
Opportunities for Agile Documentation
Using Natural Language Generation

Håkan Burden, Rogardt Heldal and Peter Ljunglöf
Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg
Gothenburg, Sweden

E-mail: burden@cse.gu.se

I. CODE VS. TEXT

Introducing cross-functional teams is one way of reducing
the manual hand-overs in a project [1]. A challenge these
teams face in large-scale software development is that the items
pulled from the backlog refer to a product that has evolved in
a way that makes their understanding of the system obsolete.
In order to quickly understand the product and the impact
of implementing the backlog item it is necessary to have an
accurate description of the system. However, agile processes
prioritize software development before writing documents [2],
causing a tension between code and documentation. Over time
the code and documentation diverge so that the only way to
understand the system is to dig into the code. And – as our on-
going interview study has found – when software developers
find it difficult to decode software, the process excludes many
of the stakeholders from active participation.

II. DEVELOPERS NEED ACCURATE TEXTS

During interviews in our on-going research project in-
volving Ericsson AB, Volvo Cars Group and Volvo Group
Trucks Technology on model-driven software development we
encountered several interviewees who addressed the problems
that arise when specification and implementation differ. The
interviews were conducted from the beginning of January 2013
to the beginning of June the same year. In total 25 software
developers have been interviewed during the project, represent-
ing more than 25 hours of recorded dialog. While conducting
the interviews, we repeatedly came across engineers who
raised the problem of inconsistency between requirements and
implementations as well as the effort in manually retrieving
the needed information from the implementation for further
development. The following quote comes from the interaction
between a software engineer, SE, and one of the principal
investigators, PI. The engineer brings up how the textual
specification is not representative of the software models used
for code generation.

SE: But we have a text document that’s about 300 or 400
pages in total if you take all the documents. And that hasn’t
been updated for a couple of years. So this is wrong. This
document is not correct.

PI: So you’d have inconsistency problems between the
model description and the textual description?

SE: Yeah. The textual description is really lousy. It’s really,
really bad.

The result is that whenever the software engineer needs
to understand a specific part of the system the solution is
to dig through the implementation in form of one or more
UML models intertwined with C++ code to understand the
functionality of the system, instead of searching and reading
the textual specification. The problem is repeated by another
software engineer who describes how it was necessary to come
up with a work-around for obtaining the necessary information.

We have in our requirements a list of signals used in the
requirement. Now that list is seldom updated. It’s hardly ever,
so they’re always out of date. So I don’t actually read them
anymore. I just go in through the specific sub-requirements and
I read what is asked for my functionality. This is asked - what
do I need? I need this and this. So, yeah, so I do it manually,
I guess.

The work-around allows the engineer to access the relevant
information but at the cost of loosing the full picture as it once
was intended by the requirements. To be able to automatically
retrieve a document that describes which signals that need
to be implemented, lists those that are already implemented
and the relationship between the signals would save a lot of
time and enable the specification of the signal database to be
consistent with the implementation. Today, such a protocol
model is developed by hand [3].

One of the engineers, a system architect, stated that not
everyone in the software development process is familiar with
source code. And modern development tools have complex
user interfaces and functionality: The tools are too unintuitive
[. . . ] the threshold for learning how to use them is high.

As a consequence, understanding the implementations be-
comes both time consuming and difficult, impacting lead times
in a negative way. And each time a team pulls a new product
feature from the backlog the chance is that the product to
be changed has evolved since their last visit. In both cases
valuable time will be spent in deciphering the code in order
to estimate the impact of a change on dependent systems
or estimate the time needed to develop and integrate the
new feature. In contrast, the system architect concludes that
everybody knows how to consume text [. . . ] text can be
consumed in your favourite editor

III. GENERATING TEXT FROM SOURCE CODE

Natural language generation is a framework suitable for
automatically retrieving the information encoded in the im-
plementation and display it as texts in an appropriate format



[4], [5]. The generation is done in four main steps – first the
decision is made on what information should be conveyed to
the consumer, the second step is to decide on how to structure
the text and order the information, the third step is choosing
the syntactical structure of the sentences and deciding on what
terminology to use. The last step is to choose how the text is
to be encoded for presentation, e.g., adding appropriate tags
for rendering html- or LATEX-documents.

In a recent literature review on the generation of require-
ments from software models 17 out of the 24 cited publications
generated natural languages, six generated formal languages
and one publication generated a combination of natural and
formal languages [6]. None of the cited publications relate
their generated texts to agile software documentation.

Since the publication of the literature review a number
of new contributions have emerged. Among those are three
contributions on natural language generation from Java code
[7], [8], [9]. The motivation behind these contributions is that
understanding code is a time consuming activity and accurate
descriptions can both summarise the algorithmic behaviour
of the code and reduce the amount of code a developer
needs to read for comprehension. The automatic generation of
summaries from code mean that it is easy to keep descriptions
and system synchronized. The generated texts are evaluated in
an academic setting.

Rastkar et. al. [10] generate natural language specifications
of crosscutting concerns. A crosscutting concern is a func-
tionality that is defined in multiple modules and as a result
of their scattered nature it is a complex task to understand
how a change in functionality is going to spread across the
logical structure of the source code. The authors conclude
that having a natural language summary for each crosscutting
concern and where it is implemented helps developers handle
software change tasks. Again, the generated texts are evaluated
in an academic setting.

The only evidence we have found so far of an industrial
case study is reported by Spreeuwenberg et. al. [11]. Here,
software models are used to define candidate legislature for
the Dutch Immigration Office. Since the models are difficult
to decode for the stakeholders with an expertise in legal and
administrative issues a natural language representation of the
models is generated to include all stakeholders in the validation
procedure of encoding new laws and regulations.

IV. AGILE DOCUMENTATION THROUGH GENERATION

We have shown how the inconsistency between software
specifications and implementations causes problems for the
software developers. If it is a challenge for system architects
and coders it is also a problem that excludes the active in-
volvement of many stakeholders that do not have the necessary
training for decoding software. It is also clear that there is a
gap between the academic efforts put into text generation from
source code and the application of the same in industry.

An operations document that summarizes the dependency
relations to other systems, use of databases together with
contact points etc., often follows a predefined template [3].
Such a text is feasible to generate given the advances shown
in recent publications and would be helpful for the interviewed

system architect who would get a textual representation that
is up-to-date with the implementation. Another document that
should be straight-forward to generate is a contract model that
describes the technical interface of a (sub-)system [3]. Gener-
ating such a document with a list of the signals actually used
by the system would be another useful document if it could
be automatically generated, according to our interviewees.

Using the code for generating documents that describe
different system properties enables a single source of informa-
tion in the development process, aligning documentation with
implementation. Different views could then be generated from
the code during implementation, with content and structure
depending on who the consumer of the document and what the
purpose of the text is. This could be done together with the
relevant stakeholders, enabling concise documents that are easy
to keep consistent with the implementation. The opportunities
for collaborations between industry and academia in text
generation as a means for agile documentation are abundant!

ACKNOWLEDGMENT

The authors would like to thank the Graduate School in
Language Technology, the Center of Language Technology and
the Software Center for funding and support as well as the
contact persons at respective company for facilitating the study.

REFERENCES

[1] K. Schwaber and M. Beedle, Agile Software Development with Scrum,
1st ed. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2001.

[2] J. Highsmith and M. Fowler, “The agile manifesto,” Software Develop-
ment Magazine, vol. 9, no. 8, pp. 29–30, 2001.

[3] S. Ambler, “Agile/Lean Documentation: Strate-
gies for Agile Software Development,”
www.agilemodeling.com/essays/agileDocumentation.htm, accessed
June 19th 2013.

[4] E. Reiter and R. Dale, Building Natural Language Generation Systems.
Cambridge University Press, 2000.

[5] J. Bateman and M. Zock, “Natural Language Generation,” in The Oxford
Handbook of Computational Linguistics, ser. Oxford Handbooks in
Linguistics, R. Mitkov, Ed. Oxford University Press, 2003, ch. 15.

[6] J. Nicolás and J. A. T. Álvarez, “On the generation of requirements
specifications from software engineering models: A systematic literature
review,” Information & Software Technology, vol. 51, no. 9, pp. 1291–
1307, 2009.

[7] E. Hill, L. L. Pollock, and K. Vijay-Shanker, “Automatically capturing
source code context of nl-queries for software maintenance and reuse,”
in Proceedings of the 31st International Conference on Software Engi-
neering. Vancouver, Canada: IEEE, 2009, pp. 232–242.

[8] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay-Shanker,
“Towards automatically generating summary comments for Java meth-
ods,” in Proceedings of the IEEE/ACM international conference on
Automated software engineering, ser. ASE ’10. New York, NY, USA:
ACM, 2010, pp. 43–52.

[9] G. Sridhara, L. Pollock, and K. Vijay-Shanker, “Automatically detecting
and describing high level actions within methods,” in Proceedings of
the 33rd International Conference on Software Engineering, ser. ICSE
’11. New York, NY, USA: ACM, 2011, pp. 101–110.

[10] S. Rastkar, G. C. Murphy, and A. W. J. Bradley, “Generating natural
language summaries for crosscutting source code concerns,” in 27th
International Conference on Software Maintenance. Williamsburg,
VA, USA: IEEE, September 2011, pp. 103–112.

[11] S. Spreeuwenberg, J. Van Grondelle, R. Heller, and G. Grijzen, “Design
of a CNL to Involve Domain Experts in Modelling,” in CNL 2010
Second Workshop on Controlled Natural Languages, M. Rosner and
N. Fuchs, Eds. Springer, 2010, pp. 175–193.


