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Introduction
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Reinforcement learning

Definition (The Reinforce Learning Problem)
Learning how to act in an environment solely by interaction and

reinforcement.

v

Characteristics

@ The environment is unknown.

o Data is collected by the agent through interaction.

@ The optimal actions are hinted at via reinforcement (scalar rewards).

V.

Applications: Sequential Decision Making tasks

@ Control, robotics, etc.

@ Scheduling, network routing.

o Game playing, co-ordination of multiple agents.

@ Relation to biological learning.
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Markov decision processes

Markov decision processes (MDP)

We are in some environment u, where
at each time step t:

@ \We observe state s; € S.

@ We take action a; € A.

@ We receive a reward r; € R.

(Transition distribution)
(Reward distribution)

P# (5t+1 |St7 at)

P#(rt+1|5f, at)
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Markov decision processes (MDPs)

The agent
The agent is defined by its policy .

Pr(ar|st)

Controlling the environment

We wish to find m maximising the
expected total future reward

-
= Z re (utility)
t=1

to the horizon T .
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Markov decision processes (MDPs)

The agent

The agent is defined by its policy .

]P)-n—(at‘st)

Controlling the environment

| A

We wish to find m maximising the
expected total future reward

-
Eur » 7' (utility)
t=1

to the horizon T with discount factor
v € (0,1].
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Value functions

State value function

Vi(s) £ Enp <Z'y rerk|Se = 5)

How good a state is under the policy 7 for the environment .

7 () : V;f;(“)(s) > V7.(s) Vm,t,s (optimal policy)

The optimal policy 7™ dominates all other policies 7 everywhere in S.

Viu(s) & VtT;(H)(S), (optimal value function)

The optimal value function V™ is the value function of the optimal policy 7*.
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When the environment g is known

Iterativ ine methods

o Estimate the optimal value
function V* (i.e. with backwards
induction on all S).

o lteratively improve 7 (i.e. with
al, rd, policy iteration) to obtain 7*.

v

A\

2 L sy
> N1 W& Online methods
@ Forward search followed by
- backwards induction (on subset of
1) S).

— v

Dynamic programming (Backwards Induction)

Vi(st) = supBu[relse, a] +v ) Vera(sis1) Pu(siialse, a)
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When the environment g is unknown

Decision theoretic solkution using a probabilistic belief

@ Belief: A distribution over possible MDPs.

Method: Take into account future beliefs when planning.
Problem: The combined belief/MDP model is an infinite MDP.
o Goal: Efficient methods to approximately solve the infinite MDP.
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Bayesian Reinforcement Learning

Estimating the correct MDP

@ The true p is unknown, but we
assume it is in M.

e Maintain a belief & () over all
possible MDPs 1 € M.

@ & is our initial belief about
e M.

The belief update

Eera(p) £ &(p | Seva, resn, se, ar) (1a)
_ Pu(set1, revalse, ae)€e (1)

&e(Stt1, retalst, ar)
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Exploration-exploitation trade-offs with Bayesian RL

Exploration-exploitation trade-off

@ We just described an estimation method.

@ But, how should we behave while the MDP is not well estimated?

@ The plausibility of different MDPs is important.

v

o Take knowledge gains into account when planning.

o Starting with the current belief, enumerate all possible future beliefs.

@ Take the action that maximises the expected utility.
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Decision-theoretic solution

Belief-Augmented Markov Decision Processes

@ RL problems with state are expressed as MDPs.

@ Under uncertainty there are two types of state variables: the environment’s
state s; and our belief state &;.

@ Augmenting the state space with the belief space allows us to represent
RL under uncertainty as a big MDP with a hyperstate.

@ This MDP can be solved with DP techniques (backwards induction).
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Belief tree

o (Pseudo)-tree structure.
@ Hyperstate wr 2 (s¢, &:).
o Q2 {wi:i=1,2..}

The induced MDP v

Pu(w£+1|wta a) = €t(sl{+17 rti+1|5t7 ar) = / ]P)H(SI{Jrl: rti+1|5t7 ar)ée(p)dp
M

N

Backwards induction

Vi) = D &l |we, @) [Ee (rlw’, we) + v Vi ()]

w' €Qry1

A\




Examples

The n-armed bandit problem

e Actions A = {1,...,n}.
o Expected reward E(r; | a: = i) = x;.
@ Discount factor v < 1 and/or horizon T > 0.

o If the expected rewards are unknown, what must we do?

Decision-theoretic approach

@ Assume r; | a; = i ~ 1(6;), with 6; € © unknown parameters.
o Define prior (61, ..., 0n).

@ Select actions to maximise E¢ Uy = E¢ Z,(Tz_lt ¥ et




Examples

Bernoulli example

Consider n Bernoulli bandits with unknown parameters 0;, i = 1,..., n such
that

re | as =i~ Bern(0;), E(re | ae = 1) = 0;. (2
We model our belief for each bandit’s parameter 0; as a Beta distribution
Beta(wi, Bi), with density (6 | ai, i) so that

5(017 e 79") = H f(9’ | a”?ﬂ")‘
i=1

Recall that the posterior of a Beta prior is also a Beta. Let ke; =Y, lax =i
be the number of times we played arm i and #.; = 1 Zk 1 relak = i be the

empirical reward of arm i at time t. . Then, the posterlor distribution for the
parameter of arm i is

& = Beta(ai + ke,ifei, Bi + ke,i(1 — Pi))

Since r; € {0,1} the possible states of our belief given some prior are IN*".
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Belief states

@ The state of the bandit problem is the state of our belief.

o A sufficient statistic for our belief is the number of times we played each
bandit and the total reward from each bandit.

@ Thus, our state at time t is entirely described our priors a, 8 (the initial
state) and the vectors

ke = (kt117~~'7kt,i) (3)
Il>t == (?t,17~~~’?‘t,i)~ (4)
@ At any time t, we can calculate the probability of observing r: = 1 or
re = 0 if we pull arm i as:
. o+ ke, ity
rn=1|a=i)=———""—
&elre 2 =1) i + Bi + ke,
@ The next state is well-defined and depends only on the current state.
@ Thus, the n-armed bandit problem is an MDP.
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Experiment design

Consider k treatments to be administered to T volunteers. Each volunteer can
only be used once. At the t-th trial, we perform some experiment

a;: € {1,..., k} and obtain a reward r; = 1 if the result is successful and 0
otherwise. If simply randomise trials, then we will obtain a much lower number
of successes than if we solve the bandit MDP.

Example

We are given a hypothesis set H = {hy, ho}, a prior 10 on H, a decision set
D = {d1,d>} and a loss function L : D x H — RR. We can choose from a set of
k possible experiments to be performed over T trials. At the t-th trial, we
choose experiment a; € {1,..., k} and observe outcome x; € X'. Our posterior
is Ye(h) =o(h | a1,...,ae,x1,...,x)i The reward is r, =0 for t < T and

r=— dmelgIEwT(L | d).

The process is a T-horizon MDP, which can be solved with standard backwards
induction.




Tree expansion

Tree properties

(Naive) Error at depth k: € %

Branching factor

| \

¢ =IR[-|A[-|S]|

Practical methods to handle the tree

@ Lookeahead up to fixed time T.

\

@ In some cases, closed-form solutions (i.e. Gittins indices)
@ Pruning or sparse expansion.

@ Value function approximations.

\




Tree expansion
o
Bounds on node values

Fortunately, we can obtain bounds on the value of any node w = (s,§). Let
7* (1) be the optimal policy for w:

V() 2 Be Vi "),
where fig £ E¢ v is the mean MPD.

The optimal policy must be at least as good as any stationary policy,
”

Ee max Vi (s) > V*(w)

The optimal policy cannot do better than the policy which learns the correct
model at the next time-step.

Estimating the Bounds for some hyperstate w = (s, £)

1 n
/Vu(S)E(u)du% —D 0 vi= V(s ui~ &
i=1
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Stochastic branch and bound

D @ Sample once from all leaf nodes.
X @ Expand the node with the highest
0.9 mean upper bound.
0.1 @ We quickly discover
P o overoptimistic bounds.
‘E{l/‘ ‘39[13‘ @ Unexplored leaf nodes accumulate
samples.

v

Hierarchical variant

@ Sample children instead of leafs.

@ Average bounds along path to
avoid degeneracy.
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Tree expansion
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Sample once from all leaf nodes.

Expand the node with the highest
mean upper bound.

We quickly discover
overoptimistic bounds.

Unexplored leaf nodes accumulate
samples.

v

Hierarchical variant

@ Sample children instead of leafs.

@ Average bounds along path to

avoid degeneracy.
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Tree expansion
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Sample once from all leaf nodes.

Expand the node with the highest
mean upper bound.

We quickly discover
overoptimistic bounds.

Unexplored leaf nodes accumulate
samples.

v

Hierarchical variant

@ Sample children instead of leafs.

@ Average bounds along path to

avoid degeneracy.
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Complexity results

Let A be the value difference between two branches and 8 = Vimax — Viin.
If N times an optimal branch is sampled without being expanded:

P(N > n) < exp(—28"2n*A%)

If K is the number of times a sub-optimal branch will be expanded then
P(K > k), for k > ko = log., A/

Stochastic branch and bound 1

(@) (exp{—2572[(k — kO)Azl})

<

Stochastic branch and bound 2

O (exp{-2(k — ko)’(1 = 7))

\
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Summary

@ Development of upper and lower bounds for belief tree values

@ Application to efficient tree expansion

o Complexity bounds for tree expansion
v

@ Sparse sampling and smoothness property to reduce branching factor

@ Can we get regret bounds via posterior concentration?

@ Extend approach to non-parametrics ...

N,
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Questions?

Thank you for your attention.
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