Introduction 000000	Exploration and Exploitation Trade-off 0000	Tree expansion 00000

Complexity of stochastic branch and bound methods for belief tree search in Bayesian reinforcement learning

Christos Dimitrakakis

Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands

23 Jan 2010

Reinforcement I	earning		
	Exploration and Exploitation Trade-off	Examples	

Introduction

- Reinforcement learning
- Markov decision processes (MDP)
- Dynamic programming

2 Exploration and Exploitation Trade-off

- Bayesian RL
- Decision-theoretic solution
- Belief MDP

3 Examples

Tree expansion

- Bounds
- Stochastic branch and bound

Reinforcement le	arning		
00000			
Introduction	Exploration and Exploitation Trade-off	Examples	Tree expansion

Definition (The Reinforcement Learning Problem)

Learning how to act in an environment solely by interaction and reinforcement.

Characteristics

- The environment is unknown.
- Data is collected by the agent through interaction.
- The optimal actions are hinted at via reinforcement (scalar rewards).

Applications: Sequential Decision Making tasks

- Control, robotics, etc.
- Scheduling, network routing.
- Game playing, co-ordination of multiple agents.
- Relation to biological learning.

Markov docision	processes		00000
Introduction	Exploration and Exploitation Trade-off	Examples	Tree expansion

• We receive a reward $r_t \in \mathbb{R}$.

Model

$$\mathbb{P}_{\mu}(s_{t+1}|s_t,a_t) \ \mathbb{P}_{\mu}(r_{t+1}|s_t,a_t)$$

(Transition distribution) (Reward distribution)

00000	0000		00000
Introduction	Exploration and Exploitation Trade-off	Examples	

Markov decision processes (MDPs)

The agent

The agent is defined by its policy π .

 $\mathbb{P}_{\pi}(a_t|s_t)$

Controlling the environment

We wish to find π maximising the expected total future reward

$$\mathbb{E}_{\mu,\pi} \sum_{t=1}^{T} r_t \qquad (\text{utility})$$

to the horizon T .

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

00000	0000		00000
Introduction	Exploration and Exploitation Trade-off	Examples	Tree expansion

Markov decision processes (MDPs)

The agent

The agent is defined by its policy π .

 $\mathbb{P}_{\pi}(a_t|s_t)$

Controlling the environment

We wish to find π maximising the expected total future reward

$$\mathbb{E}_{\mu,\pi} \sum_{t=1}^{T} \gamma^t r_t \qquad \text{(utility)}$$

to the horizon T with discount factor $\gamma \in (0, 1]$.

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Introduction	Exploration and Exploitation Trade-off	Examples	Tree expansion
000000	0000		00000
Value functions			

State value function

$$V_{t,\mu}^{\pi}(s) riangleq \mathbb{E}_{\pi,\mu}\left(\sum_{k=1}^{T} \gamma^k r_{t+k} \middle| s_t = s\right)$$

How good a state is under the policy π for the environment μ .

$$\pi^*(\mu): V_{t,\mu}^{\pi^*(\mu)}(s) \geq V_{t,\mu}^{\pi}(s) \quad orall \pi, t, s$$
 (optimal policy)

The optimal policy π^* dominates all other policies π everywhere in S.

$$V_{t,\mu}^*(s) riangleq V_{t,\mu}^{\pi^*(\mu)}(s),$$
 (optimal value function)

The optimal value function V^* is the value function of the optimal policy π^* .

うせん 聞い ふぼう ふぼう ふしゃ

Introduction	Exploration and Exploitation Trade-off	Examples	Tree expansion
000000	0000		00000

When the environment μ is known

Iterative/offline methods

- Estimate the optimal value function V* (i.e. with backwards induction on all S).
- Iteratively improve π (i.e. with policy iteration) to obtain π^* .

Online methods

• Forward search followed by backwards induction (on subset of *S*).

Dynamic programming (Backwards Induction)

$$V_t(s_t) = \sup_{a} \mathbb{E}_{\mu}[r_t|s_t, a] + \gamma \sum_{i} V_{t+1}(s_{t+1}^i) \mathbb{P}_{\mu}(s_{t+1}^i|s_t, a)$$

Introduction	Exploration and Exploitation Trade-off	Examples	Tree expansion
00000	0000		00000
When the en	vironment μ is unknown		

Decision theoretic solkution using a probabilistic belief

- Belief: A distribution over possible MDPs.
- Method: Take into account future beliefs when planning.
- Problem: The combined belief/MDP model is an infinite MDP.
- Goal: Efficient methods to approximately solve the infinite MDP.

	Exploration and Exploitation Trade-off	Examples	Tree expansion
Near-optimal Baye	esian RL		

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

1 Introduction

- Reinforcement learning
- Markov decision processes (MDP)
- Dynamic programming

2 Exploration and Exploitation Trade-off

- Bayesian RL
- Decision-theoretic solution
- Belief MDP

3 Examples

Tree expansion

- Bounds
- Stochastic branch and bound

		Exploration and Exploitation Trade-off	Examples	Tree expansion
00000	00	0000		00000
-				

Bayesian Reinforcement Learning

Estimating the correct MDP

- The true μ is unknown, but we assume it is in \mathcal{M} .
- Maintain a belief ξ_t(μ) over all possible MDPs μ ∈ M.
- ξ_0 is our initial belief about $\mu \in \mathcal{M}$.

The belief update

$$\begin{aligned} & = \frac{\mathbb{P}_{\mu}(s_{t+1}, r_{t+1}, s_t, a_t)}{\xi_t(s_{t+1}, r_{t+1} | s_t, a_t) \xi_t(\mu)}. \end{aligned}$$
(1a)

	Exploration and Exploitation Trade-off	Examples	Tree expansion
000000	0000		00000
Exploration-exploit	ation trade-offs with E	Bayesian RL	

Exploration-exploitation trade-off

- We just described an estimation method.
- But, how should we behave while the MDP is not well estimated?
- The plausibility of different MDPs is important.

Main idea

- Take knowledge gains into account when planning.
- Starting with the current belief, enumerate all possible future beliefs.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Take the action that maximises the expected utility.

Decision theoretic	colution		
000000	0000		00000
Introduction	Exploration and Exploitation Trade-off	Examples	Tree expansion

Belief-Augmented Markov Decision Processes

- RL problems with state are expressed as MDPs.
- Under uncertainty there are two types of state variables: the environment's state s_t and our belief state ξ_t.

- Augmenting the state space with the belief space allows us to represent RL under uncertainty as a *big* MDP with a hyperstate.
- This MDP can be solved with DP techniques (backwards induction).

Introduction	Exploration and Exploitation Trade-off	Examples	Tree expansion
000000	0000		00000
Belief tree			

Of interest

- (Pseudo)-tree structure.
- Hyperstate $\omega_t \triangleq (s_t, \xi_t)$.

•
$$\Omega_t \triangleq \{\omega_t^i : i = 1, 2, \ldots\}.$$

The induced MDP ν

$$\mathbb{P}_{\nu}(\omega_{t+1}^{i}|\omega_{t},a_{t}) = \xi_{t}(s_{t+1}^{i},r_{t+1}^{i}|s_{t},a_{t}) = \int_{\mathcal{M}} \mathbb{P}_{\mu}(s_{t+1}^{i},r_{t+1}^{i}|s_{t},a_{t})\xi_{t}(\mu)d\mu$$

Backwards induction

$$V_t^*(\omega) = \sum_{\omega' \in \Omega_{t+1}} \xi_t(\omega'|\omega_t, a_t^*) [\mathbb{E}_{\xi_t}(r|\omega', \omega_t) + \gamma V_{t+1}^*(\omega')]$$

The n-armed	handit problem		
000000	0000		00000
Introduction	Exploration and Exploitation Trade-off	Examples	Tree expansion

- Actions $\mathcal{A} = \{1, \ldots, n\}.$
- Expected reward $\mathbb{E}(r_t \mid a_t = i) = x_i$.
- Discount factor $\gamma \leq 1$ and/or horizon T > 0.
- If the expected rewards are unknown, what must we do?

Decision-theoretic approach

• Assume $r_t \mid a_t = i \sim \psi(\theta_i)$, with $\theta_i \in \Theta$ unknown parameters.

- Define prior $\xi(\theta_1, \ldots, \theta_n)$.
- Select actions to maximise $\mathbb{E}_{\xi} U_t = \mathbb{E}_{\xi} \sum_{k=1}^{T-t} \gamma^k r_{t+k}$.

Introduction	Exploration and Exploitation Trade-off	Examples	Tree expansion
000000	0000		00000
Bernoulli example			

Consider *n* Bernoulli bandits with unknown parameters $heta_i$, $i = 1, \ldots, n$ such that

$$r_t \mid a_t = i \sim Bern(\theta_i), \qquad \mathbb{E}(r_t \mid a_t = i) = \theta_i.$$
 (2)

We model our belief for each bandit's parameter θ_i as a Beta distribution $Beta(\alpha_i, \beta_i)$, with density $f(\theta \mid \alpha_i, \beta_i)$ so that

$$\xi(\theta_1,\ldots,\theta_n) = \prod_{i=1}^n f(\theta_i \mid \alpha_i,\beta_i).$$

Recall that the posterior of a Beta prior is also a Beta. Let $k_{t,i} \triangleq \sum_{k=1}^{t} |\mathbf{a}_k| = i$ be the number of times we played arm i and $\hat{r}_{t,i} \triangleq \frac{1}{k_{t,i}} \sum_{k=1}^{t} r_t |\mathbf{a}_k| = i$ be the empirical reward of arm i at time t. Then, the posterior distribution for the parameter of arm i is

$$\xi_t = \operatorname{Beta}(\alpha_i + k_{t,i}\hat{r}_{t,i}, \beta_i + k_{t,i}(1 - \hat{r}_{t,i}))$$

Since $r_t \in \{0,1\}$ the possible states of our belief given some prior are \mathbb{N}^{2n} .

Introduction	Exploration and Exploitation Trade-off	Examples	Tree expansion
000000	0000		00000
Belief states			

- The state of the bandit problem is the state of our belief.
- A sufficient statistic for our belief is the number of times we played each bandit and the total reward from each bandit.
- Thus, our state at time t is entirely described our priors α,β (the initial state) and the vectors

$$k_t = (k_{t,1}, \ldots, k_{t,i}) \tag{3}$$

$$\hat{r}_t = (\hat{r}_{t,1}, \dots, \hat{r}_{t,i}).$$
 (4)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ● ●

• At any time t, we can calculate the probability of observing $r_t = 1$ or $r_t = 0$ if we pull arm i as:

$$\xi_t(\mathbf{r}_t = 1 \mid \mathbf{a}_t = i) = \frac{\alpha_i + k_{t,i}\hat{\mathbf{r}}_{t,i}}{\alpha_i + \beta_i + k_{t,i}}$$

- The next state is well-defined and depends only on the current state.
- Thus, the *n*-armed bandit problem is an MDP.

Experiment design			
000000	0000		00000
Introduction	Exploration and Exploitation Trade-off	Examples	Tree expansion

Example

Consider k treatments to be administered to T volunteers. Each volunteer can only be used once. At the *t*-th trial, we perform some experiment $a_t \in \{1, \ldots, k\}$ and obtain a reward $r_t = 1$ if the result is successful and 0 otherwise. If simply randomise trials, then we will obtain a much lower number of successes than if we solve the bandit MDP.

Example

We are given a hypothesis set $H = \{h_1, h_2\}$, a prior ψ_0 on H, a decision set $D = \{d_1, d_2\}$ and a loss function $L : D \times H \to \mathbb{R}$. We can choose from a set of k possible experiments to be performed over T trials. At the *t*-th trial, we choose experiment $a_t \in \{1, \ldots, k\}$ and observe outcome $x_t \in \mathcal{X}$. Our posterior is $\psi_t(h) = \psi_0(h \mid a_1, \ldots, a_t, x_1, \ldots, x_t)$; The reward is $r_t = 0$ for t < T and

$$r_{\mathcal{T}} = -\min_{d\in D} \mathbb{E}_{\psi_{\mathcal{T}}}(L \mid d).$$

The process is a T-horizon MDP, which can be solved with standard backwards induction.

	Exploration and Exploitation Trade-off	Examples	Tree expansion
000000	0000		00000
Tree properties			

Tree depth

(Naive) Error at depth k: $\epsilon \propto \frac{\gamma^k}{1-\gamma}$.

Branching factor

$$\phi = |\mathcal{R}| \cdot |\mathcal{A}| \cdot |\mathcal{S}|$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Practical methods to handle the tree

- Lookeahead up to fixed time T.
- In some cases, closed-form solutions (i.e. Gittins indices)
- Pruning or sparse expansion.
- Value function approximations.

Exploration and Exploitation Trade-off	Examples	Tree expansion
		00000

Bounds on node values

Fortunately, we can obtain bounds on the value of any node $\omega = (s, \xi)$. Let $\pi^*(\mu)$ be the optimal policy for μ :

Lower bound

$$V^*(\omega) \geq \mathbb{E}_{\xi} V_{\mu}^{\pi^*(\bar{\mu}_{\xi})}(s),$$

where $\bar{\mu}_{\xi} \triangleq \mathbb{E}_{\xi} \mu$ is the mean MPD. The optimal policy must be at least as good as any stationary policy,

Upper bound

$$\mathbb{E}_{\xi} \max_{\pi} V^{\pi}_{\mu}(s) \geq V^{*}(\omega)$$

The optimal policy cannot do better than the policy which learns the correct model at the next time-step.

Estimating the Bounds for some hyperstate $\omega = (s, \xi)$

$$\int V_{\mu}(s)\xi(\mu)\,\mathrm{d}\mu\approx\frac{1}{n}\sum_{i=1}^{n}\hat{v_{i}},\qquad v_{i}=V_{\mu_{i}}(s),\mu_{i}\sim\xi.$$

		Exploration a	nd Exploitation T	rade-off	Examples	Tree expansion
000000		0000				00000
- ·						

Stochastic branch and bound

Main idea

- Sample once from all leaf nodes.
- Expand the node with the highest mean upper bound.
- We quickly discover overoptimistic bounds.
- Unexplored leaf nodes accumulate samples.

Hierarchical variant

- Sample children instead of leafs.
- Average bounds along path to avoid degeneracy.

		Exploration a	nd Exploitation 7	Trade-off	Examples	Tree expansion
000000		0000				00000
- ·						

Stochastic branch and bound

Main idea

- Sample once from all leaf nodes.
- Expand the node with the highest mean upper bound.
- We quickly discover overoptimistic bounds.
- Unexplored leaf nodes accumulate samples.

Hierarchical variant

- Sample children instead of leafs.
- Average bounds along path to avoid degeneracy.

	Exploration and Exploitation Trade-off	Examples	Tree expansion
000000	0000		00000

Stochastic branch and bound

Main idea

- Sample once from all leaf nodes.
- Expand the node with the highest mean upper bound.
- We quickly discover overoptimistic bounds.
- Unexplored leaf nodes accumulate samples.

Hierarchical variant

- Sample children instead of leafs.
- Average bounds along path to avoid degeneracy.

Introduction	Exploration and Exploitation Trade-off	Examples	Tree expansion
			00000
Complexity results			

Let Δ be the value difference between two branches and $\beta = V_{max} - V_{min}$. If *N* times an optimal branch is sampled without being expanded:

$$\mathbb{P}(N > n) \le \exp(-2\beta^{-2}n^2\Delta^2)$$

If K is the number of times a sub-optimal branch will be expanded then $\mathbb{P}(K > k)$, for $k > k_0 = \log_\gamma \Delta/\beta$

Stochastic branch and bound 1

$$\mathcal{O}\left(\exp\{-2\beta^{-2}[(k-k_0)\Delta^2]\}\right)$$

Stochastic branch and bound 2

$$ilde{\mathcal{O}}\left(\exp\{-2(k-k_0)^2(1-\gamma^2)
ight)$$

(日) (日) (日) (日) (日) (日) (日) (日)

Introduction	Exploration and Exploitation Trade-off	Examples	Tree expansion
			00000
Summary			

Results

- Development of upper and lower bounds for belief tree values
- Application to efficient tree expansion
- Complexity bounds for tree expansion

Future work

• Sparse sampling and smoothness property to reduce branching factor

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Can we get regret bounds via posterior concentration?
- Extend approach to non-parametrics ...

Introduction	Exploration and Exploitation Trade-off	Examples	Tree expansion
000000	0000		00000
Questions?			

Thank you for your attention.

