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1 Introduction

The characterization of portfolio choices is a classical and important topic in finance. With few

exceptions, the vast majority of dynamic portfolio choice models (multi-period setting with a pos-

sible portfolio reallocation at each time point), do not have closed form solutions and must rely on

numerical methods. Examples of these can be found in Brennan et al. (1997) with the numerical

solution of partial differential equations, Dammon et al. (2001) with binomial trees, or Balduzzi

and Lynch (1999) with numerical integrations by quadratures. The main drawbacks of these lattice

approaches is the difficulty to handle many state variables and realistic stock return processes.

More recently, some authors have proposed the use of Monte Carlo simulations to handle these

portfolio problems. These methods offer a high level of flexibility in modeling the behaviour of

the stochastic variables. Typically, they can even be black-boxed, meaning that no information is

required about the underlying stochatic processes, as long as simulation samples can be generated.

One example of the use of simulations is Detemple et al. (2003), who use Malliavin calculus and

Monte Carlo simulations to compute optimal portfolios in a continuous-time (complete-market)

dynamic setting. Their approach can handle a large number of state variables and is shown to

converge to the optimal solutions. This method is however best suited to complete-market settings

with diffusion processes. Incomplete market problems can be handled, but only if an analytical

solution is available for the dual problem.

In a discrete-time incomplete market setting, Brandt et al. (2005) and Garlappi and Skoulakis

(2010) propose simulation-and-regression algorithms to compute optimal portfolios for a variety of

problems. These algorithms use Taylor series approximations of the value function at every time

point, and a combination of least-squares regressions and Monte Carlo simulations or quadratures

to obtain the required expected values entering these approximate value functions. The algorithm

proposed here is closely related to these last two papers and falls within the category of simulation-

and-regression approaches. However, unlike the above algorithms, we avoid the need of Taylor series

approximation of the value function. This gives a simpler algorithm which does not require the

work and complication associated with the computation of the derivatives of the utility function.

These simplifications are achieved by introducing in the regressions the weights of the assets as

independent variables. The resulting regression surfaces then become functions of the weights,

which can be optimized to find the optimal portfolios.

As with other simulation-and-regression procedures, we use a recursive dynamic programming

algorithm. The proposed approach also has the capacity to handle more realistic discrete-time

processes than lattice methods. For example, GARCH processes with non-normal errors or discrete-

time processes with jumps can be used in these procedures without much modifications. However,
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our algorithm can also handle utility functions that are not differentiable everywhere, such as

piecewise linear utility functions. Although it is impossible to avoid the curse of dimensionality,

our tests indicate that our method suffers much less from this curse than quadrature methods.

The approach developed in this paper shares many similarities with an approach independently

developed in Nijman, Werker, Koijen (2007) and to which Koijen, Nijman, Werker (2010) refer1.

The work presented here, however, differs in many ways. First, our focus is on exploring the

possibilities of the method, and we provide results on a series of examples of portfolio choice

problems that are benchmarked with numerical quadrature or analytical solutions. These examples

show various difficulties coming from the size of the problem (number of risky assets, number of

periods), the returns stochastic behavior (serial dependence) and utility function (dependence on

wealth). We also illustrate the limits of Taylor series approaches with an example on conditional

Value-at-Risk minimisation. Second, we find that with a careful implementation, the computation

of the regression surfaces themselves (not an approximation) is not “computationally unattractive”

as Koijen et al. suggest. See more details in section 3.4. Third, we work directly on the optimization

problems, not on a set of Karush-Kuhn-Tucker equations. This offers more insight and flexibility

in choosing the bases and incorporating constraints, and is arguably simpler as well. Fourth, we

introduce an inverse utility transformation similar to that proposed in Garlappi and Skoulakis

(2010). This transformation allows for an important reduction in the number of discrete wealth

points required to achieve precise results. Fifth, we compare two different approaches to evaluate

a policy, dubbed “realized values” and “regression surface values”. While the regression surface

approach is believed to bear more bias in option pricing, our test show no such evidence in portfolio

choice. Sixth, we give preliminary evidence that a two-step procedure with regression surfaces on

smaller domains can provide enhanced precision, see example 2.

In the next section, we outline the problem of the investor. We describe our approach in section

3 with a simple example first, to provide the intuition, and the general algorithm next. Numerical

results are presented in section 4 and the paper concludes with section 5. An appendix section

extends the simple example of section 3.

2 Problem description

The algorithm could be used on a variety of problems of dynamic programming but in this paper we

use it on a specific problem. In this section, we describe the problem, indicate the main hypotheses,

and set the notation up.

1We became aware that Nijman, Werker, and Koijen had proposed regressing on the decision variables, in the
very last production stage of this paper, when we found their working paper of 2007.
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We consider an investor endowed with wealth W0 at time t = 0 who wants to maximize his

expected utility of terminal wealth at date T . The investor can trade N risky assets and a risk-free

security at times t = 0, 1, ..., T − 1, and there are no frictions such as transaction costs or taxes.

With these assumptions the investor’s problem can be expressed as

V0 (W0, S0) = max
xmin≤{xt}T−1

t=0 ≤xmax

E0 [u (WT )]

with the following constraints for all t :

Wt+1 = Wt ·
(
x>t rt+1 +Rf

)
where Et denotes the expectation conditional on the information available at time t (here the

initial wealth W0 and initial state variable value S0), u (·) is a concave utility function with the

usual regularity conditions, Rf is the gross risk-free rate with simple compounding, rt+1 is a N × 1

vector of simple returns in excess of the risk-free rate for the time period between t and t + 1.

Portfolio weights between times t and t + 1 are represented by the N × 1 vector xt , with lower

and upper bounds xmin and xmax, respectively. Other constraints can be handled; linear ones, for

example, have little impact on performance. We assume that the vector of excess stock return is

generated from a known discrete-time stochastic process.

In the above problem, wealth is an endogenous variable that varies stochastically with time

according to the portfolio weights xt and the exogenous random returns rt+1. Depending on the

utility function, the current wealth level may or may not influence the optimal portfolio weights.

Similarly, depending on the return process, the current state of the process might influence the

optimal weights.

Using the principle of optimality of dynamic programming, the above value function can be

rewritten as the following recursion:

Vt (Wt, St) = max
xmin≤Xt≤xmax

Et

[
Vt+1

(
Wt ·

(
x>t rt+1 +Rf

)
, St+1

)]
(1)

with the terminal condition

VT (WT , ST ) = u (WT ) .

3 A simulation-and-regression algorithm that regresses on deci-
sion variables.

In this section, we describe our solution approach to solve the above dynamic programming recur-

sion. Subsection 3.1 discusses the three main tasks at each time step of the recursion. Subsection

3.2 introduces our algorithm with a short, intuitive numerical example. Subsection 3.3 provides

the algorithm itself, and subsection 3.4 discusses some implementation details.
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3.1 Overview

Solving the dynamic program (1) with our approach involves three main tasks at each time step, as

discussed below. It is important to first make a distinction between the state variable “wealth” and

other state variables such as past returns (or dividends, economic indicators, etc.). The former is

endogenous in that its value depends on portfolio decisions; the later are exogenous, in that they are

independent of portfolio decisions. Endogenous state variables do not lend themselves naturally to

simulation-and-regression schemes (though see Denault, Simonato, Stentoft (2013)) As such, wealth

is discretized, as (all) state variables usually are in classical dynamic programming. Exogenous state

variables as for them are treated by simulation-and-regression.

The three main tasks that build our approach are as follows.

Build a representation of the value function. In the absence of analytical solutions, the value

function Vt needs to be represented compactly. We first build a parametric representation of

future utilities, in terms of bases formed with both exogenous state variables and the decision

variables. Using the exogenous state variables is rather natural, see the second task (expecta-

tions). Using the decisions variables as bases is not common, but the rationale is simple, see

below. Note that this parametric representation is not an approximate value function, it is

broader in scope: it approximates future utilities under any decision, optimal or suboptimal.

See the third task.

Computation of expectations. Expectations are used to account for the unknown future. They

enforce non-anticipativity, i.e. decisions must not rely on future information. This is where

simulations and regressions do their work. Monte Carlo paths simulations serve to represent

the dynamics of the exogenous state variables and returns. The parametric value function

approximation is adjusted by regression to implement the expectation.

Optimization of the portfolio positions. The above parametric representation of future util-

ities, conditional on any simulated state variable value and wealth level, can be maximized

with respect to the portfolio decision. This optimal portfolio decision can be used to compute

the value function (for that specific state variable value, and wealth level). To conclude, our

value function representation at any point in time is therefore a discrete set of numbers, each

associated with a specific path of the exogenous state variable, and a specific wealth level.

3.2 Introductory example

An intuitive understanding of the algorithm is best conveyed by a simple example. Consider the

two-period case of a portfolio consisting of one risky and one risk-free asset with a constant gross
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risk-free rate Rf = 1.01. The investor, endowed with current wealth W0 = 1 at time t = 0, wants

to maximize the utility of his wealth at time t = 2. Asset allocation takes place at time t = 0 and

t = 1. No short sale nor borrowing is allowed.

The algorithm requires a preliminary step where grids of discrete portfolio weights and wealths

are built, and excess returns are simulated. Let us use the grid of portfolio weights

x =
[

0.0 0.3 0.7 1.0
]>
,

while the grid of wealth wk,t t ∈ {0, 1} is:

t = 0 t = 1

w1,1 = 1.3
w0 = 1

w2,1 = 0.8

We keep this introduction as simple as possible and use only two sample paths of excess returns at

each period (Period 1 from t = 0 to t = 1, Period 2 from t = 1 to t = 2)

Path Period 1 Period 2

a r
(a)
1 = 0.05 r

(a)
2 = 0.02

b r
(b)
1 = −0.05 r

(b)
2 = −0.02

In a second step, the recursive dynamic programming procedure is implemented with the above

quantities. Starting at t = 1, one period before maturity, we perform the following operations, for

each state of wealth at this time period. We first compute a sample of wealth at t = 2. For example,

from the wealth level w1,1 = 1.3, we compute a wealth at t = 2 using the first weight and path a of

the simulated excess return :

W
(
x1, r

(a)
2

)
= w1,1 ·

(
x1r

(a)
2 +Rf

)
= 1.3× (0.00× 0.02 + 1.01) = 1.3130.

Using all the possible combinations of simulated returns at t = 2 and portfolio weights on the grid,

the end-of-period sample of wealths at t = 2 is2:[
W (x1, r

(a)
2 ), W (x2, r

(a)
2 ), W (x3, r

(a)
2 ), W (x4, r

(a)
2 ), W (x1, r

(b)
2 ), W (x2, r

(b)
2 ), W (x3, r

(b)
2 ), W (x4, r

(b)
2 )
]

=[
1.3130 1.3208 1.3312 1.3390 1.3130 1.3052 1.2948 1.2870

]
. (2)

Computing the utility of these end-of-period wealths with the constant absolute risk aversion

(CARA) utility function u(W ) = − exp(−γW ) with γ = 3, the following linear regression system

2All computed values in this section have been performed with values rounded to the fourth digit.
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can be formed: 

−0.0195
−0.0190
−0.0184
−0.0180
−0.0195
−0.0199
−0.0206
−0.0210


=



1.0 0.0 0.02

1.0 0.3 0.32

1.0 0.7 0.72

1.0 1.0 1.02

1.0 0.0 0.02

1.0 0.3 0.32

1.0 0.7 0.72

1.0 1.0 1.02



 β1

β2

β3

+



ε1

ε2

ε3

ε4

ε5

ε6

ε7

ε8


,

where the elements on the left end side are the utility of the computed wealths at t = 2, and the

lines of the independent variable matrix are formed with a constant, and the powers up to 2 of

the portfolio weights. In this system, εi are random errors with zero expected value, and β1 to β3

are unknown coefficients, whose estimated values obtained with an ordinary least square regression

are:

β̂1 = −0.0195, β̂2 = 0.0001, β̂3 = −0.0001.

Using these estimated coefficients, the approximate expected utility given a w1,1 = 1.3 wealth level

at t = 1, can be written as a continuous function of the portfolio weights, which can be used to

find the optimal proportion as :

x̂1,1 = arg max
0≤x≤1

− 0.0195 + 0.0001x− 0.0001x2.

The optimal portfolio weight can easily be verified to be x̂1,1 = 0.5 with a function value at

the optimum of v̂1,1 = −0.0195. This represents the highest achievable expected utility value,

conditional on the information available at t = 1, and a wealth value of 1.3. It is thus a numerical

estimate of a point on the value function for a wealth of 1.3.
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Doing similar calculations for the other state of wealth w2,1 = 0.8 at t = 1, we obtain this table

summarizing the computed quantities at t = 1 for each state of wealth

Table 1: Values associated to two wealths at t = 1.

wk,1 x̂k,1 v̂
(j)
k,1

1.3
x̂

(a)
1,1 = 0.5

x̂
(b)
1,1 = 0.5

v̂
(a)
1,1 = −0.0195

v̂
(b)
1,1 = −0.0195

0.8
x̂

(a)
2,1 = 0.5

x̂
(b)
2,1 = 0.5

v̂
(a)
2,1 = −0.0886

v̂
(b)
2,1 = −0.0886

In this example, that the optimal portfolios be identical for both wealth level is a numerical

coincidence, largely due to the rounding that keeps the example simple. That the optimal portfolios

be identical for different paths at the same wealth level is normal, and due to the fact that we do

not regress on exogenous state variables in this simple example; if we did introduce exogenous state

variables, there would be one optimization problem per path (and wealth level), and the solutions

would likely be different. That the values be the same for different paths at the same wealth level,

is also normal; note however that in an alternate specification of our algorithm, illustrated at the

end of this section, the values would likely be different, even though we do not regress on exogenous

state variables. Compare table 2 below.

Using the above values, the optimal weight at t = 0 can be computed using a similar procedure

started at the wealth value w0 = 1. We first compute a sample of wealths at t = 1 using the

combinations of simulated returns and portfolio weights. This sample of wealths at t = 1 is[
W (x1, r

(a)
1 ), W (x2, r

(a)
1 ), W (x3, r

(a)
1 ), W (x4, r

(a)
1 ), W (x1, r

(b)
1 ), W (x2, r

(b)
1 ), W (x3, r

(b)
1 ), W (x4, r

(b)
1 )
]

=[
1.0100 1.0250 1.0450 1.0600 1.0100 0.9950 0.9750 0.9600

]
. (3)

Using these, we can generate a sample of points on the value function at t = 1 that will be

used as dependant variables in a regression. This can be done by interpolation with the pairs of

wealths and points on the value function, available in the above table summarizing the computed

quantities at t = 1. For example, a first point on the value function at t = 1, associated to decision

x = 0 and path a, can be obtained by a linear interpolation computed with the quantities in the

table below:

Wealth Value

1.3 −0.0195
1.0100 ?

0.8 −0.0886
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With these, the linearly interpolated value is −0.0596. A sample of points on the value function

at t = 1 can be generated in a similar fashion to obtain the linear system

−0.0596
−0.0575
−0.0547
−0.0527
−0.0596
−0.0617
−0.0644
−0.0665


=



1.0 0.0 0.02

1.0 0.3 0.32

1.0 0.7 0.72

1.0 1.0 1.02

1.0 0.0 0.02

1.0 0.3 0.32

1.0 0.7 0.72

1.0 1.0 1.02



 β1

β2

β3

+



ε1

ε2

ε3

ε4

ε5

ε6

ε7

ε8


,

and the optimal portfolio allocation as the solution of :

x̂0 = arg max
0≤x≤1

− 0.0596 + 0.0001x− 0.0001x2

which yields x̂0 = 0.5, the optimal portfolio at t = 0. This completes the dynamic program.

Alternate specification of the algorithm: “realized values”. The algorithm illustrated

above is straightforward; we later refer to it as the “regression surface value” specification (see

section 3.4).

However, the regression surface values v̂k,1 from table 1 used above in the interpolations are

not the unique choices that could be made for such calculations. At t = 1, alternate values, which

we call “realized values”, can be computed using the optimal portfolio weights x̂k,1. These values

also represent a maximum expected utility value, but with the additional information provided by

the realized paths at t = 2. For path a and wealth at t = 1 w1,1 = 1.3, such a “realized value” is

computed with

v
(a)
1,1 = u

(
w1,1 ·

(
x̂1,1r

(a)
2 +Rf

))
= u (1.3× (0.5× 0.02 + 1.01)) = − exp (−3× 1.326) = −0.0187.

while it is

v
(b)
1,1 = u (1.3× (0.5× (−0.02) + 1.01)) = − exp (−3× 1.3) = −0.0202

for sample path b (and still w1,1 = 1.3).
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The information that would be available at t = 1 could then be summarized as:

Table 2: Values associated to two wealths at t = 1.

wk,1 x̂k,1 v̂k,1 W
(
x̂k,1, r

(j)
2

)
v

(j)
k,1

1.3 0.5 −0.0195
W
(
x̂1,1, r

(a)
2

)
= 1.326

W
(
x̂1,1, r

(b)
2

)
= 1.300

v
(a)
1,1 = −0.0187

v
(b)
1,1 = −0.0202

0.8 0.5 −0.0886
W
(
x̂2,1, r

(a)
2

)
= 0.816

W
(
x̂2,1, r

(b)
2

)
= 0.800

v
(a)
2,1 = −0.0865

v
(b)
2,1 = −0.0907

Then, setting up to solve the problem at t = 0, the required interpolations could be done with the

values for W
(
x̂k,1, r

(j)
2

)
and v

(j)
k,1 found in the above table. For example, for the first component of

the vector of generated wealth (wealth = 1.01) used in the previous interpolation case, the linearly

interpolated value would have been computed with

Wealth Value

1.3 −0.0187
1.0100 ?
0.81 −0.0865

and would have yielded a value of −0.0580.

However, for the fifth component of the vector of generated wealths, also of value 1.01 but

associated to path b this time, the “realized value” approach would have given

Wealth Value

1.3 −0.0202
1.0100 ?
0.81 −0.0967

and would have yielded a value of −0.0611.

These two alternate specifications and their consequences will be discussed in more length in

the next section.

Finally, it should be noticed that the above example does not include state variables. For

problems with state variables, the regression should include the powers of these variables, since the

optimal portfolio depends on their values on a given sample path. In this case, one optimization

per sample path must be performed. We provide in appendix an example similar to the one above,

but which includes a state variable in the regressions.
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3.3 Complete algorithm

This section provides the complete algorithm, as applied to the portfolio choice problem. We refer

to it as LSMC–S&D to emphasize that it is a Least-Squares Monte Carlo method with regression

on State variables and Decision variables. As already outlined in the above subsection, two sets of

operations are involved in the algorithm. A first set of operations performs the preliminary work

which mainly consists of simulations. A second set of operations does the backward recursive work.

Preliminary work: simulations and grid formation.

1. Compute and store a grid of N × 1 portfolio weight vectors xi for i = 1 to nx with elements

satisfying the bounds xmin and xmax.

2. Simulate and store nr paths of N × 1 excess return vectors
{

r
(j)
t

}nr

j=1
for t = 1 to T, and

M × 1 state variable vectors
{

s
(j)
t

}nr

j=1
for t = 0 to T − 1. The number of state variables (M)

may be different from the number of risky assets (N), but both are simulated nr times. Note

that the returns r
(j)
t+1 associated to path j will in most cases depend on the information set

at time t contained in vector s
(j)
t .

The state variable vectors contain the known information at a given time point with which

an optimal decision can be taken. This set of variables is problem dependent and will vary

with the time series process associated with the returns. For example, with a predictable

return process, the state variable vector might contain up-to-time t returns, or an exogenous

mean-reverting market price of risk which determines the return levels for the next period.

3. Compute and store a grid of representative future wealth values {wk,t}
nw(t)
k=1 for t = 0 to T −1.

To do so, the weights grid and simulated returns can be used.

The number of points in the grid is time varying to allow a uniform coverage of the range of

possible wealth; it grows from a unique wealth at t = 0 to nw(T − 1) grid points at t = T − 1.

4. Choose the set of nb bases for the regression surfaces. For example, it could be all linear and

quadratic monomials of the decision variables and of the exogenous state variables, plus the

cross-products of second order betweeen all variables.

Recursive work: backward recursive computations.

Begin Time loop, from t = T − 1 to 0 :

Begin Wealth loop, from k = 1 to nw (t) :

11



1. Generate a sample of nx × nr wealths at t + 1 using the simulated returns and the

discretized portfolio weights :

Wk,t+1

(
xi, r

(j)
t+1

)
:= wk,t ×

(
x>i r

(j)
t+1 +Rf

)
for i = 1 to nx and j = 1 to nr. (4)

2. Generate a sample of nx × nr values vk,t+1(xi, s
(j)
t ).

For all but the last time period, the value vk,t+1

(
xi, s

(j)
t

)
is computed by interpolation through

a set of nw(t+ 1) pairs {
v

(j)
k,t+1, wk,t+1

}nw(t+1)

k=1

where each v
(j)
k,t+1 is a previously computed point estimate of the value function, as discussed

in step 6. The interpolation is done between the first components of the pairs at the values

of the second component Wk,t+1

(
xi, r

(j)
t+1

)
defined in equation (4).

For the single case of t = T − 1, the estimates vk,t+1

(
xi, s

(j)
t

)
are computed from the

utility function applied to the wealth obtained from equation (4) i.e. vk,T

(
xi, s

(j)
T−1

)
=

u
(
Wk,T

(
xi, r

(j)
T

))
.

3. Construct nx × nr basis vectors Bi,j , each of length nb. Each vector Bi,j is associated to

a pair
(
xi, s

(j)
t

)
for i = 1 to nx and j = 1 to nr.

4. Regress the dependent values vk,t+1

(
xi, s

(j)
t

)
on the independent basis vectors

Bi,j. There are nx × nr such pairs. Note that we regress a value at t + 1 on vectors of

positions xi that apply from t to t + 1, and on information sets available at t, i.e. s
(j)
t . The

resulting regression surface is denoted as Lk,t (x, s) and is specified by the nb × 1 vector βk,t

of regression coefficients (one coefficient per basis). This regression surface is an approximate

representation of the expected utility when taking position x at time t, conditional on the

information available at that time.

5. Optimize the regression surface Lk,t (x, s) with respect to the positions x for each

of the j = 1, . . . , nr information sets s
(j)
t :

x̂
(j)
k,t = arg max

xmin≤x≤xmax

L
(
x; s

(j)
t ,βk,t

)
for j = 1 to nr.

which gives nr estimates of optimal portfolio weight vectors x̂
(j)
k,t .

6. Compute the nr values v
(j)
k,t associated with optimal positions x̂

(j)
k,t by:

• Computing the realized wealth Wk,t+1

(
x̂

(j)
k,t , r

(j)
t+1

)
for j = 1 to nr.
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• Interpolating through the
{
v

(j)
k,t+1, wk,t+1

}nw(t+1)

k=1
pairs. This step is very similar to the

precedent interpolation step, but on a much smaller scale (nr interpolations instead of

nx × nr.

End Wealth loop.

End Time loop.

At the completion of the algorithm, the value at wealth level W0,0 and time t = 0 can be

approximated as the average over j of the values v
(j)
0,0 assuming of course that all paths were

started with the same state variable value. An optimal policy is available and defined by the set

of regression parameters βk,t: they describe a surface which must simply be optimized over the

decision variables. Notice that for the first period, the policy is unique as the initial wealth is. This

policy is typically what one is interested in: after the first period, the investor would re-optimize,

so that in practice, the policies associated to later periods hold little interest. If one nevertheless

wishes to find those later policies, given the (stored) regression parameters an optimal policy can

be computed at each of two neighbor wealth grid levels; then an approximate optimal policy at

intermediate wealth levels can be derived by interpolation.

3.4 Implementation details

A few implementation details are worth mentioning, which motivate the approach or improve its

performance.

Interpolation and inverse utility transformation. As noted in Garlappi and Skoulakis

(2010), approximating an almost linear function is much easier than doing so for a nonlinear

function. We introduce a very simple “inverse utility” transformation at the two interpolation

steps above: simply apply the inverse utility function to the v
(j)
k,t+1 values before interpolating,

interpolate (linearly), and apply back the utility function to the solution of the interpolation. This

small procedure is quite effective at reducing the number of wealth points that are required for a

specified precision. Unless specifically noted, the inverse utility transformation was always used.

Realized values vs. regression surface values. In the last step of the algorithm, it is

important to note that v
(j)
k,t is not the value L

(
x̂

(j)
k,t ; s

(j)
t ,βk,t

)
that is an output of the maximization

problem. Indeed, once the optimal solution is found, there are (at least) two ways that a value can

be associated to that solution (and path). One can use the technique described in the algorithm,

giving what we call “realized values”. One could also simply use the objective value at the optimal

solution, L
(
x̂

(j)
k,t ; s

(j)
t ,βk,t

)
, as the new values of v

(j)
k,t . We call these “regression surface values”.

This is the same alternative discussed by Longstaff and Schwartz (2001) in the context of option

pricing; there the authors argue in favor of “realized values”, in opposition to Tsitsiklis and Van Roy
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(1999) who used “regression surface values”. It is important to mention that this use of “future”

information is not anticipative: the optimal choice does not rely on this information, only the value

associated to the optimal choice, after it has been made.

We tested both approaches and found very little difference between the answers, and certainly

no systematic bias, for our portfolio choice problems.

Regression procedure. The regression step must be coded with some care, but it is easy to

do so. Essentially, the building of the matrix of the so-called “normal equation” must be performed

as a sum of rank-one matrices (the number of such matrices being nx × nr), and this operation is

best done with a compiled language (we used “C”). It is also worth mentioning that it is possible

to ensure that most of the regression work is done only once per time step. We differ from Nijman,

Werker, Koijen (2007) on this topic of regression. Indeed, the authors do a two-step regression: one

regression in the space of the state variables and then one in the space of the decision variables.

They find the resulting “approximate regression surface” more computationaly attractive. In our

experience, the optimizations, not the regressions, still claim the majority of the computing time,

even with a comparatively large problem with six decision variables and dozens of bases. For smaller

problems, the time spent on regressions is small even in absolute time, of the ordre of seconds, tens

of seconds at the most.

Finally, when simulating the paths, note that it is practical to ensure that the state variable

before t = 0, S0, does not have the same value for all paths even if it would be coherent with a

real-life situation; otherwise, the matrix composed of all the basis vector Bi,j has (at least) two

constant columns, and the regression will fail because of singularity.

Optimization. Note that a large number of optimizations must be performed: one per simu-

lated path, per discrete wealth level, and time level. For this reason, for larger problems, we use

linear and quadratic terms only for the bases in the decision variables. The resulting quadratic op-

timization problems can be solved very efficiently with dedicated software and warm starts. (Note

that in section 4 some problems in smaller dimensions were also tested with higher degree mono-

mials). Bases in the state variables are also limited to quadratic, for the sake of computational

simplicity. All cross-products of order two (also between decision variables and state variables) are

included.

4 Numerical experiments

We present numerical results for a variety of problems. The first example is very simple but still

displays some fundamental characteristics of our approach; we also use it to illustrate a potential

improvement direction for the method. The following examples have various features to highlight
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the behaviour of the algorithm. Example 2 moves away from the one-risky-asset case and example

3 shows the effect of returns that depend on state variables. Example 4 is quite general: multiple

periods, multiple assets, depending on multiple sources of uncertainty, with a CARA utility func-

tion. Finally, example 5 shows the impact of using a nondifferentiable utility function, comparing

the derivative-based approaches of Brandt, Goyal, Santa-Clara and Stroud (2005) and Garlappi

and Skoulakis (2010), hereafter “BGSS05” and “GS10”, with our algorithm. In some cases, the so-

called “certainty equivalent” values are provided: these are simply the result of applying the inverse

utility function to the problem’s expected utility (as obtained under an algorithm or another).

Our LSMC–S&D algorithm and the benchmark quadrature code were programmed mostly in

Matlab, with C procedures helping out at a few critical places. For most tests, a desktop personal

computer was sufficient. For the larger problems, we used a server with 12 cpu’s to run the

optimizations in parallel. To give an idea of the computing times, a problem of six assets (five risky

assets), with VAR returns (see example 4), an horizon of four periods, 10000 simulations, a basis of

order 2 in the state variables and the decision variables (including all cross-products, 66 terms in

total), and a decision variable grid at 20% intervals, is solved in less than six minutes on a desktop

computer with four cpu’s. With this number of simulations, the solution is stable only to more or

less one or two percent on each asset, but the objective function is already very stable.

4.1 Example 1: two assets, one period, independent returns.

We examine first an example taken from Brandt et al. (2005). It is a one-period example with one

risky asset and one risk-free asset to assess the behavior of the method in a simple setting. The

stock excess return is distributed as a shifted log normal distribution with constant mean µ and

standard deviation σ. We use a constant relative risk aversion (CRRA) utility function, defined as:

u (WT ) =
W 1−γ
T

1− γ
(CRRA)

where γ is a risk aversion coefficient. The weights of the risky and risk-free assets are constrained

to be non-negative.

As it is well known from the portfolio literature, there is no available analytical solution for this

case, and the optimal portfolio is independent from the wealth level, which is set here to W0 = 1.

For this example, the wealth does not need to be discretized since it is a one period problem. The

preliminary work can be described as follows:

• Simulate the returns in excess of the risk-free rate with

r
(j)
T = Rf ×

(
eµ+σεj,T − 1

)
15



where εj,T are standard normal random variates3.

• Set the uniform grid of portfolio weights as xi = x1 + (i− 1)δx for i = 1 to nx with x1 = 0,

xnx = 1 and δx = (xnx − x1) / (nx − 1) .

• Define the basis vector as
[
1 xi x2

i

]>
. Because the optimal portfolio does not depend on the

return and thus nor on the index j, the basis simply consist of a constant and powers of the

discretized portfolio weights for the risky asset. A basis with the portfolio weights raised at

the fourth power is also examined i.e.
[
1 xi x2

i x3
i x4

i

]>
.

There is no recursive work because this is a one period problem. The wealths at time T are

computed with W0,T

(
xi, r

(j)
T

)
= w0 ×

(
xir

(j)
T +Rf

)
for i = 1 to nx and j = 1 to nr, while the

sample of value function points is computed with v0,T

(
xi, r

(j)
T

)
= u

(
W0,T

(
xi, r

(j)
T

))
for i = 1 to

nx and j = 1 to nr. The regression coefficients are estimated by solving the normal equation while

the optimization is performed using a golden section search algorithm.

Table 3 presents the optimal weights computed for two scenarios of values for the mean and

standard deviation of the excess return. The first case roughly correspond to typical values that

could be found with monthly returns with a risk-free rate equal to 0.05/12, while the second is for

annual values with a risk-free rate of 0.05. The weights have been obtained with three methods. The

first method is a numerical quadrature approach which is used here as a benchmark. The second

method is the BGSS05 simulation and regression approach. The third method is the LSMC-S&D

approach proposed in this paper, for different grids of portfolio weights and bases (powers up to two

and powers up to four). For the second and third methods, ten optimizations have been performed,

each with different simulations of nr = 5, 000 sample paths. The table presents the average of

these 10 optimizations, while the standard deviation of these ten weights are reported below in

parenthesis. As shown by these standard deviations, the results are fairly stable and do not vary

much.

As already noticed in their paper, Brandt et al. (2005) find that their method is more precise for

small pairs of µ and σ than with larger values for these parameters. This result is also obtained here

and the weights computed with this approach are slightly off from the benchmark values for µ = 0.1

and σ = 0.15, especially for larger values of the risk aversion coefficient. From results not reported

here for the sake of brievety, a first interesting result to notice about the LSMC-S&D approach is

that a crude discretization with δx = 0.2 work equally well as finer discretizations with δx = 0.1 or

0.05. Hence, it is possible to have a reasonable precision without imposing a large computational

3In order to reduce the sample variability, a moment matching simulation is used to generate the standard normal
random variates. See, for examples, Barraquand (1995) or Boyle et al. (1997).
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burden. As expected, this approach implemented with basis up to power four performs better than

the quadratic case with basis up to power two. However, the differences are not large and the

quadratic case offers a reasonable performance. Finally, for the annual case, for a risk aversion

coefficient of 20, the LSCM-S&D and BGSS05 approaches deteriorate and have difficulties to pin

point the solution.

A detailed examination of the expected utility function shows that these difficulties are mainly

caused by the large curvature of the function. For γ = 20, the function shows little curvature for

x = 0 to 0.5, but a large curvature for x = 0.5 to 1.0. It is possible to capture with more precision

these varying degrees of curvature by computing two separate regression functions, one for x = 0

to 0.5, and another one for x = 0.5 to 1.0. This does not increase the total number of observations

with which the regressions are computed but rather breaks the problem into two regressions with

half of the original sample in each. Two sets of optimal weights must then be computed, and the

one obtaining the largest function is the optimal one. The third panel of Table 3 shows the results

obtained with this procedure. For each case, the optimum can be obtained with a good precision,

with basis up to two and four.

4.2 Example 2: four assets, one period, independent returns.

This example is taken from Garlappi and Skoulakis (2010). This is again a one period example, but

with three risky assets. The three risky assets have the same distribution as the example above,

with the following values for the mean vector and variance-covariance matrix:

µ = [0.0530 0.0620 0.0570]> ,

Σ =

 0.0263 0.0219 0.0183
0.0219 0.0324 0.0282
0.0183 0.0282 0.0714

 .
The utility function is of the CRRA family. Neither short sales nor borrowing is allowed. Again for

this example, there is no closed form solution and a quadrature procedure can be used to compute

benchmark weights. The preliminary work can be described as follows:

• Simulate and store the returns in excess of the risk-free rate with a multivariate version of

the process described in the previous subsection.

• Compute and store the set of discretized portfolio weight {xj}nx

j=1. The cartesian product of

the set {0, .1, ..., 1.0} with itself is used to build the set of discrete portfolio weights, with

the elements summing to a value greater than one removed from the cartesian product set.
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• Define the basis vectors as a multivariate version of those introduced in the previous subsection

(monomials up to power 2 and up to power 4). Unlike the previous case, however, cross-

product of the weights are introduced in the basis vectors. We choose to include the cross-

products of order two only, i.e. of the type xixj . For basis up to power two, this result in a

basis vector of dimension 10[
1 x1 x2 x3 x1x2 x1x3 x2x3 x2

1 x2
2 x2

3

]
.

For bases up to power four, the dimension is 16.

As in the previous example, there is no recursive work, and we set W0 = 1. The optimization of

the least square functions are performed using a quadratic programming approach with constraints

for basis up to two. For basis up to four, a nonlinear programming algorithm with constraints is

used.

Table 4 shows quadrature benchmark weights taken from Garlappi and Skoulakis (2010) and

the weights computed with our algorithm. The results obtained with this example are qualitatively

similar to those obtained with the one asset case. The method performs well for small values of

the risk aversion coefficient, but has difficulties to identify the optimum for larger values such as

γ = 10 and 15. To improve the precision of the solutions, a two-step approach can be implemented

for this case by simply partitioning the weights into two sets. A first set contains all the points

of the decision grid for which the weight of the risk-free asset is smaller than 0.5, the second set

contains the other points; there are therefore two regression surfaces, optimized independently, and

after optimization, only the best solution of the two is kept. The intuition of this partitioning is

that, given the no short selling constraint, very large risk aversion coefficients such as γ = 10 and

15 gives rise to small weights for risky assets. Partitioning the weights this way is thus able to

reduce the relevant domain of the weights for the risky assets. As show in the table, this two-step

approach is able to obtain weights very close to those of the benchmark quadrature approach.

4.3 Example 3: two assets, multiple periods, and mean-reverting returns

This example is inspired from Wachter (2002), and was also examined by Detemple, Garcia and

Rindisbacher (2005). It involves a single risky stock and a risk-free asset, over many periods.

However, the risky stock price evolves according to a geometric Brownian motion with a mean

reverting price of risk. There is a single source of uncertainty entering both the stock price and the

mean reverting price of risk. In such a case, the optimal portfolio depends on the current value of

the price of risk. The utility is CRRA.
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A quasi-analytical solution for the optimal portfolio weight is developed in Wachter (2002). It

is important to mention that the problem treated by Wachter and Detemple et al. differs in two

ways from the problem we consider: they reallocate continuously, and they put no bounds on the

portfolios weights (no limits to shortselling and borrowing). In contrast, we allocate discretely, and

we need constraints on the weights, even if they need not be tight ones. We therefore compute

(quadrature) benchmark results for the problem we solve with our LSMC–S&D method.4

The stock price dynamics is given by

dPt
Pt

= µtdt+ σdYt

where µt is a time varying expected return, σ is the constant stock return volatility, and Yt is a

Brownian motion. The dynamics for the price of risk, which is a state variable in this system, is

defined as

st =
µt − rf
σ

with

dst = −λ (st − s) dt− σsdYt

where rf,t is the continuously compounded risk-free rate, λ is the speed of mean reversion, s

is the long run mean, and σs is the volatility parameter. Since both process share the same

Brownian motion, the stock price is perfectly correlated with the price of risk. For this problem,

the preliminary work is as follows:

• Using the gross risk-free rate defined as Rf = erf∆t where ∆t is the length of a discrete time

interval, the excess stock returns are obtained by first simulating the log of stock prices and

prices of risk at the discrete time points t = ∆t, 2∆t, . . . , T∆t. These are simulated, using

a moment matching procedure, with the exact solution of the above stochastic differential

equation system given in Appendix C of Wachter (2002). The excess stock returns can then

be computed as rj,t+∆t = Pj,t+∆t/Pj,t −Rf .

• Compute the discretized portfolio weights with xi = x1 + (i − 1)δx for i = 1 to nx with

x1 = −0.5, xnx = 1 and δx = (xnx − x1) / (nx − 1) .

• Define the basis vector as
[
1 xi x2

i sj,t s2
j,t xisj,t

]>
. We use here the price of risk to form

the basis entering the regressions since, at each time point, the optimal portfolio depends on

the value of this variable.

4We did check that with a fine discretization of time and wide bounds on weights, our solution converges to the
quasi-analytic solution of Wachter.
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• Using the simulated returns and starting at a wealth level of W0 = 1, build a grid of represen-

tative future wealths at each time point by simulating the wealth that would be achieved for

a portfolio fully invested in the risky asset at each time pont. This will produce conservative

estimates of the maximum and minimum wealth values attainable with the above system.

Using these simulated values, a each t, a grid is built with

wi,t = percentile
(
{w̃j,t}nr

j=1 , pi

)
for i = 1 to nw

where w̃j,t denotes a simulated wealth of a portfolio fully invested in the risky asset, and

pi is a probability level computed as pi = p1 + (i − 1)δp for i = 1 to nw with p1 = pmin,

pnw = 1− pmin and δp = (pnw − p1) / (nw − 1) .

The recursive work can then be done as indicated in section 3, with the interpolations performed

using regression surfaces values. Table 5 presents the results obtained with the parameter values

taken from Detemple et al. (2005) where this model is also examined. The weights computed

with a Gauss Hermite quadrature are reported and used as benchmarks. Our method is casted in

discrete time and uses 20 time-step per year in these computations. As shown in the table, the

averages of the ten computed portfolio weights computed with the LSMC–S&D approach are close

to the benchmark proportions, with some discrepancies for the five year cases. The standard errors

indicate the variability in the computed proportions, that were obtained with 10,000 sample paths

and a grid of wealth with 5 points. The table also reports the weights obtained with the BGSS05

approach and taken from Detemple et al. (2005).

Table 5 also shows the computed prices for the LSMC-S&D approach proposed here with the

same grid for the wealth (5 points), but without the inverse utility transformation outlined in the

algorithm. The precision clearly deteriorates for most cases. Results not reported here shows that,

without this transformation, a precision similar to the one obtained with the transformation can be

achieved with grids of 100 points. The inverse utility transformation can thus save a large amount

of work that would otherwise be required to achieve precise solutions.

4.4 Example 4: multiple assets and periods, autoregressive returns.

The last two examples are of our making. There are multiple assets and multiple allocation periods.

The returns are predictable: they follow a vector autoregressive, lag-1 process, so that all returns

of a period depend on all the returns of the previous period. This process increases the difficulty of

the problem since the past returns form a state variable which conditions the optimization problem.

The utility function is from the constant absolute risk aversion (CARA) class defined as

u(W ) = − exp(−γW ) (CARA)

20



In this framework, unlike the CRRA case, the optimal portfolios are wealth dependant. Hence,

simplifications often made possible in the CRRA case are not available in this setting. We con-

duct our experiments with a no-short-sale constraint, but similar behaviour is observed with other

bounds.5

The VAR(1) model for the dynamics of the excess return for security i in a N risky security

portfolio is given by:
R1,t+1

R2,t+1
...

RN,t+1

 =


a0,1

a0,2
...

a0,N

+


a11 a12 · · · a1N

a21 a22 · · · a2N
...

...
. . .

...
aN1 aN2 · · · aNN



R1,t

R2,t
...

RN,t

+


σ1z1,t+1

σ2z2,t+1
...

σNzN,t+1


where Ri,t are the log excess returns (i.e. excess returns under continuous compounding). The

parameters ai,t are constant, the σi are standard deviation parameters, and zi,t for i = 1 to N are

zero-mean unit-variance correlated random noises. Written in matrix form, the system is:

Rt+1 = A0 + A1Rt + σzzt+1

where σz is a n × n diagonal matrix of standard error parameters It is assumed that the z’s are

normaly distributed. Hence the continuously compounded excess returns are normaly distributed.

This simplifies the benchmark computation (with Gauss-Hermite quadrature).

For this problem, the preliminary work is as follows:

• Using the above process, the log excess returns are simulated with a moment matching proce-

dure for the mean and variance of the error terms The excess stock returns are then computed

as ri,t = eRi,t − 1.

• Compute and store the set of discretized portfolio weights {xj}nx

j=1 including the no-short-sale

constraint. In this example, the cartesian product of the set {0, 0.1, ..., 1.0} with itself is used

to build the set of discrete portfolio weights, with the elements summing to a value greater

than one removed from the cartesian product set.

• Form the basis vector with the following: a constant, the weigths for each risky asset up

to power two, the lagged returns of the risky asset up to power two, and all the possible

combinations of products of order two between the asset weight and the lagged returns. With

two risky assets for example, we have:[
1 x1 x2 R1,t R2,t x2

1 x1x2 x1R1,t x1R2,t x2
2 x2R1,t x2R2,t R2

1,t R1,tR2,t R2
2,t

]
5In fact, for wider decision spaces, if extreme leverage is allowed for example, our algorithm is simply slower.
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• Build grids of wealths for each time points as follows. Simulate a set of nr “low wealths”

(recall nr is the number of simulated return paths) by investing (anticipatively) solely in the

stock with the worst return, at each period and along each of nr paths of returns. For each

period, consider the quantile q of the nr “low wealths” to be the bottom of the wealth grid

for that period. Compute “high wealths”, and the top of the wealth grids, along the same

line, using the 1− q quantile this time. Finally, compute a “wealth grid step” by splitting the

grid at time t = 1 in nw(1) steps. Then all further wealth grids are divided with the same

constant “wealth grid step” (of course, the number of grid points increases with t, since the

range between the top and bottom increases).

The recursive work can then be done as indicated in section 3 (We report results with the

“realized values” approach; results with the “regression surface” approach were very similar). The

parameters required to implement the model are obtained by fitting the VAR(1) model by least

squares with the monthly data series of book-to-market portfolios (quintiles) from Jan. 1990 to

Dec. 2013, created with the CRSP database and obtained from Kenneth French’s web site. The

risk-free rate is the 30 days to maturity risk-free bond return from CRSP.

We report results with four and five assets (three and four risky assets), over ten time periods, see

tables 6 and 7. The benchmark results are obtained with a Gauss-Hermite quadrature approach

with six quadrature nodes, six wealth points, and ten return points for each risky asset. Note

that in the case of four risky assets, with the state variable “wealth”, this is a five-dimensional

quadrature with a computation time of more than a day. To comment on the results, the weights

computed with our algorithm and with quadrature are reasonably close in the four-asset case, and

somewhat further apart in the five-asset case. In a all cases and without surprise, the standard

deviation decreases as the number of simulation increases; the difference between our solution and

the benchmark is almost always less than one standard deviation. It should be noted that the

difficulty of finding precise weights increases with the number of assets, for the simple reason that

newly introduced assets have a risk-return profile that is similar to one or more of assets, so that

they become rather interchangeable.

4.5 Example 5 : Conditional Value-at-Risk, a case of nondifferentiable utility

In this last example, we consider a problem of a somewhat different nature, in that the investor’s

risk preferences are expressed by the Conditional Value-at-Risk (CVaR) of his portfolio, as opposed

to a more usual utility function. The investor wants to maximize expected terminal wealth while

minimizing CVaR, a setting that is similar to Markowitz’s mean-variance portfolio optimization.

Conditional Value-at-Risk (CVaR) has gained significant popularity since its introduction as a
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coherent measure of risk in Artzner et al. (1999); using a result of Uryasev and Rockafellar (2000),

we rewrite the original wealth-CVaR problem as a piecewise linear utility maximization problem.

Our numerical experiments illustrate the difficulty that a nondifferentiable utility function can

bring to methods that rely on Taylor expansions, such as that proposed by Brandt et al. (2005)

and Garlappi and Skoulakis (2010).

Specifically, we are interested in solving a portfolio choice problem that balances the two ob-

jectives of minimizing risk as represented by CVaR, and minimizing expected lost wealth6. The

balance between those two objectives is determined by a fixed risk aversion parameter ρ. The

problem is :

minimize{xt}T−1
t=0

ρ CVaRβ[W0 −WT ] + (1− ρ) E[W0 −WT ] , (5)

with the following wealth evolution constraints for all t linking Wt and xt

Wt+1 = Wt

(
x>t rt+1 +Rf

)
(6)

where W0−WT captures the lost wealth. CVaR is defined as the expected value beyond a quantile

CVaRβ(Z) = E0[Z|Z ≥ Zβ]

with Zβ being the (1 − β)-quantile of random variable Z, i.e. the smallest amount for which

P (Z ≤ Zβ) ≥ β (Zβ is also known as the Value-at-Risk of Z.) Rockafellar and Uryasev (2000)

established the non-trivial result that Conditional Value-at-Risk can be computed as the optimal

value of the problem:

CVaRβ[W0 −WT ] = min
s
−s+

1

1− β
E [max( 0 ; W0 −WT + s )] . (7)

Introducing equation (7) in equation (5), the original portfolio choice is equivalent to

minimize{xt}T−1
t=0

min
s

ρ

(
−s+

1

1− β
E [max( 0 ; W0 −WT + s )]

)
+ (1− ρ)E[W0 −WT ] ,

under the wealth evolution constraint (6). It is a well known fact in optimization that this last

problem can also be solved as

minimizes min
{xt}T−1

t=0

ρ

(
−s+

1

1− β
E
[

max( 0 ; W0 −WT + s )
])

+ (1− ρ)E
[
W0 −WT

]
,

under the wealth evolution constraint (6). This last formulation is also equivalent to

minimizes max
{xt}T−1

t=0

E
[
us(WT )

]
(8)

6Our model is presented in terms of lost wealth for simplicity of exposure given that Conditional Value-at-Risk
is typically defined in terms of a random variable we wish would be as small as possible. Minimizing lost wealth is
equivalent to maximizing excess wealth.
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under the wealth evolution constraint

Wt+1 = Wt

(
x>t rt+1 +Rf

)
and for the utility function

us(y) , min{xt}T−1
t=0

(
ρs+ (1− ρ)(y −W0) ; ρs+

ρ

1− β
(y −W0 − s) + (1− ρ)(y −W0)

)
.

This can be seen from the fact that minimizing a function is equivalent to maximizing the

negative of the function, and

sup
{xt}T−1

t=0

ρ

(
s+

1

1− β
E [min( 0 ; WT −W0 − s )]

)
+ (1− ρ)E[WT −W0]

= sup
{xt}T−1

t=0

E

[
min

(
ρs+ (1− ρ)(WT −W0) ; ρs+

ρ

1− β
(WT −W0 − s) + (1− ρ)(WT −W0)

)]
.

It is interesting to note that us(y) describes a piecewise linear concave function with a slope of

1− ρ for values above W0 + s and a slope of ρ
1−β + 1− ρ for values below W0 + s.

The final formulation (8) of our original wealth-CVaR problem is a one-dimensional minimiza-

tion problem whose objective is itself a portfolio choice problem with a nondifferentiable utility

function. Solving iteratively this one-dimensional minimization means that at each iteration we

need to solve a problem of the type that was solved in the previous examples.

We revisit the example of subsection 4.2 (four assets, one period) to compare the portfolios

obtained with our LSMC–S&D approach, as well as the Brandt et al. (2005) and Garlappi and

Skoulakis (2010) approaches. While Table 8 compares the portfolio weights obtained using each

scheme, Figure 1 presents the performance in terms of expected return and 90% conditional value

at risk for portfolios that are obtained for different levels of risk aversion ρ between 0 and 1.

One can observe from this figure that while employing LSMC–S&D allows to identify portfolios

that make different types of compromise between mean excess wealth and its conditional value

at risk, the other two schemes are only able to identify the most risk averse and the least risk

averse portfolios. This is due to the fact that the dynamic program that needs to be solve here

implicates a utility function that is piecewise linear with a non-differentiable point. Indeed, both

of these methods are misled by their use of the Taylor expansion of the value function, which,

when it exists and for any choice of order since all derivatives beyond the first one is null, simply

reduces to a linear approximation. Our method circumvent this issue by regressing on the global

structure of the value function instead of a Taylor expansion which relies on local information. Let

us mention that the objective of this experiment was to illustrate how the two schemes based on

the Taylor series expansion of the value function might not be flexible enough in some cases. While
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there obviously exists ways to smoothen a piecewise linear utility function before applying these

schemes, no prior work has described formally how this should be done. In fact, in the context

of a multi-period problem it might be necessary to smoothen the value function at each period.

Overall, in developing our experiment, we opted for an implementation of those two schemes that

was closest to the authors’ original proposal rather than improvising corrections.

This experimental set-up also allows us to evaluate what is the added value of performing

regression on a basis vector that involves monomials with degree higher than 2. In this example,

since it involves three risky assets, a basis vector with monomials of a maximum degree of K

should involve all the terms xd11 x
d2
2 x

d3
3 such that d1 + d2 + d3 ≤ K. Table 9 presents the average

sub-optimality of the portfolios that are returned by a solution scheme that employs our simulation-

and-regression approach as the degree of the largest monomial involves is increased. Note that the

sub-optimality that is reported is an average over the sub-optimality achieved for a set of 11 different

risk aversion levels between 0 and 1. While there are no guarantees in general that employing a

basis with monomials of higher order will necessarily improve the quality of the solution that is

obtained, on average we can observe that it is the case.

5 Conclusion

We present a simulation-and-regression technique for dynamic programs that relies on regression

with respect to both state variables and decision variables (LSMC–S&D). The tools that are in-

volved are simple and well researched: Monte Carlo simulation, ordinary least-squares, and contin-

uous optimization. The technique, however, is little known in the area of portfolio optimization,

and in finance in general. To our knowledge, this paper is the first exploration of the usefulness of

LSMC–S&D for a variety of portfolio choice problems. Implemented with care, the algorithm is very

flexible, robust, and its performance degrades at a much slowler rate than a standard quadrature

approach, when the number of dimension increases.
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A Introductory example: regression on a state variable

In this appendix, we extend the introductory example of section 3.2 to the case where we regress

on a state variable as well. To keep it compact and clear, the section is written with variables, not

numbers.

Consider a two period example for a portfolio consisting of one risky and one risk-free asset

with a constant gross risk-free rate Rf . The investor, endowed with current wealth W0 at time

t = 0, wants to maximize the utility of his wealth at time t = 2, with an optimal asset allocation

at time t = 0 and t = 1, without any shortsales or borrowing.

Denote the grid of portfolio weights used here as

x =
[
x1 x2 x3 x4

]ᵀ
,

while the grid of wealths is:

t = 0 t = 1

w1,1

w0

w2,1

·

In this example, the return process has an AR(1) structure. Hence, when forming a portfolio at

t = 0, the known return at t = 0 is a state variable7. To keep the example simple, only two sample

paths of returns are simulated at each period:

path Period 0 Period 1 Period 2

a r
(a)
0 r

(a)
1 r

(a)
2

b r
(b)
0 r

(b)
1 r

(b)
2

In a second step, the recursive dynamic programming procedure is implemented with the above

quantities. Starting at t = 1, one period before maturity, we perform the following operations, for

each state of wealth at this time period. We first generate a sample of wealth at t = 2. For example,

7The time 0 return is known at t = 0. This known return value is r
(a)
0 in the simulated sample of the table. The

return at t = 0 for the second sample path appearing in the table has been simulated by starting the simulation at
t = −1. As it will become clear later in the example, this is done in order to avoid singular matrices in the regressions
at time t = 0.
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using the wealth level w1,1, it is possible to generate a wealth at t = 2 using the first weight and

path a of the simulated return with

W
(
x1, r

(a)
2

)
= w1,1 ×

(
x1r

(a)
2 +Rf

)
.

Using all the possible combinations of simulated returns at t = 2 and portfolio weights on the grid,

the end of period sample of wealths at t = 2 is:[
W
(
x1, r

(a)
2

)
· · · W

(
x4, r

(a)
2

)
W
(
x1, r

(b)
2

)
· · · W

(
x4, r

(b)
2

) ]
.

Computing the utility of these end of period wealths with the utility function u(W ), the following

linear regression system can be formed:



u (W (·))
u (W (·))
u (W (·))
u (W (·))
u (W (·))
u (W (·))
u (W (·))
u (W (·))


=



1 x1 x2
1 r

(a)
1

(
r

(a)
1

)2
x1r

(a)
1

1 x2 x2
2 r

(a)
1

(
r

(a)
1

)2
x2r

(a)
1

1 x3 x2
3 r

(a)
1

(
r

(a)
1

)2
x3r

(a)
1

1 x4 x2
4 r

(a)
1

(
r

(a)
1

)2
x4r

(a)
1

1 x1 x2
1 r

(b)
1

(
r

(b)
1

)2
x1r

(b)
1

1 x2 x2
2 r

(b)
1

(
r

(b)
1

)2
x2r

(b)
1

1 x3 x2
3 r

(b)
1

(
r

(b)
1

)2
x3r

(b)
1

1 x4 x2
4 r

(b)
1

(
r

(b)
1

)2
x4r

(b)
1





β1

β2

β3

β4

β5

β6

+



ε1

ε2

ε3

ε4

ε5

ε6

ε7

ε8


,

where the elements on the left end side are the utility of wealths at t = 2, and the lines of the

independent variable matrix are formed with a constant, powers up to 2 of the portfolio weights,

powers up to 2 of the returns at t = 1 (our state variable), and the product of the weights and the

returns. In this system, εi are random errors with zero expected value, and β1 to β6 are unknown

coefficients, whose value can be estimated with an ordinary least square regression. Using these

estimated coefficients, the approximate expected utility, conditional on the first value of the state

variable can be written as a continuous function of the portfolio weights, which can be used to find

the optimal portfolio weight as:

x̂
(a)
1,1 = arg max

0≤x≤1
β̂1 + β̂2x+ β̂3x

2 + β̂4r
(a)
1 + β̂5

(
r

(a)
1

)2
+ β̂6xr

(a)
1

which obtains a function value at the optimum of v̂
(a)
1,1 which correspond to the regression surface

value. Using the optimal weight x̂
(a)
1,1 and the realized return r

(a)
2 , it is possible to compute the

realized value v
(a)
1,1 = u

(
w1,1 ·

(
x̂1,1r

(a)
2 +Rf

))
.
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Similarly, the approximate expected utility, conditional on the second value of our state variable

can be written as a continuous function of the portfolio weights, which can be used to find the

optimal portfolio weight as:

x̂
(b)
1,1 = arg max

0≤x≤1
β̂1 + β̂2x+ β̂3x

2 + β̂4r
(b)
1 + β̂5

(
r

(b)
1

)2
+ β̂6xr

(b)
1

which obtains a function value at the optimum of v̂
(b)
1,1 which correspond to the regression surface

value. It is possible to compute the realized value as v
(b)
1,1 = u

(
w1,1 ·

(
x̂1,1r

(b)
2 +Rf

))
. Similar

calculations for the other state of wealth leads to the table below which summarizes the computed

quantities for each state of wealth:

wk,1 x̂
(j)
k,1 v̂

(j)
k,1 W

(
x̂k,1, r

(j)
2

)
v

(j)
k,1

w1,1
x̂

(a)
1,1

x̂
(b)
1,1

v̂
(a)
1,1

v̂
(b)
1,1

W
(
x̂1,1, r

(a)
2

)
W
(
x̂1,1, r

(a)
2

) v
(a)
1,1

v
(b)
1,1

w2,1
x̂

(a)
2,1

x̂
(b)
2,1

v̂
(a)
2,1

v̂
(b)
2,1

W
(
x̂2,1, r

(a)
2

)
W
(
x̂2,1, r

(a)
2

) v
(a)
2,1

v
(b)
2,1

.

Using the above values, the optimal weight at t = 0 can be computed using a similar procedure.

We first compute a sample of wealth at t = 1 using all combinations of simulated returns and

portfolio weights. This sample is[
W
(
x1, r

(a)
1

)
· · · W

(
x4, r

(a)
1

)
W
(
x1, r

(b)
1

)
· · · W

(
x4, r

(b)
1

) ]
.

Using these, we can generate a sample of points on the value function at t = 1 that will be used

as dependant variables in a regression. This can be done by linear interpolation with the pairs of

wealths and realized values (the quantities summarized in the above table). For example, the value

corresponding to W
(
x1, r

(a)
1

)
is obtained by a linear interpolation computed with the quantities

below:

wealth value

w1,1 v
(a)
1,1

W
(
x1, r

(a)
1

)
−

w2,1 v
(a)
2,1

while a value corresponding to W
(
x4, r

(b)
1

)
would be computed with

wealth value

w1,1 v
(b)
1,1

W
(
x4, r

(b)
1

)
−

w2,1 v
(b)
2,1
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Denote these interpolated values by v
(
x1, r

(1)
1

)
and v

(
x4, r

(b)
1

)
.With similar computations for the

other values of the sample of simulated wealth at t = 1, we obtain the following linear system



v
(
x1, r

(a)
1

)
v
(
x2, r

(a)
1

)
v
(
x3, r

(a)
1

)
v
(
x4, r

(a)
1

)
v
(
x1, r

(b)
1

)
v
(
x2, r

(b)
1

)
v
(
x3, r

(b)
1

)
v
(
x4, r

(b)
1

)



=



1 x1 x2
1 r

(a)
0

(
r

(a)
0

)2
x1r

(a)
0

1 x2 x2
2 r

(a)
0

(
r

(a)
0

)2
x2r

(a)
0

1 x3 x2
3 r

(a)
0

(
r

(a)
0

)2
x3r

(a)
0

1 x4 x2
4 r

(a)
0

(
r

(a)
0

)2
x4r

(a)
0

1 x1 x2
1 r

(b)
0

(
r

(b)
0

)2
x1r

(b)
0

1 x2 x2
2 r

(b)
0

(
r

(b)
0

)2
x2r

(b)
0

1 x3 x2
3 r

(b)
0

(
r

(b)
0

)2
x3r

(b)
0

1 x4 x2
4 r

(b)
0

(
r

(b)
0

)2
x4r

(b)
0





β1

β2

β3

β4

β5

β6

+



ε1

ε2

ε3

ε4

ε5

ε6

ε7

ε8


,

and the optimal portfolio allocation as:

x̂
(1)
1,0 = arg max

0≤x≤1
β̂1 + β̂2x+ β̂3x

2 + β̂4r
(a)
0 + β̂5

(
r

(a)
0

)2
+ β̂6xr

(a)
0 .

We note here that only one optimization is performed since only one value of the state variable

(the known value) is relevant at this point. This value has been placed, by convention, in the first

sample path when simulating the returns in the preliminary step.
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Table 3: Example 1, portfolio weights

µ = 0.01, σ = 0.05 µ = 0.10, σ = 0.15
γ = 5 γ = 10 γ = 15 γ = 20 γ = 5 γ = 10 γ = 15 γ = 20

Benchmark (quadrature)
0.9000 0.4499 0.2999 0.2248 0.9890 0.4944 0.3288 0.2462

LSMC–S&D, one-step, δx = 0.10
B2 0.8974 0.4507 0.3026 0.2390 0.9363 0.4984 0.3390 0.3130

(0.001) (0.001) (0.001) (0.001) (0.003) (0.004) (0.001) (0.006)
B4 0.9015 0.4506 0.3001 0.2241 0.9909 0.4964 0.3157 0.1532

(0.002) (0.001) (0.001) (0.000) (0.005) (0.002) (0.009) (0.014)

LSMC–S&D, two-step, δx = 0.10
B2 0.9013 0.4483 0.3009 0.2258 0.9911 0.4698 0.3329 0.2540

(0.002) (0.001) (0.001) (0.001) (0.005) (0.019) (0.002) (0.002)
B4 0.9015 0.4506 0.3003 0.2251 0.9946 0.4949 0.3306 0.2464

(0.002) (0.001) (0.001) (0.000) (0.005) (0.002) (0.002) (0.001)

BGSS05
0.8966 0.4489 0.2993 0.2245 0.6799 0.3574 0.2425 0.1835

(0.001) (0.001) (0.000) (0.000) (0.007) (0.003) (0.002) (0.002)

Benchmark (quadrature) are the weights computed with an adaptative Simpson quadrature algorithm. LSMC–S&D,
one-step and LSMC–S&D, two-step are the average of 10 weights computed with the LSMC–S&D approach with
one and two steps, with each weight computed using 5,000 sample paths. Number in parenthesis are the standard
errors of the 10 computed weights. δx is the increment used to build a grid of portfolio weights used as basis in the
regressions. B2 are weights computed with basis up to power two; B4 are weights computed with basis up to power
four. Common random numbers are used for the LSMC–S&D approaches. BGSS05 are the average of 10 weights
computed with the Brandt et al. (2005) least-square Monte-Carlo simulation approach, with each weight computed
using 5,000 sample paths.
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Table 5: Example 3, portfolio weights.

γ = 2 γ = 3 γ = 4 γ = 5

T = 20
Benchmark (quadrature) 0.2271 0.1397 0.1005 0.0813

LSMC–S&D with InvUtil 0.2116 0.1308 0.1020 0.0790
(0.025) (0.019) (0.013) (0.009)

LSMC–S&D without InvUtil 0.0670 0.0569 0.0548 0.0540
(0.006) (0.004) (0.003) (0.004)

BGSS05 0.2406 0.1502 0.1090 0.0855

T = 40
Benchmark (quadrature) 0.1936 0.1127 0.0703 0.0428

LSMC–S&D with InvUtil 0.1634 0.0908 0.0653 0.0490
(0.023) (0.015) (0.010) (0.014)

LSMC–S&D without InvUtil 0.0575 0.0529 0.0577 0.0548
(0.006) (0.004) (0.003) (0.003)

BGSS05 0.1862 0.1040 0.0708 0.0533

T = 100
Benchmark (quadrature) 0.1513 0.0529 -0.0022 -0.0391

LSMC–S&D with InvUtil 0.0868 0.0056 -0.0163 -0.0190
(0.024) (0.019) (0.016) (0.010)

LSMC–S&D without InvUtil 0.0305 0.0312 0.0306 0.0313
(0.007) (0.006) (0.007) (0.004)

BGSS05 0.0931 0.0299 0.0116 0.0430

Benchmark (quadrature) are the weights computed with a Gauss-Hermite quadrature integration; LSMC–S&D with
InvUtil and LSMC–S&D without InvUtil are the average of 10 weights computed with, respectively, our LSMC–
S&D algorithm with and without inverse utility transformation, with each weight computed using 10,000 sample
paths, 20 time step per year, xmin = −0.5, xmax = 1.0, nx = 16 (δx = 0.1), Number in parenthesis are the standard
errors of the 10 computed weights. Parameter values: rf = 0.06, σ = 0.2, λ = 0.2712, s = 0.9456, s0 = 0.1,
σs = 0.2268. BGSS05 are the weights computed by the least-square Monte-Carlo approach with Taylor series of
Brandt et al. (2005), and taken from Table 1 of Detemple et al. (2005).
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Table 6: Example 4, portfolio weights, four-assets case.

Benchmark (quadrature)
0.2873 0.1484 0.1097 0.4545

LSMC–S&D
nr = 1000 0.3129 0.1869 0.1316 0.3686

(0.063) (0.135) (0.177) (0.138)
nr = 5000 0.3044 0.1144 0.1702 0.4110

(0.032) (0.069) (0.080) (0.054)
nr = 10000 0.3021 0.1371 0.1413 0.4196

(0.026) (0.047) (0.074) (0.037)
nr = 20000 0.3070 0.1686 0.1102 0.4142

(0.018) (0.023) (0.035) (0.030)

Numbers in the second column are the weights of the risk-free security; numbers in columns 3 to 5 are the weights of
the risky securities. Benchmark (quadrature) are the weights computed with a Gauss-Hermite quadrature; LSMC–
S&D are the average of 8 weights computed with our LSMC–S&D algorithm. Parameters values are T = 10, nw = 16,
q = 0.0001 xmin = 0.0, xmax = 1.0, rf = 1.0028 and γ = 4. Number in parenthesis are the standard errors of the
eight computed weights.
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Table 7: Example 4, portfolio weights, five assets case

Benchmark (quadrature)
0.1759 0.1616 0.2309 0.2340 0.1976

LSMC–S&D
nr = 1000 0.1834 0.1539 0.2698 0.2833 0.1096

(0.061) (0.091) (0.291) (0.234) (0.107)
nr = 5000 0.1395 0.1924 0.3672 0.1800 0.1209

(0.040) (0.121) (0.178) (0.159) (0.077)
nr = 10000 0.1634 0.1224 0.4160 0.1670 0.1312

(0.024) (0.041) (0.142) (0.117) (0.041)
nr = 20000 0.1615 0.1190 0.4093 0.1403 0.1700

(0.013) (0.040) (0.137) (0.082) (0.038)

Numbers in the second column are the weights of the risk-free security; numbers in columns 3 to 6 are the weights of
the risky securities. Benchmark (quadrature) are the weights computed with a Gauss-Hermite quadrature; LSMC–
S&D are the average of 8 weights computed with the least-square Monte-Carlo simulation approach proposed here.
Parameter values are T = 10, nw = 16, q = 0.0001 xmin = 0.0, xmax = 1.0, rf = 1.0028 and γ = 4. Number in
parenthesis are the standard errors of the eight computed weights.
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Table 8: Example 5, Optimal portfolio weights under Mean return vs. CVaR tradeoff – three risky
assets, one period

ρ = 0 ρ = 0.25 ρ = 1

Sample Average Approx. 0.0 0.0 1.0 0.3473 0.4404 0.2124 0.0 0.0 0.0

LSMC–S&D 0.0 0.0 1.0 0.3735 0.4363 0.1901 0.0 0.0 0.0

BGSS05 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0

GS10 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0

Sample Average Approx. are the weights obtained when solving the problem exactly with the 100 sample paths. The
simulation-and-regression approaches also employed 100 sample paths for simulation, a set of 5000 vectors of portfolio
weight uniformly distributed over the probability simplex for regression on a basis vector that included all monomials
of degree 2 or less. The two Taylor series based schemes can only exploit first order information while our schemes
exploits monomials up to power four. Finally, the minimization with respect to s in problem (8) was performed using
Matlab’s “fminbnd”, with one of the three above mentionned approach used to evaluate the inner maximization.
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Figure 1: Example 5, Efficient set frontier of performances of portfolios obtained form solving the
mean-CVaR model with different risk aversion levels when using four different resolution schemes
for the inner dynamic programming step. Note that the “x” and “+” markers overlap in two
locations that emphasize the fact that these methods are incapable of identifying portfolio that
trade-off between expected excess wealth and its conditional value at risk through the procedure
that is described.
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Table 9: Example 5, convergence of our approximation scheme for solving the mean-CVaR problem
as regression is performed on monomials of higher order.

Max degree 1 2 3 4 6 8

Solution’s sub-optimality 0.186% 0.019% 0.008% 0.008% 0.006% 0.005%
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