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Statistical decision problems

Statistical decision problems

Deciding whether or not to take the umbrella.

Choosing a treatment or a diagnostic test for a patient.

Determining the position of a moving object.

Estimating the parameters of a model.

Choosing whether to stop sampling.

Deciding between alternative hypotheses.

Planning in an unknown stochastic environment.

Belief + decision space + utility ⇒ decision
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Statistical decision problems Rewards that depend on the outcome of an experiment

Decisions and outcomes

Consider an experiment with possible outcomes w ∈ Ω.
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Decisions and outcomes

Consider an experiment with possible outcomes w ∈ Ω.

We must select a decision d ∈ D before knowing the outcome of the experiment.

We will obtain a reward r ∈ R which depends on both w and d .

Our utility function U, assigns values to rewards.

How should we choose d?

Example (Taking the umbrella)

We must decide whether or not to take an umbrella to work. Our reward is a
combination of whether we get wet and the amount of objects that we carry. We would
rather not get wet and not carry too many things. The only events of interest are
whether it rains or not.
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Statistical decision problems Rewards that depend on the outcome of an experiment

Decisions and outcomes

Consider an experiment with possible outcomes w ∈ Ω.

We must select a decision d ∈ D before knowing the outcome of the experiment.

We will obtain a reward r ∈ R which depends on both w and d .

Our utility function U, assigns values to rewards.

How should we choose d?

Example (Taking the umbrella)

We must decide whether or not to take an umbrella to work. Our reward is a
combination of whether we get wet and the amount of objects that we carry. We would
rather not get wet and not carry too many things. The only events of interest are
whether it rains or not.

r Rain No Rain

Umbrella Burdened, Dry Burdened, Dry

No Umbrella Wet Dry.
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Statistical decision problems Rewards that depend on the outcome of an experiment

Rewards and utility

Definition (Reward function)

There exists a function σ : Ω× D → R, such that if we select d ∈ D and the
experimental outcome is w ∈ Ω, we obtain reward

r = σ(w , d) (1.1)

U

r

w d

P

Figure: The dependency structure of the decision problem.
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Rewards and utility

Definition (Reward function)

There exists a function σ : Ω× D → R, such that if we select d ∈ D and the
experimental outcome is w ∈ Ω, we obtain reward

r = σ(w , d) (1.1)

Definition (Utility function)

The utility function U : R → R gives a value to each reward, such that: We prefer r1 to
r2, if and only if U(r1) > U(r2).
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Statistical decision problems Rewards that depend on the outcome of an experiment

Rewards and utility

Definition (Reward function)

There exists a function σ : Ω× D → R, such that if we select d ∈ D and the
experimental outcome is w ∈ Ω, we obtain reward

r = σ(w , d) (1.1)

Definition (Utility function)

The utility function U : R → R gives a value to each reward, such that: We prefer r1 to
r2, if and only if U(r1) > U(r2).

Example

When R is the space of monetary rewards, frequently U(r) = log(r).
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Statistical decision problems Rewards that depend on the outcome of an experiment

Rewards and utility

Definition (Reward function)

There exists a function σ : Ω× D → R, such that if we select d ∈ D and the
experimental outcome is w ∈ Ω, we obtain reward

r = σ(w , d) (1.1)

Definition (Utility function)

The utility function U : R → R gives a value to each reward, such that: We prefer r1 to
r2, if and only if U(r1) > U(r2).

Example (Umbrella example continued)

U Rain No Rain

Umbrella 0 0

No Umbrella -9 1.
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Statistical decision problems Rewards that depend on the outcome of an experiment

Rewards and utility

Definition (Reward function)

There exists a function σ : Ω× D → R, such that if we select d ∈ D and the
experimental outcome is w ∈ Ω, we obtain reward

r = σ(w , d) (1.1)

Definition (Utility function)

The utility function U : R → R gives a value to each reward, such that: We prefer r1 to
r2, if and only if U(r1) > U(r2).

Expected utility

Given the above definitions, the optimal decision maximises:

E(U | d) =

∫

Ω

U[σ(w , d)] dP(w) (1.2)
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Statistical decision problems Rewards that depend on the outcome of an experiment

The rewards and utilities are part of the problem definition

The reward set specifies which outcomes we care to differentiate.

The utility function elucidates our preference for different outcomes.

Together, they define our goal.
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The unknown outcome of the experiment W is called a parameter
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Loss and risk

The unknown outcome of the experiment W is called a parameter

The set of outcomes Ω is called the parameter space.

Definition (Loss)

L(w , d) = −U[σ(w , d)]. (1.3)
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Loss and risk

The unknown outcome of the experiment W is called a parameter

The set of outcomes Ω is called the parameter space.

Definition (Loss)

L(w , d) = −U[σ(w , d)]. (1.3)

Definition (Risk)

ρ(P, d) =

∫

Ω

L(w , d) dP(w). (1.4)
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Statistical decision problems Rewards that depend on the outcome of an experiment

Loss and risk

The unknown outcome of the experiment W is called a parameter

The set of outcomes Ω is called the parameter space.

Definition (Loss)

L(w , d) = −U[σ(w , d)]. (1.3)

Definition (Risk)

ρ(P, d) =

∫

Ω

L(w , d) dP(w). (1.4)

Definition (Bayes risk)

ρ∗(P) = inf
d∈D

ρ(P, d) (1.5)
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Statistical decision problems Rewards that depend on the outcome of an experiment

Example

Let Ω = {0, 1} and D = [0, 1]. We define the loss L : Ω× D → R as

L(w , d) = |w − d |α, (1.6)

α ≥ 1. The distribution of outcomes is

P(W = 0) = u P(W = 1) = 1− u. (1.7)

For α = 1:

ρ(P, d) = L(0, d)u + L(1, d)(1− u) = du + (1− d)(1− u), (1.8)

so, if u > 1/2, then the risk is minimised by setting d = 0.
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Statistical decision problems Rewards that depend on the outcome of an experiment
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Figure: Risk for four different distributions with absolute loss
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Example

Let Ω = {0, 1} and D = [0, 1]. We define the loss L : Ω× D → R as

L(w , d) = |w − d |α, (1.6)

α ≥ 1. The distribution of outcomes is

P(W = 0) = u P(W = 1) = 1− u. (1.7)

For α > 1:

ρ(P, d) = d
α
u + (1− d)α(1− u), (1.8)

and by differentiating:

d
∗ =

[

1 +

(

1

1/u − 1

) 1
α−1

]−1

.
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Figure: Risk for four different distributions with quadratic loss.
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Statistical decision problems Rewards that depend on the outcome of an experiment

Estimation under quadratic loss

Now consider w ∈ R with w ∼ P and d ∈ R. We define the loss as

L(w , d) = |w − d |2. (1.8)

The optimal decision minimises

E(L | d) =

∫

R

|w − d |2 dP(w)

Then, as long as ∂
∂d

|w − d |2 is measurable

∂

∂d

∫

R

|w − d |2 dP(w) =

∫

R

∂

∂d
|w − d |2 dP(w) (1.9)

= 2

∫

R

(w − d) dP(w) (1.10)

= 2

∫

R

w dP(w)− 2

∫

R

d dP(w) (1.11)

= 2Ew − 2d , (1.12)

so the cost is minimised for d = Ew .
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Statistical decision problems Concavity of the Bayes risk

A mixture of distributions

Consider two probability measures P,Q on Ω, such that P(A) and Q(A) is the
probability of A under each distribution.
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Statistical decision problems Concavity of the Bayes risk

A mixture of distributions

Consider two probability measures P,Q on Ω, such that P(A) and Q(A) is the
probability of A under each distribution.

Definition

For any P,Q and α ∈ [0, 1],
αP + (1− α)Q

denotes the probability measure such that

αP(A) + (1− α)Q(A)

for any A ⊂ Ω.
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Statistical decision problems Concavity of the Bayes risk

Concavity of the Bayes risk

Theorem

For probability measures P,Q on Ω and any α ∈ [0, 1]

ρ∗[αP + (1− α)Q] ≥ αρ∗(P) + (1− α)ρ∗(Q). (1.13)

Proof.

From the definition of risk (1.4), for any decision d ∈ D:

ρ[αP + (1− α)Q, d ] = αρ(P, d) + (1− α)ρ(Q, d)

And so from the Bayes risk (1.5)

ρ∗[αP + (1− α)Q] = inf
d∈D

ρ[αP + (1− α)Q, d ]

= inf
d∈D

[αρ(P, d) + (1− α)ρ(Q, d)].
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Statistical decision problems Concavity of the Bayes risk

Concavity of the Bayes risk

Theorem

For probability measures P,Q on Ω and any α ∈ [0, 1]

ρ∗[αP + (1− α)Q] ≥ αρ∗(P) + (1− α)ρ∗(Q). (1.13)

Proof.

ρ∗[αP + (1− α)Q] = inf
d∈D

[αρ(P, d) + (1− α)ρ(Q, d)].

Since infx [f (x) + g(x)] ≥ infx f (x) + infx g(x),

ρ∗[αP + (1− α)Q] ≥ α inf
d∈D

ρ(P, d) + (1− α) inf
d∈D

ρ(Q, d)

= αρ∗(P) + (1− α)ρ∗(Q)
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Statistical decision problems Concavity of the Bayes risk

The risk function for quadratic loss
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Figure: Fixed distribution, varying decision. The decision risk under three different distributions.
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Concavity of the Bayes risk
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Figure: Fixed decision, varying distribution. The risk of a fixed decision is a linear function of P
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Concavity of the Bayes risk
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Figure: The risk of a few decisions as P varies. Each decision corresponds to one of these lines.
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Concavity of the Bayes risk
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Figure: For each P, there is at least one decision minimising the risk.
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Concavity of the Bayes risk
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Figure: The Bayes risk is concave and the minimising decision is tangent to it.
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Concavity of the Bayes risk
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Figure: If we are not very wrong about P, then we are not far from optimal.
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Concavity of the Bayes risk
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Figure: We can approximate the Bayes risk by taking the minimum of a finite number of
decisions.
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Specific decision problems

Statistical decision problems

So far, we considered some fixed P.

Now, we wish to construct a P on the basis of prior beliefs and evidence.

This leads to Bayesian inference.
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Specific decision problems Model estimation

Model estimation

Set of models M = {Pθ : θ ∈ Θ}, where Θ is the parameter space.

Data x ∼ Pθ∗ , where θ∗ is the true parameter.

Our prior belief is a probability measure ξ on Θ. Thus, ξ(B) is our belief that
θ∗ ∈ B ⊂ Θ.
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Specific decision problems Model estimation

Model estimation

Set of models M = {Pθ : θ ∈ Θ}, where Θ is the parameter space.

Data x ∼ Pθ∗ , where θ∗ is the true parameter.

Our prior belief is a probability measure ξ on Θ. Thus, ξ(B) is our belief that
θ∗ ∈ B ⊂ Θ.

ξ(B | x) =
ξ(B, x)

ξ(x)
=

∫

B
Pθ(x) dξ(θ)

∫

Θ
Pθ(x) dξ(θ)

, ∀B ⊂ Θ (posterior)

ξ(θ | x) =
ξ(θ, x)

ξ(x)
=

Pθ(x)ξ(θ)
∑

θ′∈Θ Pθ′(x)ξ(θ′)
, ∀θ ∈ Θ. (finite case)
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Specific decision problems Model estimation

Model estimation

Set of models M = {Pθ : θ ∈ Θ}, where Θ is the parameter space.

Data x ∼ Pθ∗ , where θ∗ is the true parameter.

Our prior belief is a probability measure ξ on Θ. Thus, ξ(B) is our belief that
θ∗ ∈ B ⊂ Θ.

ξ(B | x) =
ξ(B, x)

ξ(x)
=

∫

B
Pθ(x) dξ(θ)

∫

Θ
Pθ(x) dξ(θ)

, ∀B ⊂ Θ (posterior)

ξ(θ | x) =
ξ(θ, x)

ξ(x)
=

Pθ(x)ξ(θ)
∑

θ′∈Θ Pθ′(x)ξ(θ′)
, ∀θ ∈ Θ. (finite case)

Ideally, we’d like to communicate the complete posterior distribution. If this is infeasible
we may choose a single parameter, or a credible set of parameters

Christos Dimitrakakis (FIAS) Statistical Decision Problems November 4, 2010 17 / 22



Specific decision problems Model estimation

Model estimation

Set of models M = {Pθ : θ ∈ Θ}, where Θ is the parameter space.

Data x ∼ Pθ∗ , where θ∗ is the true parameter.

Our prior belief is a probability measure ξ on Θ. Thus, ξ(B) is our belief that
θ∗ ∈ B ⊂ Θ.

ξ(B | x) =
ξ(B, x)

ξ(x)
=

∫

B
Pθ(x) dξ(θ)

∫

Θ
Pθ(x) dξ(θ)

, ∀B ⊂ Θ (posterior)

ξ(θ | x) =
ξ(θ, x)

ξ(x)
=

Pθ(x)ξ(θ)
∑

θ′∈Θ Pθ′(x)ξ(θ′)
, ∀θ ∈ Θ. (finite case)

Minimising the Bayes risk

Given a loss function L : Θ× D → R, such that L(θ∗, d) is the loss of choosing d when
the true parameter is θ∗, the optimal choice minimises

Eξ(L | d , x) =

∫

Θ

L(θ, d) dξ(θ | x). (2.1)
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Specific decision problems Model estimation

Important points

Model estimation can be formulated as (formally) simple statistical induction.

Given a prior belief and evidence, we obtain a posterior belief, representing our
uncertainty, in a well-understood mathematical framework.

Ideally, we would like to communicate the complete posterior.

Alternatively, we can formulate a decision problem whereby we select the decision
minimising the Bayes risk. However this is not always easier!

Nothing changes in the decision problem, other than replacing P with ξ(θ | x).

The decision and parameter spaces may not be identical. A decision could for
example be that θ < 0.
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Specific decision problems Model estimation

Integrating multiple models

Consider the problem of sequential prediction.

Given a sequence x t = x1, . . . , xt , with xi ∈ X , predict xt+1.

This can be formulated as a decision problem where D = X and the loss function is

L(d , x) =

{

0, d = x ,

1, d 6= x .

If dt is our decision at time t, define ℓt = Loss(dt , xt).

Assume we have N models out our disposal. We distinguish two cases.
1 The statistical model case.
2 The expert case.
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Specific decision problems Model estimation

Integrating multiple models

Statistical models

The i-ith model, after having seen x t , outputs a complete distribution pi,t on X .

If we have a prior distribution ξ on the experts, we can write our posterior as

ξ(i | x t) =
pi,t−1(xt)ξ(i | x

t−1)
∑N

j=1 pj,t−1(xt)ξ(j | x t−1)

Our decision for xt+1 should then minimise

∑

x

L(d , x)
∑

i

ξ(i | x t)pi,t(x)
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Specific decision problems Model estimation

Integrating multiple models

Experts

The i-ith expert, after having seen x t , outputs a prediction fi,t ∈ X .

We cannot use the previous approach, as we have no way of assigning probabilities
to predictions.

We also don’t know under what loss function the experts make their predictions!

However, using the exponentially weighted average forecaster

ξ(i | x t) =
e−ηℓi,t ξ(i | x t−1)

∑

j
e−ηℓj,t ξ(j | x t−1)

,

where ℓi,t = 1 if fi,t = xt and 0 otherwise, we can show that the difference between
our loss at time t and the loss of the best expert, is bounded by

√

lnN

t
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Specific decision problems Time-domain models

Discrete-time Markov process (Markov chain)

w

xt xt+1

Figure: Markov model

An alphabet X .

Parameters w .

A sequence of observed variables
x t = x1, . . . , xt , with xi ∈ X :

xt+1 ⊥ x
t−1 | xt = x ∼ Pg(x).

Discrete case

X = {1, . . . ,N}.
g(x) = wx , wx ∈ RN , ‖wx‖1 = 1

Pw is the multinomial distribution with parameter w . The posterior distribution of
parameters

ξ(w | x t)

can be estimated efficiently in closed-form if the prior ξ(w) is a Dirichlet product.
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Specific decision problems Time-domain models

Latent discrete-time Markov process

w

xt xt+1

yt yt+1

v

Figure: Latent Markov model

An alphabet X and an alphabet Y

Parameters w , v .

A sequence of hidden variables
x t = x1, . . . , xt , with xi ∈ X .

xt+1 ⊥ x
t−1 | xt = x ∼ Ph(x).

A sequence of observed variables
y t = y1, . . . , yt , with yi ∈ Y:

yt ⊥ y
t−1, x t−1 | xt = x ∼ Qg(x).

Discrete case: Pi ,Qi are multinomial distributions ⇒ Hidden Markov model.

Real case: If Pi ,Qi are Gaussian distributions ⇒ Kalman filter.
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Specific decision problems Time-domain models

Latent discrete-time Markov process

w

xt xt+1

yt yt+1

v

Figure: Latent Markov model

An alphabet X and an alphabet Y

Parameters w , v .

A sequence of hidden variables
x t = x1, . . . , xt , with xi ∈ X .

xt+1 ⊥ x
t−1 | xt = x ∼ Ph(x).

A sequence of observed variables
y t = y1, . . . , yt , with yi ∈ Y:

yt ⊥ y
t−1, x t−1 | xt = x ∼ Qg(x).

Calculating the posterior ξ(w , v | y t) is not closed-form.

However ξ(w , v | x t , y t) can be, leading to efficient (approximate) estimators.

If we only want to choose a parameter (w , v), various optimisation algorithms can
be used to (approximately) minimise the loss.
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Summary

Model estimation is essentially calculation of the parameter distribution.

If we want to make decisions according to the expected utility principle, we require
probabilities of events.

However, sometimes we can prove that this is not required to obtain good
performance.

In latent processes, we have two problems
1 Estimation of the model parameters
2 Estimation of the other latent variables

Joint estimation is intractable (but interesting special cases exist).

However, estimating one given the other is tractable for many models of interest.

You shall see more about how we can make use of that in the next talks.
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