
Executable and Translatable UML
– How Difficult Can it Be?

Håkan Burden
Computer Science and Engineering
Chalmers University of Technology

and University of Gothenburg
Gothenburg, Sweden
burden@chalmers.se

Rogardt Heldal
Computer Science and Engineering
Chalmers University of Technology

and University of Gothenburg
Gothenburg, Sweden
heldal@chalmers.se

Toni Siljamäki
Ericsson AB

Stockholm, Sweden
toni.siljamaki@ericsson.com

Abstract—Executable and Translatable UML enables Model-
Driven Architecture by specifying Platform-Independent Models
that can be automatically transformed into Platform-Specific
Models through model compilation. Previous research shows that
the transformations result in both efficient code and consistency
between the models.

However, there are neither results for the effort of introducing
the technology in a new context nor on the level of expertise
needed for designing the Platform-Independent Models. We
wanted to know if teams of novice software developers could
design Executable and Translatable UML models without prior
experiences of software modelling.

As part of a new university course we conducted an ex-
ploratory case study with two data collections over two years.
Bachelor students were given the task to design a hotel reser-
vation system and the necessary test cases for verifying the
functionality and structure of the models within 300 hours, using
Executable and Translatable UML.

In total, 43 out of 50 teams succeeded in delivering verified
and consistent models within the time frame. During the second
data collection the students were given limited tool training. This
gave a raise in the quality of the models.

Due to the executable feature of the models the students were
given constant feedback on their design until the models behaved
as expected, with the required level of detail and structure. Our
results show that using Executable and Translatable UML does
not require more expertise than a bachelor program in computer
science. All in all, Executable and Translatable UML could play
an important role in future software development.

Index Terms—Model-Driven Architecture; Executable and
Translatable UML; Platform-Independent Models; Learning Ef-
fort; Exploratory Case Study;

I. INTRODUCTION

In Model-Driven Architecture (MDA; [1]), the requirements
and responsibilities of the system are given a structure by
the use of software models in a Computationally-Independent
Model, the CIM, often referred to as the domain model [2].
Features such as specific algorithms and system architec-
ture are defined by the next layer of models, the Platform-
Independent Models, the PIM. The PIM has no ties towards
the hardware nor the programming languages that will in
the end realise the system. Such information is added to the
Platform-Specific Model, the PSM. As a result the software
models of the CIM and the PIM can describe many different
implementations of the same system. The models become

reusable assets [3] serve both as a description of the problem
domain and a specification for the implementation, bridging
the gap between problem and solution.

Executable and Translatable UML (xtUML; [4], [5]) is an
extension of UML [6] with models that can be executed
and translated into code through model compilers. In MDA
terms, the xtUML model is an executable PIM that can
be automatically transformed into a PSM. The efficient and
consistent transformation from a PIM specified using xtUML
to a PSM has been tested and proven in previous work [7],
[8]. But it is still an open question how much expertise that is
required to use xtUML as an executable modelling language
for PIMs.

A. Motivation

For ten years we have given a university course where teams
of students go through the different tasks of an MDA process;
from analysis to implementation by designing the system
using UML models. The process is illustrated in Figure1.
The numbers for each activity in the process are specific to
the course and state the maximum number of hours for each
student.

The analysis phase was used to capture the business rules of
the problem domain in models that satisfy the requirements of
the system. The focus during the analysis phase was thus on
understanding the problem domain by using activity diagrams,
use cases and conceptual class diagrams [6], [9].

The second phase of the process, the design phase, was
where more detailed UML diagrams were used such as in-
teraction, state chart, class and component diagrams. Even
though this phase should be important for the overall process,
we found that it contributed little to the overall system for
most teams (in Lean terms the models represent waste [10]).
The diagrams were incomplete, lacking necessary details in
structure and behaviour. The only way of testing the models
was through model inspection, making it a matter of opinion
when the models are complete [11]. Another problem with
the models was that they were inconsistent with each other
leading to complications about which model to follow in the
transformation to source code. The impact of the problems
vary depending on how important the models are in the



Figure 1: The old software development process

development process and when and how the inconsistencies
are shown [12]–[15].

The design phase was followed by an implementation phase
were the students manually transformed their models into Java.
This meant that it took months before the students could
test their analysis and design. This is a problem shared with
industry [16].

Since the code is manually written with the models as a
guide it also means that there is a difference in the interpre-
tation of the problem between the UML model and the hand-
written code. By default you reanalyze the problem when you
start writing the code, and you often come up with a different
solution compared to the modelled solution. Eventually the
model and the hand-written code diverge, so the only way
to really understand what’s going on in the system is to
study the hand-written code. The model may then serve as a
quick, introductory overview of the system, but it may also be
incorrect as soon as you stop updating the model for reflecting
the changes made to the hand-written code. This notion of
architecture erosion is a well-known problem and is still being
reported on [17]–[19].

B. Aim and Research Question

As a result from collaboration between industry and
academia we came up with the idea to use xtUML to model the
component- and class diagrams and the statemachines instead
of UML in the design phase. If the change of modelling
language is successful we will get rid of the inconsistency
problems. With an executable PIM it should be possible for
the students to test and validate their design decisions without
having to implement them in Java first. And when the models
behave as expected and the design phase is complete, all
functionality of the system should be captured in the models
[4], [11]. In the long run this will mean that a lot of the work
that was done in the implementation phase can be replaced
by generating the code straight from the models, leading
to shortened implementation times and consistency between
models and code.

Swapping UML for xtUML is not a one-to-one substitution.
If it is a matter of opinion when a UML model is complete,
an xtUML model is complete when all test cases return the
expected results [11]. So, xtUML is more than the graphical
syntax, the models have to be given semantics to be executable.
In addition, test cases have to be modelled, executed and
evaluated. These additions demand that the xtUML tool is
more than a drawing tool.

Will the immediate and constant feedback that is given
from executing the test cases compensate for the increase in
modelling effort? Or will the added effort for learning xtUML
take so much time that there is no left for modelling? This
concern is re-phrased into our research question:

Figure 2: The proposed software development process

”Can teams of four novice software modellers solve a
problem that is complex enough to require the full potential of
xtUML as a modelling language within a total of 300 hours?”

To answer our research question we scrapped our old course
in favour of a new one that follows the process seen in Figure
2. Instead of spending 200 hours implementing the design to
be able to test and verify it, testing will now be a part of the
design phase. Just as for the process in Figure 1 the number
of hours in each step states the maximum for each student.
The introduction of the new design phase was done as a case
study with the ambition to explore and explain the transition
and its implications.

C. Contribution

Earlier contributions has shown how Executable and Trans-
latable UML enables MDA [3], [5], [11], the reusability of
the PIM has been reported on in [20] and the efficiency of
the transformations from PIM to PSM is illustrated by [7].
Our contribution shows that xtUML as a technology is mature
enough to to be used by novices to design executable PIMs.

D. Overview

In the next section we go into more detail of xtUML and
how it can be used. In section III we explain how our subjects
made use of xtUML to develop and test a hotel reservation
system. Our findings and their validity are presented in section
IV. In section V we discuss the implications of our results and
in section VI we relate our own case study to previous work.
This is followed by a conclusion and some ideas about further
investigations regarding the usage of xtUML.

II. EXECUTABLE AND TRANSLATABLE UML

The Executable and Translatable Unified Modeling Lan-
guage (xtUML; [4], [5], [11]) evolved from merging the
Shlaer-Mellor method [21] with the Unified Modeling Lan-
guage (UML, [6]).

A. The Structure of xtUML

Three kinds of diagrams are used for the graphical mod-
eling together with a textual action language. The diagrams
are component diagrams, class diagrams and state-machines.
There is a clear hierarchical structure between the different
diagrams; state-machines are only found within classes, classes
are only found within components. The different diagrams
will be further explained below, together with fragmentary
examples taken from the problem domain given to the students,
a hotel reservation system.



Figure 3: An xtUML component diagram

Figure 4: An xtUML class-diagram

1) Component Diagrams: The xtUML component diagram
follows the definition given by UML. An example of a
component diagram can be found in Figure 3. In this diagram
the hotel domain depends on the bank for checking that a
transaction has gone through as part of the process of making
reservations. The User component represents a users of the
system and this is where the test cases are placed.

2) Class Diagrams: In Figure 4 we have an example of an
xtUML class diagram. It describes how some of the classes
found in the Hotel component relate to each other. I.e. a Room
can be related to any number of Reservations (shown by an
asterisk, *) but a Reservation has to be related to at least one
Room (visualized by 1..*).

The xtUML classes and associations are more restricted
than in UML. We will only mention those differences that
are interesting for our case study. A feature such as visibility
constraints on operations and attributes does not exist. They
are therefore accessible from anywhere within the same com-
ponent. In UML the associations between classes can be given
a descriptive association name while in xtUML the association
names are automatically given names on the form RN where
N is a unique natural number, e.g. Room is associated to
Reservation over the association R2.

3) State Machines: In the class diagram in Figure 4 the
Reservation class has both an instance and a class state

machine which is indicated by the small figure in the top-left
corner of the class. The instance state machine can be found in
Figure 5. This state machine covers the first four states of the
Reservation procedure, e.g. from the second state, Get rooms,
it is possible to reach the third state, Lock rooms, by requesting
the rooms. If there are no available rooms you return to the
initial state were you can start a new search. Each instance
of Reservation has its own instance statemachine that starts
running when the Reservation is created.

A class-based state-machine is shared among all instances
of a class and starts running as soon as the system starts, like
a static process. For shared resources, such as rooms, a class
state-machine can be used to ensure that only one reservation
instance can book a room at any time.

4) Action Language: An important difference between
standard UML and xtUML is that the latter has a textual
programming language that is integrated with the graphical
models, sharing the same meta-model [21], [22].

The number of syntactical constructs is deliberately kept
small. The reason is that each construction in the Action
Language shall be easy to translate to any programming
language (such as Java, C or Erlang) enabling the PIM to
be reused for different PSMs [20].

There are certain places in the models were Action Lan-
guage can be inserted, such as in operations, events and states.
Over the years a number of different Action Language have
been implemented [5] and in 2010 OMG released there own
standard [23].

B. Interpretation and Code Generation

Since xtUML models have unambiguous semantics all val-
idation can be performed straight on the xtUML model by
an interpreter. During the execution of the test cases an object
model is created. The object model includes all class instances
with their current attribute values and by which associations
they are linked to each other. During execution all changes of
the association instances, attribute values and class instance
are shown [9] as well as the change of state for classes with
statemachines in the object model.

The xtUML models can be translated into Platform-Specific
Models by model compilers. Since the Platform-Specific code
is generated from the model, it is possible for the code and
the models to always be in synchronization with each other
since all updates and changes to the system are done at the
PIM-level, never by touching the code. The efficiency of the
generated code has been reported on by [7]. [8] have used the
model compiler to generate test cases for the PSM.

III. CASE STUDY DESIGN

To answer our research question:
”Can teams of four novice software modellers solve a

problem that is complex enough to require the full potential of
xtUML as a modelling language within a total of 300 hours?”

we have both in 2009 and 2010 let our students use xtUML
to design hotel reservation systems. The resulting models have
been inspected and compared against our evaluation criteria.



Figure 5: A partial xtUML statemachine

A. Subject and Case Selection

1) The Subjects: Our subjects were students in the final
year of their bachelor programs in computer science and
software engineering. Their prior knowledge of modelling is
limited to class diagrams but they are used to programming in
an object-oriented paradigm using Java. In our curriculum the
students do two courses in parallel with a working week of 50
hours, so we expect the subjects to work 25 hours a week on
our course. A team of four subjects is expected to do a total
of 100 hours per week.

2) The Case: We chose a domain that the subjects could
relate to and have some prior knowledge about. The idea
is that the subjects shall focus on modelling, not learning
a new subject matter. The domain should also have distinct
concepts so that an object-oriented solution made sense and
have problems where it is natural to use state machines. We
also wanted the domain to include problems with algorithmic
complexity. Our last requirement was that the domain should
represent an open-ended problem so that there is not one right
solution. A system for handling hotel reservations seemed to
fit all our requirements.

In the hotel domain reservations, customers and rooms are
all examples of distinct concepts. The booking process itself
has a chain of states that it is natural to control with a state-
chart, while finding all the possible matches to a set of search
criterias for a reservation is an algorithmic problem. These
two together, controlling the order of events and searching for
rooms, meant that the domain poses the problem of access and
allocation of shared and limited resources.

The new design phase was given three weeks, just as the
previous design phase. The work was done in teams of four
subjects, with a total workload of 75 hours per subject.

The subjects used BridgePoint [24] from Mentor Graphics
[25] to design the xtUML models. There were three 90-minute
lectures related to xtUML and BridgePoint. Two of these
lectures were given by industry representatives, one from the
tool vendor Mentor Graphics and one from Ericsson AB as
users of BridgePoint. The subjects were encouraged to study
xtUML on their own and we recommended them to read [5]
and [26]. Each team had half an hour a week with a researcher
to discuss design issues. Besides lecturing and supervising on

design issues the researchers played the role of project owners.
In 2010 we added limited tool support for the subjects. A

subject from 2009 used a total of 22 hours spread over the
three weeks to help the subjects of 2010 with BridgePoint.
This meant that each team had access to less than an hour of
tool training for the entire design phase.

B. Data Collection Procedures

We have done two data collections, in 2009 and 2010
respectively. In 2009 there were 88 subjects split into 22 teams.
In 2010 we had 108 subjects divided into 28 teams, with four
(sometimes three) members per team. We used three forms of
data collection; model evaluations, informal discussions and
a questionnaire. Model evaluations and informal discussions
were used both times but the questionnaire was only used in
2010.

1) Evaluating the xtUML Models: The evaluation of the
xtUML models was done immediately after the design phase
and took a whole week to complete. Each team was given
20 minutes to demonstrate their system and to run their tests.
Thereafter there was 20 minutes to discuss issues related to
their models. Every model was evaluated by two researchers
against the evaluation criteria that are specified below. The
subjects of each team were present throughout the evaluation,
permitting a discussion on the how the criteria on functionality
and structure had been interpreted and implemented in the
model. A short description of each model with our comments
was taken down in a spread sheet.

2) Informal Discussions: We thought it vital to have an
informal opportunity for the subjects to discuss their expe-
riences throughout the design phase. This was an important
opportunity for us to get more in-depth information into the
problems and discoveries that the subjects had encountered
when using BridgePoint to model xtUML. Since we did not
know what to expect for outcome in 2009 we wanted the
subjects to have the opportunity to drop us an e-mail, come
by our offices or use the lectures for addressing those issues
they found urgent. This proved to be a valuable source for data
collection, so valuable that we kept it in 2010. The drawback
is that it is not a procedure that is always possible to document
or systemize.

3) Questionnaire: One of the most important things that
became evident from the informal discussions in 2009 was
that the subjects found the learning threshold stressing under
the time constraint. Besides introducing tool support in 2010
to ease the subjects’ stress we conducted a questionnaire. The
aim of the questionnaire was to get a better view of how
much time the subjects spent on getting confident in using
BridgePoint.

C. Evaluation Criteria

Before the subjects started to develop their models we gave
them evaluation criteria. The reason was to have a clear idea
for both the researchers and subjects of what we expected from
the teams.



Based on the use cases from the analysis phase the subjects
should come up with executable tests. By running the tests it
should be possible to validate that the system is behaving as
specified by the CIM. This meant that the object model had to
show all relevant changes for objects, associations, attributes
[9] and states after a test had been run. At least one test case
should be in conflict with the business rules of the system.

However, this does not guarantee that the models are well-
structured nor readable [11], [26], [27]. Therefore the criteria
enforced an object-oriented design.

For the class diagram we did not accept models with a
central object representing the system [26]. Due to the lack of
visibility constraints in xtUML we stated that the only way to
obtain or change the value of an attribute should be through
operations. It should only be possible for a class instance to
call another class instance if they are linked by associations.
This is so that the dependencies between the class instances
are explicit in the class diagram. We wanted all the meaningful
associations and concepts in the class diagram. We requested
names on classes, attributes, operations and variables that were
relevant for the domain.

For the state-machines it was necessary to include all the
states and transitions relevant for capturing the lifecycle of the
class where it resides. The name of events and states should
be meaningful. To ensure that the subjects made use of the
power of state machines we required that they should be used
for modelling the reservation process.

IV. RESULTS

Over the two years that we have used the new design
phase we have evaluated 50 xtUML models. Of these 43
have fulfilled the success criteria. The subjects had to over-
come a learning threshold before they got confident in using
BridgePoint to develop their xtUML models. All in all, we
can answer our research question by stating that the teams did
manage to use the full power of xtUML within 300 hours.

A. Results from Evaluating the Models

In 2009 all 22 teams came up with an executable model,
capturing at least the minimum functionality. 18 of the 22
teams, equivalent to 83% managed to come up with a model
within the time frame that met our criteria for a successful
model. The models that did not meet the criteria had either a
monolithic class that represented the whole system and/or not
used the associations to access class instances. Most teams did
not use components, but that was not a strict criteria either.
This was a shortcoming of the criteria as we had wanted to
see the subjects use components, since it would have added
a whole new level of abstraction to their models. On the
other hand, we were encouraged by the fact that all teams
had delivered testable models that fulfilled the criteria for
functionality.

Three teams came up with models that went beyond our
expectations. They had used components and modelled more
functionality than we thought possible. One of the three teams
had even made extensive use of design patterns [28].

In 2010 there were 28 teams. 25 of these managed to
deliver executable models within the time frame. This is an
increase from 82% to 89%, compared to 2009. One of the
teams that failed to specify an executable model did so due to
unresolvable personal issues within the team. The other two
teams misjudged how long time it would take to come up
with a model and were not finished in time due to their late
start. In 2009 all teams succeeded to come up with executable
models compared to 89% in 2010. But this time all teams had
components and interfaces with the consequence of using the
full power of xtUML. This was not an intended outcome of
the added tool training but highly appreciated even so!

B. Outcomes From the Informal Discussions

The subjects are used to programming in Java. In 2009
it took the subjects some time before they started to reason
about objects and programming in an xtUML-way. When they
encountered a problem many of them expected a solution using
detailed Java-specific datastrucutres or libraries. In contrast
BridgePoint is mostly used for embedded systems were the
companies have their own private libraries.

Particularly state-machines were difficult to use since they
had no counterpart in Java. It is not possible for us to say if
this is due to that Java is the only language they are used to or
if it is due to the more abstract level of reasoning in xtUML.

BridgePoint is a powerful tool; enabling modelling, ex-
ecution of models and translation to source code. All the
functionality makes it a complex tool. BridgePoint is also to
a large extent menu-driven — many of the design choices
are implemented by choosing from drop-down menus and
tool panels. The challenge is to get used to all the different
combinations of choices that are needed for elaborating the
design. The version we used is a plug-in for Eclipse which in
itself has a number of features to get used to.

In reaction to the problems concerned with BridgePoint as
a tool we decided to use one of the subjects from 2009 for
tool training in 2010. The intention was that this would mean
less time spent on understanding the tool and more time to
spend on developing the models.

In 2010 the subjects requested a version control system so
that they could more easily split the design work between
themselves. This was never an issue in 2009 and a sign of
more confident subjects. If this is a consequence of the tool
training or not is to early to answer.

C. Experienced Learning Threshold

In 2010 we used a questionnaire to get a better idea of how
the subjects experienced BridgePoint. The question we asked
was ”How many hours did you spend learning BridgePoint
before you got confident in using the tool?”

In total 90 of 108 subjects answered the question. Besides
the answers given in Figure 6 six subjects answered that they
never became confident and one subject had no comment. The
number of hours it took to become confident are given on the
x-axis, the number of subjects for a given number of hours
is displayed along the y-axis. This means that 27 subjects



Figure 6: Number of hours that the subjects needed to become
confident in using BridgePoint

Figure 7: Total number of subjects that are confident in using
BridgePoint depending on time

answered that it took 30 hours to become confident in using
BridgePoint.

In Figure 7 the x-axis carries the same information as in
Figure 6 while the y-axis now displays the total number of
confident subjects for a given time, e.g. after 30 hours a total
of 57 subjects felt confident in using BridgePoint. After 40
hours this figure had risen to 75 subjects.

D. Relevance to Industry

We wanted to solve our consistency problems by using
xtUML instead of UML. In our view this was successful.
But we believe that xtUML can have a larger impact than
just solving the problems we had with our old development
process 1. From the outcomes of the the evaluation of the
models, the subjects’ own figures for the confidence threshold
for using xtUML and the informal discussions we propose a
hypothesis.

We state that xtUML, both as a modelling language and
tool, is easy to learn and use without any prior experience

of software modelling. It is enough to have the program-
ming experience equivalent to a bachelor student in computer
science. Our subjects managed to learn and understand the
full expressivity of xtUML within 75 hours, and that includes
using asynchronous events in statemachines and sending and
receiving signals between components as well as designing the
models to an appropriate level of detail. If it is possible for us
to manage with the transition from UML to xtUML it should
be possible to do so in industry as well.

E. Evaluation of Validity

We have analysed our results using the classification of
validity as defined by [29], [30] and [31].

1) Construct Validity: Our solution to the problems we had
earlier is set in the same context as the problem was. Our
subjects have the same background and experience as previous
students, just as before the subjects have the necessary domain
knowledge from the analysis phase, they work under the same
time constraints and come up with the same kind of models.
The only thing that has changed is the modelling language,
which is what we want to evaluate.

The subjects were present during the model evaluation. This
was done in order to reduce our bias in interpreting their work
and how it related to our validity criteria.

In order to assess the quality of the software models we
have specified evaluation criteria. In 2009 only three of 22
teams defined two or more components and the interfaces
between them. Since the 28 teams in 2010 also had models
with several components with defined interfaces we can see
that the subjects managed to use the full power of xtUML.

The figures for the number of hours to overcome the
learning threshold of BridgePoint were estimations done by
the subjects themselves. There might be variations among the
subjects of the definition of when the threshold is passed.
Our experiences from Ericsson and our own observations
correlate with the estimations of the subjects. However, there
is a possibility that some subjects have exaggerated or under-
estimated their figures due to social factors (reactions towards
the tool, researchers or team members). The exact nature of
the learning threshold for xtUML will be dependent on the
background of the subjects and which tool that is used.

2) Internal Validity: The evaluated models are developed
on the basis of the CIM from the analysis phase, so that
everything the subjects need to know about hotel reservation
systems should be found in their CIM. This means that they
should not need to spend time during the design phase on
anything else than learning and using xtUML.

Even if the evaluation criteria have influenced the nature of
the results, by defining what we expected from the subjects’
models, the process of getting there was by using xtUML.

In the first run of the experiment we did not know what to
expect for results. In the second run we had expectations based
on the results from the first run. Therefore we were careful to
make sure that we as researchers had the same roles towards
the subjects in both runs, which led us to let a subject from
2009 take care of the tool training in 2010. We still cannot



neglect that our changed expectations might have influenced
the outcome in 2010, even if we did not get the results we
were expecting. On the other hand this is always the case in
situations where you want to replicate research that involves
human beings. This is also a threat to the reliability of our
results.

It is possible that the subjects have been sharing insights and
experiences throughout the case study. We knew this could be
the case from the start and that was one reason why we wanted
an open-ended problem. During the evaluations we have seen
50 unique models which implies that all teams have had their
own process to come up with the models.

3) External Validity: Today’s students are tomorrow’s em-
ployees. If our subjects can master xtUML it should also be
possible for software developers in industry to do so. This is
also claimed by [32] who state that students can be used in
research as long as it is the evaluation of the use of a technique
by novice users that is intended. We can expect software
developers in industry to have at least the same competence
as our subjects.

The size of the problem given to the subjects is smaller than
most indutrial sized tasks. Our domain has a certain level of
complexity and was chosen from our collaboration between
industry and academia. By handling the access and allocation
of the shared resources within the hotel domain, we made sure
that the subjects had to solve a non-trivial task.

4) Reliability: Since the evaluation of the models is sub-
jective there was at least two researchers present at every eval-
uation in order to reduce the risk of bias and inconsistencies
between evaluators. We also used the criteria for a successful
model to ensure that the evaluation is less subjective, making
the results less dependant on a specific researcher.

BridgePoint was chosen by the authors based on the fact that
a team within Ericsson think that this is one of the best MDA
solutions today. After we had made our decision on which
tool we would prefer to use we contacted Mentor Graphics in
order to start a collaboration with them. Mentor Graphics never
influenced us on which tool to use. Using another xtUML tool
might give other results, especially regarding the threshold,
both in figures and what is seen as problematic.

V. DISCUSSION

In our previous MDA process, given in Figure 1, our
students manually transformed the PIM into a PSM. From our
previous experiences of using xtUML as a code generator [7],
[8] we know that this manual transformation can be automated.
However, to raise the quality of the generated code the PIM
needs to be manually enhanced by a marking model [2], [3],
[7]. The generated code will then be sufficient for an embedded
system. For systems that interact with human users it will
also be necessary to develop the needed user interfaces. All
in all the introduction of xtUML should enable a less time-
consuming implementation phase compared to our old MDA
process.

VI. RELATED WORK

There is a previous experience from using xtUML in the
context of computing education reported in [33], [34]. One of
their motivations for using xtUML in a modelling course is that
they found UML to large, ambiguous and complex. In contrast,
xtUML models are unambiguous and easier to understand than
UML models. The possibility of verifying the models to see
if they meet the requirements is important in order to give
the students feedback on their modelling. The authors have
used xtUML both for specifying a web application and for
3D drawing software.

By using xtUML in a similar context as ours their work
strengthens our claim that xtUML can be used by novice
software modellers. However, there work does not report
any results from letting undergraduate students use xtUML;
there are no clear criteria for what was seen as a successful
project and subsequently no reports on how many students that
managed to complete the task. It is also unclear how much
time the students spend on their models. Another important
difference is that we find UML useful for defining the CIM.

Both [5] and [11] describe xtUML in the context of MDA.
Starting of from use cases they develop PIMs by using xtUML.
While the main focus is on developing an executable PIM
both books takes the reader from CIM to PSM. The main
differences lie in the choice of tool and in how they choose
to describe and explain xtUML.

We have made extensive use of both books as a source of
inspiration for how to work with xtUML and as recommended
literature for the subjects for obtaining executable PIMs in an
MDA context. These are the most cited books on how to use
xtUML and they are detailed in how this is accomplished.
However, they do not mention the effort for learning xtUML
nor the level of expertise needed to use xtUML as a modelling
language for PIMs.

VII. CONCLUSIONS AND FUTURE WORK

A. Summary

Even if the subjects spend the first week of the design phase
in order to learn BridgePoint the fact that the models have a
testable behaviour more than compensates for the increase in
effort. Our subjects used the test cases to refine their models
until they met the criteria. As a consequence their PIMs had
the necessary detail and structure as defined by the CIM. This
was possible since xtUML gave them constant and immediate
feedback on all their design decisions.

In contrast, UML models are not executable. More or less
the only way of checking the quality of a UML model is
by performing a model review. This is a powerful method for
improving on UML models but it is also time consuming. And
it can be hard to catch the mistakes in complex systems. It
becomes a matter of opinion when a model can be considered
complete. In contrast an xtUML model is complete when it
only delivers expected output for all test cases.

Previous work has shown that xtUML enables MDA by the
reusability of the PIMs, the efficient transformation from PIM



to PSM and by solving the problems of inconsistencies within
the PIM. Our work shows with what little effort and expertise
it is possible to develop PIMs, using the full expressivity of
xtUML. This implies that Executable and Translatable UML
is a technology that is ready to be used within industry.

B. Future Work

We are looking at the possibilities to expand the new course
so that it covers the entire MDA-process, from CIM to PSM.
Issues we want to investigate is how difficult it is to mark the
PIMs for an efficient transformation to PSMs, the effort for
deploying the generated code on a platform with the required
user interfaces and how much time we can save compared to
the old development process, illustrated in Figure 1.

In addition, we want to investigate the reasons behind the
socio-technical gap [35] to understand why xtUML is not used
more within industry and software development.

ACKNOWLEDGMENT

The authors would like to thank Staffan Kjellberg at Mentor
Graphics; Stephen Mellor; Leon Starr at Model Integration;
Dag Sjøberg at University of Oslo; Jonas Magazinius, Daniel
Arvidsson, Robert Feldt and Carl-Magnus Olsson at Computer
Science and Engineering in Gothenburg.

REFERENCES

[1] OMG, “MDA,” Accessed January 2011. [Online]. Available: http:
//www.omg.org/mda/

[2] MDA Guide Version 1.0.1, Object Management Group, Framingham,
Massachusetts, 2003.

[3] S. J. Mellor, S. Kendall, A. Uhl, and D. Weise, MDA Distilled. Redwood
City, CA, USA: Addison Wesley Longman Publishing Co., Inc., 2004.

[4] L. Starr, Executable UML: How to Build Class Models. Upper Saddle
River, NJ, USA: Prentice Hall PTR, 2001.

[5] S. J. Mellor and M. Balcer, Executable UML: A Foundation for Model-
Driven Architectures. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 2002.

[6] OMG, “OMG Unified Modeling Language (OMG UML) Infrastructure
Version 2.3,” accessed 11th September 2010. [Online]. Available:
http://www.omg.org/spec/UML/2.3/Infrastructure/PDF

[7] T. Siljamäki and S. Andersson, “Performance benchmarking of real
time critical function using BridgePoint xtUML,” NW-MoDE’08: Nordic
Workshop on Model Driven Engineering. Reykjavik, Iceland, August
2008.

[8] F. Ciccozzi, A. Cicchetti, T. Siljamäki, and J. Kavadiya, “Automating
test cases generation: From xtUML system models to QML test models,”
MOMPES: Model-based Methodologies for Pervasive and Embedded
Software. Antwerpen, Belgium, September 2010.

[9] C. Larman, Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design and Iterative Development (3rd Edition).
Upper Saddle River, NJ, USA: Prentice Hall PTR, 2004.

[10] M. Poppendieck and T. Poppendieck, Lean Software Development: An
Agile Toolkit. Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 2003.

[11] C. Raistrick, P. Francis, J. Wright, C. Carter, and I. Wilkie, Model Driven
Architecture with Executable UMLTM. New York, NY, USA: Cambridge
University Press, 2004.

[12] C. F. J. Lange and M. R. V. Chaudron, “Effects of defects in uml models:
an experimental investigation,” in Proceedings of the 28th international
conference on Software engineering, ser. ICSE ’06. New York, NY,
USA: ACM, 2006, pp. 401–411.

[13] F. J. Lucas, F. Molina, and A. Toval, “A systematic review of UML
model consistency management,” Information and Software Technology,
vol. 51, no. 12, pp. 1631 – 1645, 2009.

[14] C. F. J. Lange, “Improving the quality of UML models in practice,” in
ICSE, L. J. Osterweil, H. D. Rombach, and M. L. Soffa, Eds. ACM,
2006, pp. 993–996.

[15] R. Van Der Straeten, “Description of UML Model Inconsistencies,”
Software Languages Lab, Vrije Universiteit Brussel, Tech. Rep., 2011.

[16] N. Mellegård and M. Staron, “Characterizing model usage in embedded
software engineering: a case study,” in ECSA Companion Volume, ser.
ACM International Conference Proceeding Series, I. Gorton, C. E.
Cuesta, and M. A. Babar, Eds. ACM, 2010, pp. 245–252.

[17] D. E. Perry and A. L. Wolf, “Foundations for the study of software
architecture,” SIGSOFT Softw. Eng. Notes, vol. 17, pp. 40–52, October
1992. [Online]. Available: http://doi.acm.org/10.1145/141874.141884

[18] N. Mellegård and M. Staron, “Methodology for requirements engi-
neering in model-based projects for reactive automotive software,”
in European Conference on Object-oriented Programming (ECOOP),
Paphos, Cyprus, 2008.

[19] J. Bosch, “Architecture in the age of compositionality,” in Software
Architecture, ser. Lecture Notes in Computer Science, M. Babar and
I. Gorton, Eds. Springer Berlin, Heidelberg, 2010, vol. 6285, pp. 1–4.

[20] S. Andersson and T. Siljamäki, “Proof of concept - reuse of PIM,
experience report,” in SPLST’09 & NW-MODE’09: Proceedings of 11th
Symposium on Programming Languages and Software Tools and 7th
Nordic Workshop on Model Driven Software Engineering, Tampere,
Finland, August 2009.

[21] S. Shlaer and S. J. Mellor, Object lifecycles: modeling the world in
states. Upper Saddle River, NJ, USA: Yourdon Press, 1992.

[22] M. L. Crane and J. Dingel, “Towards a formal account of a foundational
subset for executable uml models,” in MoDELS, ser. Lecture Notes in
Computer Science, K. Czarnecki, I. Ober, J.-M. Bruel, A. Uhl, and
M. Völter, Eds., vol. 5301. Springer, 2008, pp. 675–689.

[23] OMG, “Concrete Syntax for UML Action Language (Action Language
for Foundational UML - ALF),” accessed 30th April 2011. [Online].
Available: http://www.omg.org/spec/ALF/

[24] “BridgePoint,” accessed 8th March 2011. [Online]. Available: http:
//www.mentor.com/products/sm/model development/bridgepoint/

[25] “Mentor Graphics,” accessed 24th August 2010. [Online]. Available:
http://www.mentor.com/

[26] L. Starr, “How to build articulate UML class models,” accessed
24th November 2009. [Online]. Available: http://knol.google.com/k/
leon-starr/how-to-build-articulate-uml-class-models/2hnjef6cmm97l/4

[27] C. F. J. Lange, B. D. Bois, M. R. V. Chaudron, and S. Demeyer, “An
experimental investigation of UML modeling conventions,” in MoDELS,
ser. Lecture Notes in Computer Science, O. Nierstrasz, J. Whittle,
D. Harel, and G. Reggio, Eds., vol. 4199. Springer, 2006, pp. 27–
41.

[28] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns.
Addison-Wesley Professional, January 1995.

[29] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in software engineering: an introduction.
Kluwer Academic Publishers Norwell, MA, USA, 2000.

[30] R. K. Yin, Case Study Research: Design and Methods, 4th ed. Cali-
fornia: SAGE Publications, 2009.

[31] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical Software Engineer-
ing, vol. 14, no. 2, pp. 131–164, 2009.

[32] B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones, D. C.
Hoaglin, K. E. Emam, and J. Rosenberg, “Preliminary guidelines for
empirical research in software engineering,” IEEE Trans. Softw. Eng.,
vol. 28, pp. 721–734, August 2002.

[33] S. Flint, H. Gardner, and C. Boughton, “Executable/Translatable UML
in computing education,” in ACE’04: Proceedings of the sixth confer-
ence on Australasian computing education. Darlinghurst, Australia,
Australia: Australian Computer Society, Inc., 2004, pp. 69–75.

[34] S. Flint and C. Boughton, “Executable/translatable uml and systems
engineering,” in Systems Engineering and Test Evaluation Conference
(SETE 2003), A. McLucas, Ed., Canberra, Australia, 2003.

[35] M. S. Ackerman, “The intellectual challenge of cscw: The gap between
social requirements and technical feasibility,” Human-Computer Inter-
action, vol. 15, pp. 179–203, 2000.


