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Introduction Experiment design: examples

Example (Clinical testing)

◮ We have a number of treatments of unknown efficacy.

◮ When a new patient arrives, we must choose one of them.

◮ There are two possible, slightly different, goals:

1. Maximise the number of cured patients.

2. Discover the best treatment.

◮ The optimal design is better than randomly assigning patients to treatments.

Example (Maze problem)

◮ You are given the layout to a maze, containing monsters, traps and treasure.

◮ Given complete knowledge about the problem, what is the optimal policy?

◮ What if there is imperfect information?
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Introduction Experiment design: examples

Experimental design and Markov decision processes

The following problems

◮ Shortest path problems.

◮ Optimal stopping problems.

◮ Reinforcement learning problems.

◮ Experiment design problems.

◮ Multi-armed bandit problems.

◮ Advertising.

can be all formalised as Markov decision processes.
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Introduction Bandit problems

The stochastic multi-armed bandit problem

◮ Actions A = {1, . . . , n}.

◮ Each time you take action i you receive a reward rt ∼ Pi

◮ Expected reward E(rt | at = i) = EPi
rt = θi .

◮ Select actions to maximise
T
∑

t=1

rt ,

horizon T > 0.
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Introduction Bandit problems

The stochastic multi-armed bandit problem

◮ Actions A = {1, . . . , n}.

◮ Each time you take action i you receive a reward rt ∼ Pi

◮ Expected reward E(rt | at = i) = EPi
rt = θi .

◮ Select actions to maximise
T
∑

t=1

rt ,

horizon T > 0.

What to do when θ is unknown

◮ Heuristics.

◮ Decision-theoretic approaches.
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Introduction Bandit problems

The n-armed bandit problem

Algorithm 1: Q-learning

◮ Let qt ∈ R
n be a point estimate at time t:

qt,i ,
1

nt,i

t
∑

k=1

rt I {at = i} ,

where nt,i is the number of times arm i has been pulled.

◮ If we pull each arm infinitely often, qt → θ.

However this does not address performance when t < ∞.
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Introduction Bandit problems

Reinforcement learning

The reinforcement learning problem

Learning to act in an unknown environment, by interaction and reinforcement.

◮ The environment has a changing state.
◮ The environment generates observations.
◮ The agent takes actions based on the observed history.
◮ The agent receives rewards.

The goal (informally)

Maximise total reward during the agent’s lifetime.

Types of environments

◮ Markov decision processes (MDPs).

◮ Partially observable MDPs (POMDPs).

◮ (Partially observable) (stochastic) Markov games.
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Introduction Markov decision processes (MDP)

Markov decision processes

Markov decision processes (MDP)

We are in some environment µ, where
at each time step t:

◮ We observe state st ∈ S.

◮ We take action at ∈ A.

◮ We receive a reward rt ∈ R.

µ

at

st st+1

rt+1

Markov property of the reward and state distribution

Pµ(st+1 ∈ S | st , at) = Pµ(st+1 ∈ S | s1, a1, . . . , st , at) (Transition distribution)

Pµ(rt+1 ∈ R | st , at) = Pµ(rt+1 ∈ R | s1, a1, . . . , st , at), (Reward distribution)
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Introduction Markov decision processes (MDP)

Markov decision processes (MDPs)

The agent’s policy π

Pπ(at | st , . . . , s1, at−1, . . . , a1) (history-dependent policy)

Pπ(at | st) (Markov policy)

Definition (Utility)

Ut ,
T−t
∑

k=0

rt+k

We wish to find π maximising the expected total future reward

Eµ,π Ut = Eµ,π

T−t
∑

k=0

rt+k (expected utility)

to the horizon T .
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Introduction Markov decision processes (MDP)

Markov decision processes (MDPs)

The agent’s policy π

Pπ(at | st , . . . , s1, at−1, . . . , a1) (history-dependent policy)

Pπ(at | st) (Markov policy)

Definition (Utility)

Ut ,
T−t
∑

k=0

γk rt+k

We wish to find π maximising the expected total future reward

Eµ,π Ut = Eµ,π

T−t
∑

k=0

γk rt+k (expected utility)

to the horizon T with discount factor γ ∈ (0, 1].
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Algorithms for known MDPs Evaluating a policy

Policy evaluation

An optimal policy

An optimal policy has the property that whatever the initial state and

initial decision are, the remaining decisions must constitute an optimal

policy with regard to the state resulting from the first decision. –

Bellman.

The value function of a policy π (for γ = 1,T < ∞)

V π
µ,t(s) , Eπ,µ(Ut | st = s) (2.1)

(2.2)

Directly gives policy evaluation algorithms.
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Algorithms for known MDPs Evaluating a policy

Policy evaluation

The value function of a policy π (for γ = 1,T < ∞)

V π
µ,t(s) , Eπ,µ(Ut | st = s) (2.1)

=

T−t
∑

k=0

Eπ,µ(rt+k | st = s) (rollout)

(2.2)

Directly gives policy evaluation algorithms.

Christos Dimitrakakis () Bayesian reinforcement learning 4 Sep 2013 11 / 32



Algorithms for known MDPs Evaluating a policy

Policy evaluation

The value function of a policy π (for γ = 1,T < ∞)

V π
µ,t(s) , Eπ,µ(Ut | st = s) (2.1)

=
T−t
∑

k=0

Eπ,µ(rt+k | st = s), Ut+1 =
T−t
∑

k=1

rt+k . (rollout)

= Eπ,µ(rt | st = s) + Eπ,µ(Ut+1 | st = s) (2.2)

(2.3)

Directly gives policy evaluation algorithms.
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Algorithms for known MDPs Evaluating a policy

Policy evaluation

The value function of a policy π (for γ = 1,T < ∞)

V π
µ,t(s) , Eπ,µ(Ut | st = s) (2.1)

=

T−t
∑

k=0

Eπ,µ(rt+k | st = s) (rollout)

= Eπ,µ(rt | st = s) + Eπ,µ(Ut+1 | st = s) (2.2)

= Eµ,π(rt | st = s) +
∑

i∈S

V π
µ,t+1(i)Pµ,π(st+1 = i |st = s). (2.3)

(2.4)

Directly gives policy evaluation algorithms.
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Algorithms for known MDPs Evaluating a policy

Algorithm 2. Policy evaluation using backwards induction

For each state s ∈ S , for t = 1, . . . ,T − 1:

vt(s) = r(s) +
∑

j∈S

Pµ,π(st+1 = j | st = s)vt+1(j), (2.5)

with vT (s) = r(s).

Theorem

Algorithm 2 results in estimates with the property:

vt(s) = V π
µ,t(s) (2.6)
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Algorithms for known MDPs Finding the optimal policy

Algorithm 3. Policy optimisation using backwards induction

Input µ, ST .
Initialise vT (s), for all s ∈ ST .
for n = T − 1,T − 2, . . . , 1 do

for s ∈ Sn do

πn(s) = argmaxa Pµ(s
′|s, a)[Eµ(r |s

′, s) + vn+1(s
′)]

vn(s) =
∑

s′∈Sn+1
Pµ(s

′|s, πn(s))[Eµ(r |s
′, s) + vn+1(s

′)]
end for

end for

Return π = (πn)
T
n=1.

Theorem

For a T-horizon problems, backwards induction is optimal, i.e.

vn(s) = V ∗
µ,n(s) (2.7)
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Algorithms for known MDPs Some examples

Deterministic shortest-path problems

X

Properties

◮ γ = 1, T → ∞.

◮ rt = −1 unless st = X , in which
case rt = 0.

◮ Pµ(st+1 = X |st = X ) = 1.

◮ A = {North, South,East,West}

◮ Transitions are deterministic and
walls block.

What is the shortest path to the destination from any point?
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Algorithms for known MDPs Some examples

Shortest-path problem solution

14 13 1211 10 9 8 7

15 13 6

16 15 14 4 3 4 5

17 2

18 19 20 2 1 2

19 21 1 0 1

20 22

21 2324 2526 27 28

Properties

◮ γ = 1, T → ∞.

◮ rt = −1 unless st = X , in which
case rt = 0.

◮ The length of the shortest path
from s equals the negative value
of the optimal policy.

◮ Also called cost-to-go.

◮ Remember Dijkstra’s algorithm?
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Algorithms for known MDPs Some examples

Stochastic shortest path problem, with a pit

O X

Properties

◮ γ = 1, T → ∞.

◮ rt = −1, but rt = 0 at X and
−100 at O and episode ends.

◮ Pµ(st+1 = X |st = X ) = 1.

◮ A = {North, South,East,West}

◮ Moves to a random direction with
probability θ. Walls block.

For what value of θ is it better to take the dangerous shortcut? (However, if we
want to take into account risk explicitly we must modify the agent’s utility
function)
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Algorithms for known MDPs Some examples
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Figure: Pit maze solutions for two values of θ.
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Algorithms for known MDPs Some examples

◮ Now we can find the optimal policy for any known µ.

◮ What if µ is unknown?
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Dealing with unknown MDPs Stochastic approximation view

Stochastic approximation for unknown µ

Replace Pµ with Pt and Eµ with Et :

◮ The empirical distribution at time t?

◮ Combine with gradient descent?

Algorithm 4. Stochastic backwards induction

Initialise v0(s).
for t = 1, 2, . . . do
πt(s) = argmaxa Pt(s

′|s, a)[Et(r |s
′, s) + vn+1(s

′)]
vn(s) =

∑

s′∈Sn+1
Pt(s

′|s, πn(s))[Et(r |s
′, s) + vn+1(s

′)]

Update Pt ,Et model with (st , at , rt+1st+1).
end for

Return π = (πn)
T
n=1.

Unfortunately, these do not take into account uncertainty about µ.
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Dealing with unknown MDPs Decision theoretic view

Decision-theoretic view

Bayesian framework

◮ Assume the true MDP µ∗ ∈ M.

◮ Each µ ∈ M defines: Pµ(st+1 | st , at), Eµ(rt | st).

◮ Choose a subjective prior probability ξ0 on M.
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Dealing with unknown MDPs Decision theoretic view

Decision-theoretic view

Bayesian framework

◮ Assume the true MDP µ∗ ∈ M.

◮ Each µ ∈ M defines: Pµ(st+1 | st , at), Eµ(rt | st).

◮ Choose a subjective prior probability ξ0 on M.

Optimal policy for a given belief ξt

π∗(ξt) , argmax
π∈Π

E
π
ξt
Ut

E
π
ξt
Ut =

∑

µ∈M

(

E
π
µ Ut

)

ξt(µ)

Christos Dimitrakakis () Bayesian reinforcement learning 4 Sep 2013 21 / 32



Dealing with unknown MDPs Decision theoretic view

ξ-optimal utility U∗
ξ , maxπ E

π
ξ U

U∗
µ1

U∗
µ2

U∗
ξ

U

ξ

Figure: A geometric view of the bounds
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Dealing with unknown MDPs Decision theoretic view

ξ-optimal utility U∗
ξ , maxπ E

π
ξ U

U∗
µ1

U∗
µ2

E(U∗
µ | ξ)

∑

i wiU
∗
ξi

π2

π1
U∗
ξ

π∗(ξ1)

U

ξξ1

Figure: A geometric view of the bounds
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Dealing with unknown MDPs Decision theoretic view

Updating the belief

Belief update for finite M

ξt+1(µ) ,
Pµ(rt+1, st+1 | st , at)ξt(µ)

∑

µ′∈M
Pµ′(rt+1, st+1 | st , at)ξt(µ′)

Closed-form posterior calculation

◮ Finite M.

◮ Conjugate distributions (i.e. Dirichlet-multinomial).

Does this mean we can compute the optimal policy in Π?
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Dealing with unknown MDPs Decision theoretic view

Updating the belief

Belief update for finite M

ξt+1(µ) ,
Pµ(rt+1, st+1 | st , at)ξt(µ)

∑

µ′∈M
Pµ′(rt+1, st+1 | st , at)ξt(µ′)

Closed-form posterior calculation

◮ Finite M.

◮ Conjugate distributions (i.e. Dirichlet-multinomial).

Does this mean we can compute the optimal policy in Π?

◮ No.

◮ Unless Π is small.
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Dealing with unknown MDPs Decision theoretic view

Updating the belief

Belief update for finite M

ξt+1(µ) ,
Pµ(rt+1, st+1 | st , at)ξt(µ)

∑

µ′∈M
Pµ′(rt+1, st+1 | st , at)ξt(µ′)

Closed-form posterior calculation

◮ Finite M.

◮ Conjugate distributions (i.e. Dirichlet-multinomial).

Does this mean we can compute the optimal policy in Π?

◮ No.

◮ Unless Π is small.

◮ Typically, Π is exponential-sized.
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Dealing with unknown MDPs Multi-armed bandits

The stochastic n-armed bandit problem revisited

◮ Actions A = {1, . . . , n}.

◮ Selecting i results in a random reward rt ∼ Pi .

◮ Select actions to maximise
T
∑

t=0

rt ,

horizon T ≥ 0.

◮ Pi is unknown.
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Dealing with unknown MDPs Multi-armed bandits

Bernoulli bandits

Consider n Bernoulli bandits with unknown parameters θi , i = 1, . . . , n such that

rt | at = i ∼ Bern(θi ), E(rt | at = i) = θi . (3.1)
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Dealing with unknown MDPs Multi-armed bandits

Bernoulli bandits

Consider n Bernoulli bandits with unknown parameters θi , i = 1, . . . , n such that

rt | at = i ∼ Bern(θi ), E(rt | at = i) = θi . (3.1)

Prior belief: Beta distribution Beta(αi , βi ), with density f (θ | αi , βi ) so that

ξ(θ1, . . . , θn) =
n
∏

i=1

f (θi | αi , βi ).
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Dealing with unknown MDPs Multi-armed bandits

Bernoulli bandits

Consider n Bernoulli bandits with unknown parameters θi , i = 1, . . . , n such that

rt | at = i ∼ Bern(θi ), E(rt | at = i) = θi . (3.1)

Prior belief: Beta distribution Beta(αi , βi ), with density f (θ | αi , βi ) so that

ξ(θ1, . . . , θn) =
n
∏

i=1

f (θi | αi , βi ).

r̂t.i ,
1

Nt,i

t
∑

k=1

rt I {ak = i} , Nt.i ,
t

∑

k=1

I {ak = i}
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Dealing with unknown MDPs Multi-armed bandits

Bernoulli bandits

Consider n Bernoulli bandits with unknown parameters θi , i = 1, . . . , n such that

rt | at = i ∼ Bern(θi ), E(rt | at = i) = θi . (3.1)

Prior belief: Beta distribution Beta(αi , βi ), with density f (θ | αi , βi ) so that

ξ(θ1, . . . , θn) =
n
∏

i=1

f (θi | αi , βi ).

r̂t.i ,
1

Nt,i

t
∑

k=1

rt I {ak = i} , Nt.i ,
t

∑

k=1

I {ak = i}

Posterior distribution for the parameter of arm i :

ξt = Beta(αi + Nt,i r̂t,i , βi + Nt,i (1− r̂t,i ))

Christos Dimitrakakis () Bayesian reinforcement learning 4 Sep 2013 25 / 32



Dealing with unknown MDPs Belief-augmented MDPs

Belief states
◮ The state of the bandit problem is the state of our belief.

◮ A sufficient statistic for our belief is the number of times we played each
bandit and the total reward from each bandit.

◮ Thus, our state at time t is entirely described our priors α, β (the initial
state) and the vectors

Nt = (Nt,1, . . . ,Nt,i ) (3.2)

r̂t = (r̂t,1, . . . , r̂t,i ). (3.3)

◮ At any time t, we can calculate the probability of observing rt = 1 or rt = 0
if we pull arm i as:

Pξt (rt = 1 | at = i) =
αi + Nt,i r̂t,i

αi + βi + Nt,i

◮ The next state is well-defined and depends only on the current state.

◮ For this reason, the decision-theoretic n-armed bandit problem can be
formalised as a Markov decision process.

Christos Dimitrakakis () Bayesian reinforcement learning 4 Sep 2013 26 / 32



Dealing with unknown MDPs Belief-augmented MDPs

The information-state Markov decision process

Exercise

◮ Write the transition kernel for MDP defined by a bandit process with two
arms:

1. Receive reward 1 w.p. θ, reward −1 w.p. −θ.

2. Receive 0 reward and quit.

◮ What is the optimal decision for T = 1?

◮ What about T = 2?

Exercise

◮ Write the transition kernel for information-state MDP for the above process.

◮ What is the optimal decision for T = 1?

◮ What about T = 2?
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Dealing with unknown MDPs Belief-augmented MDPs

Bayesian RL algorithms

Augmented MDP approaches

◮ Augmente the original MDP state st with the belief state ξt .

◮ Construct a new augmented MDP with state ωt = (st , ξt).

◮ Solve this MDP using tree search, Monte Carlo search etc.

Value function bounds

◮ Use the convexity of the Bayes-optimal value function.

◮ Improve bounds iteratively via search.

Open question

Which methods are best for which settings?
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Dealing with unknown MDPs Belief-augmented MDPs

st

ξt

at

st+1

ξt+1

ωt ωt+1

The augmented MDP

The optimal policy for the augmented MDP is ξ-optimal for the original problem.

P(st+1 ∈ S | ξt , st , at) ,

∫

S

Pµ(st+1 ∈ S | st , at) dξt(µ) (3.4)

ξt+1(·) = ξt(· | st+1, st , at) (3.5)
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Dealing with unknown MDPs Belief-augmented MDPs

Value function bounds and Thompson sampling

1

K

K
∑

k=1

V π
µk

. V ∗
ξ .

1

K

K
∑

k=1

V ∗
µk
, µk ∼ ξ

Algorithm 5. Thompson sampling (K = 1).

Input prior ξ0 on M.
for episode k do

end for
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Dealing with unknown MDPs Belief-augmented MDPs

Value function bounds and Thompson sampling

1

K

K
∑

k=1

V π
µk

. V ∗
ξ .

1

K

K
∑

k=1

V ∗
µk
, µk ∼ ξ

Algorithm 5. Thompson sampling (K = 1).

Input prior ξ0 on M.
for episode k do

// – Thompson sampling – //
µ(k) ∼ ξtk (µ) // generate MDP from posterior
π(k) ≈ argmaxπ E

π
µ(k) U // Get new policy using ADP

end for
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Dealing with unknown MDPs Belief-augmented MDPs

Value function bounds and Thompson sampling

1

K

K
∑

k=1

V π
µk

. V ∗
ξ .

1

K

K
∑

k=1

V ∗
µk
, µk ∼ ξ

Algorithm 5. Thompson sampling (K = 1).

Input prior ξ0 on M.
for episode k do

// – Thompson sampling – //
µ(k) ∼ ξtk (µ) // generate MDP from posterior
π(k) ≈ argmaxπ E

π
µ(k) U // Get new policy using ADP

// – Run policy and collect data – //
for t = tk , . . . , tk+1 − 1 do

at | st = s ∼ π(k)(a | s) // Take action
ξt+1(µ) = ξt(µ | st+1, at , st) // Update posterior

end for

end for
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Dealing with unknown MDPs Belief-augmented MDPs

Summary

Markov decision processes

Can represent : Shortest path problems, Stopping problems, Experiment design
problems, Multi-armed bandit problems, Reinforcement learning problems.

Backwards induction

◮ In the class of dynamic programming algorithms.

◮ Tractable when either the state space S or the horizon T are small.

Optimal decisions and Bayesian reinforcement learning

◮ A known environment is represented as an MDP.

◮ Bandit problems can be solved by representing them as infinite-state MDPs.

◮ Any unknown environment can be represented as a distribution over MDPs.

◮ The decision problem can again be formulated as an infinite-state MDP.
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Dealing with unknown MDPs Belief-augmented MDPs

Open questions

Modelling

◮ General vs. task-specific priors.

◮ Efficient inference.

Planning

◮ Theoretical performance of optimal solution.

◮ Performance gap of approximations.
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