set of models P. We
observe the behavior of the human for several policies of the AI. The assumption of a softmax behavior
for the human allows to define a likelihood and then to choose the likeliest model.

2.1 Observations

The observations are a finite list of tuples (πAI , πH) where πH is the answer policy of the human to
the policy πAI . In practice, πH will be given in this part by a finite set of tuples (s, a) ∈ S ×A where
a has been chosen by the human according to the policy πH .

Definition 14. The observation set is a finite set O where every element of O is a tuple (πAI , s, a)
where a is the action played by the human in state s when the AI commits to πAI .

2.2 Idea of the estimating process

Definition 15. The optimal probability of an observation (πAI , s, a) ∈ O for the model PH ∈ P is the
real number π∗

πAI ,PH ,s
(a) where π∗

πAI ,PH
is the optimal answer such that

∀(s, a) ∈ S ×AH , Q∗s(a) = V (s)⇒ π∗πAI ,PH ,s(a) =
1Q∗s(a)=V (s)

#{a′ ∈ AH |Q∗s(a′) = V (s)}

It is the probability of observing action a in state s assuming that the human plays optimally.

Definition 16. The optimal likelihood LPH of the PH ∈ P for the observation set O is the product
of the likelihoods of the elements of O.

LPH =
∏

(πAI ,s,a)∈O

π∗
πAI ,PH ,s

(a)∑
PH′∈P π

∗
πAI ,PH′,s

(a)

By definition, the human plays optimally according to the model PH if and only if LPH > 0. As
a consequence, we compute LPH for every element of P. A good guess for the model of the human
would be any PH ∈ P such that LPH > 0.

Nevertheless, in all our experiments, when P is generated randomly, we get LPH = 0 for all the
elements of P. Then we need a subtler way of choosing the best model in P.

2.3 A softmax model for the human

Since we are generally not able to randomly generate a transition matrix that would explain the
observations, we assume that the policy of the human obeys to a softmax model. This assumption

13/42

Inverse Reinforcement learning for Helper-AI
design

allows to compare the likelihoods of two models that are not entirely satisfying and to pick the best
one.

We assume that the human is not totally certain of the validity of his model. As a consequence
in state s ∈ S, he chooses an action a ∈ A according to its Q-value but does not want to eliminate a
priori suboptimal actions. If we assume that he is driven by some exploration-exploitation dilemma,
he will be more likely to play the best actions. We assume that he uses a softmax policy.

Definition 17. The softmax policy πPH ,β of parameter β ∈ R+ of the transition matrix PH ∈ P is
given by: t

The softmax parameter β is the certainty of the human. β = 0 generates an uniformly random
policy whereas β → +∞ produces an optimal policy according to the model.

Definition 18. The softmax likelihood of parameter β and observation (πAI , s, a) ∈ O for the model
PH ∈ P is the real number:

l =
ππAI ,PH ,β,s(a)∑

PH′∈P ππAI ,PH′,β,s(a)

where ππAI ,PH ,β is the answer softmax policy of parameter β of the model PH to the policy πAI .

Definition 19. The softmax likelihood of parameter β LPH ,β for the observation set O of the model
PH ∈ P is the product of the likelihoods for all the elements of O.

LPH ,β =
∏

(πAI ,s,a)∈O

ππAI ,PH ,β,s(a)∑
PH′∈P ππAI ,PH′,β,s(a)

The estimated model will then be chosen among the transition matrices with the highest softmax
likelihood.

2.4 Results

This process always allows to choose a transition matrix with the highest likelihood.
We verify that when we know the softmax parameter and when the actual transition matrix of the

human belongs to the set of models P, our estimating procedure generally chooses this model.
The actual model of the human is the likeliest in most cases (figure 3). The relative likelihood

grows with the softmax parameter that increases the difference between two transition matrices. We
can compute the success rate of our estimating procedure as the percentage of instances when the
algorithm chooses the right model (figure 4).

Moreover, the success rate is still satisfying when the AI does not know the softmax parameter of
the human (figure 5). This allows to use this estimating procedure in a wide range of situations.

14/42

Inverse Reinforcement learning for Helper-AI de-
sign

Figure 3: Relative likelihood of the model of the human over the known softmax parameter. The
relative likelihood is the ratio between the likelihood of the actual model of the human and the sum
of all likelihoods. Data generated for #S = #AAI = #AH = #P = 2 and #O = 200, average over
200 simulations.

Figure 4: Success rate over the softmax parameter. Data generated for #S = #AAI = #AH = #P =
2 and #O = 200, average over 200 simulations.

2.5 Conclusion

We designed a choice procedure based on a maximum likelihood principle that allows to pick the best
transition matrix among a finite set. This procedure chooses the actual model of the human when it
is in the set of possible models. Otherwise it chooses another model that best suits the observations
set.

15/42

Inverse Reinforcement learning for Helper-AI
design

Figure 5: Success rate. We generate random sets of MDP and observations based on one MDP in the
set. The success rate is the proportions of instances when the relative likelihood of the actual MDP
is the highest. Data generated for #S = #AAI = #AH = #P = 2 and #O = 200, average over 50
simulations.

However we have no control over the quality of the transition matrices in our finite set of possible
models. That’s why we would like to generate a model directly from the observations.

16/42

Inverse Reinforcement learning for Helper-AI de-
sign

3
CLASSICAL INVERSE REINFORCEMENT LEARNING

In literature, we are used to consider that the transition matrix of the system is known. We can not
predict the behavior of the human because we do not know the rewards vector. This point of view
is orthogonal to ours. However it is clear that we can construct two tuples (P1, R1) and (P2, R2)
that produce the same behavior with P1 6= P2. As a consequence we evaluate the classical inverse
reinforcement learning pipeline according to its power of prediction.

First we describe the set of admissible rewards vectors for one observation (πAI , πH) thanks to the
results in [NR00]. We then consider that the human is playing in a classical MDP P that linearly
depends on PH and πAI In this MDP, he plays with the policy π = πH .

3.1 Observation of the optimal policy of the human

We observe one optimal policy of the human π∗.

3.1.1 • Expression of the values and Q-values
We first consider that the reward is only a function of the current state s ∈ S and does not depend
on the action a ∈ A chosen by the human. As a consequence, the value vector V ∈ RS is given by:

V = (I − γP ∗)−1R (1)
where P ∗ ∈MS,S(R) is the transition matrix associated with the optimal policy π∗:

∀(s, s′) ∈ S2, P ∗s (s′) =
∑
a∈A

π∗s(a)Ps,a(s′) (2)

The Q-vector associated with the action a ∈ A, Qa ∈ RS , gives for every state s ∈ S the expected
optimal cumulated rewards when playing action a in state s.

∀a ∈ A,Qa = R+ γP aV (3)
where P a ∈MS,S(R) is the transition matrix associated with the action a:

∀a ∈ A,∀(s, s′) ∈ S2, P as (s′) = Ps,a(s′) (4)

3.1.2 • Set of admissible reward vectors
Theorem 5. Given the observation of one optimal policy π∗, the set of admissible rewards vectors
Rπ∗ is given by:

Rπ∗ = {R ∈ (R)S |∀a ∈ A, ((I − γP a)(I − γP ∗)−1 − I)R ≥ 0}

Proof. The policy π∗ is optimal if and only if for all action a, for all state s, taking the action a in the
state s leads to an expected cumulated reward inferior to the action decided by the policy π∗, i.e.:

∀a ∈ A,Qa = (I + γP a(I − γP ∗)−1)R ≤ V = (I − γP ∗)−1R

17/42

Inverse Reinforcement learning for Helper-AI
design

Hence Rπ∗ is defined by a system of S × A linear constraints. This system generally admits an
infinite set of solutions.

3.1.3 • Choice of a rewards vector

The usual way ([NR00]) of choosing among this set is the maximization of the ’explaining power’ of
the rewards vector R. In other words, we maximize the gap between the expected gain of the optimal
policy π∗ and the second best action for every state. Note that we assume that π∗ is deterministic.

Definition 20. The chosen rewards vector RCπ∗ is given by:

RCπ∗ ∈ argmax
R∈RS

min
π∈Πd{π∗}

((I − γP π)(I − γP ∗)−1 − I)R

where Πd is the finite set of deterministic policies.

This is a linear programming problem. If it admits an admissible point, we can add some bounds
for R, depending on the context of the problem, to ensure the existence of a finite solution.

3.2 Observation of a softmax policy

3.2.1 • Stochastic human policies

Nevertheless this way of choosing an admissible rewards vector is not satisfying. In fact, almost
always, observations reveal that humans do not commit to a deterministic policy. Then do they play
optimally?

Let π∗ be an optimal policy. Then:

∀s ∈ S, ∀(a1, a2) ∈ A2|a1 6= a2 :

π∗s(a1) > 0 ∧ π∗s(a2) > 0⇒ Q∗s(a1) = Q∗s(a2)

This is of course possible, but the set of MDPs that allow a stochastic optimal policy is of measure
0 in the set of all MDPs. Do humans always choose a model in this reduced set? It is very unlikely
since there is no way to distinguish this models without actually solving the MDP. We prefer a more
natural assumption: the human uses the softmax policy of parameter β ∈ R+.

3.2.2 • Constraints over the rewards vector

If we observe the softmax policy π of the human and if we know the parameter β, we can restrict the
set of admissible rewards vectors.

Theorem 6. One optimal policy π∗ can be constructed from a softmax policy π of parameter β > 0.

Proof.
∀s ∈ S, ∀(a1, a2) ∈ A2, πs(a1) < πs(a2)⇔ Q∗s(a1) < Q∗s(a2)

Then for s ∈ S, we define:
a(s) ∈ argmax

a∈A
Q∗s(a)

18/42

Inverse Reinforcement learning for Helper-AI de-
sign

Let π∗ be the deterministic policy defined by:

∀(s, a) ∈ S ×A, π∗s(a) = 1⇔ a = a(s)

π∗ is an optimal policy.

Theorem 7. Let π be the softmax policy of parameter β. The set of admissible rewards vectors Rπ is
given by:

Rπ = {R ∈ RS |∀(s, a1, a2) ∈ S ×A×A, γ[(P a1 − P a2)(I − γP ∗)−1R]s = 1
β

ln(πs(a1)
πs(a2))}

where P ∗ is the transition matrix associated with one optimal policy constructed from π

Proof. Let (s, a1, a2) ∈ S ×A×A. Like previously we have:

Q(a1) = R+ γP a1(I − γP ∗)R

and:
πs(a1)
πs(a2)) = eβ(Q∗s(a1)−Q∗s(a2))

i.e.
Q∗s(a1)−Q∗s(a2) = 1

β
ln(πs(a1)

πs(a2)) = γ[(P a1 − P a2)(I − γP ∗)−1R]s

This set of admissible rewards vectors is the intersection of S×A− 1 affine hyperplanes in a space
of dimension S. Generally it is empty.

3.2.3 • Enlargement of the rewards vector space
One could argue that the variation of transition matrix of dimension S ×A× S can not be explained
by a rewards vector of dimension S. Then we give the same dimension to the rewards space with a
reward Rs,a,b,s′ that depends on the departure state s ∈ S, the action of the AI a ∈ AAI , the action of
the human b ∈ AH and the arrival state s′ ∈ S. This generally allows a non empty set of admissible
rewards for a single observation (πAI , πH).

Nonetheless, when we increase the number of observations and take the intersection of respective
admissible rewards sets, we reach an empty intersection after a reduced number of policies of the
AI: figure 6. In other words, we can find a rewards vector R that would explain the behavior of the
human for a reduced number of policies of the AI, if we assume that he uses the transition matrix PH .
Nevertheless, in every simulation we made, we were able to find a finite set of policies of the AI such
that observations generated from this policies were not consistent with the initial transition matrix of
the human.

19/42

Inverse Reinforcement learning for Helper-AI
design

Figure 6: Number of random policies of the AI in the observation set before we reach an empty
intersection. Data generated from 27 MDPs with (#S,#AAI ,#AH) ∈ {2, 3, 4}3.

3.3 Conclusion

The classical point of view in Inverse Reinforcement Learning focuses on the estimation of the rewards
vector. This process is linear and is not robust when the data is generated by a different transition
matrix. Generally, for a rewards vector R and two transition matrices P and P ′, for every rewards
vector R′, there exists a policy πAI of the AI such as the associated softmax policies of the human for
(P,R) and (P ′, R′) are different.

As a consequence, to predict the behavior of the human for future policies of the AI, we need to
estimate the transition matrix.

20/42

Inverse Reinforcement learning for Helper-AI de-
sign

4
ESTIMATION OF THE TRANSITION MATRIX FOR ONE

OBSERVATION

Now we assume that we know the rewards vector R, the discount factor γ and the softmax parameter
β. We want to estimate the transition matrix P . In this part, we have only one observation (πAI , πH)
then we consider that we are in a classical one player MDP and that we observe the softmax policy π.

4.1 Partition function and value

The softmax policy of parameter β is defined as follow:

∀(s, a) ∈ S ×A, πs(a) = eβQ
∗(s,a)∑

a′∈A e
βQ∗(s,a′)

Definition 21. By analogy with statistical physics the partition function Zs of a state s ∈ S is given
by:

Zs =
∑
a′∈A

eβQ
∗(s,a′)

As a consequence:

∀(s, a) ∈ S ×A, Q∗(s, a) = 1
β

[ln(Zs) + ln(πs(a))]

Definition 22. The entropy Hπ
s of the policy π at state s is defined by: Hπ

s = maxa∈A ln(πs(a)

Then:
∀s ∈ S, V ∗(s) = max

a∈A
Q∗(s, a) = 1

β
(lnZs +Hπ

s).

And partition function and value function represent the same notion:

∀s ∈ S, lnZs = βV π(s)−Hπ
s

∀(s, a) ∈ S ×A,Qπ(s, a) = V π
s + 1

β
(ln(πs(a))−Hs)

This also holds for the optimal value function, we have the following result.

Theorem 8. The pair (P, V ∗) ∈ MS×A,S(R) × RS is consistent with the observed policy π for the
softmax parameter β if and only if:

∀(s, a) ∈ S ×A, V ∗s + 1
β

(ln(πs(a))−Hs) =
∑
s′∈S

Ps,a(s′)(Rs,a,s′ + γV ∗s′)

π and H can be estimated thanks to the observations O, R and β are known. The admissible
transition matrices for the problem are the normalized matrices P such as ∃V ∗ ∈ RS such as the tuple
(P, V)∗ satisfies the condition of theorem 8. By definition of the value function, such a V ∗ associated
with a given admissible P is unique and is the value function of P .

21/42

Inverse Reinforcement learning for Helper-AI
design

4.2 Parametrization of the set of admissible transition matrices
by the value function

Definition 23. The polytope of the transition matrices ofMS×A,S(R) is:

B = {P ∈ mathcalMS×A,S(R)|∀(s, a, s′) ∈ S×A×S, 0 ≤ Ps,a(s′) ≤ 1, ∀(s, a) ∈ S×A,
∑
s′∈S

Ps,a(s′) = 1}

Theorem 9. Let V ∈ RS. The two following propositions are equivalent.

∃P ∈ B, ∀(s, a) ∈ S ×A, Vs + 1
β

(ln(πs(a))−Hs) =
∑
s′∈S

Ps,a(s′)(Rs,a,s′ + γVs′) (5)

∀(s, a) ∈ S ×A,min
s′∈S

(Rs,a + γVs′) ≤ Vs + 1
β

(ln(πs(a))−Hs) ≤ max
s′∈S

(Rs,a,s′ + γVs′) (6)

And for a given V that verifies the condition (6), the associated admissible P are given by the
possible coefficients of the barycentre in equation (5). Notice that a transition matrix admits by
definition only one value function. We now want to describe the set of admissible value functions, ie
the value functions that satisfy (6).

For a given V verifying the condition (6), the associated set of admissible transition matrices
P(V) is the cartesian product of S × A polytopes of RS defined by the intersection of B with the
solutions of equation (5). As a consequence, it is a polytope of RS×A×S and the orthogonal projection
of any transition matrix over this set according to any scalar product can be computed with linear
programming.

4.3 Admissible value functions

Definition 24. A value function V ∈ RS is admissible if it verifies the condition 6. It means that
there exists a transition matrix P such that V is the value function associated with P and P generates
the policy π.

4.3.1 • Auxiliary variables

The condition (6) can be written:

∀(s, a) ∈ S ×A,min
s′∈S

Vs′ ≤
Vs
γ

+ 1
γ

(1
b

(ln(πs(a))−Hs)−Rs,a) ≤ max
s′∈S

Vs′ (7)

Definition 25. We introduce the following auxiliary variables, ∀s ∈ S:

ms = min
a∈A

1
γ

(1
b

(ln(πs(a))−Hs)−Rs,a)

Ms = max
a∈A

1
γ

(1
b

(ln(πs(a))−Hs)−Rs,a)

Then (6) is equivalent to:
∀s ∈ S: {

mins′∈S Vs′ ≤ Vs
γ +ms

maxs′∈S Vs′ ≥ Vs
γ +Ms

22/42

Inverse Reinforcement learning for Helper-AI de-
sign

4.3.2 • Parametrization by the worst and the best states

Let V be a value function. Then let (smin, smax) ∈ S2, smin 6= smax, such as:

smin ∈ argmin
s∈S

Vs

smax ∈ argmax
s∈S

Vs

Then (7) is equivalent to:
∀s ∈ S:

Vsmin ≤ Vs
γ +ms

Vs
γ +Ms ≤ Vsmax

Vsmin ≤ Vs ≤ Vsmax
In particular, it is verified by Vsmin and Vsmax , so:{

Vsmin ≥
−γ
1−γmsmin

Vsmax ≤
−γ
1−γMsmax

Definition 26. We define:
m = min

s∈S
ms

M = max
s∈S

Ms

D = max
s∈S

Ms −ms

Then (7) is possible if and only if:

Vsmin ≥
−γ
1−γmsmin

Vsmax ≤
−γ
1−γMsmax

Vsmin +D ≤ Vsmax
Vsmin ≤

Vsmax
γ +m

Vsmin ≤ γ(Vsmax −M)
is verified by definition of m.

Theorem 10. Let (smin, smax) ∈ S2, there exists an admissible V ∈ RS that verifies Vsmin = mins∈S Vs
and Vsmax = maxs∈S Vs if and only if:

msmin ≥ max[Msmax + 1− γ
γ

D,−1
γ
Msmax −

1− γ
γ

m, γMsmax + 1
1− γM]

If this condition holds we say that (smin, smax) is admissible.

Theorem 11. If (smin, smax) is admissible then the admissible value functions associated with the
tuple (smin, smax) form the polytope V(smin, smax) defined by:

− γ

1−γmsmin ≤ Vsmin ≤ min[− γ
1−γMsmax −D, 1

1−γMsmax +m,− γ2

1−γMsmax − γM]
max[Vsmin +D, γ(Vsmin −m), 1

γVsmin +M] ≤ Vsmax ≤ − γ
1−γMsmax

∀s ∈ S/{smin, smax},max[Vsmin , γ(Vsmin −ms)] ≤ Vs ≤ min[Vsmax , γ(Vsmax −Ms)]

23/42

Inverse Reinforcement learning for Helper-AI
design

4.4 Set of admissible models

Theorem 12. The set of admissible value functions V is given by:

V =
⋃

(smin,smax)∈S2,smin 6=smax

V(smin, smax) (8)

Where V(smin, smax) is not empty if and only if

msmin ≥ max[Msmax + 1− γ
γ

D,−1
γ
Msmax −

1− γ
γ

m, γMsmax + 1
1− γM]

Theorem 13. The set of admissible transition matrices P is given by:

P =
⋃
V ∈V
P(V) (9)

where:

∀V ∈ V,P(V) = {P ∈ B|∀(s, a) ∈ S ×A, Vs + 1
β

(ln(πs(a))−Hs) =
∑
s′∈S

Ps,a(s′)(Rs,a,s′ + γVs′)}

Remark that ∀(V, V ′) ∈ V2,P(V) ∩ P(V ′) 6= ∅ ⇒ V = V ′ by definition of the value function of a
transition matrix.

4.5 Choice of the estimated transition matrix

We go back to the fundamental problem. We know (R, γ, β) and we observe the policy π. Which
transition matrix P ∈ P should we use to model the behavior of the agent?

4.5.1 • Closest transition matrix
Let P0 be a transition matrix. In the case of the Helper-AI, P0 is the real transition matrix of the
system. We make the assumption that the transition matrix used by the agent is close to P0. Thus
we model the agent by the closest admissible matrix. But which distance should we use?

In fact, P is not convex. It is logical to use a kind of projection that could be associated with the
parametrization by the value functions. We will proceed in two steps.

First, we compute the projection VP of the value function V0 of P0 over V. Then we project P0 over
P(VP) and get the estimated admissible matrix PP . For this two projections, we use the L2-norms
associated with the canonical scalar products of RS andMS×A,S(R).

4.5.2 • Prior on the value function

Assume that the prior on the value function is a set of linear constraints that reduce the authorized
value function to a polytope Bprior. Since for each tuple (smin, smax), V(smin, smax) is a polytope,
a simplexe algorithm allows to check whether V(smin, smax) ∩ Bprior is empty, like in the two phases
method.

A linear prior on the transition matrix reduces in the same way the set of admissible matrices once
the value function has been chosen. Nevertheless the prior on the transition matrix may reduce the
set of admissible value functions. When the constraint on the transition matrix can be translated into
a linear constraint on the value function, we can refer to the previous paragraph.

24/42

Inverse Reinforcement learning for Helper-AI de-
sign

4.5.3 • Partially known transition matrix

If we know the transition matrix Ps,a for a pair (s, a) ∈ S ×A, we get an additional constraint for the
definition of V: ∑

s′∈S
Ps,a(s′)Vs′ = 1

γ
(Vs + 1

b
(ln(πs(a))−Hs)−Rs,a)

4.5.4 • Lower bound on the transition matrix

The uncertainty on the transition matrix may be limited. Here we assume that we have a function
f ∈ [0, 1]S×A×S such as:

∀(s, a, s′) ∈ S ×A× S, Ps,a(s′) ≥ f(s, a, s′)
where:

∀(s, a) ∈ S ×A,
∑
s′∈S

f(s, a, s′) < 1

or we are in the precedent case.
Then we define:

∀(s, a, s′) ∈ S ×A× S, ps,a(s′) = Ps,a(s′)− f(s, a, s′)
1−

∑
s′∈S f(s, a, s′) ∈ [0, 1]

It verifies:
∀(s, a) ∈ S ×A,

∑
s′∈S

ps,a(s′) = 1

Then (5) becomes:

∃p ∈ B,∀(s, a) ∈ S×A,
∑
s′∈S

ps,a(s′)Vs′ =
Vs + 1

b (ln(πs(a))−Hs)−Rs,a
γ(1−

∑
s′∈S f(s, a, s′)) −

∑
s′∈S

f(s, a, s′)
(1−

∑
s′∈S f(s, a, s′))V

′
s

(10)
That is equivalent to:

∀(s, a) ∈ S ×A, Vsmin ≤
Vs + 1

b (ln(πs(a))−Hs)−Rs,a
γ(1−

∑
s′∈S f(s, a, s′) −

∑
s′∈S

f(s, a, s′)
(1−

∑
s′∈S f(s, a, s′))V

′
s ≤ Vsmax (11)

which are new linear constraints on the value function.

4.5.5 • Upper bound on the transition matrix

Here we assume that we have a function g ∈ [0, 1]S×A×S such as:

∀(s, a, s′) ∈ S ×A× S, Ps,a(s′) ≤ g(s, a, s′)

where:
∀(s, a) ∈ S ×A,

∑
s′∈S

g(s, a, s′) > 1

We get:

∀(s, a) ∈ S×A, Vsmin ≤ −
Vs + 1

b (ln(πs(a))−Hs)−Rs,a
γ(

∑
s′∈S g(s, a, s′)− 1) +

∑
s′∈S

g(s, a, s′)
(
∑
s′∈S g(s, a, s′))− 1V

′
s ≤ Vsmax (12)

25/42

Inverse Reinforcement learning for Helper-AI
design

4.6 Conclusion

In a single player MDP, the observation of a softmax policy of the agent of a known parameter allows
an exact description of the set of admissible transition matrices that could explain this behavior. The
set of admissible value functions is the union of at most S × (S − 1) polytopes. For each admissible
value function, there is an associated polytope of admissible transition matrices.

26/42

Inverse Reinforcement learning for Helper-AI de-
sign

5
THE HELPER-AI FRAMEWORK

We have solved the problem for a single player MDP. Now we want to use this result in the Helper-AI
context. We show that our solution allows to find an admissible model consistent with a reduce number
of observations. For more observations, our previous work can not be used and we need to develop
other methods. We define some loss measures that depend on the difference between the behaviors
predicted by the models and the real ones. We then minimize this losses thanks to gradient descents.

5.1 Several observations

5.1.1 • Application of the results for the single player MDP
Let (πAI , πH) be one observation. Then we can apply the precedent result to the single player MDP
(P πAI , RπAI , γ), the observed policy is πH .

Then VπAI is defined exactly like V in the last part and:

Theorem 14. The set of admissible matrices for the observation (πAI , πH) is:

PπAI =
⋃

V ∈VπAI

PπAI (V)

where:
∀V ∈ VπAI ,PπAI (V) = {P ∈ B|P πAI ∈ P(V)}

5.1.2 • Independent observations
Theorem 15. For an obervation set O = {(π1

AI , π
1
H), . . . (πnAI , πnH)}, the set of admissible transition

matrices is given by:

PO =
⋂

(πAI ,πH)∈O
PπAI =

⋃
(V 1,...V n)∈Vπ∞AI

×...×V
π
\
AI

n⋂
i=1
PπiAI (V

i)

Definition 27. Two policies π and π′ are linearly independent if:

@(s, a) ∈ S ×A, πs(a) > 0 ∧ π′s(a) > 0

Theorem 16. If O = {(π1
AI , π

1
H), . . . (πnAI , πnH)}, if for all (i, j) ∈ {1, . . . n} if i 6= j, πAI and π′AI are

linearly independent, then:

∀(V 1, . . . V n) ∈ Vπ∞AI × . . .× Vπ\AI
,
n⋂
i=1
PπiAI (V

i) 6= ∅

This theorem allows, for observations generated from a linearly independent family of policies of
the AI, to project a prior belief for the transition matrix over the set of admissible transition matrices.

27/42

Inverse Reinforcement learning for Helper-AI
design

Proof. If π1
AI and π2

AI are linearly independent, then P π
1
AI and P π

2
AI are generated from different

components of P . A constraint over P π1
AI lets P π2

AI totally free.

A family of linearly independent policies of the AI contains at most |AAI | elements. An example
of such a family is {πaAI |a ∈ AAI} where for a ∈ AAI , πaAI is the deterministic policy that always plays
action a.

5.1.3 • Larger number of observations
If the policies of the AI are not linearly independent, then it is difficult to find an element of PO since
16 does not hold.

Moreover this setting corresponds to the practical case. Indeed, to find an informed policy, the AI
tries several stochastic strategies and quickly generates a non linearly independent family of policies.

We do not have a general description of the admissible set of matrices in this setting. In the
following parts, we expose some practical methods to find an admissible transition matrix for a non
linearly independent family of observations.

5.2 Error measure

Since we provide algorithmic heuristics to find an admissible transition matrix, we must be able to
evaluate the quality of a matrix. With this objective, we go back to the probabilistic methods we used
to choose a model among a finite set.

The likelihood L of a transition matrix P0 given a set of observations: O = {(si, ai)|i ∈ [1, n]} ⊂
(S ×A)n (n is the number of observations) is given by:

L =
∏

i∈[1,n]
πP0
si (ai)

where πP0 is the softmax policy of the human for the transition matrix P0.
In fact, we have:

L =
∏
s∈S

[
∏
a∈A

πP0
s (a)π̂s(a)]nπ̂(s)

where π̂(s) is the empirical frequency of the state s in O and π̂s(a) the empirical probability of the
action a in state s. We can assume that π̂(s) is constant over S and that we know perfectly π̂s(a) for
all s and a. Then the log-likelihood is given by:

l = n

|S|
∑

(s,a)∈S×A
π̂s(a) log πP0

s (a)

In reality we directly observe π̂. As a consequence we define a natural error.

Definition 28. For a finite observations set O = {(π1
AI , π

1
H), . . . (πnAI , πnH)}, the negative log-likelihood

of the transition matrix P ∈MS×AAI×AH ,S is:

l(P) =
n∑
i=1

∑
(s,a)∈S×A

πiH,s(a) log
πiH,s(a)

πP
πi
AI

s (a)

where πP
πi
AI is the softmax policy of parameter β for the MDP (P πiAI , RπiAI , γ).

28/42

Inverse Reinforcement learning for Helper-AI de-
sign

This negative log-likelihood is the sum of the negative Kullback-Leibler divergence between the
distributions πiH,s and πP

πi
AI

s .

Property 1.
∀P ∈MS×AAI×AH ,S , l(P) ≥ 0

Property 2. l(P) = 0 if and only if P is admissible.

5.3 Successive projections

For each observation, we can compute the associated set of admissible transition matrices. Some
projection of one given transition matrix over this set can be computed, taking the projection of the
associated value function over the set of admissible value functions and then taking the projection of
the matrix over the set of transition matrices associated with the projected value function.

The less clever way to find one matrix in the intersection of the sets of admissible matrices associ-
ated with each observation is to take one arbitrary matrix and to perform successive projections over
this sets until the distance to all sets seems acceptable.

Unhappily in most of our experiments, this method does not converge and does not reduce signif-
icantly the negative log-likelihood.

5.4 Gradient descent

We want to minimize the negative log-likelihood over the set of transition matrices. Even if this
function is not convex, we use a gradient descent algorithm.

Here we give some partial derivative functions that are useful to deploy this method.

Property 3.

∀i ∈ {1, . . . n},∀(s, a) ∈ S ×AH , ∂l

∂πP
πi
AI

s (a)
= −

πiH,s(a)

πP
πi
AI

s (a)

∀i ∈ {1, . . . n},∀(s, a, a′) ∈ S ×AH ×AH , ∂π
P
πi
AI

s (a)

∂QP
πi
AI

s (a′)
= βπP

πi
AI

s (a)(1a′=a − πP
πi
AI

s (a′))

∀i ∈ {1, . . . n}, ∀(s, a, s′) ∈ S ×AH × S, ∂Q
P
πi
AI

s (a)

∂P
πiAI
s,a (s′)

= R
πiAI
s,a,s′ + γV P

πi
AI

s′

∀i ∈ {1, . . . n},∀(s, a, s′) ∈ S ×AH × S, ∂Q
P
πi
AI

s (a)

∂V P
πi
AI

s′

= γP
πiAI
s,a (s′)

If π∗i is an optimal policy for (P πiAI , RπiAI , γ):

∂V P
πi
AI

∂P (πiAI ,π
∗
i) = −(I − γP (πiAI ,π

∗
i))−1P (πiAI ,π

∗
i)V P

πi
AI

29/42

Inverse Reinforcement learning for Helper-AI
design

∀i ∈ {1, . . . n},∀(s, a0, a, s
′) ∈ S ×AAI ×AH × S, ∂P

πiAI
s,a (s′)

∂Ps,a0,a(s′)
= πiAI,s(a0)

∀i ∈ {1, . . . n}, ∀(s, a0, a, s
′) ∈ S ×AAI ×AH × S, ∂P

(πiAI ,π
∗
i)

s (s′)
∂Ps,a0,a(s′)

= πiAI,s(a0)π∗i,s(a)

If P is the current transition matrix of the algorithm, we use the following notation for the gradient:

∇ = ∂l

∂P

Algorithm 1. Gradient descent for the negative log-likelihood.

1. Initialize the transition matrix P and the total number of iterations n. Initialize the iteration
counter i = 0.

2. Compute the associated softmax policies for every policy of the AI thanks to a value-iteration
algorithm.

3. Compute the loss l.

4. Compute the gradient ∇.

5. Update the transition matrix: P = P − η(i)∇.

6. Project the matrix over the set of transition matrices P = proj(P).

7. i = i+ 1

8. If i < n, go back to step 2. Otherwise return the best transition matrix encountered.

The parameters of the algorithm are the total number of iterations n and the size of the steps η
that may depend on the iteration number.

Moreover we have to define the function proj. Indeed after the update of the matrix P , it does
not belong anymore to the set of transition matrices. We chose the following projection algorithm.

Algorithm 2. Projection over the set of transition matrices.

1. Take P as an input and the parameter ε > 0.

2. For all (s, a, b) ∈ S ×AAI ×AH , do:

(a) For all s′ ∈ S, Ps,a,b(s′) = max(Ps,a,b(s′), ε).
(b) S =

∑
s′∈S Ps,a,b(s′)

(c) For all s′ ∈ S, Ps,a,b(s′) = Ps,a,b(s′)
S .

3. Return P .

To optimize the algorithm, we use several improvements.

1. a random noise is added to the gradient to accelerate the exploration. Its amplitude is a fraction
of the gradient’s norm, controlled by a parameter T called temperature.

30/42

Inverse Reinforcement learning for Helper-AI de-
sign

Figure 7: Gradient descent: negative log-likelihood over the number of observations. Data generated
for #S = #AAI = #AH = #P = 2 and #O = 5.

2. if the precedent iteration has lead to a significant progress in term of error, the direction of
this gradient is preferred. Precisely, there is an inertia parameter α > 0 and at iteration i:
∇i = ∇+ α(li−2 − li−1)∇i−1, where ∇i and li are the gradient and the loss at iteration i and ∇
is the gradient at the current point.

When we optimize the parameter for one particular instance of the problem, we generally achieve
a good result. For the experiment of figure 7, T = 0.05,α = 1 and ε(i) = 300−i

3000 .
Nevertheless, we were not able to find parameters that would give a satisfying result for every

instance of the problem. This is disappointing since we aim at creating an online algorithm.

5.5 L2 error

Since we did not find an universal parametrization for the previous gradient descent, we looked for
another error function that would represent the same reality: the distance from our model to the set
of admissible transition matrices according to observations.

Theorem 17. For one observation (πAI , πH), the set of admissible matrices is given by:

P = {P ∈ B|∀(s, a, a′) ∈ S ×AH ×AH , QPπAIs (a)−QPπAIs (a′) = 1
β

log(πH,s(a)
πH,s(a′)

)}

Proof. We have seen that, if P is admissible then:

∀(s, a) ∈ S ×AH , QPπAIs (a) = 1
β

(log πH,s(a)− logZs)

31/42

Inverse Reinforcement learning for Helper-AI
design

Figure 8: Gradient descent for L2 error. Data generated for #S = #AAI = #AH = #P = 2 and
#O = 5.

Taking the difference we get the condition of the theorem.
Conversely, assume that:

∀(s, a, a′) ∈ S ×AH ×AH , QPπAIs (a)−QPπAIs (a′) = 1
β

log(πH,s(a)
πH,s(a′)

)

Then:
∀s ∈ S, ∃Zs ∈ R∗+, ∀a ∈ AH , QP

πAI

s (a) = 1
β

(log πH,s(a)− logZs)

and:

∀(s, a) ∈ S ×AH , πH,s(a) = eβQ
PπAI
s,a∑

a′∈AH e
βQP

πAI
s (a′)

i.e. P is admissible.

This theorem motivates the following definition.

Definition 29. For the observation set O, the L2 error of the transition matrix P is given by: item

Since ∀P ∈ B, l2(P) ≥ 0, P = argmin l2(P). We use a new gradient descent algorithm to minimize
this error. Nevertheless, we plot the negative log-likelihood of the transition matrix.

Property 4.

∀i ∈ {1, . . . n},∀(s, a) ∈ S ×AH , ∂l2

∂QP
πi
AI

s (a)
=

∑
a′∈AH

QP
πi
AI

s (a)−QP
πi
AI

s (a′)− 1
β

log
πiH,s(a)
πiH,s(a′)

All other useful derivative functions have been given in the previous part.
The experiments (figure 8) show that a decrease of L2 norm is generally associated with a decrease

in term of negative log-likelihood. Concretely it gives us another method to look for an admissible
transition matrix when the first gradient descent gets stuck in a local minimum.

32/42

Inverse Reinforcement learning for Helper-AI de-
sign

Figure 9: Data generated for 250 MDPs with #S = #AAI = #AH = #P = 2. The observations
are constituted by the four deterministic policies of the AI and a fixed number of random policies (X
axis).

5.6 Comparison of the methods

5.6.1 • Gradient descents

Since we want to use the algorithm in an online application, we have to set definitely the parameters
of gradient descents. Here (9) we compare the estimated transition matrices in term of their general-
ization power. We measure the sum of the negative log-likelihood of the estimated transition matrices
for new random observations.

It appears clearly that paradoxically, the L2 gradient descent seems more efficient at producing an
effective estimation of the transition matrix.

5.6.2 • Gradient descent and probabilistic method

Each step of the gradient descent algorithm is constituted by a value iteration algorithm. As a
consequence, for the same computing power, the probabilistic method that chooses the best model
among a randomly generated set must allowed to test n models where n is the number of iterations
of the gradient descent.

To compare both methods, we use the same metrics as previously.
The experiment (figure 10) shows that the L2 gradient descent is at least as efficient as the prob-

abilistic method. Nevertheless, the efficiency of the gradient descent can be improved in a practical
case when the parameters of the algorithm can be optimized over the data.

33/42

Inverse Reinforcement learning for Helper-AI
design

Figure 10: Data generated for 250 MDPs with #S = #AAI = #AH = #P = 2. The observations
are constituted by the four deterministic policies of the AI and a fixed number of random policies (X
axis).

34/42

Inverse Reinforcement learning for Helper-AI de-
sign

5.7 Conclusion

For a reduced number of observations, the parametrization of the set of admissible transition matrices
allows to find a matrix in this set. Nevertheless, when the family of policies of the AI in the observations
is not linearly independent, the consistency conditions are not explicit.

As a consequence, we had to design an heuristic algorithm that tries to find an admissible transition
matrix. We showed that a standardized version of this algorithm is as efficient as a probabilistic method
that only tests a large number of models.

35/42

Inverse Reinforcement learning for Helper-AI
design

6
EQUIVALENCE CLASSES AND INDISTINGUISHABILITY

Our gradient descents are efficient but generally fail. They don’t produce a model that is perfectly
consistent with all observations. In order to explain why gradient descents get stuck in local minima,
we analyze the evolution of the set of admissible models when we increase the number of observations.
We empirically show that we can construct indistinguishable curves with models that would produce
the same behavior for any policy of the AI. As a consequence, the real interesting object is not the
model of the human but its indistinguishability class. That’s why we propose to use a classification
algorithm to solve the prediction problem.

6.1 Formalization

Definition 30. Given a softmax parameter β, a discount factor γ, a rewards vector R and a policy of
the AI πAI , two transition matrices P and P ′ are indistinguishable for πAI if they produce the same
exact policy of the human.

We use the notation: CI(P, πAI) = {P ′|P and P ′ are indistinguishable for πAI}. CI(P, πAI) is an
equivalence class, called the indistinguishability class of P for πAI .

In our previous work, we provided a parametric description of indistinguishability classes.

Definition 31. Given a softmax parameter β, a discount factor γ and a rewards vector R, two
transition matrices P and P ′ are equivalent if they are indistinguishable for every policy of the AI.

We use the notation: CE(P) = ∩πAICI(P, πAI). This set is called the equivalence class of P .

In the Helper-AI framework, two questions are of particular interest:

1. What is the shape of CE(P)? If it is reduced to the matrix P then we can hope to estimate the
real belief of the human. Otherwise we have to accept any member of the class.

2. How fast does the intersection of several indistinguishability classes converge to the equivalence
class? In particular, can we have

⋂
πAI∈F CI(P, πAI) = CE(P) for F a finite family of policies of

the AI?

6.2 Construction of an equivalence curve

We answer to this questions locally. Starting from an arbitrary transition matrix P , we construct an
approximation of CE(P) in a neighborhood of P . More precisely, we show experimentally that there
exists a neighborhood of P such that its intersection with CE(P) is contained in an affine line.

Let P ′ be a transition matrix in a neighborhood of P in B. We will write:

P ′ = P + dP

The condition P ′ ∈ B imposes linear constraints over dP .
Moreover, let e be the vector of RAH such that ∀a ∈ AH , ea = 1. The following property results

from theorem 17.

36/42

Inverse Reinforcement learning for Helper-AI de-
sign

Property 5. Let πAI be a policy of the AI and P ∈ B a transition matrix.

P ′ ∈ CI(P, πAI)⇔ ∀s ∈ S,QP
πAI

s −QP ′πAIs ∈ vect(e)

where for s ∈ S, QPπAIs is the vector of RAH of the Q-values of each action in state s for the MDP
(P πAI , RπAI , γ).

Property 6. If for all s ∈ S, | argmaxa∈AH QP
πAI

s (a)| = 1, then for all s ∈ S, the application
P → QP

πAI

s is infinitely differentiable at the point P .

Proof. If the condition ∀s ∈ S, | argmaxa∈AH QP
πAI

s (a)| = 1, then there exists only one optimal policy
for the human for the transition matrix P . This policy π∗ is deterministic and is constant over a
neighborhood of P in B.

Since V = (I − γP πAI ,π∗)−1RπAI ,π
∗ , P → V is infinitely differentiable in P .

Let (s, a) ∈ S × AH , QPπAIs (a) = RπAIs,a + γP πAIs,a V , then P → QP
πAI

s (a) is infinitely differentiable
in P .

The condition of the previous theorem are verified in B, except in a set of measure 0. We use the
notation ∆P,πAI ,s for the differentiate of P → QP

πAI

s at point P.

Property 7. There exists a neighborhood N of P such that:

P + dP ∈ CI(P, πAI) ∩N ⇒ ∀s ∈ S,∆P,πAI ,s,a(dP) ∈ vect(e)

This gives new linear constraints over dP . dP is an element of the vector spaceMS×AAI×AH ,S(R)
of finite dimension. By increasing the number of observations, we want to forbid every direction for
dP . We would show that P is an isolated point of CE(P) inMS×AAI×AH ,S(R).

The simulations (figures 11, 12, 13, 14) show that the first order conditions always let a few
directions free for dP . Does it mean that CE(P) is not reduced to P in a neighborhood of P?

In order to check that hypothesis, we try to build an approximation of a curve of elements of
CE(P) thanks to the free directions exhibited by our experiments.

Algorithm 3. Construction of an equivalence curve.

1. Initialize the curve to a transition matrix P ∈ B.

2. Take as an input the parameter n. This parameter is the number of needed observation before
we consider that we have explored all forbidden directions. n depends on the dimension of the
MDP.

3. Take as input the step size η and the number of steps N .

4. Repeat N times the following process.

(a) Generate n different policies for the AI.
(b) Observe the answer of the human to this policies.
(c) Compute the list of forbidden directions for this observation.
(d) There always exist an authorized direction (orthogonal to the vector space of forbidden

directions), choose dP in the vector space of authorized directions.
(e) P = P + ηdP

37/42

Inverse Reinforcement learning for Helper-AI
design

Figure 11: Search for forbidden directions for
CE(P) in a neighborhood of P . #S = #AAI =
#AH = 2

Figure 12: Search for forbidden directions for
CE(P) in a neighborhood of P .#S = #AAI =
#AH = 3

Figure 13: Search for forbidden directions
for CE(P) in a neighborhood of P . #S =
6,#AAI = 2,#AH = 4

Figure 14: Search for forbidden directions
for CE(P) in a neighborhood of P .#S =
3,#AAI = 10,#AH = 4

Figure 15: Idea of the construction of an equivalence curve

38/42

Inverse Reinforcement learning for Helper-AI de-
sign

(f) Add P to the curve.

We show that this method allows to construct transition matrices at a macroscopic distance from
each other but that are close to the same equivalence class. We measure the distance to the equivalence
class as the sum of the negative log-likelihood for 100 randomly generated policies of the AI. This sum
remains below 10−5, for two matrices distant from a distance of one (measured in term of L2 norm).

We partially answer the initials questions. For a given transition matrix P , CE(P) is not reduced to
P . We can construct a continuous curve in CE(P). Locally, the equivalence class can be approximated
by a finite number of indistinguishability classes.

6.3 Regression point of view

This conclusion shows that we can not expect to solve the estimating problem. The equivalence class
contains an infinite number of transition matrices. Even if the transition matrix is the model that is
used by the human, the aim of the estimation should be the equivalence class (or the intersection of
indistinguishability classes for a finite number of observations).

In this part we fix the number n of observations. n is assumed to be large enough to give a good
approximation of equivalence classes. We fix the n policies of the AI.

For a given transition matrix P , if we observe the answer policies of the human for the n policies of
the AI, we can estimate the equivalence class of P thanks to a decision tree. Indeed, we can generate
an arbitrary large dataset of transition matrices and compute the answer policies for every element of
this dataset.

Since the aim of our work is the prediction of the policy of the human for a given policy of the AI,
we use a regression tree. The features are the n answer policies of the human and the policy of the
AI for which we want to predict the answer of the human.

To achieve better results, we finally use a random forest of regression trees. This method has two
advantages. First the training of the regressor is made before the prediction. That authorizes an
online algorithm. Moreover, the softmax parameter β is not necessary since the information it carries
is already contained in the features (in the n answer policies of the human). For the same computing
power, the results are a lot worse than the gradient descent methods but we assume the computation
time is less important for the regression method since it is not an online algorithm.

39/42

Inverse Reinforcement learning for Helper-AI
design

Figure 16: Error of the random forest over the number of observations in the features. Data generated
for 270 MDPs of dimension |S| = |AAI | = |AH | = 2. The training set contains 10 000 instances.

40/42

Inverse Reinforcement learning for Helper-AI de-
sign

CONCLUSION

When talking about artificial intelligence, one quickly comes to the idea of building an intelligent
system that would help human beings to carry out a given task. That is the Helper-AI problem. We
formalize it as a two-player decision game.

Nevertheless when the human being and the artificial system do not agree on their model of the
world, they achieve a subobtimal cumulative reward. Christos Dimitrakakis and his team in the
EconCS group at Harvard University have measured the loss that is created by a divergence between
the two models.

But if the artificial intelligence is able to guess the model used by the human, it can predicts his
future behavior and then achieve a better cumulative reward. We have been working during four
months on the estimation of this transition matrix.

We show that for a reduced number of observations, we are able to give a parametrization of the set
of models that are consistent with the observations. Nonetheless, for a higher number of observations,
we had to design some heuristic algorithms, the most efficient one is called L2 gradient descent. Of
course, we are always able to determine the best model in a finite set.

Finally, we show that the transition matrix is not the good purpose of the estimating procedure.
This aim should be an equivalence class that is not reduced to one model. We used a simple classifier
to produce an approximation of this equivalence class.

Even if the classification among equivalence classes can be made thanks to an huge dataset, the
question of the geometry of equivalence classes is not solved. Moreover the process of choosing the
optimal policy for the AI once we know the equivalence class of the model of the human remains to
be studied.

41/42

Inverse Reinforcement learning for Helper-AI
design

REFERENCES

[NR00] Andrew Y. Ng and Stuart Russel. Algorithms for inverse reinforcement learning. ICML,
2000.

[PDRT] David Parkes, Christos Dimitrakakis, Goran Radanovic, and Paul Tylkin. Multi-view decision
process. (unpublished).

[Put05] Martin L. Puterman. Markov Decision Processes, Discrete Stochastic Dynamic Programming.
Wiley Series in Probability and Statistics, 2005.

42/42

	Formulation of the problem
	Motivation: the Helper-AI framework
	Model and definitions
	Markov Decision Process
	Strategies and state values
	Optimal strategy
	Markov Decision Process for two cooperative players
	Human point of view

	Previous results in the Helper-AI problem
	Estimating problem

	Choice of a model in a finite set
	Observations
	Idea of the estimating process
	A softmax model for the human
	Results
	Conclusion

	Classical inverse reinforcement learning
	Observation of the optimal policy of the human
	Expression of the values and Q-values
	Set of admissible reward vectors
	Choice of a rewards vector

	Observation of a softmax policy
	Stochastic human policies
	Constraints over the rewards vector
	Enlargement of the rewards vector space

	Conclusion

	Estimation of the transition matrix for one observation
	Partition function and value
	Parametrization of the set of admissible transition matrices by the value function
	Admissible value functions
	Auxiliary variables
	Parametrization by the worst and the best states

	Set of admissible models
	Choice of the estimated transition matrix
	Closest transition matrix
	Prior on the value function
	Partially known transition matrix
	Lower bound on the transition matrix
	Upper bound on the transition matrix

	Conclusion

	The Helper-AI framework
	Several observations
	Application of the results for the single player MDP
	Independent observations
	Larger number of observations

	Error measure
	Successive projections
	Gradient descent
	L2 error
	Comparison of the methods
	Gradient descents
	Gradient descent and probabilistic method

	Conclusion

	Equivalence classes and indistinguishability
	Formalization
	Construction of an equivalence curve
	Regression point of view

