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Abstract

There has been a lot of recent work on Bayesian
methods for reinforcement learning exhibiting near-
optimal online performance. The main obstacle
facing such methods is that in most problems of
interest, the optimal solution involves planning in
an infinitely large tree. However, it is possible to
obtain lower and stochastic upper bounds on the
value of each tree node. This enables us to use
stochastic branch and bound algorithms to search
the tree efficiently. This paper examines the com-
plexity of such algorithms.

1 Introduction

Bayesian methods for exploration in Markov decision pro-
cesses (MDPs) and for solving known partially-observable
Markov decision processes (POMDPs), as well as for explo-
ration in the latter case, have been proposed many times pre-

viously [RPCd08, THS06, HDFJ08, PVHRO06, Duf02, RCdPOS,

DB97]. However, such methods typically suffer from com-
putational intractability problems.

The sources of intractability are two-fold. Firstly, there
may be no compact representation of the current belief. This
is especially true for POMDPs. Secondly, optimally behav-
ing under uncertainty requires that we create an augmented
MDP model in the form of a tree [Duf02], where the root
node is the current belief-state pair and children are all pos-
sible subsequent belief-state pairs. This tree grows large very
fast, and it is particularly problematic to grow in the case of
continuous observations or actions. In this work, we concen-
trate on the second problem — and consider algorithms for
expanding the tree.

Since the Bayesian exploration methods require a tree
expansion to be performed, we can view the whole problem
as that of nested exploration. For the simplest exploration-
exploitation trade-off setting, bandit problems, there already
exist nearly optimal, computationally simple methods [Aue02].

Such methods have recently been extended to tree search [KS06].

This work proposes to take advantage of the special struc-
ture of belief trees in order to design nearly-optimal algo-
rithms for expansion of nodes. In a sense, by recognising

*This work was supported by the ICIS project. Many thanks to
Zhou Fang and Gwenn Englebienne for useful discussions.

that the tree expansion problem in Bayesian look-ahead ex-
ploration methods is also an optimal exploration problem,
we develop tree algorithms that can solve this problem effi-
ciently. Furthermore, we are able to derive interesting upper
and lower bounds for the value of branches and leaf nodes
which can help limit the amount of search. The ideas devel-
oped are tested in the multi-armed bandit setting for which
nearly-optimal algorithms already exist.

1.1 Related work

Up to date, most work had only used full expansion of the be-
lief tree up to a certain depth. A notable exception is [WLBS05],
which uses Thompson sampling [Tho33] to expand the tree.
In very recent work [RPPCd08], the importance of tree ex-
pansion in the closely related POMDP setting! has been recog-
nised. Therein, the authors contrast and compare many dif-
ferent methods for tree expansion, including branch and bound
methods and Monte Carlo sampling.

Monte Carlo sampling methods have also been recently
explored in the upper confidence bounds on trees (UCT) al-
gorithms, proposed in [GS07, KS06] in the context of plan-
ning in games. Recently, [HMO8] also considered the ap-
plication of UCT to planning in deterministic systems. Our
case is similar, however we are now acting within stochastic
trees whose nodes arise from Bayesian beliefs. Such trees
are Markov decision process referred to as BAMDPs. In our
case, we can take advantage of the special structure of the
belief tree but stochasticity makes the problem harder.

The proposed methods are also related to the ones used
in the discrete-state POMDP setting [RPPCd08]. However,
our setting requires the evaluation of different bounds at leaf
nodes. In particular, for each tree node we can obtain a lower
bound and a stochastic upper bound on the value of the opti-
mal policy. This is summarised in Appendix 2.

While the setting is essentially a form of multi-stage stochas-
tic programming[SNO5, KSHdMO01, KWK94], sample com-
plexity results of the type we present here have not been re-
ported. In previous work, we had presented first results on
bandit problems [Dim08] employing algorithms discussed
in this paper, for which nearly-optimal distribution-free al-
gorithms are known. The current paper’s main contribu-
tion is complexity results on a number of tree search algo-

'The BAMDP setting is equivalent to a POMDP where the un-
observable part of the state is stationary, but continuous (chap. 5
[Duf02])



rithms. This includes a variant of a Stochastic branch and
bound algorithm first introduced in [NPR98], for which only
an asymptotic convergence proof had existed. This paper
provides a complexity analysis for this variant, under simi-
lar smoothness conditions. There is also a close relation to
the bandit algorithm for smooth trees introduced by [CMO07].
However, this, and other UCT variants algorithms are not
directly applicable to this problem, fistly since the tree is
stochastic and secondly since we cannot obtain unbiased es-
timates of the optimal value function, but rather an unbiased
sample from an upper bound. This paper also presents a suit-
able tree search algorithm for belief trees.

The rest of this paper is organised as follows. The fol-
lowing section introduces belief-augmented MDPs and gives
bounds on the value of nodes that arise in the constructed
tree. Section ?? contains the paper’s main contributions.
Section ?? discusses potential improvements. Tedious proofs
are given in Appendix ??

2 BAMDPs’

We are interested in sequential decision problems where, at
each time step ¢, the agent seeks to maximise the expected
utility

Eluy [ ]2 ¥ Elr |,
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where 7 is a stochastic reward and u, is simply the discounted
sum of future rewards. We shall assume that the sequence of
rewards arises from a Markov decision process, defined be-
low.

Definition 1 (Markov decision process) A Markov decision
process (MDP) is defined as the tuple p = (S, A,7,R)
comprised of a set of states S, a set of actions A, a transi-
tion distribution T conditioning the next state on the current
state and action,

T(s'|s,a) & p(si1=5"|s1=s,a; = a) (2.1

satisfying the Markov property p(si+1 | st,at) = p(ser |
Sty ¢, St—1,0¢—1,-..), and a reward distribution R condi-
tioned on states and actions:

R(r|s,a) £ p(rig1=r | si=s,as=a), (2.2)
witha € A, 5,5’ € S, r € R. Finally,

,U(Ttﬂa 5t+1|5t>at) = M(Tt+1|5t,at)M(8t+1|St,at)- (2.3)

We shall denote the set of all MDPs as M. For any policy
« that is an arbitrary distribution on actions, we can define a
T-horizon value function for an MDP p € M at time ¢ as:

V;STTM(S"I) =E[ri1 | si=s,ar=a,
+VZ”(SH1:5I | sp=s,ar=a)V,T 111 (s').
s/

Note that for the infinite-horizon case, limp_, o V, "}/ = V™H
for all ¢.

2This section was originally published in [Dim08] and is repro-
duced here for completeness.

In the case where the MDP is unknown, it is possible
to use a Bayesian framework to represent our uncertainty
(c.f. [Duf02]). This essentially works by maintaining a belief
& € =, about which MDP 1 € M corresponds to reality. In
a Bayesian setting, & () is our subjective probability mea-
sure that p is true.

In order to optimally select actions in this framework, we
need to use the approach suggested originally in [BK59] un-
der the name of Adaptive Control Processes. The approach
was investigated more fully in [DB97, Duf02]. This creates
an augmented MDP, with a state comprised of the original
MDP’s state s; and our belief state &;. We can then solve
the exploration in principle via standard dynamic program-
ming algorithms such as backwards induction. We shall call
such models Belief-Augmented MDPs, analogously to the
Bayes-Adaptive MDPs of [Duf02]. This is done by not only
considering densities conditioned on the state-action pairs
(s¢,at), i.e. p(res1, St+1|8t, at), but taking into account the
belief &, € =, a probability space over possible MDPs, i.e.
augmenting the state space from S to S x = and consider-
ing the following conditional density: p(riy1, St+1,&t41 |
St, at, & ). More formally, we may give the following defini-
tion:

Definition 2 (Belief-Augmented MDP) A Belief-Augmented
MDP v (BAMPD) is an MDP v = (Q, A, 7', R’) where
Q) = S X E, where = is the set of probability measures on M,
and T', R’ are the transition and reward distributions con-
ditioned jointly on the MDP state sy, the belief state &, and
the action at. Here &(&t41|Tt41, St+1, St, at) is singular, so
that we can define the transition

p(witilas, wi) = p(serr, Sevalas, s, &)

It should be obvious that s, &; jointly form a Markov state
in this setting, called the hyper-state. In general, we shall
denote the components of a future hyper-state w; as (s, ).
However, in occasion we will abuse notation by referring to
the components of some hyper-state w as s,,,&,,. We shall
use M g to denote the set of BMDPs.

As in the MDP case, finite horizon problems only require
sampling all future actions until the horizon 7.

Vi (we, ar) =E[reg1|wr, afl

+’7/ ‘/tT—r&-*l,T(wt+1)V(Wt+1|wt7at)dwt—i—l-
Q
2.4)

However, because the set of hyper-states available at each
time-step is necessarily different from those at other time-
steps, the value function cannot be easily calculated for the
infinite horizon case.

In fact, the only clear solution is to continue expanding a
belief tree until we are certain of the optimality of an action.
As has previously been observed [DFR98, Dim06], this is
possible since we can always obtain upper and lower bounds
on the utility of any policy from the current hyper-state. We
can apply such bounds on future hyper-states in order to ef-
ficiently expand the tree.



2.1 Belief tree expansion

Let the current belief be &; and suppose we observe x =

(si,1,7i,1,a}). This observation defines a unique subse-
quent belief &} 11- Together with the MDP state s, this creates
a hyper-state transition from w; to wf_ ;. By recursively ob-
taining observations for future beliefs, we can obtain an un-
balanced tree with nodes {w;_, : k=1,...,T;i=1,...}.
However, we cannot hope to be able to fully expand the tree.
This is especially true in the case where observations (i.e.
states, rewards, or actions) are continuous, where we cannot
perform even a full single-step expansion. Even in the dis-
crete case the problem is intractable for infinite horizons —
and far too complex computationally for the finite horizon
case. However, had there been efficient tree expansion meth-
ods, this problem would be largely alleviated.

All tree search methods require the expansion of leaf
nodes. However, in general, a leaf node may have an in-
finite number of children. We thus need some strategies
to limit the number of children. More formally, let us as-
sume that we wish to expand in node w; = (&, st), with &
defining a density over M. For discrete state/action/reward
spaces, we can simply enumerate all the possible outcomes

{w; +1}|SXAXR| where R is the set of possible reward out-
comes. Note that if the reward is deterministic, there is only
one possible outcome per state-action pair. The same holds
if 7 is deterministic, in both cases making an enumeration
possible. While in general this may not be the case, since
rewards, states, or actions can be continuous, in this paper
we shall only examine the discrete case.

2.2 Bounds on the optimal value function

At each point in the process, the next node wj, , to be ex-
panded is the one maximising a utility U(w}, ). Let Qr
be the set of leaf nodes. If their values were known, then
we could easily perform the backwards induction procedure
shown in Algorithm 1. The main problem is obtaining a good

Algorithm 1 Backwards induction action selection
1: procedure BACKWARDSINDUCTION(¢, v, Qp, Vi7)
2: forn=T—-1,T—2,...,tdo
3: for w € Q2,, do

a, (w) = arg max v(w'|w, a) [E(r|w’, w, v) + V7 (1))

Va(w)* =

Z v(w'

w €Qp 41

jw, an)

4: end for
5: end for

6 return a;
7: end procedure

estimate for V, i.e. the value of leaf nodes. Let 7*(p) de-
note the policy such that, for any 7,

Vi) > Vi(s) VseS.

Furthermore, let the maximum probability MDP arising from
the belief at hyper-state w be ji, = arg max,, ft. Similarly,

we denote the mean MDP with /i, 2 E[u|¢,].

E(r|w’,w,v) + V(W

)]

Proposition 2.1 The optimal value function at any leaf node
w is bounded by the following inequalities

/VJ*(H)(Sw>§w(u)d# >V (w) > /Vlzr*(;zw)(sw)ﬁw(ﬂ) dp
(2.5)

Proof: By definition, V*(w) > V™ (w) for all w, for any
policy 7. The lower bound follows trivially, since

V) () & / V) (s,,)€0 (1) dp

The upper bound is derived as follows. First note that for any
function f, max, [ f(z,u)du < [max, f(x,u)du. Then,
we remark that:

(2.6)

Vi) = max [VIGDE A @7
g/maxV Sw)€w (1) (2.7b)

[V s 270

|

In POMDPs, a trivial lower bound can be obtained by
calculating the value of the blind policy [Hau00, SS05], which
always takes the same action. Our lower bound is in fact
the BAMDP analogue of the value of the blind policy in
POMDPs. This is because for any fixed policy m, it holds
trivially that V™ (w) < V*(w). In our case, we have made
this lower bound tighter by considering 7*(fi,, ), the policy
that is greedy with respect to the current mean estimate.

The upper bound itself is analogous to the POMDP value
function bound given in Theorem 9 of [Hau0O]. However,
while the lower bound is easy to compute in our case, the
upper bound can only be approximated via Monte Carlo sam-
pling with some probability, unless M is finite.

2.2.1 Leaf node lower bound
The lower bound can be calculated by performing value it-

eration in the mean MDP. This is because, for any policy 7
and belief &, [ V7 (s)€(s) dy can be written as
/ {E[Tls, o)+ Y puls's, 7T(S))V,Z’(S’)} E(pwydp =

_Z (a|s) { |3aug}+'yzug 'Is,a)V. 5(s’),}.

where [i¢ is the mean MDP for bellef . If the beliefs ¢ can
be expressed in closed form, it is easy to calculate the mean
transition distribution and the mean reward from &. For dis-
crete state spaces, transitions can be expressed as multino-
mial distributions, to which the Dirichlet density is a conju-

gate prior. In that case, for Dirichlet parameters {1/13 *(g) -
i,j €S,a € A}, wehave fic(s']s,a) = 2" (€)/ D ;cs ¥ (€).
Similarly, for Bernoulli rewards, the correspondmg mean model
arising from the beta prior with parameters {a** (), 55%(§) :
s€8.ae A}isElrs, a, fie] = a*(€)/(a* ()5 (E)).
Then the value function of the mean model, and consequently,
a lower bound on the optimal value function, can be found
with standard value iteration.



2.2.2 Leaf node upper bound with high probability
In general, (2.7b) cannot be expressed in closed form. How-
ever, the integral can be approximated via Monte Carlo sam-
pling.

Let the leaf node which we wish to expand be w. Then,

we can obtain ¢ MDP samples from the belief atw: pq, ..., e ~

&, (). For each py, we can derive the optimal policy 7* (1)

and estimate its value function v} £ V& ") = Vi We
may then average these samples to obtain

E Uk SUJ'

Let 7% (w) = [ &u(p V*(sw)du It holds that lim,._, « [0] =
7*(w) and that E[0.] = 7*(w). Due to the latter, we can ap-
ply a Hoeffding inequality

P (|0 (w) — 0" (w)| > €) < 2exp <—

(2.8)

2ce?
(Vmax - Vmin)2) ’
2.9)
thus bounding the error within which we estimate the upper
bound. For r; € [0, 1] and discount factor -y, note that Vipax—
Vinin < 1/(1 = 7).

2.3 Bounds on parent nodes

We can obtain upper and lower bounds on the value of every
action a € A, at any part of the tree, by iterating over ), the
set of possible outcomes following w;:

€2

o(wy, a ZP wi | wi,a) [ri +yo(w))] (2.10)
\Qt

“(wi,a ZP wy | wy,a) [rf+y0"(wf)],  (2.11)

where the probabllmes are implicitly conditional on the be-
liefs at each w;. For every node, we can calculate an upper
and lower bound on the value of all actions. Obviously, if at
the root node wy, there exists some a; such that o(wy,a}) >
0* * (wy, a) for all a, then G} is unambiguously the optimal
action.

3 PAC bounds for stochastic branch and
bound methods

The search is on trees which arise in the context of plan-
ning under uncertainty in MDPs using the Bayesian BAMDP
framework, which is described in Section 2. Because of this,
the branches alternate between action selection and random
outcomes. Each of the decision nodes has upper and lower
bounds on the value function, which are described in Sec-
tion 2.2. However, the upper bound must be estimated via
Monte Carlo sampling, something which necessitates the use
of stochastic branch and bound techniques for the seasrch.

We compare algorithms which utilise various combina-
tions of stochastic and exact bounds for the value of each
node. One of the main assumptions is that there is a uniform
bound on the convergence speed. Indeed, if such a bound
does not hold then we cannot hope to find the optimal branch
in finite time. Given a measure of separation between the op-
timal branch and sub-optimal branches, we can then obtain
complexity bounds.

3.1 Notation

We assume that the tree has a branching factor at most ¢ and
unbounded depth. Each branch b defines a sequence of ob-
servations {z;()}52,, and we use S®(k) = {0 : z;(V') =
z;(b) Vi < k} to denote the set of branches forming a par-
ticular continuation of a partial expansion of a branch b to
a depth k. We furthermore define the following measure on
branches [|b]| £ Y"52, ¢! I{x(b)}. Finally, the value of a
branch b will be denoted by V' and the value of the optimal
branch b* will be denoted by V' *. We shall denote the differ-
ence between the optimal branch and the highest suboptimal
branch’s lower and upper bounds with Ay, Ay, while the
difference between their actual values will be denoted by A.
A hat will signify estimated values.

3.2 Assumptions

We assume that we have upper and lower bounds V5 (k), V2 (k)
on the value of any branch such that

Assumption 3.1 (Bound monotonicity)

VE(k) < VE(k+1)<Vh VE(k) > VE(k+1) > VP
3.1

In order for any forward search algorithm to work asymptot-
ically, it is necessary that the sequence of bounds converges
to the true value in the limit.

Assumption 3.2 (Asymptotic convergence) Foranye > 0,
dko - VE > kg

VEk)>VP—e,  VE(K)<VP+e (32
Remark 3.1 For reinforcement learning we have e;, < v* /(1—

) thus, for any € > 0,
ko = log, € +log, (1 — 7).

However, we also need specific convergence rates in order
to obtain complexity bounds, therefore we shall assume the
following.

Assumption 3.3 (Uniform linear convergence) There exists
€ (0,1) and B > 0 such that for any branch b, and any
depth k,

VE—VE(k) < BY*, VE(R) -V <8yt (33)

It is easy to see that this assumption holds for reinforcement
learning with 8 = 1/(1 — ).

Remark 3.2 (Holder continuity) A direct result of Assump-
tion 3.3 is that the value function of branches satisfies the
following Holder continuity condition:

VP = V|| < 28]b— b/ 'oze .

(3.4)

Now we can proceed with the analysis. We shall initially
compare two variants of the case where we expand the tree
up to a fixed depth. We then compare two different stochastic
branch and bound algorithms, which maintain unbalanced
trees.



3.3 Flat oracle search

If we have exact lower bounds available, then one possible
strategy is to expand all branches to a fixed depth and then
select the branch with the highest lower bound. Algorithm 2
describes a method for achieving regret at most € using this
scheme.

Algorithm 2 Flat oracle search

Expand all branches until depth k& = log. /3 or AL >

Byt —e.
Select the root branch b* = arg max, V2 (k).

Lemma 3 (Flat oracle complexity) Running Algorithm 2 in
a tree with branching factor ¢, and y € (0,1), has regret at
most € with complexity of order

O (le(1 = )*?)

Note that the dependence on v can make this bound grow
very fast, since as soon as v > 1/4/¢, the complexity be-
comes worse than e 2.

3.4 Flat stochastic search

Next, we tackle the case where we only have a stochastic
lower bound on the value of each node. This may be the
case when the lower bound is an integral which can only be
calculated with a monte-carlo approximation for example.
The following algorithm expands the tree to a fixed depth
and then takes multiple samples from each leaf node. It is
only useful when ~ is known in advance, something which
is true in reinforcement learning problems.

Algorithm 3 Flat stochastic search
1: Expand all branches until depth k = [log,, ¢/203].
2: forb=1,...,¢" do
3 Caleulate VP = L " 3, with

=1 "1°

m =2 [log, [e(1 —7)/2]] -log ¢

»

end for .,
5: Selectb: VP > VP Wb #£b.

After the tree is expanded to depth k, we taken m sam-
ples from each leaf node’s bound estimate, with the guaran-
tee that each sample is in the interval [V* — g~y* V?].

Lemma 4 (Stochastic lower bound search complexity) The
number of samples that Algorithm 3 requires to bound the
expected regret by € is

O (¢°5+(7™") (log, [e(1 = 7)/2] - log 6) )

3.5 Stage-wise stochastic branch and bound

The general idea for stochastic branch and bound is to ex-
pand only branches with an upper bound that is higher than
the highest lower bound. Two main algorithms types are pos-
sible. The first one is stage-wise branch and bound, which at
every stage discards a set of branches. The second one is
continual branch and bound, which, while it never discards a
branch, it expands the most promising branches first.

Algorithm 4 Stage-wise branch and bound
1. fork=1,2,...do
2: Take my, ;, samples from each branch.

3:  Select the root branch b* = arg max, V2 (k).
4: end for

In the stage-wise branch and bound search, we only keep
one branch, b* £ arg max, V} such that

P (Eib VP <V 6/2) < /2.

This ensures that the total regret is smaller than e. A
simple algorithm takes

P (f/ V> 6/2) —p ((V —V)/By > e/2ﬂ7k)
2
< exp (—%) . (35)

m = [log(26/€)207** %]

So if we take

samples then
P (V V> 6/2) < ¢/20

and since there are at most ¢ branches, by a union bound we
obtain an error probability of €/2.

We can now extend this approach to a multi-stage algo-
rithm that achieves regret ¢, 2 \F at each stage.

K K
D= A< a/a-n,
k=1 k=1

so A <e/(l+e).

Lemma 5 The total sample complexity of the staged algo-
rithm is

) (qu + B¢ {1 + 2 log j) (3.6)

. [CD: TODO - this seems wrong!]

3.6 Stochastic branch and bound

The stochastic branch and bound algorithm [NPR98] is con-
ceptually similar to BAST [CMO7]. At each stage, this al-
gorithm takes an additional sample at each leaf node, to im-
prove their upper bound estimates. It then expands the node
with the highest mean upper bound.

We need bounds for the number of samples required until
we discover that a particular branch is sub-optimal. We first



Algorithm 5 stochastic-branch-and-bound

Algorithm 6 Iterative stochastic branch and bound

fort=1,2,...do
Let £; be the set of leaf nodes.

for b € L; do
Vll} = 'm%) Zi:bl ’57{)
end for

Sk+1 = E(argmax , U(A))

Selectb: VP > VY Vb #b.
end for

need a lemma that bounds the number of times we shall sam-
ple a suboptimal node until we discover it is sub-optimal and
similarly, the number of times we shall sample the optimal
node until we discover it’s not suboptimal. The two lemmata
cover the case where we sample nodes in the optimal branch
without expanding them and the case where we continuously
expand nodes in a sub-optimal branch.

The following lemma can be used to bound the number
of times that an optimal branch’s leaf node will be sampled
without being expanded.

Lemma 6 If N is the (random) number of times we must
sample a random variable V' € [0, 8] until its empirical

mean V(j) < V 4 A, then
E[N] <1+ p3°A72 (3.7)
P[N > n] <exp (—25_2n2A2) . (3.8)
The same inequalities holds for the event V( j) >V —A.

We now examine the converse: bounding the number of
times that a suboptimal branch will be expanded.

Lemma 7 Ifb is a branch with V? = V* — A, then it will
be expanded at least

B
N > ¢p30-7) 3.9)
times in the worst case. Subsequently,

—262(1— 72)m2) |

P(N >n) < exp<

3.7 Iterative stochastic branch and bound

The standard BAST algorithm [CMO7] does not fit perfectly.
It is a max search, where only one node is possible as a fol-
lowup given an action. Let us consider applying it directly to
observation sets (!).

So we also introduce a variant of BAST...

Plan: use the A-dependent bound of BAST?

4 Conclusion

As was mentioned in the previous section, there are some
difficulties with planning Due to the fact that the Hoeff for
the simple stochastic branch and bound algorithm degenerate
results suggest that another algorithm, which would employ
sparse sampling, may be more beneficial.

As stated in 2.2, the upper bound must be calculated via
sampling unless M is finite. So, this would be easier for
simpler problems.

foric L; do
Vo) = migy [V (@) + n0)o(i)]
end for A .
Use BACKWARDSINDUCTION(¢, v, L4, Vi) to obtain Vi
for all nodes.
Set 7 to root.
ford=1,...do
Select action a or transition to go from i4_1 to 2.
ig =argmax, > cnr,. wiljla)Vu(j)
end for

A Proofs
Proof:[Lemma 3] For any b’ with VLb/ < VLb , it holds that
VY SV 4B <V B < V4B A

This holds for b = b*. Thus, in the worst case, the regret that
we suffer if there exists some &' : V¥ > V" is

e=VY — VY < gyk (A.2)

The number of expansions required to reach depth & in
all branches is

k
n= 3k o ™
t=1
Thus, k = 2&/8) 4nq
ogy
o (Zsloi(;{yﬁ) - (z)log7 e(blflog»,ﬁ (A.4)
— (log, ¢¢1—10975_ (A.5)

Proof:[Lemma 4] The total number of samples is km, the
number of leaf nodes times the number of samplesa t each
leaf node. The search is until depth

k= [log,y e/2ﬂ] <1+log, €/28 (A.6)
and the number of samples is
m = 2log, (¢/23)log ¢. (A7)

The complexity follows trivially. Now we must prove that
this bounds the expected regret with €. Note that v* < €/2,
so for all branches b:

V-Vt <e)2. (A.8)
The expected regret can now be written as
ER < S +E[RVY <V} +e/4PV] < Vi +e/4)
(A9)

FER|VE >V + /4 PV > VP +¢/4).
(A.10)

From the Hoeffding bound (C.1)

7 1
P(V, -V, >€/4) <exp <_8mﬁ_27_2k62)



and with a union bound the total error probability is bounded
by ¢* exp (—gmB2y2*€?). If our estimates are within
€/4 then the sample regret is bounded by ¢/4, while the other
terms are trivially bounded by 1, to obtain

ER< g + {¢k exp <—m5272’“62) + Z} (A.11)

Substituting m and k, we obtain the stated result. [ |

Proof:[Lemma 5] The sample complexity of this algorithm
is mg < (1 + log(2¢/ex)237?*€2)¢ at each stage.

K
6> (1+log(20A7%)287°F A7)

k=1

K
= Z log(2¢) — klog(A))26~2* A2

K 1+
<¢K+26¢Z[log (26) +klog( 6)] (76
=1

€ 1+e€
1 1+e€ A2
<on 40 v ()
as
2k 2 2 2% _ A2
Xk:m = \2.9/0()\?) Z/\ = T
Substituting A\ completes the proof.
A A B e/(1+e€)
1—=X2  (1=N1+XN) [/ +e)][(1+2€)/(1+¢€)]
(A.12)
2
_clt+g e (A.13)
14 2¢ 14 2¢
]
Proof:[Lemma 6]
0o n—1
E[N] :Zn PV(G) >V +e)P(V(n) <V +e)
n=1 j=1
(A.14)
o) n—1
<> n]]exp(-2i87%) 1 (A.15)
n=1 j=1
e} n—1
= Z nexp | —2372€2 Z] (A.16)
n=1 j=1
= nexp(—B2n(n+1)) (A.17)
n=1

Let us now set p = exp(—(~2€2). Observe that np™("+1) <

2log p

71,2
np™’, since p < 1. Then, note thatfn,o”2 dn =0 ( £ )

So we can bound the sum by

0o n2 o
AR A g (A.18)
— 2log p .
exp(—~2¢”) AN
+ 9522 <1+ .
(A.19)
The second inequality can be proven as follows:
n A
P(N >n)=P (/\ V(k) >V + e> (A.20)
k=1
< H exp (—2kﬁ_262) =exp (-4 Zn(n + 1))
k=1
(A.21)
<exp (—n?B%€). (A.22)

2k This completes the proof for the first case. The second case

is symmetrical. ]

Proof:[Lemma 7] The proof also relies on Hoeffding bounds.
It is important to note that there is no guarantee that the prob-

—A2)’ ability of reaching any leaf node is not aribtrarily close to 0.

Thus, it is possible that there is only one sub-branch with
non-zero probability. Thus, it is essential to re-use the sam-
ples that were obtained at previous expansions.

Definition 8 The upper bound of a branch is

V(@) = S Pl = oflor = ) [RW,w) + V(o)

w’

Definition 9 The upper bound of a branch obtained by look-
ing at nodes up to depth k is

= ZP(w'|w) [R(w/,w) + V[?(w,)(k‘ -1l.

Let us denote the corresponding empirical upper bound ob-

tained by sampling the leaf nodes with V bw) (k). If we wish
to bound the probability that the branches following w will
not be expanded more than a finite number of times, then we
must derive a concentration inequality.

Remark A.1 The worst case is that all the expanded branches,
apart from a single branch, will have zero probability, in
which case the Hoeffding bound that applies is simply (C.4).

The proof is now easy to construct. Since V3 (k) >
Vb 4 B+*, we can write the following for the upper bound
averaged over stages 1,...,m:

1 m , .
— V <V —+
m Eﬁ U(k) =

It immediately follows that:

P(Vb(k) > V"+A) <P (;

B(1—A™*)
m(l—7y)

NE

(k) > VE(k)+ A — h)

=
Il

1



7n+1)

where h £ % Now, Lete 2 A — h. If A > h, then

€ > 0 and we can use a Hoeffding bound to obtain

lm b b exp [ — m?e?
P(mkz_lVU(k)>V +A>< p( 2Zk(ﬁv’“)2>'

We can now obtain bounds in both expectation and high

probability for the number of expansions, similarly to Lemma 6.

Firstly, observe that
L m2e?
P(N >n) < exp (—2)
W=m< 1] S )

B —2e2(1 —~+?) m?
= exp 32 1_ A 2(m+1)
(A.24)

(A.23)

If A < h, then the probability that the branch won’t
be expanded cannot be bounded. Thus, the branch must
be expanded up to approximately ﬁ. Thus, the num-
ber of expansions performed on a suboptimal branch with
V? = V* — A is bounded from below by n = (bﬁ.

]

B Miscellaneous remarks

Remark B.1 If we expand the tree T times and at each ex-
pansion we take a sample from every node, then the total
number of samples taken is bounded by

T(T +1)(¢ — 1)/2. (B.1)

Proof: At the k-th expansion, we create at most ¢ leaf nodes
and remove one. Thus, the number of nodes t time k + 1 is
ng4+1 = N + @ — 1. If ng = 1, then it is easy to see that

ng = k(¢ —1).

At each step we take ny samples, which means that the total
number of samples is

T T
ST = k(¢ —1)=T(T+1)(¢— 1)/2.
k=1 k=1

Remark B.2 Ifthe oldest leaf node is always expanded, then
all leaf nodes will be at depth log,(T") or log,(T') — 1. [CD:
the ¢ base is a rough guess. |

Remark B.3 Since there are ny, leaf nodes at stage k, the
oldest leaf node will have at least ny, — 1 accumulated sam-
ples.

C Hoeffding bounds for weighted averages

Standard Hoeffding bounds can of course be derived also for
weighted averages. Let us first remember the standard Ho-
effding inequality.

A

Lemma 10 (Hoeffding inequality) Ler &, = % Z?:l T;,
with x; € [b;, b;+h;] drawn from some arbitrary distribution
fi. Then, if & = E[x), it holds for all ¢ > 0 that
2 2.2
P(in > 7 +e€) < exp (_Z’Cl_fh?> RN (R )
In our case, we do not have a simple average, but a weighted
sum over our samples,

n n
Al D /
z, = E w;T;, E w; = 1.
i=1 i=1
1

A .
If we set v; = nwj;, then we can write the above as - Z?Zl VT

So, if we let x; = v;a} and assume that z; € [b,b + h], then
x; € [v;b+ v;(b+ h)]. Substituting into (C.1) results in

(C.2)

. _ 2¢2
Furthremore, note that
N _ 2¢2
P(&, >Z+e€) <exp 57 ) (C4)

since w? < w; for all i, as w; € [0,1]. Thus >, w? <

[ —

>, w; = 1. Note that Y, w? = 1 iff w; = 1 for some j.
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