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Abstra
tThis thesis is an a

ount of implementations of parsing algorithms for Linear MultipleContext-Free Grammars (LMCFG). The algorithms have originally been proposedfor Parallel Multiple Context-Free Grammars (PMCFG), a super
lass to LMCFG, byPeter Ljunglöf. LMCFG is a Mildly Context-Sensitive Grammar formalism.The implementations are part of the work being 
arried out for the TALK proje
tat the departements of Linguisti
s at Göteborg University and Computing S
ien
e atChalmers University of Te
hnology and Göteborg Univerity.The Language Te
hnology Group at Chalmers is 
urrently 
ondu
ting resear
h roundthe grammar formalism Grammati
al Framework (GF). The important sub
lass 
ontext-free GF is equivalent to PMCFG. This implies that a subset of the 
ontext-free GFgrammars 
an be parsed as equivalent LMCFG grammars.Four di�erent algorithms for parsing LMCFG are implemented, using dedu
tive agenda-driven 
hart-parsing. The �rst algorithm is a straightforward bottom-up strategy 
om-bining items with smaller 
over of the input string to items with larger 
over. These
ond algorithm uses a 
ontext-free approximation and then re
overs the resulting
hart. The third algorithm is an a
tive algorithm with Earley and Kilbury predi
tion.And the last algorithm is in
remental.The algorithms have not been thoroughly tested as part of the work presented here.However, preliminary testing indi
ate that they seem faster than the existing parserfor GF.SammanfattningDen här uppsatsen är en redogörelse för implementeringar av parsningsalgoritmer förLinear Multiple Context-Free Grammars (LMCFG). Algoritmerna har från börjanföreslagits av Peter Ljunglöf för Parallel Multiple Context-Free Grammars (PMCFG),en superklass till LMCFG. LMCFG är en milt kontextkänslig grammatikformalism.Implementeringen är en del av det arbete som institutionerna för Lingvistik vid Göte-borgs Universitet o
h Datavetenskap på Chalmers Tekniska Högskola o
h GöteborgsUniversitet utför inom TALK projektet.Språkteknologigruppen vid Chalmers bedriver bland annat forskning kring grammatikformalismen Grammati
al Framework (GF). Den viktiga subklassen 
ontext-free GFär ekvivalent med PMCFG. Det innebär att vissa 
ontext-free GF grammatiker kanparsas som ekvivalenta LMCFG grammatiker.Fyra olika algoritmer har implementerats utifrån deduktiv agenda-driven 
hart-parsning.Den första algoritmen är en enkel bottom-up algoritm som kombinerar den erhållna
hartinformationen nerifrån o
h upp till större o
h större enheter. Den andra algorit-men utgår från en kontextfri uppskattning o
h �ltrerar sen ut den information somöverensstämmer med den ursprungliga LMCFG:n. Tredje algoritmen är en variantpå aktiv parsning med både Earley o
h Kilbury �ltrering som alternativ. Den sistaalgoritmen är en inkrementell algoritm.Det har inte genomförts någon omfattande utvärdering av algoritmerna inom det ar-bete som presenteras här. Preliminära tester antyder do
k att algoritmerna är snab-bare än den nuvarande parsningsalgoritmen för GF.i
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Figure 1: Notations used throughout the thesis
w an input string s.t. w = w1 . . . wn

ǫ the empty sequen
e/string
s a substring in w, s = wi, . . . , wj 0 ≤ i ≤ j ≤ |w|
G a grammar, G = (C, Σ, S, R)
C the set of non-terminals, also 
alled the 
ategories
Σ the set of terminal tokens (the alphabet)
S a start-symbol of a grammar s.t. S ∈ C
R the set of rules
V the set of symbols, C ∪ Σ
A, B elements in C
~B a sequen
e of 
ategories, B1, . . . Bn

a, b elements in Σ
L ; L(A) a language; the language of 
ategory A
f, g fun
tion symbols
δ arity of a fun
tion or rule
α, β, γ sequen
es of linearizations or elements in V
Φ, Ψ linearization re
ords or sequen
es of linearizations,

Φ = α1 . . . αn
∗ the Kleene star
· 
on
atenation of two sequen
es
→ A→ α ≡ (A,α) ∈ R
⇒ B ⇒ αβγ whenever B → β
⇒∗ the re�exive and transitive 
losure of a 
ategory
|x| the length/size of x
n, m natural numberswe often use n when |x| is known
Γ a re
ord of any type. Often used for range re
ords
~Γ a sequen
e of re
ords, ~Γ = Γ1, . . . Γn

r, s re
ord labels
i, j, k natural numbers used for indi
es
(i, j) the range i to j
ρ any range (i, j)
ρǫ the range for the empty string
⌈(i, j)⌉ the 
eiling of a range, returns (j, j)
⌊(i, j)⌋ the �oor of a range, returns (i, i)

x



Chapter 1Introdu
tion
1.1 MotivationThis thesis is the report for the implementations of parsing algorithms 
arriedout during the spring of 2005. The parsing algorithms are proposed in PeterLjunglöf's PhD thesis �Expressivity and Complexity of the Grammati
al Frame-work� (2004). The implementations 
over a subset of the proposed algorithms.We have tried to follow the notations of Ljunglöf when possible, to make it easyto 
ompare the proposed algorithms with the implemented.Grammati
al Framework (GF) is one of the areas of resear
h at Chalmers Uni-versity of Te
hnology. The work around GF is also a part of the work being
arried out for the TALK-proje
t (Tools for Ambient Linguisti
 Knowledge) atChalmers and Göteborg University. For information about GF and the TALKproje
t, see GF (2004) and TALK (2004) respe
tively.1.2 Stru
tureThe 
hapters have the following stru
ture

• Chapter 2 Ba
kground: Introdu
tion and de�nition of some grammar for-malisms. Explanation of de
orated 
ontext-free parsing algorithms usingdedu
tion and a brief des
ription of the proposed algorithms.
• Chapter 3 Implementation: A des
ription of the algorithms as they havebeen implemented.
• Chapter 4 Small Evaluation: For several reasons there has not been anyextensive evaluation 
ondu
ted. Nevertheless it is possible to draw some
on
lusions, and to show some parse results.
• Chapter 5 Summary: Comments on the implementations and proposalsfor future work. Rounding o� the thesis.
• Appendix A The Code: The sour
e 
ode of the implemented algorithms.1



1.3 HaskellThe algorithms are implemented in Haskell as is most of the Grammati
alFramework. It is not ne
essary to understand Haskell to read the report evenif the 
ode of the implementations is in Haskell. The bulk of the implemented
ode 
an be found in Appendix A.Haskell is a fun
tional programming language named after one of the pioneers in
λ-
al
ulus, Haskell B. Curry. It is based on λ-
al
ulus and stati
ally typed. Thismeans that the implemented fun
tions are de�ned for spe
i�
 types; a fun
tionfor doubling a Float will not take an Integer as an argument. Fun
tions 
an behigher-order, meaning that a fun
tion 
an have other fun
tions as arguments.For more information on Haskell, see Hudak et al. (1999), Peyton Jones (2003)or Thompson (1999).

2



Chapter 2Ba
kground
The ba
kground 
hapter 
an roughly be divided into two parts. The �rst partintrodu
es the grammar formalisms that are ba
kground knowledge Linear Mul-tiple Context-Free Grammars. It also gives a variant of Context-Free Grammars
alled De
orated Context-Free Grammars. The se
ond part presents the toolsfor parsing. A brief a

ount of the proposed algorithms is given at the end.2.1 Preliminary de�nitions2.1.1 Sets and stringsCon
atenation of setsGiven that X and Y are sets then X · Y = {x · y | x ∈ X , y ∈ Y }. Further,
X n+1 = {X · X n | x ∈ X } and X 0 = {ǫ}, where ǫ is an empty sequen
e.TheKleene starThe Kleene star, ∗, is used to denote all possible repetitions of a set X

X ∗ = X 0 ∪ X 1 ∪ . . . ∪ X i =

∞
⋃

0

X iAlphabetA �nite set of terminal tokens is 
alled an alphabet and denoted Σ.3



Strings and substringsA string w ∈ Σ∗ is a sequen
e w1 . . . wn in whi
h ea
h wi ∈ Σ. A substringis any 
ontinuous part of a string. This means that every terminal token of astring w 
an be seen as a substring of w.Example Given the string w = 1 2 3 4 5; 1, 3 4 and 2 3 4 5 are all substrings of
w but 1 3, 1 2 4 5 and 4 5 6 are not.LanguageA language, L, is a set of strings over an alphabet, Σ, i.e. L ∈ Σ∗.Example The language

{ anbicn | n, i ≥ 0 }
an be written as
anb∗cn2.1.2 Re
ords and tuplesRe
ordA label is an atomi
 symbol and a re
ord is a set of unique label-value pairs.Example If r1, . . . , rn are labels and x1, . . . , xn are values (su
h as ranges orsequen
es of symbols) then

Γ = {r1 = x1; . . . ; rn = xn}is a re
ord.Re
ord proje
tionProje
tion on a re
ord Γ with the label ri is written Γ.ri. The proje
tion willreturn the value paired with ri.Proje
tions will either return a terminal value or another proje
tion, givingre
ord proje
tion a re
ursive stru
ture.Example Given the two re
ords
Γ1 = {r = Γ2.r

′}

Γ2 = {r′ = a}the proje
tion Γ1.r returns the proje
tion Γ2.r
′ whi
h in turn will give theterminal value a. 4



Re
ord uni�
ationWe de�ne simple uni�
ation of re
ords as
Γ1 ⊔ Γ2 = Γ1 ∪ Γ2Simple uni�
ation su

eeds i� there is no r s.t. Γ1.r 6= Γ2.rRe
ord substitutionWe 
an substitute one re
ord for another in a list of re
ords. We write theoperation as
Γ1, . . . , Γn[i := Γ]meaning that in the list Γ1, . . .Γn the i:th element is substituted by Γ. Sub-stitution 
an also be performed on proje
tions in re
ords. The operation isdenoted

Γ[Bk/Γk]and every proje
tion Bk .r in α1 . . . , αn is substituted by the value given by Γk.r.Example Γ1, Γ2, Γ3[2 := Γ] will substitute the se
ond re
ord for Γ, returning
Γ1, Γ, Γ3.Given Γ = {r = aA1.r a; r2 = A1.r

′} and Γ1 = {r = a, r′ = A2.r
′′} then

Γ[A1/Γ1] = a a aA2.r
′′.TuplesA tuple 
an be seen as a re
ord sin
e every re
ord proje
tion 
an be repla
edby the 
orresponding tuple proje
tion.Example As an example, the tuple T = (x1, . . . , xn) is equivalent to the re
ord

Γ = {1 = x1; . . . ;n = xn} and the i:th element in T is the same elementas that given by the proje
tion Γ.i.2.2 GrammarsIn the following se
tion we will de�ne Context-Free Grammars (CFG) and avariant of CFG 
alled De
orated Context-Free Grammars (DCFG). We will alsointrodu
e the grammar formalisms Grammati
al Framework (GF, Ranta, 2004)and Parallel Multiple Context-Free Grammars (PMCFG, Seki et al., 1991). Theseparation of syntax into an abstra
t and a 
on
rete part will be introdu
ed sin
ethis is the way both GF and PMCFG handle syntax.5



Figure 2.1: An example of a Context-Free grammarA 
ontext-free grammar (adapted from Ljunglöf (2004), page 17) where therules are
S → NP , VP

NP → D , N

NP → N

VP → V , NP

D → a

D → many

N → lion

N → lions

N → fish

V → eat

V → eatsand S = senten
e, NP = noun phrase, VP = verb phrase, D = determiner,
N = noun and V = verb. Only the rules are given sin
e it follows from R what
C, S and Σ are.2.2.1 Context-Free GrammarsContext-Free Grammars (CFG) are a sub
lass of the Phrase Stru
ture Gram-mars. They are 
alled 
ontext-free sin
e the rules have no 
ontext-dependentinformation on when they are allowed to be applied; the left-hand side of therule is restri
ted to 
ontain a single 
ategory, (Chomsky, 1959).A 
ontext-free grammar is a four-tuple (C, S, Σ, R), where

• C is the set of non-terminal symbols,
• Σ is the alphabet,
• S is the start 
ategory of G s.t. S ∈ C and
• R is the set of rules: R ⊆ C × V ∗ where V = C ∪ Σ is known as the setof symbols.An example of a CFG, re
ognizing a small fragment of English, 
an be found in�gure 2.1.Some grammar notationsFor most grammars C, S and Σ are obvious fromR and therefore only the rulesare given.We use the Greek letters α, β and γ to denote any sequen
e of symbols in V . Itis 
ommon to use A→ β instead of (A, β) ∈ R, and we 
all A the left-hand side6



and β the right-hand side of the rule. Elements in β are the daughters of A.For a sequen
e of symbols, αBγ, we 
an use the rewriting relation ⇒ to write
αBγ ⇒ αβγ i� B → β.The empty string is denoted ǫ and the rule A→ ǫ is 
alled an ǫ-rule. The numberof 
ategories on the right-hand side of → is the arity of the rule, denoted δ.Expressivity of CFGExpressivity features handled by a 
ontext-free grammar in
lude

• nesting (anbn) and
• reverse 
opying {wwR|w ∈ (a ∪ b)∗} (where ababR = baba)For most pra
ti
al uses the 
omplexity of everyday language 
ould be 
apturedwithin the expressivity of Context-Free Grammars. There are however somelinguisti
 features that do require more expressive power;
• multiple agreement (ambmcm),
• 
rossed agreement (anbmcndm) and
• dupli
ation {ww |w ∈ (a ∪ b)∗}.For exampleShieber (1985) proposes that the subordinate 
lauses of Swiss Ger-man 
arry a syntax 
ontaining dis
ontinuent 
onstituents (
rossed agreement).The same has been 
laimed for Dut
h by Joshi (1985).Language of a CFGThe re�exive and transitive 
losure of ⇒ is written as ⇒∗. The language of a
ategory A is then

L(A) = {w ∈ Σ∗|A ⇒∗ w}The language re
ognized by a grammar G is L(G) whi
h equals L(S) i� S isthe starting 
ategory of G.2.2.2 De
orated Context-Free GrammarThe 
ontext-free approximation des
ribed in se
tion 3.3 uses a form of CFG withde
orated rules. The de
oration 
onsists of a name for the rule and subs
riptingea
h non-terminal in the right-hand side in order to fa
ilitate implementation.The example CFG as a De
orated CFG is shown in �gure 2.2.In all other respe
ts a De
orated CFG (DCFG) 
an be seen as any other straight-forward CFG.Example The following 
ontext-free rule7



Figure 2.2: A De
orated CFGThe example CFG in �gure 2.1 as a De
orated CFG
s : S → NP1, VP2

np : NP → D1, N2

np : NP → N1

vp : VP → V1, NP2

d : D → a

d : D → many

n : N → lion

n : N → lions

n : N → fish

v : V → eat

v : V → eats

S → NP , VP
an be de
orated to
s : S → NP1, VP2

many lions eat fish is an example of a senten
e generated by the de
orated gram-mar. See �gure 2.3 its synta
ti
al stru
ture.2.2.3 Mildly Context-Sensitive GrammarsSeveral grammar formalisms have evolved under the name Mildly Context-Sensitive grammars, a term 
oined by Joshi (1985).Expressivity and 
omplexity of Mildly Context-Sensitive GrammarsMildly Context-Sensitive grammars form a sub
lass of Context-Sensitive gram-mars (Chomsky, 1959) and have the following properties:1. They 
an express any 
ontext-free language.2. They have 
onstant growth property (when ordered by in
reasing lengththe senten
es of a language do not di�er by more than a 
onstant).3. They 
an be parsed in polynomial time (with respe
t to the length of theinput).4. They 
an express multiple agreement, 
rossed agreement and dupli
ation.8



Figure 2.3: Parse treeThe string many lions eat fish is generated by the de
orated grammar. Thesynta
ti
al stru
ture of the senten
e is shown below.s:S
a

a
aa

!
!

!!np:NP
Z

Z
�

�d:Dmany n:Nlions vp:VP
Z

Z
�

�v:Veat np:NPn:N�shThe �rst and fourth of these properties are true for all Context-Sensitive gram-mars but the se
ond and third properties are not. The bene�t of a MildlyContext-Sensitive grammar is that it 
an express features beyond the expres-sivity of CFG:s without having the full-s
ale time-
onsumption of Context-Sensitive grammars.In order to give formal bounds on expressivity the properties in the last point
an be de�ned in the following way:
• k-multiple agreement: am

1 . . . am
k

• k-
rossed agreement: am1

1 . . . amk

k bm1

1 . . . bmk

k

• k-dupli
ation: {wk|w ∈ (a ∪ b)∗}With these de�nitions, a CFG is 
apable of expressing at most 2-multiple agree-ment, 1-
rossed agreement and 1-dupli
ation. The mildly 
ontext-sensitivegrammar formalism Tree Adjoining Grammars (TAG, Joshi et al. 1975) 
anexpress 4-multiple agreement, 2-
rossed agreement and 2-dupli
ation and Mul-tiple Context-Free Grammars (Seki et al., 1991) 
an express these properties forany given k.There are limits to what a mildly 
ontext-sensitive grammar 
an handle. Thelanguage a2
n , whi
h gives all sequen
es of a with length 2n, is su
h an examplesin
e it does not have a 
onstant growth property.2.2.4 Abstra
t and 
on
rete syntaxConsider the 
ontext-free syntax rule for modifying a noun with an adje
tive9



NP → AP , N(where NP is the resulting noun phrase, AP is the modifying adje
tive phraseand N is the noun). The rule 
an be written in two ways, depending on whatlanguage the grammar shall generate.Spanish modi�es nouns by putting the adje
tive after the noun, vino blan
o.In English the adje
tive 
omes �rst, as in white wine, and in Fren
h the orderdepends on the parti
ular adje
tive in use: bon vin but vin blan
.Thus we would need one more rule for the word order N , A and a way ofspe
ifying when to use whi
h rule. Alternatively, we 
an separate the syntaxinto an abstra
t and a 
on
rete part.The abstra
t rule would only spe
ify whi
h 
ategories that 
an be 
ombinedinto a noun phrase. The di�erent ways of realising the abstra
t rule wouldthen be des
ribed in 
on
rete linearization rules. The grammars for Spanish,English and Fren
h would share the abstra
t rule but would ea
h have theirown 
on
rete linearizations of it.AdvantagesThere are some 
lear advantages of separating the abstra
t and the 
on
retesyntax.
• One abstra
t syntax rule 
an have several 
on
rete linearizations, allow-ing the abstra
t syntax to work like an interlingua between the 
on
retesyntaxes. This works both for translating between natural languages butalso between di�erent kinds of output modes (plain text, XML do
uments,outputting spee
h synthesis et
.) for a 
ertain pie
e of information.
• The abstra
t syntax 
an 
on
entrate on the main issues and let the 
on-
rete linearizations take 
are of the details.2.2.5 Grammati
al FrameworkGrammati
al Framework (GF; Ranta, 2004) uses the type theory of Martin-Löf(1984) to express the semanti
s of natural languages, supporting higher-orderfun
tions and dependent types.An important sub
lass of GF is obtained when the abstra
t rules are 
ontext-free, i.e. only 
ontain �rst-order fun
tions, and there are no dependent types.This sub
lass is therefore 
alled Context-Free GF or 
f-GF for short.2.2.6 Generalized Context-Free GrammarsGeneralized Context-Free Grammars (GCFG) were introdu
ed as a way of de-s
ribing Head Grammars (HG; Pollard, 1984). It is a Turing 
omplete (Chom-sky, 1959) formalism. Sin
e the 1980's, GCFG has been used as a framework10



for des
ribing other grammar formalisms. One of these formalisms is ParallelMultiple Context-Free Grammars (PMCFG; Seki et al. 1991) and one of the
on
lusions in Ljunglöf (2004) is that it is possible to use GCFG and PMCFGto des
ribe 
ontext-free GF.GCFG separates the syntax into an abstra
t and a 
on
rete part.Abstra
t GCFG rulesThe abstra
t syntax of GCFG is 
ontext-free and an abstra
t GCFG rule iswritten as
A → f [A1, . . . , Aδ]There are two things that distinguish the abstra
t GCFG rule from an ordinary
ontext-free rule. The �rst di�eren
e is that there 
an only be 
ategories in theright-hand side of the rule. The se
ond is the fun
tion name f , whi
h showsby whi
h 
on
rete rule the abstra
t rule is to be linearized.Con
rete GCFG linearizationsFor every abstra
t fun
tion f with arity δ, there is one 
orresponding 
on
retelinearization fun
tion f ◦ de�ned on δ arguments
f ◦(x1, . . . , xδ) = αThe 
on
rete syntax is made up of fun
tions over linguisti
 obje
ts. The obje
tsare not de�ned in GCFG; it is up to the spe
i�
 grammar formalism to de�neits own obje
ts.Combined GCFG rulesSometimes it 
an be easier to write the abstra
t rule together with the 
on
retelinearization. The 
ombined rule is then written

A → f [A1, . . . , Aδ] := α′where α′ is the result from substituting every xi in α for Ai .2.2.7 Parallel Multiple Context-Free GrammarsParallel Multiple Context-Free Grammars (PMCFG; Seki et al. 1991) are in-stan
es of Generalized Context-Free Grammars. In PMCFG the linguisti
 ob-je
ts are de�ned as tuples of strings and the fun
tions are de�ned using string
on
atenation. As we have seen, tuples 
an be repla
ed by equivalent re
ords( 2.1.2 on page 4), so we use re
ords of linearization information as linguisti
obje
ts. An abstra
t PMCFG rule looks just like an abstra
t GCFG rule.An example of a PMCFG 
an be found in �gure 2.4 on page 13.11



Linearization re
ordsA linearization re
ord is a re
ord of linearization rows. A linearization row isin turn a list of symbols, and a symbol is either a terminal or a proje
tion of a
ategory.The terminals' linearization information depends on their types. Sin
e the ter-minals are strings in PMCFG, the terminals will be linearized by 
on
atenation.The 
ategories are given their linearization information by re
ord proje
tions.And re
ord proje
tions have a re
ursive stru
ture, in the end giving a 
ategorya string linearization.A linearization re
ord only 
ontaining terminals is a fully instantiated lineariza-tion re
ord. We denote linearization rows by α or β. A linearization row has thesame purpose as the right-hand side of a CFG rule: It tells us how the left-handside is going to be linearized. A sequen
e of linearization rows is denoted by Φor Ψ. For 
onvenien
e we sometimes write the linearization re
ord
{s1 = V.s1 NP2.s; s2 = V.s2 NP2.s}as
s1 = V.s1 NP2.s, s2 = V.s2 NP2.sExample Consider the 
on
rete linearization re
ord (from �gure 2.4)
s1 = V.s1 NP2.s, s2 = V.s2 NP2.sit has two rows, one for the label s1 and one for s2. The proje
tion V .s2is an unbound variable, dependent on the value paired with s2 in thelinearization row for V . Be
ause of the re
ursive nature of proje
tions,sooner or later the value will be a terminal and V .s2 instantiated as astring.Con
rete PMCFG linearizationsTo every abstra
t fun
tion f there is a linearization fun
tion f ◦ returning alinearization re
ord

f ◦(x 1 . . . xδ) = {r1 = α1; . . . ; rn = αn}CombinedPMCFG rulesWe 
an write the abstra
t rule and the 
on
rete linearization as a 
ombinedrule. We then substitute every xi in αk for Ai

A→ f [A1, A2]
f◦(x1, x2) = {r = x1.r

′ a
s = x2.s

′ b}







A→ f [A1, A2] := r = A1.r
′ b

s = A2.s
′ b12



Figure 2.4: An erasing PMCFGThe following grammar is taken from Ljunglöf (2004), page 59.
S → ssg [NPsg , VP ] := s = NPsg .s VP .ssg

S → spl [NPpl , VP ] := s = NPpl .s VP .spl

NPsg → npdsg [Dsg , N ] := s = Dsg .s N .ssg

NPpl → npdpl [Dsg , N ] := s = Dpl .s N .spl

NP → npp [N ] := s = N .spl

VP → vpcsg [V , NPsg ] := ssg = V .ssg NPsg .s

spl = V .spl NPsg .s

VP → vpcpl [V , NPpl ] := ssg = V .ssg NPpl .s

spl = V .spl NPpl .s

Dsg → da [ ] := s = a

Dpl → dm [ ] := s = many

N → nl [ ] := ssg = lion

spl = lions

N → nf [ ] := ssg = fish

spl = fish

V → ve [ ] := ssg = eats

spl = eat

We use subs
ripts to distinguish between the �rst and the se
ond instan
e ofthe equivalent 
ategories A and A in the rule's right-hand side. A
tually all
ategories on the right-hand side are subs
ripted, so the rule
S → f [A] := s = A.p A.qis the shorthand notation for the rule

S → f [A1] := s = A1.p A1.qHowever, sin
e there is no way of 
onfusing whi
h A is linearized by whi
h label,there is no need to expli
itly write out the subs
ripts.Linear grammarsIf there 
an be at most one o

urren
e of ea
h possible proje
tion Ai.r in alinearization re
ord the PMCFG rule is linear. If all rules are linear the grammaris linear. 13



Example In the grammar in �gure 2.4 the rule
V P → vpcpl[V, NPpl] := ssg = V.ssg NPpl .s,

spl = V.spl NPpl .sis linear sin
e no re
ord proje
tion o

urs twi
e in the linearization.Erasing grammarsA rule is erasing if there are argument proje
tions that have no realization inthe linearization. A grammar is erasing if it 
ontains an erasing rule. Seki et al.(1991) have shown that it is possible to transform an erasing grammar to anon-erasing grammar. The non-erasing grammar 
an then be used for parsinginstead of the erasing grammar.Example The grammar in �gure 2.4 is erasing sin
e the rule
S → ssg [NPsg , VP ] := s = NPsg .s VP .ssgonly uses the ssg linearization of the VP :s linearization rows. The otherrow (labeled spl) is erased from the resulting linearization.Linear Multiple Context-Free GrammarsIf a grammar is linear it is 
alled a Linear MCFG (LMCFG). If the grammaris non-erasing and linear it is 
alled a Linear Context-Free Rewriting System(LCFRS, Vijay-Shanker et al. (1987)). Sin
e there is an equivalent non-erasinggrammar for every erasing grammar it is implied that LMCFG and LCFRS areequivalent grammar formalisms.2.2.8 PMCFG and 
f-GF are equivalent!The result a
hieved by Ljunglöf (2004) is to show that 
f-GF and PMCFG areequivalent formalisms. Consequently, a 
f-GF 
an be redu
ed to a PMCFG andthen we 
an use the PMCFG for parsing. However, we will not dis
uss how theequivalen
e 
an be proven.2.3 RangesWe use ranges in order to pinpoint partial stru
tures for substrings in a senten
e.RangeA range is a pair of indi
es, (i , j ) in whi
h 0 ≤ i ≤ j ≤ |w |, in an input string

w . The entire string w = w1 . . . wn spans the range (0, n). The word wi spansthe range (i− 1, i) and the substring wi, . . . , wj spans the range (i− 1, j). A14



range with identi
al indi
es, (i, i), is 
alled an empty range and spans the emptystring.We use ρ to denote any range (i, j).Example Given the input string abcd, the range for a is (0, 1) and bc has therange (1, 3).Range re
ordsIf a re
ord 
ontains label-range pairs we 
all it a range re
ord, Γ = {r1 =
ρ1, . . . , rn = ρn}. All range re
ords are fully instantiated, meaning there are novariables paired with the labels.2.3.1 Some operations on rangesGiven the range ρ = (i, j), the 
eiling of ρ returns an empty range for the rightindex

⌈ρ⌉ = (j, j)and the �oor of ρ does the same for the left index
⌊ρ⌋ = (i, i)2.3.2 Range 
on
atenationThe result of 
on
atenating two ranges (i, j) and (j′, k) is non-deterministi
,de�ned only when j = j ′

(i, j) · (j′, k) = (i, k) i� j = j′2.3.3 Range restri
tionIn order to retrieve the ranges of any substring s in a senten
e w = w1 . . . wnwe need to range restri
t the senten
e with respe
t to the linearization(s) forthat token. Range restri
tion of a string s with respe
t to w is de�ned as:
〈s〉

w
= {(i, j) | s = wi+1 . . . wj}If w is understood from the 
ontext we simply write 〈s〉.Example Range restri
ting the terminal a with respe
t to the string abba willgive

〈a〉 = (0, 1) or (3, 4)15



Range restri
tion of a linearization re
ord, Φ, with respe
t to a senten
e iswritten 〈Φ〉. The result from range restri
ting a linearization re
ord is thatevery terminal token s is repla
ed by its range, 〈s〉. The result is of 
ourse non-deterministi
 sin
e there 
an be several instan
es of a terminal in w, resultingin di�erent repla
ements. The range restri
tion of two terminals next to ea
hother fails if range 
on
atenation fails for the resulting ranges. Any unboundvariables in Φ are una�e
ted by range restri
tion.The above holds for range restri
tion of any sequen
e of symbols. The terminalswill be substituted by their ranges and the 
ategories left as they are.Example Given the string w = abba and the linearization re
ord
Φ = {r1 = a; r2 = b; r3 = A1.r4}range restri
tion would give

〈Φ〉 = {r1 = (0, 1), r2 = (1, 2), r3 = A1.r
′}or {r1 = (0, 1), r2 = (2, 3), r3 = A1.r
′}or {r1 = (3, 4), r2 = (1, 2), r3 = A1.r
′}or {r1 = (3, 4), r2 = (2, 3), r3 = A1.r
′}Range restri
ting α = a,A, b, B with w will return

〈α〉 = (0, 1), A, (1, 2), Bor (0, 1), A, (2, 3), Bor (3, 4), A, (1, 2), Bor (3, 4), A, (2, 3), BRange restri
ting Φ = {r = a b} with abba gives
〈Φ〉 = {r = (0, 2)}The other possible solutions fail sin
e they 
annot be range 
on
atenated.2.3.4 Equivalent re
ord typesA fully instantiated, range restri
ted linearization re
ord will only 
ontain ranges.It 
an therefore be seen as a range re
ord. We say that the range re
ord

Γ = {r1 = ρ1; . . . ; rn = ρn}is equivalent to the fully instantiated, range restri
ted linearization re
ord
Φ = {r1 = ρ1; . . . ; rn = ρn}2.4 ParsingAn introdu
tion to parsing de
orated 
ontext-free grammars using dedu
tiveagenda-driven 
hart-parsing. 16



2.4.1 Re
ognition vs ParsingRe
ognition 
onsists of determining whether the senten
e w is in the languagegenerated by the grammar G or not (i.e. w ∈ L(G) ). Parsing on the other hand
onsists of determining the synta
ti
al stru
ture of w given G. The a
quiredsynta
ti
al information 
an in turn be used to simulate the generation of w.It is obvious that the two are linked: If there is a way to generate w from G then
w ∈ L(G). And 
orrespondingly, if w ∈ L(G) then there is a way to generate
w from G. However re
ognition will return either True or False while parsingwill return some representation of the possible synta
ti
al stru
ture(s) of thestring.2.4.2 Parsing as dedu
tionParsing as dedu
tion was introdu
ed by S
hieber, S
habes and Pereira (1995).General form for inferen
e rulesWhen viewing parsing as a dedu
tive pro
ess new 
onsequen
es are derivedby inferen
e rules from already a
quired information. The inferen
e rules arewritten as dedu
tion rules and 
an have side 
onditions.Given the ante
edent items A1 to Aδ and the side 
onditions conds the 
onse-quen
e item is C, whi
h is written

A1 , ... , An

C
{condsExample If there is a 
ontext-free grammar rule NP → N and we already havean N we 
an draw the 
on
lusion that there is an NP

N

NP
{NP → NAxiomsA dedu
tion without ante
edents is always true, given that the 
onditions hold.Su
h a dedu
tion is 
alled an axiom. Axioms are vital for any dedu
tion pro
esssin
e without them there will never be any ante
edents for deriving the �rst
onsequen
es.Example When dedu
tive parsing is started there are no items to derive 
on-sequen
es from. One way to get started is to predi
t from the grammar.These predi
tions would then be axioms. The axiom

S → α
{S → αis a predi
tion that says that we will �nd a way to linearize the 
ontext-freerule for the start 
ategory to mat
h the input string.17



2.4.3 Parse itemsParse item A parse item is a representation of a pie
e of information thatthe parsing algorithm has a
quired. The items 
an be implemented in manyways, depending on whi
h strategy is used for parsing.A
tive and passive itemsOne way of representing the 
ontext-free rule A → α, β is with the a
tive item
[ρ;A → α • β], where ρ is a range (i, j). This means that we have foundeverything to the left of the dot •, α, between i and j, and are looking foreverything to the right of the dot, β, in order to 
omplete the entire range of A.An a
tive item thus represents a partial analysis of the input and a predi
tionof what we might �nd later on.If β is empty, [ρ;A→ α• ], we 
an 
onvert the a
tive item to [ρ;A] and 
all it apassive item sin
e there is no longer anything left for it to �nd. A passive itemrepresents a 
omplete analysis of the input.2.4.4 De
orated parse itemsDe
orated a
tive itemsA de
orated a
tive item has the form

[ρ; f : A→ [α • β]]in whi
h all 
ategories in α are indexed and given with their range. Terminalsare given as they are.De
orated passive itemsA de
orated passive item is de�ned as having the form
[ρ; f : A]Example Given our example grammar in �gure 2.2 and the senten
e many

lions eat fish, we 
an have the passive item [(0, 1); d : D ] 
laiming that
d : D has been found with the range (0, 1). Or we 
an have the a
tiveitem [(2, 3); vp : VP → V1(2, 3)•NP2] for having found the verb in a verbphrase, with the predi
tion that there is an np : NP starting at index 3.Passive items for terminal rules (in whi
h the right-hand side is empty) 
arryenough information to enable the 
onstru
tion of parse trees. Passive items fornon-terminal rules do not sin
e it is not possible to see how they 
ame to a
hievethe parse information. For instan
e it 
annot be derived from the grammar howthe passive item [(0, 4); s : S] 
ame to have the range (0, 4). For that we willhave to use the 
orresponding a
tive item. But it is possible to derive how thepassive item [(0, 1); d : D] 
ame to have the range (0, 1).18



Goals for re
ognitionWe use goal items to determine if a senten
e belongs to the language of agrammar or not. This is a
hieved by �rst parsing the senten
e and then 
he
kingif the goal item is in the 
hart. If it is, then re
ognition returns True, otherwiseFalse.Goal items are dependent on the grammar and on how the implementation ofthe parsing algorithm.Example In the de
orated 
hart in �gure 2.5 the passive item (40)
[(0, 4); s : S]is a goal item. We 
ould also use the 
orresponding a
tive item (39)

[(0, 4); s : S → NP1(0, 2), VP2(2, 4)•]2.4.5 ChartIn order to store the results of parsing we use a set of items 
alled a 
hart. Wedenote the 
hart by C. See �gure 2.5 for an example of a de
orated 
ontext-freeparse 
hart.Another way of looking at the 
hart is to des
ribe it as a dire
ted graph,
C = (V , E ), in whi
h V is the set of verti
es, 
orresponding to the index posi-tions, and E 
orresponds to the parse items.The 
hart will depend on both the input and the grammar. However, it willalso depend on the parsing algorithm sin
e the derived items will be di�erent fordi�erent strategies. In �gure 2.6 we give a dire
ted graph of the passive itemsin �gure 2.5.The left parse tree in �gure 2.3, the passive items in �gure 2.5 and the dire
tedgraph 2.6 all represent the same synta
ti
 stru
ture. However in the 
hart andgraph we also retain the stru
ture with respe
t to the input positions.2.4.6 Inferen
e rules for De
orated CFGThere are three fundamental inferen
e rules for a dedu
tive 
hart-parsing al-gorithm (Kay, 1986; Wirén, 1992). The inferen
e rules have been adapted forde
orated 
ontext-free parsing. For 
onvenien
e we add the inferen
e rule Con-vert, whi
h vonverts fully instantiated a
tive items to passive ones. This makesit easier to de�ne the inferen
e rule Combine 2.2 and to sear
h the 
hart format
hing items sin
e there will be fewer passive than a
tive items.The items have the form de�ned in 2.4.3. It is important to remember that newitems are only derived if the range 
on
atenation su

eeds. This is also the 
asefor range restri
tion. 19



Figure 2.5: Example 
hartParsing the senten
e many lions eat fish gives the following de
orated 
ontext-free 
hart when using Earley �ltering
1 [(0, 0); s : S → •NP1, VP2] Predict

2 [(0, 0);np : NP → •N 1] Predict

3 [(0, 0);np : NP → •D1, N2] Predict

4 [(0, 0);n : N → •lion] Predict

5 [(0, 0);n : N → •lions ] Predict

6 [(0, 0);n : N → •fish] Predict

7 [(0, 0); d : D → •a] Predict

8 [(0, 0); d : D → •many] Predict

9 [(0, 1); d : D → many•] Scan 8

10 [(0, 1); d : D ] Convert 9
11 [(0, 1);np : NP → D1(0, 1) • N2] Combine 3, 10
12 [(1, 1);n : N → •lion] Predict

13 [(1, 1);n : N → •lions ] Predict

14 [(1, 1);n : N → •fish] Predict

15 [(1, 2);n : N → lions•] Scan 13
16 [(1, 2);n : N ] Convert 15
17 [(0, 2);np : NP → D1(0, 1), N2(1, 2)•] Combine 11, 16
18 [(0, 2);np : NP ] Convert 17
19 [(0, 2); s : S → NP1(0, 2) • VP2] Combine 1, 18
20 [(2, 2); vp : VP → •V1, NP2] Predict

21 [(2, 2); v : V → •eat ] Predict

22 [(2, 2); v : V → •eats ] Predict

23 [(2, 3); v : V → eat•] Scan 21
24 [(2, 3); v : V ] Convert 23
25 [(2, 3); vp : VP → V1(2, 3) •NP

2
] Combine 20, 24

26 [(3, 3);np : NP → •N 1] Predict

27 [(3, 3);np : NP → •D1, N2] Predict

28 [(3, 3);n : N → •lion] Predict

29 [(3, 3);n : N → •lions ] Predict

30 [(3, 3);n : N → •fish] Predict

31 [(3, 3); d : D → •a] Predict

32 [(3, 3); d : D → •many] Predict

33 [(3, 4);n : N → fish•] Scan 30
34 [(3, 4);n : N ] Convert 33
35 [(3, 4);np : NP → N1(3, 4)•] Combine 26, 34
36 [(3, 4);np : NP ] Convert 35
37 [(2, 4); vp : VP → V1(2, 3), NP2(3, 4)•] Combine 25, 36
38 [(2, 4); vp : VP ] Convert 37
39 [(0, 4); s : S → NP1(0, 2), VP2(2, 4)•] Combine 19, 38
40 [(0, 4); s : S ] Convert 39

20



Figure 2.6: The 
hart as dire
ted graphThe edges are the passive items from the 
hart in �gure 2.5. On top of the edgewe have the left-hand side and underneath is the synta
ti
al stru
ture of theright-hand side.
   

1 2 3 40

many lions eat fish

s:S

np:NP

np:NP

d:D n:N v:V n:N

vp:VP
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Predi
t
[(i i); f : A→ •β]

{

f : A→ β
0 ≤ i ≤ |w|

(2.1)The axioms as given by Predi
t. Predi
tion gives an item for ea
h rule in
R with an empty range for every input position 0 ≤ i ≤ |w|.Combine

[ρ′; f : A→ α •Bi β] [ρ′′; g : B]

[ρ; f : A→ α Biρ′′ • β]
{ρ ∈ ρ′ · ρ′′ (2.2)If there is an item for the rule f : A → αBβ having found α within ρ′and a passive item for the 
ategory B spanning the range ρ′′ we 
an adda new item to the 
hart, where αB has the range ρ.S
an

[ρ′; f : A→ α • sβ]

[ρ; f : A→ αs • β]

{

ρ ∈ ρ′ · 〈s〉 (2.3)If there is an item for the rule f : A → αsβ with the range ρ′, where thenext token is a terminal, we 
an add a new item where αs spans ρ′ · 〈s〉.For 
onvenien
e, the fully instantiated a
tive items are 
onverted to passiveitems.Convert
[ρ; f : A→ β•]

[ρ; f : A]
(2.4)Fully traversed a
tive items are 
onverted to passive items.Predi
tion is very blunt. It predi
ts an item for every rule at every input posi-tion. This gives a vast number of useless items, espe
ially if the number of rulesand/or the size of the input is very large.2.4.7 Earley predi
tionThis �ltering te
hnique was introdu
ed by Earley (1970) and is a top-downstrategy. Instead of predi
ting every possible rule at every possible input po-sition Earley limits the predi
tions by only predi
ting a new item when an oldone is looking for it.Predi
t

[ρ′; g : C → γ •Aα]

[ρ; f : A→ •β]

{

f : A→ β
ρ = ⌈ρ′⌉

(2.5)Only predi
t an item for the rule f : A→ β when there already is an a
tiveitem looking for A. The new item's range is the 
eiling of the ante
edentitem's range. 22



Initial Predi
tion
[(0, 0) : f : S → •α]

{f : S → α (2.6)Predi
t an item spanning (0, 0) for every rule in R where the left-handside of the rule is a start-
ategory.Combine and S
an are in
luded as inferen
e rules numbers 2.2 and 2.3.2.4.8 Kilbury predi
tionAnother �ltering strategy is the one proposed by Kilbury (1985), using a bottom-up approa
h. An item is only predi
ted for a grammar rule if the rule looks fora 
ategory that already has been found.This predi
tion strategy is also 
alled left-
orner parsing (as in Carroll, 2003).Predi
t+Combine
[ρ; g : B]

[ρ; f : A→ Bρ • β]
{f : A→ Biβ (2.7)Given a passive item for B and a rule in whi
h B is the �rst element ofthe right-hand side we 
an add a new item for the rule, sear
hing for therest of the right-hand side.Predi
t+S
an

[ρ;A→ s • β]

{

f : A→ sβ
ρ ∈ 〈s〉

(2.8)For every rule with a substring as the �rst element in the right-hand side,add an a
tive item for the rule spanning the substring, looking for the restof the right-hand side.Combine and S
an are in
luded as inferen
e rules numbers 2.2 and 2.3.2.4.9 Implementing parsing as dedu
tionThe a
tual implementation will depend on the grammar, the parsing algorithmand of 
ourse the goal for parsing.As long as the dedu
tion pro
ess enumerates all derivable items it is of nointerest in whi
h order they are produ
ed. However, for e�
ien
y reasons, wedo not want to enumerate an item more than on
e. Therefore the 
hart has tobe implemented as a set, only 
a
hing one instan
e of every item.New items are added to the 
hart as they are derived by the inferen
e rules.Sin
e ea
h new item 
an in itself have new items as it's 
onsequen
e all newitems are stored in a seperate data-stru
ture 
alled an agenda. When an itemis removed from the agenda, all its 
onsequen
es are derived. They are addedto the 
hart and agenda, if they are not already in the 
hart. This pro
edure23



Figure 2.7: An agenda-driven 
hart parsing algorithm for re
ognitionalgorithm : Agenda-driven Chart parsinginput : Initial Items derived from Axiomsoutput : True / Falsedata stru
tures: Chart, a set of ItemsAgenda, a 
olle
tion of Itemsinitialize:Chart to set of Initial Items ;Agenda to 
olle
tion of Initial Items ;while Agenda not empty :remove a Trigger Item from Agenda ;
ompute all Consequen
e Items of Trigger Item ;for ea
h Consequen
e Item :if Consequn
e Item not in Chart :then: Add Consequen
e Item to Chart and Agenda ;if Goal Item in Chart :then: True ;else: False ;is iterated until there are no more items in the agenda. The resulting 
hartwill then 
onsist of all the synta
ti
al information that 
an be derived from thesenten
e with respe
t to the grammar.An algorithm for agenda-driven 
hart parsing 
an be found in �gure 2.7.2.5 Polynomial PMCFG parsing strategiesLjunglöf (2004) proposes four main strategies for parsing PMCF grammars. Thestrategies have in turn di�erent �ltering te
hniques or versions. For an extensivedes
ription, see 
hapter 4 in Ljunglöf (2004).2.5.1 Naïve algorithmThis is a naïve algorithmwith a passive and an a
tive version. The algorithm fol-lows a straightforward bottom-up pro
edure, 
ombining parse items with ranges
overing smaller parts of the string to parse items with larger 
overing.2.5.2 Context-free approximation algorithmFor this strategy the PMCFG is 
onverted to a De
orated CFG. Parsing with theDCFG 
an then be 
arried out using any 
ontext-free algorithm. The de
orated24




ontext-free approximation might give items that are in
orre
t sin
e the DCFGis overgenerating. Therefore the resulting 
hart needs to be �ltered in a re
overystep.The 
omplete but unsound de
orated 
ontext-free 
hart is re
overed in twosteps. First the de
orated 
ontext-free 
hart is transformed into a PMCFG
hart. Then the items are 
ombined into items with dis
ontinuous 
onstituentsa

ording to the original PMCFG in a way similiar to the one proposed for theNaïve algrotithm.2.5.3 A
tive parsing algorithmFor the A
tive algorithm, an item is predi
ted for every possible range restri
tionof every linearization re
ord. The linearization rows of the items are traversed bys
anning and 
ombining. Whenever a row has been fully instantiated, the nextrow in the linearization re
ord is traversed until there are no more linearizationrows.Just as for 
ontext-free parsing, it 
an be unne
essary and time 
onsuming topredi
t an item for every rule in the grammar, so adaptions of the two �lteringstrategies Earley and Kilbury to PMCF grammars are proposed.2.5.4 In
remental parsing algorithmAn in
remental parsing algorithm reads one token at a time from the inputstring and 
omputes all possible 
onsequen
es from that token before readingthe next token.The proposed strategy is similar to the A
tive parsing algorithm above with oneimportant di�eren
e: For the A
tive algorithm an item is predi
ted for everypossible range restri
tion of every linearization re
ord. However, sin
e the tokensare read in
rementally (and therefore the order of the tokens is unknown) therehas to be an item for every possible range restri
tion of a linearization row. Thesame pro
edure, and argument, goes for 
ompletion.If massive and time 
onsuming predi
tion was a problem for the A
tive algorithmit is an even bigger problem for the In
remental algorithm. Therefore a way ofimplementing Earley and Kilbury �ltering is proposed. This should make theparsing pro
ess more time e�
ient.
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Chapter 3Implementation
There has not been enough time to implement all variants of the proposedalgorithms. Both the Naïve and the Context-free approximation algorithms areproposed with an a
tive and a passive version. Only the a
tive versions havebeen implemented. The A
tive algorithm is implemented with both Earley andKilbury predi
tions. The In
remental algorithm is implemented but none of theproposed predi
tion strategies are.ExamplesAll algorithms are explained with an example se
tion, where we parse the sen-ten
e abcd with respe
t to the grammar in �gure 3.1. For the Naïve, Approxi-mative and A
tive algorithms the parse 
hart is given in full. However, for theIn
remental algorithm this would take too mu
h spa
e so only an abbreviatedexample run is given.The examples are given in the same notation as the algorithms. For thoseinterested, the algorithms 
an be found in 
ode in Appendix A.ItemsJust as for the 
ontext-free parse items in 2.4.3 on page 18, it is not possible toderive parse trees from passive items for non-terminal rules, only for terminalrules.In se
tion 2.4.6 on page 19 we range restri
ted the terminals as they weres
anned. For the implemented algorithms range restri
tion is 
arried out atthe same time as predi
tion. This means that the items in the inferen
e ruleswill have ranges instead of terminals in their linearization re
ords. A 
onse-quen
e is that only rules that 
an be range restri
ted will be predi
ted as items,possibly making the 
hart smaller. 27



Figure 3.1: An interesting LMCFGIn order to have a small but interesting grammar for examples we use the fol-lowing from Ljunglöf (2004), page 82.
S → f [A] := s = A.p A.q

A→ g[A1, A2] := p = A1.p A2.p,

q = A1.q A2.q

A→ ac[ ] := p = a,

q = c

A→ bd[ ] := p = b,

q = dThe grammar generates the language
L(S) = {s shm | s ∈ (a ∪ b)∗}where shm is the homomorphi
 mapping s.t. ea
h a in s is translated to c, andea
h b is translated to d. So, the homomorphi
 mapping of abbab equals cddcd .Examples of generated strings are ac, abcd and bbaddc. However, neither abcnor abcdabcd will be generated.The language 
an not be des
ribed by a CFG sin
e it 
ontains a 
ombination ofmultiple and 
rossed agreement with dupli
ation. For instan
e the string abbcddhas multiple agreement on a, b, c and d, 
rossed agreement on the pairs a − cand b − d respe
tively and a mapped dupli
ation of the �rst part of the string

abb to the se
ond part cdd.NotationsIn some algorithms we 
hoose to use the equivalent range re
ord, Γ, for the fullyinstantiated, range-restri
ted linearization re
ord, Φ. This is written Γ ≡ Φ.The equivalen
e is des
ribed in se
tion 2.3.4.A sequen
e B1, . . . ,Bδ 
an be denoted by the more 
ompa
t ~B . The same goesfor range re
ords; Γ1, . . . ,Γn 
an be written as ~Γ.
3.1 Adapting the algorithms to LMCFGThe original algorithms are designed for PMCFG, but sin
e there are no su
hgrammars in use at this time in the GF environment we have adjusted the al-gorithms for LMCFG. This also makes them more time e�
ient. The di�eren
elies in how ranges are implemented. As we have seen (se
tion 2.2.7 on page 13)PMCFG supports parallel linearizations for rules. In order to represent the28



possibly multiple presen
e of the proje
tion Ai.r in the input, the proposedalgorithms use sets of ranges.For a LMCFG it is enough to represent every proje
tion with a single rangesin
e it 
annot o

ur more than on
e in any linearization re
ord.3.2 The Naïve algorithmThe �rst algorithm proposed by Ljunglöf is the `Polynomial parsing for 
ontext-free GF' and it has two versions, a passive and an a
tive. The passive versionrequires �nding δ items for every rule A→ f [B1, . . . , Bδ] := Φ in order to makea new item. Finding this subset of the 
hart is 
ompli
ated and takes a lot oftime. Therefore only the a
tive version has been implemented.3.2.1 Item formThere are two kinds of items, a
tive and passive.A
tive itemAn a
tive item for the rule
A→ f [ ~B] := Ψhas the form

[A→ f [ ~B′ • ~B′′]; Φ; ~Γ]in whi
h the 
ategories to the left of the dot •, ~B′, have been found with thelinearizations in the list of range re
ords ~Γ. Ψ is range restri
ted to Φ.Passive itemA passive item 
onsists of a 
ategory and its range re
ord
[A; Γ]Use of passive items makes it easier to implement the algorithm and also helpswhen manually 
he
king the parse result. They 
an be omitted with small
hanges to the inferen
e rules.3.2.2 Goals for re
ognitionGiven the grammar in �gure 3.1 we 
an now de�ne a goal item for the Naïvealgorithm for any input string w

[S; {s = (0, |w|)}]29



3.2.3 Inferen
e rulesThe implemented rules are similiar to the ones proposed by Ljunglöf, but notethat all range re
ords are re
ords over simple ranges.Predi
t
[A → f [•~B ]; Φ; ]

{

A → f [~B ] := Ψ
Φ ∈ 〈Ψ〉

(3.1)Predi
tion gives an item for every rule in the grammar and the rangerestri
tion of its linearization is what it has found from the beginning.The sequen
e of range re
ords is empty sin
e none of the daughters in ~Bhave been found yet.Combine
[A → f [~B • Bk

~B ′]; Φ; ~Γ] [Bk ; Γk]

[A → f [~B ,Bk • ~B ′]; Φ′; ~Γ,Γk]
{Φ′ ∈ Φ[Bk/Γk] (3.2)An a
tive item looking for Bk and a passive item that has found Bk 
anbe 
ombined into a new a
tive item. The new item has found Bk and inits linearization re
ord we substitute Bk for its range. We also add thepassive item's range re
ord to the new item's re
ord of daughters.The a
tive items with fully instantiated linearizations are 
onverted to passiveitems.Convert

[A → f [~B•]; Φ; ~Γ]

[A; Γ]
{Γ ≡ Φ (3.3)Every fully instantiated A
tive item is 
onverted into a Passive item. Thefully instantiated linearization re
ord is transformed into a range re
ordwith equivalent information.3.2.4 Naïve parse 
hartFigure 3.2 
ontains the parse 
hart for parsing the string abcd with the Naïvealgorithm. Items 1 and 9 are examples of fully instantiated a
tive items, 6 and 10of the 
orresponding passive items. Predi
tion ensured that the four �rst itemswere added to the 
hart. Items 3 and 5 were 
ombined into item 7. The a
tiveitem 12 has been 
onverted into item 13, whi
h is the goal item for re
ognition.Item 11 is the 
ombination of items 3 and 10, i.e. the predi
ted item for therule A → g[A,A] and its 
orresponding passive item. It will never be
omefully instantiated sin
e range 
on
atenation always fails when the remainingproje
tions in Φ〈ab,cd〉A

are substituted for the ranges in the passive item's rangere
ord.The linearization re
ord Φ〈a,,c〉b,d is partially instantiated and Φg is the rangerestri
ted linearization re
ord from the grammar rule A → g[A, A] := Φ. Sin
ethere are only unbound variables in Φ they 
arry the same information. Therange re
ord Γ〈b,d〉 
ontains the same parse information as the fully instantiatedlinearization re
ord Φ〈b,d〉. 30



Figure 3.2: Naïve parse 
hartWe get the following parse 
hart when parsing the string abcd with the grammarin �gure 3.1 on page 28
1 [A → ac[•]; Φ〈a,c〉; ] Predict

2 [A → bd [•]; Φ〈b,d〉; ] Predict

3 [A → g[•A, A]; Φg ; ] Predict

4 [S → f [•A]; Φf ; ] Predict

5 [A; Γ〈a,c〉] Convert 1
6 [A; Γ〈b,d〉] Convert 2
7 [A → g[A •A]; Φ〈a,c〉bd ; Γ〈a,c〉] Combine 3, 5
8 [A → g[A •A]; Φ〈b,d〉ac ; Γ〈b,d〉] Combine 3, 6
9 [A → g[A, A•]; Φ〈ab,cd〉; Γ〈a,,c〉Γ〈b,d〉] Combine 6, 7
10 [A; Γ〈ac.bd〉] Convert 10
11 [A → g[A •A]; Φ〈ab,cd〉A

; Γ〈ac,bd〉] Combine 3, 10
12 [S → f [A•] : Φ〈abcd〉 : Γ〈ac,bd〉] Combine 4, 10
13 [S ; Γ〈abcd〉] Convert 12where the range re
ords are the following

Γ〈a,c〉 = {p = (0, 1); q = (2, 3)}

Γ〈b,d〉 = {p = (1, 2); q = (3, 4)}

Γ〈ac,bd〉 = {p = (0, 2); q = (2, 4)}

Γ〈abcd〉 = {s = (0, 4)}and the range restri
ted linearization re
ords are
Φ〈a,c〉 = {p = (0, 1); q = (2, 3)}

Φ〈b,d〉 = {p = (1, 2); q = (3, 4)}

Φ〈ab,cd〉 = {p = (0, 2); q = (2, 4)}

Φ〈abcd〉 = {s = 0, 4)}

Φ〈a,c〉bd = {p = (0, 1) A1.p; q = (2, 3) A1.q}

Φ〈b,d〉ac = {p = (1, 2) A1.p; q = (3, 4) A1.q}

Φ〈ab,cd〉A
= {p = (0, 2) A1.p; q = (2, 4) A1.q}

Φg = {p = A1.p, A2.p; q = A1.q A2.q}

Φf = {s = A1.p, A1.q}
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3.3 The Approximative algorithmParsing is performed in two steps in the Approximative algorithm. The �rststep is to parse the senten
e with the LMCFG 
onverted to a De
orated CFG.The resulting 
hart is then re
overed in step two to a LMCFG 
hart.3.3.1 The 
ontext-free approximationIn order to obtain the initial axioms for the dedu
tion pro
ess, the LMCFG is
onverted into a DCFG whi
h is used to make an approximative parse. Thegrammar 
onversion is done by 
reating a de
orated 
ontext-free rule for everyrow in the linearization re
ord. This means that any rule
A→ f [ ~B] := r1 = α1, . . . , rn = αnwill give n new rules

f : A.ri → αiThe parsing 
an then be 
ompleted as des
ribed in se
tion 2.4.Example The rule
A→ f [ ~B] := r1 = α1, r2 = α2 , r3 = α3will give the following 
ontext-free rules

f : A.r1 → α1

f : A.r2 → α2

f : A.r3 → α3Sin
e the DCFG is over-generating 
ompared to the LMCFG the returned parse
hart is unsound. We therefore need to retrieve the passive items from theDCFG parse 
hart and 
he
k them against the LMCFG to get the dis
ontinuous
onstituents and mark them for validity.The 
hart of passive DCFG items is then extended by adding the items frompredi
tion, to give the 
omplete set of axioms.The Approximative algorithm never range restri
ts. The ranges for the tokensin the input are given by the de
orated 
ontext-free parsing.A 
onsequen
e of redu
ing a 
ontext-free GF grammar to a LMCFG is that allfun
tion names are unique. This means that every 
ombination of an abstra
trule with a 
on
rete linearization will be distinguishable by the fun
tion name.3.3.2 Items for the 
ontext-free approximationThere are two items involved when we 
onvert the 
hart from the approximativeparsing into axioms for the re
overy step.32



Figure 3.3: The LMCFG 
onverted to a CFGThe rules of the example grammar 3.1 looks like this when 
onverted to a De
-orated CFG
f : S .s → A.p A.q
g : A.p → A1 .p A2 .p
g : A.q → A1 .q A2 .q

ac : A.p → a

ac : A.q → b

bd : A.p → c

bd : A.q → dThe subs
ripted numbers are for distinguishing the two 
ategories from ea
hother, sin
e they are equivalent. Here A1.q is a 
ategory of its own, not a re
ordproje
tion.De
orated itemThe items returned from the approximative parsing have the same form as thatde�ned in 2.4.3 for a
tive items
[ρ; f : A→ [α • β]]PreMCFG itemWe only need the fun
tion name in the item sin
e every 
ombination of abstra
trule and 
on
rete linearization has a unique fun
tion name

[f ; r = ρ; ~Γ]

~Γ is extra
ted from a de
orated item.3.3.3 Converting the DCFG forestThe items in the DCFG 
hart are 
onverted to preMCFG items, using thefollowing ruleMake PreMCFG items
[ρ; f : A.r → β]

[f ; r = ρ; ~Γ]
(3.4)

~Γ is a partition of the daughters in β su
h that,
Γi ⇔ {r = ρ | Bi .rρ ∈ β}where Γi, the i:th range re
ord in ~Γ, will 
onsist of the label r from the proje
tion

Bi.r in β and the range 
orresponding to Bi.r in the �nal linearization.33



Example Given β = A1.r
′ ρA1

, A2.r
′′ ρA2

then Γ1 = {r ′ = ρA1
} and Γ2 = {r ′′ = ρA2

}For the terminal rules with empty right-hand sides, ~Γ will be empty sin
e thereare no proje
tions. For a rule with a non-empty right-hand side Γi will 
onsistof the information for the i:th 
ategory in the right-hand side. In total, ~Γ willhave a range re
ord for every daughter in the right-hand side.3.3.4 Items for the re
overy stepThe re
overy step uses three items.Pre itemThe items derived from the LMCFG have the following form
[A → f [~B ]; Γ • ri , . . . , rn ; ~Γδ]where ri . . . rn is a list of labels, ~Γδ is a list of | ~B| range re
ords, and Γ is arange re
ord for the labels r1, . . . , ri−1Mark item In order to re
over the 
hart we use mark items with dotted rulesand dotted re
ords

[A → f [~B • ~B ′]; Γ; ~Γ • ~Γ′]The idea is to move 
ategories from the right-hand side of the dot, •, tothe left at the same time as we 
he
k if the 
orresponding range re
ord
an be marked for 
orre
tness.Passive item A passive item 
onsists of a 
ategory and its range re
ord
[A : Γ]3.3.5 Goals for re
ognitionGiven the grammar in �gure 3.1 and the input string w we get the goal item

[S ; {s = (0 , |w |)}]3.3.6 Inferen
e rules for the re
overy stepPre-Predi
t
[A → f [~B ]; •r1, . . . , rn ; ~Γδ]

{

A → f [~B ] := Φ (3.5)Every rule in the grammar is predi
ted as a Pre item. The 
ontext-freeapproximation gives the ranges for every token in the input, so we neverneed to range restri
t. Instead, we use the labels r1, . . . , rn in Φ to retrievethe ranges given by the preMCFG items. ~Γδ is a list of δ range re
ords inwhi
h all re
ords are empty. 34



Pre-Combine
[A → f [~B ]; Γ • r , ri , . . . rn ; ~Γ] [f ; r = ρ; ~Γ′]

[A → f [~B ]; Γ, r = ρ • ri , . . . rn ; ~Γ′′]

{

~Γ′′ ∈ ~Γ ⊔ ~Γ′ (3.6)If there is a PreMCFG item for the fun
tion f with a range for the label
r, we 
an 
ombine that PreMCFG item with a Pre item where f is thefun
tion name and the next label is r. Then we move the dot forward.The new item has the uni�
ation of the ante
edents re
ord stru
tures asits own stru
ture of range re
ords.Mark-Predi
t

[A → [~B ]; Γ•; ~Γ]

[A → [•~B ]; Γ; •~Γ]
(3.7)When all re
ord labels have been found and given a range, we 
an startto 
he
k if the items have been derived in a valid way by marking thedaughters' range re
ords for 
orre
tness.Mark-Combine

[A → f [~B • Bi, ~B ′]; Γ; ~Γ • Γi, ~Γ
′] [Bi; Γi]

[A → f [~B ,Bi • ~B ′]; Γ; ~Γ,Γi • ~Γ
′
]

(3.8)Re
ord Γi 
an be marked for 
orre
tness if there is a passive item for
ategory Bi that has found Γi.Convert
[A → f [~B•]; Γ; ~Γ•]

[A; Γ]
(3.9)Fully instantiated a
tive items are 
onverted to passive items.3.3.7 Example of Approximative parsingAn example 
hart from top-down parsing the string abcd with the DCFG 
anbe seen in �gure 3.4. Item 8 is an example of the de
orated grammar beingovergenerating. The 
hart will have one 
orresponding preMCFG item for everyde
orated 
ontext-free item, whi
h is given in the same �gure.Parsing abcd gives a 
hart of 32 items if the de
orated 
ontext-free parsing is
arried out with top-down �ltering. For bottom-up �ltering the resulting 
harthas 38 items. The 
hart 
an be seen in �gure 3.5, ex
ept for the pre items.These 
an instead be found in �gure 3.4 together with the fully instantiateditems from the 
ontext-free approximation.The preMCFG item 8 gets as far as be
oming a mark item, but it will never bemark-
ombined sin
e there are no passive items with the range re
ord Γab,c.3.4 The A
tive algorithmThe a
tive algorithm parses without 
ontext-free approximation.35



Figure 3.4: De
orated 
ontext-free 
hart and equivalent preMCFG itemsThe following 
hart of fully instantiated items is derived by parsing abcd withthe DCFG in �gure 3.3.
1 [(3, 4); bd : A.q → d ]
2 [(2, 4); g : A.q → A1.q (2, 3), A2.q (3, 4)]
3 [(2, 3); ac : A.q → c]
4 [(1, 2); bd : A.p → b]
5 [(0, 2); g : A.p → A1.p (0, 1), A2.p (1, 2)]
6 [(0, 1); ac : A.p → a]
7 [(0, 4); f : S .s → A1.p (0, 2), A1.q (2, 4)]
8 [(0, 3); f : S .s → A1.p (0, 2), A1.q (2, 3)]Converted to preMCFG items the de
orated 
ontext-free items look like

1∗ [bd ; {q = (3, 4)}; ]
2∗ [g; {q = (2, 4)}; {q = (2, 3)}, {q = (3, 4)}]
3∗ [ac; {q = (2, 3)}; ]
4∗ [bd ; {p = (1, 2)}; ]
5∗ [g; {p = (0, 2)}; {p = (0, 1)}, {p = (1, 2)}]
6∗ [ac; {p = (0, 1)}; ]
7∗ [f ; {s = (0, 4)}; {p = (0, 2)}, {q = (2, 4)}]
8∗ [f ; {s = (0, 3)}; {p = (0, 2)}, {q = (2, 3)}]
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Figure 3.5: A 
hart for the Approximative algorithmThe 
hart from parsing abcd when the de
orated 
ontext-free approximation isapplied top-down. The preMCFG items are numbered i∗ and found in �gure3.4.
1 [A→ bd[ ]; •{p, q}; ] Pre− Predict
2 [A→ ac[ ]; •{p, q}; ] Pre− Predict
3 [A→ g[A, A]; •{p, q}; {}, {}] Pre− Predict
4 [S → f [A]; •{s}; {}] Pre− Predict
5 [A→ bd[ ]; Γb • {q}; ] Pre− Combine 4∗, 1
6 [A→ ac[ ]; Γa • {q}; ] Pre− Combine 6∗, 2
7 [A→ g[A, A]; Γab • {q}; Γa,Γb] Pre− Combine 5∗, 3
8 [S → f [A]; Γ〈abcd〉•; Γ〈ab,cd〉] Pre− Combine 8∗, 4
9 [S → f [A]; Γabc•; Γab,c] Pre− Combine 7∗, 4
10 [A→ bd[ ]; Γ〈b,d〉•; ] Pre− Combine 1∗, 5
11 [A→ ac[ ]; Γ〈a,c〉•; ] Pre− Combine 3∗, 6
12 [A→ g[A, A]; Γ〈ab,cd〉•; Γ〈a,c〉,Γ〈b,d〉] Pre− Combine 2∗, 7
13 [A→ bd[•]; Γ〈b,d〉; •] Mark − Predict 10
14 [A→ ac[•]; Γ〈a,c〉; •] Mark − Predict 11
15 [A→ g[•A, A]; Γ〈ab,cd〉; •Γ〈a,c〉,Γ〈b,d〉] Mark − Predict 12
16 [S → f [•A]; Γ〈abcd〉; •Γ〈ab,cd〉] Mark − Predict 8
17 [S → f [•A]; Γabc; •Γab,c] Mark − Predict 9
18 [A; Γ〈b,d〉] Convert 12
19 [A; Γ〈a,c〉] Convert 13
20 [A→ g[A •A]; Γ〈ab,cd〉; Γ〈a,c〉 • Γ〈b,d〉] Mark − Combine 15, 19
21 [A→ g[A, A•]; Γ〈ab,cd〉; Γ〈a,c〉Γ〈b,d〉•] Mark − Combine 20, 18
22 [A; Γ〈ab,cd〉] Convert 21
23 [S → f [A•]; Γ〈abcd〉; Γ〈ab,cd〉•] Mark − Combine 17, 22
24 [S; Γ〈abcd〉] Convert 23where the range re
ords, Γ〈...〉 are the same as in �gure 3.2. The other rangere
ords are as follows

Γa = {p = (0, 1)}

Γb = {p = (1, 2)}

Γab = {p = (0, 2)}

Γabc = {s = (0, 3)}

Γab,c = {p = (0, 2), q = (2, 3)}
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3.4.1 The range for ǫFor this algorithm we use a spe
ial kind of range, ρǫ, whi
h denotes simulta-neously all empty ranges (i , i). There is an important di�eren
e between therange (i , i) and the variable ρǫ sin
e (i , i) is a range with identi
al indi
es, but
ρǫ is a 
onstant for all empty ranges.Operations on the epsilon-rangeThe range restri
tion of ǫ gives 〈ǫ〉 = ρǫ. Range 
on
atenation of any range ρwith the ǫ-range gives

ρ · ρǫ = ρǫ · ρ = ρFor the ǫ-range, ρǫ, both the 
eiling and the �oor will return ρǫ.3.4.2 Item formA
tive itemA
tive items for the rule
A→ f [ ~B] := Φ, r = αβ,Φ′have the form

[A→ f [ ~B]; Γ, r = ρ • β′,Ψ; ~Γ]where Γ is the equivalent range re
ord for the linearization rows in Φ and α hasbeen re
ognized as the range ρ. We are still looking for the rest of the row, β′,and the remaining linearization rows Ψ. Both β and Φ′ are range restri
ted to
β′ and Ψ respe
tively. ~Γ is the list of range re
ords 
ontaining the informationabout the daughters in [ ~B].Passive itemPassive items say that we have found A inside Γ

[A; Γ]3.4.3 Goals for re
ognitionGiven the grammar in �gure 3.1 and the input string w we use the followinggoal item
[S; {s = (0, |w|)}]38



3.4.4 Inferen
e rulesPredi
t
[A→ f [ ~B]; r = ρǫ • α′, β′; ~Γδ]

{

A→ f [ ~B] := r = α,Φ
α′,Φ′ ∈ 〈α,Φ〉

(3.10)For every rule in the grammar, predi
t a 
orresponding item that hasfound the empty range. ~Γδ is a list of | ~B| range re
ords. All range re
ordsare empty sin
e nothing has been found yet.Complete
[A→ f [ ~B]; Γ, r = ρ•, r′ = α,Φ; ~Γ]

[A→ f [ ~B]; Γ, r = ρ, r′ = ρǫ • α,Φ; ~Γ]
(3.11)When an item has found an entire linearization row we 
ontinue with thenext row by starting it o� with the empty range.S
an

[A→ f [ ~B]; Γ, r = ρ′ • ρ′′α,Φ; ~Γ]

[A→ f [ ~B]; Γ, r = ρ • α,Φ; ~Γ]
{ρ ∈ ρ′ · ρ′′ (3.12)S
anning is applied when the next symbol to read is a range. This rangemight be 
on
atenated with the range for what the row has found so far. Ifrange 
on
atenation su

eeds, there will be a new item with the resulting
on
atenation as range.Combine

[A→ f [ ~B]; Γ, r = ρ′ •Bi.r
′α, β; ~Γ] [Bi; Γ

′]

[A→ f [ ~B]; Γ, r = ρ • α, β; ~Γ[i := Γ′]]

{

ρ ∈ ρ′ · Γ′.r′

Γi ⊆ Γ′ (3.13)If the next thing to �nd is a proje
tion on Bi, and there is a passive itemwhere Bi is the 
ategory, 
ombination 
an be applied. The dot will thenbe moved past the proje
tion. If Γ′ is 
onsistent with the information thea
tive item has for its i:th daughter, re
ord substitution 
an be used. Therange for r is the 
on
atenation of ρ and the range 
orresponding to theproje
tion Γ′.r′.Convert
[A→ f [ ~B]; Γ, r = ρ•; ~Γ]

[A; Γ, r = ρ]
(3.14)An a
tive item that has fully re
ognized all its linearization rows is 
on-verted to a passive item.3.4.5 Earley �ltration for the A
tive algorithmEarley �ltration is an adaption from 2.4.7. There are three rules for Earleypredi
tion. The Earley predi
tions give passive items for the terminal ruleswith fully range restri
ted linearizations. The rest of the rules are predi
ted as39



a
tive items. All rules with the start 
ategory as left-hand side are assumed tobe non-terminal rules, so initial predi
tion will only give a
tive items.Predi
t Passive
[. . . ; . . . , r = ρ′ •A.r . . . ; . . .]

[A; Γ]

{

A→ f [] := Ψ
Γ ≡ 〈Ψ〉

(3.15)We only predi
t from the grammar if there is already an item looking for theleft-hand side of the rule. The Passive item has the range re
ord 
orrespondingto the fully instantiated linearization re
ord of the rule.Predi
t A
tive
[. . . ; . . . , r = ρ′ •A.r′ . . . ; . . .]

[A→ f [ ~B]; r = ρ • α′,Γ; ~Γδ]







A→ f [ ~B] := r′′ = α,Φ
α′,Γ ∈ 〈α,Φ〉
ρ = ⌈ρ′⌉

(3.16)This version of predi
tion is applied if the right-hand side is non-empty.The new range is the 
eiling of ρ.Initial predi
tion
[S → f [ ~B]; s = (0, 0) • Γ; ~Γδ]

{

S → f [ ~B] := s = α
Γ ∈ 〈α〉

(3.17)Sin
e there are no items at �rst, the parsing is initiated by predi
ting anitem for every rule with a start 
ategory as left-hand side. ~Γδ is a list ofrange re
ords in whi
h all re
ords are empty.Complete, S
an, Combine and Convert are in
luded as inferen
e rules 3.11-3.14.3.4.6 Kilbury �ltration for the A
tive algorithmKilbury predi
tion is an adaption from 2.4.8. The Kilbury predi
tions are lim-ited to grammars in whi
h terminals only o

ur in rules with empty right-handsides. However, Seki et al. (1991) have shown that any PMCFG that does notful�ll this requirement 
an be 
onverted to an equivalent grammar that does.An alternative would be to slightly alter the inferen
e rules.There are two new rules, while Complete, Combine and Convert are in
ludedas the rules 3.11, 3.13 and 3.14. S
an is repla
ed by Terminal.Predi
t
[Bi; Γi]

[A→ f [ ~B]; r = ρ • α′,Γ; ~Γδ[I := Γi]]







A→ f [ ~B] := r = Bi.r
′α,Φ

α′,Γ ∈ 〈α,Φ〉
ρ = Γi.r

′ (3.18)We only predi
t a new item for a rule, if there is a Passive item for the �rst
ategory in the �rst linearization row. We move the dot past the 
ategoryand add the Passive item's re
ord to the new item's stru
ture of re
ords.The new item re
ieves its range from the proje
tion Γi.r
′.40



Terminal
[A; Γ]

{

A→ f [ ] := φ
Γ ∈ 〈φ〉

(3.19)Every terminal rule is predi
ted as a passive item.3.4.7 Example for the A
tive algorithmThe A
tive algorithm 
an be used with Earley or Kilbury �ltering, or without�ltering. Parsing the string abcd gives the following table for 
hart sizeFilter SizeNone 25Earley 20Kilbury 15The 
hart after parsing without predi
tion �lters 
an be seen in �gure 3.6.Comments on the 
hartItems 11 and 12 are examples of passive items; they are 
onverted from the a
tiveitems 9 and 10 respe
tively. Item 5 has fully traversed its �rst linearization rowand has been 
ompleted to give item 7. S
anning item 8 gives an example of
on
atenation with ρǫ. The result 
an be seen in item 10. Item 24 is the resultof 
ombining the passive item 21 with the a
tive item 23. Predi
tion gave the�rst four items.Both predi
tion strategies result in fewer items sin
e the terminal rules arepredi
ted as passive items.EarleyThe use of Earley predi
tion gives a 
hart without items 1, 2, 4, 5, 6, 7, 8, 9,10 and 15. Instead we get 4 items for the non-terminal rule A→ g . . . where ρǫis substituted for the empty ranges (0, 0) . . . (3, 3). The predi
ted item for thestart rule will be predi
ted with the range (0, 0) instead of ρǫ.KilburyIf we instead use Kilbury predi
tion the same items are �ltered out with twoex
eptions; item 15 will be in
luded and item 3 will not be predi
ted. Insteadthe passive item 12 will trigger the predi
tion of item 14 (the 
ombination of 3and 12).3.5 The In
remental algorithmAn in
remental algorithm reads one token at a time. However our implementa-tion does not, due to how we de�ned range restri
tion.41



Figure 3.6: A
tive parse 
hartThis is the 
hart for parsing abcd with the A
tive algorithm without �ltering.The range re
ords Γ... are the same as in �gure 3.2. We also use
Φgq

= {q = A1.q A2.q}and
Γab = {p = (0, 2)}In order to �t the table on the page, the following notations are used for theinferen
e rules P = Predi
t, S = S
an, Cv = Convert, Cp = Complete and

C = Combine.
1 [A → bd [ ]; p = ρǫ • (1, 2) q = (3, 4); ] P

2 [A → ac[ ]; p = ρǫ • (0, 1) q = (2, 3); ] P

3 [A → g[A, A]; p = ρǫ • A1.p, A2.p Φgq
; {}, {}] P

4 [S → f [A]; s = ρǫ • A1.p, A2 .q; {}] P

5 [A → bd [ ]; p = (1, 2(3, 4); ] S 1
6 [A → ac[ ]; p = (0, 1) • q = (2, 3); ] S 2
7 [A → bd [ ]; {p = (1, 2)}, q = ρǫ • (3, 4); ] Cp 5
8 [A → ac[ ]; {p = (0, 1)}, q = ρǫ • (2, 3); ] Cp 6
9 [A → bd [ ]; {p = (1, 2)}, q = (3, 4)•; ] S 7
10 [A → ac[ ]; {p = (0, 1)}, q = (2, 3)•; ] S 8
11 [A; Γ〈b,d〉] Cv 9
12 [A; Γ〈a,c〉] Cv 10
13 [A → g[A, A]; p = (1, 2) • A2.p Φgq

; Γ〈b,d〉, {}] C 3, 11
14 [A → g[A, A]; p = (0, 1) • A2.p Φgq

; Γ〈a,c〉, {}] C 3, 12
15 [S → f [A]; s = (1, 2) • A1.q; Γ〈b,d〉] C 4, 11
16 [S → f [A]; s = (0, 1) • A1.q; Γ〈a,c〉] C 4, 12
17 [A → g[A, A]; p = (0, 2) • Φgq

; Γ〈a,c〉,Γ〈b,d〉] C 11, 14
18 [A → g[A, A]; Γab , q = ρǫ • A1.q A2.q; Γ〈a,c〉,Γ〈b,d〉] Cp 17
19 [A → g[A, A]; Γab , q = (2, 3) • A2.q; Γ〈a,c〉,Γ〈b,d〉] C 12, 18
20 [A → g[A, A]; Γab , q = (2, 4)•; Γ〈a,c〉,Γ〈b,d〉] C 11, 19
21 [A; Γ〈ab,cd〉] Cv 20
22 [A → g[A, A]; p = (0, 2) • A2.p Φgq

; Γ〈ab,cd〉, {}] C 3, 21
23 [S → f [A]; s = (0, 2) • A1.q; Γ〈ab,cd〉] C 4, 21
24 [S → f [A]; s = (0, 4)•; Γ〈ab,cd〉] C 23, 21
25 [S ; Γ〈abcd〉] Cv 24
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3.5.1 In
rementality and range restri
tionRange restri
tion, as we have de�ned it, 
annot handle partial results. Eitherthe symbol is a terminal and 
an be substituted by its range or it is an unboundvariable and is left as it is. When parsing in
rementally this de�nition is notsu�
ient. For instan
e, the range restri
tion 〈p = a, q = c〉
a will fail sin
e thereis no range for c in the string a. We would need a new de�nition of rangerestri
tion, allowing partial results.To get round the problem of not having partial range restri
tion we range restri
tthe entire input from the start. This means that the algorithm will no longerbe truly in
remental. This 
ompromise has advanteges. The e�
ien
y of anin
remental algorithm depends to some degree on how fast the user provides theinput. In order to test how the inferen
e rules 
ompare to the other algorithmsit 
an be easier if it is in a stati
 environment, and not given input a token ata time.3.5.2 Item formA
tive itemsThe only item form is a
tive

[A→ f [ ~B]; Γ, r = ρ • β, ψ; ~Γ]The items have the same form as the a
tive items used in the A
tive algorithm.However we use the notation [A; Γ, r = ρ], where r = ρ is the latest re
ognizedrow, for the item [A → . . . ; Γ, r = ρ • φ; . . .] and 
all the item passive. Notethat there are no passive items implemented and that any item with a fullyinstantiated row is 
alled passive, even if there are more rows to instantiate.3.5.3 Goals for re
ognitionFor the example grammar 3.1 on page 28 we get the following goal item
[S → f [A]; s = (0, |w|); {p = (0,

|w|

2
); q = (

|w|

2
, |w|)}]We use an a
tive item as goal item sin
e there are no passive items.3.5.4 Inferen
e rulesNotationsIf we only want to be sure that two items have the same abstra
t rule, we denotethe rule by R. 43



Predi
t
[A→ f [ ~B]; r = (i, i) • α′,Φ′,Ψ′; ~Γδ]







A→ f [ ~B] := Φ, r = α,Ψ
α′,Φ′,Ψ′ ∈ 〈α,Φ,Ψ〉
0 ≤ i ≤ |w| (3.20)An item is predi
ted for every linearization row and every input position.

~Γδ is a list of range re
ords of length δ in whi
h all re
ords are empty.Complete
[R; Γ, r = ρ • Φ, r′ = α,Ψ; ~Γ]

[R; Γ, r = ρ, r′ = (k, k) • α,Φ,Ψ; ~Γ]

{

ρ = (i, j)
j ≤ k ≤ |w|

(3.21)Whenever a linearization row is fully traversed 
ompletion is applied. Thismeans that an item is predi
ted for every remaining linearization row andevery remaining input position between the range of the traversed row andthe end of the input.S
an
[R; Γ, r = ρ′ • ρ′′, α,Φ; ~Γ]

[R; Γ, r = ρ • α,Φ; ~Γ]
{ρ ∈ ρ′ · ρ′′ (3.22)If the next item in the linearization row is a range, it is 
on
atenated tothe range for the partially re
ognized row.In the A
tive algorithm the inferen
e rule Convert 3.14 added the last label-range pair to the range re
ord for the passive item. In the absen
e of passiveitems we just have to remember that there is su
h a pair when 
ombining.Combine

[R; Γ, r = ρ′ •Bi.r
′ α,Φ; ~Γ] [Bi; Γ

′, r′ = ρ′′]

[R; Γ, r = ρ • α,Φ; ~Γ[i := (Γ′, r′ = ρ′′)]]

{

ρ ∈ ρ′ · ρ′′

Γi ⊆ (Γ′, r′ = ρ′′)
(3.23)Combining is applied if the next item is a re
ord proje
tion and there is apassive item for the 
orresponding 
ategory. The information in the i:thrange re
ord of ~Γ must be 
onsistent with the information found for thepassive item. This 
an be 
he
ked by a subset 
he
k sin
e the range re
ordof the passive item must be fully instantiated.3.5.5 Example runParsing the senten
e abcd with the In
remental algorithm results in a 
hartwith 78 items. Therefore the example run will only brie�y explain the inferen
erules. The large number of items is a 
onsequen
e of using (i, i)-ranges insteadof ρǫ(se
tion 3.4.1), and of predi
ting items for every linearization row.44



Predi
tionPredi
tion is 
rude. The grammar rule
A→ g[AA] := p = A1.p A2.p, q = A1.q A2.qwill be predi
ted as ten di�erent items, one item for every row and for everyinput position 0 ≤ i ≤ 4. Examples of su
h items are

[A→ g[AA]; p = (2, 2) •A1.p A2.p {q = A1.q A2.q}; {}, {}]and
[A→ g[AA]; q = (2, 2) •A1.q A2.q {p = A1.p A2.p}; {}, {}]This holds for every rule, all in all predi
ting 35 items. The terminal rules willhave ranges instead of proje
tions in the linearization re
ord.CompleteThe above holds also for 
ompletion. When a linearization row is fully instanti-ated to a range, an item is predi
ted for every remaining row and input position.For example if the last row was instantiated to the range (1, 3), then in our 
asethis would give two possible ranges, (3, 3) and (4, 4), for every row. The 
hart
ontains 16 items as a 
onsequen
e of 
ompletion.S
anS
anning is 
arried out in exa
tly the same way as in the A
tive algorithm.CombineCombining is also performed in the same way as in the A
tive algorithm, butwith an important di�eren
e. In the in
remental algorithm the range of the rowto be traversde is always known. Therefore it is always possible to give a partialindex for the items to 
ombine. Thus the a
tive item

[. . . ; . . . r = (i, 3) • {Bi.r
′ . . . ; . . .]
an only be 
ombined with a passive item

[B → . . . ; . . . r′ = (3, j) • φ; . . .]In the A
tive algorithm it was not always the 
ase that the range was known.Therefore we 
ould not be as expli
it in looking for items to 
ombine. Thismakes the In
remental inferen
e rule for 
ombining more e�
ient sin
e we 
anlimit our sear
h spa
e. However, this will not show in runtimes and 
hart sizeuntil predi
ting is more e
onomi
. Until then there will be far more items to
ombine with at every input position. 45



3.5.6 Proposed predi
tion strategiesThere was not enough time to implement the proposed Earley or Kilbury �lter.EarleyThe Earley predi
tion 
onsists of three rules for predi
ting, 
ompletion and ini-tial predi
tion. Initial predi
tion is the same as the rule number 3.17, returningitems for every rule where the left-hand side is a start 
ategory. Predi
tion and
ompletion predi
t new items for grammar rules when the left-hand side of therule is sear
hed for by an existing item.KilburyNew items are only predi
ted for linearization rows in whi
h the �rst symbolhas already been found. At the same time the dot 
an be moved forward. Thereare two rules for predi
ting to be 
ombined with both S
an and Combine, givingfour new inferen
e rules for Kilbury �ltering.

46



Chapter 4
Small-s
ale evaluation
The algorithms have not been tested for realisti
 grammars and large 
orpi aspart of this thesis. This is due to that there was not enough time to 
reate bigenough grammars and 
orpuses to test against. Some preliminary tests havebeen 
ondu
ted and it is possible to show how the algorithms 
ompare for thegrammar in �gure 3.1.It is not possible to draw any 
on
lusions from the tables on the general perfor-man
e of the algorithms. They are for showing how they perform 
ompared toea
h other for a very small grammar.4.1 Preliminary testingThe parser used today in the GF-library 
onverts the given grammar to a CFGin order to make an approximate parse. As we have seen the CFG will atmost 
ertainly be overgenerating. Therefore a re
overy step is used just as inthe Approximative algorithm ( 3.3 on page 32). However, instead of using thestrategy we used, the GF-parser re
overs the parse-result tree-by-tree.In preliminary tests the implemented algorithms are more e�
ient than theoriginal GF-parser. A grammar for English was used in the tests. It 
onsists ofroughly 500 GF rules. Converted to LMCFG rules this gives a grammar withapproximately 22.000 rules or 20.000 rules if 
onverted to a CFG.Example Parsing the randomely generated senten
e you had begged to die heregives roughly 60.000 
ontext-free trees. After re
overy only 6 remain. It isthe re
overing of the 
ontext-free 
hart that makes the GF parser slowerthan our implemented algorithms.47



4.2 Parse table4.2.1 E�
ien
y for 
orre
t senten
esIn �gure 4.1 we give the result from parsing senten
es of lengths 6, 12 and 24terminal tokens. Parsing is 
arried out with respe
t to the grammar in �gure3.1. This is by no means an extensive evaluation of the algorithms, but doesillustrate how they perform for a small grammar. Their performan
e 
ould verywell turn out to be quite di�erent when using a larger or more 
ontext-freegrammar. The used grammar generates senten
es with multiple and 
rossedagreement 
ombined with dupli
ation, all features outside the expressivity of aCFG. Figure 4.1: Evaluation of valid senten
esChart sizes and running times for parsing strings of various lengths. The stringsare valid, su
h as abbacddc. All strings are parsed with respe
t to the LMCFGon page 28. Times are in millise
onds and 
hart size is given in number of items.Length6 12 24Naïve Chart 31 137 834Time <1 10 110Approx Chart 116 2980 170216bottom-up Time 20 70 9910Approx Chart 96 2888 169818top-down Time <1 100 9670A
tive Chart 78 663 8207no �lter Time <1 40 2650A
tive Chart 59 574 7778Earley Time 10 120 7630A
tive Chart 56 589 7917Kilbury Time <1 40 2560In
remental Chart 254 2375 34813Time 10 150 7760
4.2.2 CommentsThe Naïve algorithmThe Naïve algorithm is by far the most e�
ient algorithm. It would be inter-esting to see how it performs for mu
h larger grammars.48



The Approximative algorithmIt seems to make no di�eren
e if we implement the de
orated 
ontext-free ap-proximation with bottom-up or top-down predi
tion. Even if the resulting 
hartsare very big 
ompared to the other algorithms, the run-times do not grow tothe same extent. One reason for the large 
hart size is that we use four di�erentkinds of items. A lot of information is dupli
ated as it is passed from one kindof item to another. Many of the items are also derived from 
ontext-free parsingwhi
h is qui
ker than parsing mildly 
ontext-sensitive grammars.The A
tive algorithmUsing Earley predi
tion for the A
tive algorithm gives fewer items but makesparsing a lot slower. Kilbury gives the same redu
tion on 
hart size and a slightlyqui
ker parsing 
ompared to using no �ltering. Remember, it is not possible tosay anything about the performan
e of the di�erent predi
tion strategies untilthey have been tested on mu
h larger grammars.Both predi
tion strategies result in fewer items as a 
onsequen
e of predi
tingpassive items for terminal rules. This 
an turn out to be even more e�
ientfor grammars with a big per
entage of terminal rules. A possible explanationfor the poor behaviour of Earley 
an be that the gain of top-down predi
tion islost on su
h a small grammar and the use of empty ranges, (i, i), instead of the
ǫ-range, ρǫ.The In
remental algorithmThe performan
e of the in
remental algorithm improves as the size of the inputgrows, 
ompared to the Approximative algorithm. Otherwise it is slow andmemory demanding.4.2.3 E�
ien
y for in
orre
t senten
esChart sizes and runtimes are not only interesting when the senten
e is valid. Itis just as interesting to have qui
k, memory e�
ient parsing algorithms if thesenten
e is invalid. In the table in �gure 4.2 all the implemented algorithms arefaster and derive less items when re
ognizing invalid senten
es.Espe
ially the Approximative algorithm is mu
h faster for reje
ting senten
esin whi
h a c or d has been substituted for a or b respe
tively, in an otherwisevalid senten
e.
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Figure 4.2: Evaluation of invalid senten
esThe strings have the form abbacdbc, i.e. somewhere in the se
ond half of thesenten
e a c or d is substituted for a or d. Parsing is 
arried out with respe
tto the grammar in �gure 3.1 on page 28. Times are in milli-se
onds and 
hartsizes in number of items. Length6 12 24Naïve Chart 16 79 449Time <1 10 40Approx Chart 48 614 34063bottom-up Time <1 30 1390Approx Chart 28 449 21744top-down Time <1 20 810A
tive Chart 32 316 4215no �lter Time <1 20 870A
tive Chart 11 238 3837Earley Time <1 80 3120A
tive Chart 14 246 3929Kilbury Time <1 20 890In
remental Chart 128 1538 21689Time 10 120 2490
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Chapter 5Summary
5.1 Future workFurther implementationsThe implementations do not 
over all proposed algorithms. There are passiveversions of the Naïve and Approximative algorithms still left to do. It would beinteresting to implement them for the sake of 
omparison.Neither of the predi
tion �lters have been implemented for the In
rementalalgorithm. The proposed Earley predi
tion should be easy to implement, itis very similiar to the version of Earley used for the A
tive algorithm. Theimplementation of Kilbury is probably more demanding.Re-implementing the In
remental algorithm in a dynami
 environment is also anintersting future development. This will mean that an extended range restri
tionhas to be implemented, able to 
ope will partial results.EvaluationFurther tests are ne
essary. For now, all we know is that the Naïve algorithm issuitable for very small grammars. Whi
h algorithm to use for larger grammars
annot be de
ided before the algorithms have been tested on large grammars.Readapting to PMCFGThe algorithms are implemeted for LMCFG. If we want to use the te
hnique ofredu
ing a 
ontext-free GF to a PMCFG in order to get faster parsing algorithmsit is ne
essary to readapt the strategies to PMCFG. It might very well be thatthe algorithms will parse PMCFG faster than the GF parser parses 
f-GF.ComplexityIt would be a Master thesis in its own right todetermine the 
omplexity of thealgorithms. Until proven we will just have to hope the 
omplexity is polynomial.51



Corre
tnessThere has not been time to give formal proofs of the algorithms being 
or-re
t. The proposed PMCFG algorithms are proved both 
omplete and soundby Ljunglöf (2004). A 
omparison of his dis
ussion with the implemented algo-rithms indi
ates that the di�eren
es are too large for just 
opying his proofs toour work.For now, all we 
an say is that they seem to be 
orre
t.5.2 Con
lusionWe have implemented four algorithms for parsing Linear Multiple Context-FreeGrammars. A thorough testing of the algorithms with grammars of varying sizesis ne
essary before any 
on
lusions 
an be drawn on their overall performan
e.However preliminary testing indi
ates that the implemented algorithms parsean LMCF grammar faster than the existing parser for GF parses an equivalent
ontext-free GF grammar. It seems promising. . .
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Appendix AThe 
odeTo fully understand the 
ode the reader will probably need to know at leastsome Haskell. There is a di�eren
e between the 
ode developed for this thesisand the a
tual 
ode implemented into GF. The main reason being that it is alot easier to develop outside of GF and that GF has some features that extendHaskell.The fun
tion re
ognize is grammar dependent for all algorithms as a 
onse-quen
e of the goal items being grammar dependent. This is apparent in thetype de
laration for re
ognize and the same holds for the fun
tion parse inalgorithm 3.3, sin
e the information passed to the CF parser is grammar depen-dent. Haskell supports dependent types.All 
harts are implemented as RedBla
kMap:s, a RedBla
kTree stru
ture withkey-value pairs as leaves (see Okasaki, 1998 for more information on fun
tionaldata stru
tures).The type of a grammar is Grammar n 
 l t where n is the type of the fun
tionnames, 
 is the type for the 
ategories, l is the type for lables and t is the typefor tokens. Hen
e all obje
ts used in grammars or for parsing are dependent onone or more of these four types. Referring to the table in �gure A.1 the typeLin 
 l t is the type for a linearization row. Its �nal type is dependent on thetype of the 
ategories, lables and tokens used in the grammar.In the implementaion of the Example grammar in �gure 3.1, the type is Stringfor the fun
tion names, the lables and the tokens while the 
ategories are of theuser-de�ned type NT.When a linearization re
ord is range restri
ted, the type is rede�ned from LinRe

 l t to LinRe
 
 l Range and the 
orresponding instantiation of types o

ursfor the tokens; Tok t be
omes Tok Range .The Nondet type is used when a fun
tion 
an return several solutions for thegiven arguments. The fun
tions for range restri
tion 
an give a number ofdi�erent ranges, all depending on the arguments (see 2.3.3). The reurn valuefor 〈s〉 is therefore Nondet Range.For every algorithm an example of the items in 
ode are given. Some items are55



Figure A.1: Types and 
odeThe four �rst are the basi
 types of the grammar. All other types depend onthe basi
 types, ex
ept Nondet.Code: Used for:
 Variable type for elements in Cl Variable type for labelsn Variable typ for fun
tion namest Variable type for elements in ΣTok t A token of type tTok Range A token of type RangeRange The 
onstru
tor for Range ( Int, Int )Grammar n 
 l t = [ Rule n 
 l t ℄Rule n 
 l t = Rule 
 [ 
 ℄ ( LinRe
 
 l t ) nLin 
 l t A linearization row,Lin l [ Symbol ( 
, l Int ) t ℄LinRe
 
 l t A linearization re
ord, [ Lin 
 l t ℄Symbol ( 
, l, Int ) t = Cat ( 
, l, Int ) | Tok tRangeRe
 l A range re
ord, [( l, Range )℄NT The type for 
ategories in 3.1Cat ( A, �p�, 0 ) The 
ategory A0.p, where A is of the type NTAbstra
tRule n 
 = ( n, 
, [ 
 ℄ )DottedRule n 
 = ( n, 
, [ 
 ℄, [ 
 ℄ )Nondet Used when a fun
tion is non-deterministi
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so long that they are written on several lines, following the layout of how theitems are de�ned in the algorithm.A.1 ExampleGrammarThis is the example grammar in �gure 3.1, written in Haskell. The proje
tions
A1.p, A2.qare implemented as[ Cat ( A, "p", 0 ), Cat ( A, "q", 1 )℄using the type NT for the 
ategories and String for the labels.All 
ategories are indexed expli
itly in the 
ode while it was an impli
it featurein the text. The indi
es are redu
ed by one to mat
h Haskell's list indexing.{-- Module ----------------------------------------------------------------Filename : ExampleGrammar.hsAuthor : Håkan BurdenTime-stamp : <2005-03-03, 16:00>Des
ription: Implementation of Example grammar 4.1as des
ribed in Ljunglöf 2004--------------------------------------------------------------------------}module Examples where-- imported GF modulesimport MCFGrammarimport Parser-- Following Non-Terminals are used: S, A ---------------------------------data NT = S | Aderiving( Eq, Ord, Show )-- Example grammar 4.1 ----------------------------------------------------ex41 = [ Rule S [ A ℄ [ Lin "s" [ Cat ( A, "p", 0 ),Cat ( A, "q", 0 ) ℄℄ "f",Rule A [ A, A ℄ [ Lin "p" [ Cat ( A, "p", 0 ),Cat ( A, "p", 1 ) ℄,Lin "q" [ Cat ( A, "q", 0 ),Cat ( A, "q", 1 ) ℄℄ "g",Rule A [℄ [ Lin "p" [ Tok "a" ℄,Lin "q" [ Tok "
" ℄℄ "a
",Rule A [℄ [ Lin "p" [ Tok "b" ℄,Lin "q" [ Tok "d" ℄℄ "bd" ℄57



A.2 RangesThe module for all fun
tions on ranges. Even those fun
tions only used by onealgorithm are pla
ed in the Ranges module and not as helper fun
tions in thealgorithm's module. ρǫ is written as ERange.{-- Module ----------------------------------------------------------------Filename : Ranges.hsAuthor : Håkan BurdenTime-stamp : <2005-02-12, 18:52>Des
ription: Fun
tions for Ranges--------------------------------------------------------------------------}module Ranges where-- imported Haskell modulesimport Listimport Monad-- imported GF modulesimport MCFGrammarimport Nondetimport Parser-- De
lared new types: Linearization- and Range re
ords as lists ----------type LinRe
 
 l t = [ Lin 
 l t ℄type RangeRe
 l = [( l, Range )℄{-- Fun
tions -------------------------------------------------------------Ceiling : Returns the 
eiling of a RangeCon
atenation : Con
atenation of Ranges, Symbols andLinearizations and re
ords of LinearizationsRe
ord transformation: Makes a Range re
ord from a fully instantiatedLinearization re
ordRe
ord proje
tion : Given a label, returns the 
orresponding RangeRange restri
tion : Range restri
tion of Tokens, Symbols,Linearizations and Re
ords given a list of TokensRe
ord repla
ment : Substitute a re
ord for another in a list of Rangere
ordsArgument substitution: Substitution of a Cat 
at to a Tok Range, whereRange is the 
over of 
atNote: The argument is still a Symbol 
 RangeRe
ord Subsumation : Che
ks if a Range re
ord subsumes another Rangere
ordRe
ord unifi
ation : Unifi
ation of two Range re
ords--------------------------------------------------------------------------}--- Ceiling ---------------------------------------------------------------
eil :: Range -> Range
eil ERange = ERange
eil ( Range ( i, j ) = ( Range ( j, j )58



--- Con
atenation ---------------------------------------------------------
on
Ranges :: Range -> Range -> Nondet Range
on
Ranges ERange ( Range ( i, j )) =return ( Range ( i, j ))
on
Ranges ( Range ( i, j )) ( Range ( j', k )) =do guard ( j == j' )return (Range ( i, k ))
on
Symbols :: [ Symbol 
 Range ℄ -> Nondet [ Symbol 
 Range ℄
on
Symbols ( Tok rng:Tok rng':toks ) = do rng� <- 
on
Ranges rng rng'
on
Symbols ( Tok rng�:toks )
on
Symbols ( sym:syms ) = do syms' <- 
on
Symbols symsreturn ( sym:syms' )
on
Symbols [℄ = return [℄
on
Lin :: Lin 
 l Range -> Nondet ( Lin 
 l Range )
on
Lin ( Lin lbl syms ) = do syms' <- 
on
Symbols symsreturn ( Lin lbl syms' )
on
LinRe
 :: LinRe
 
 l Range -> Nondet ( LinRe
 
 l Range )
on
LinRe
 = mapM 
on
Lin--- Re
ord transformation -------------------------------------------------makeRangeRe
 :: LinRe
 
 l Range -> RangeRe
 lmakeRangeRe
 lins = map (\( Lin lbl [ Tok rng ℄) -> ( lbl, rng )) lins--- Re
ord proje
tion -----------------------------------------------------proje
tion :: Eq l => l -> RangeRe
 l -> Nondet Rangeproje
tion l re
 = maybe failure return $ lookup l re
--- Range restri
tion -----------------------------------------------------rangeRestTok :: Eq t => [ t ℄ -> t -> Nondet RangerangeRestTok toks tok = do i <- member ( elemIndi
es tok toks )return ( makeRange ( i, i + 1 ))rangeRestSym :: Eq t => [ t ℄ -> Symbol a t -> Nondet ( Symbol a Range )rangeRestSym toks ( Tok tok ) = do rng <- rangeRestTok toks tokreturn ( Tok rng )rangeRestSym _ ( Cat 
at ) = return ( Cat 
at )rangeRestLin :: Eq t => [ t ℄ -> Lin 
 l t -> Nondet ( Lin 
 l Range )rangeRestLin toks ( Lin lbl syms ) =do syms' <- mapM ( rangeRestSym toks ) syms59



return ( Lin lbl syms' )rangeRestRe
 :: Eq t => [ t ℄ -> LinRe
 
 l t-> Nondet ( LinRe
 
 l Range )rangeRestRe
 toks = mapM ( rangeRestLin toks )-- Re
ord repla
ment ------------------------------------------------------repla
eRe
 :: [ RangeRe
 l ℄ -> Int -> RangeRe
 l -> [ RangeRe
 l ℄repla
eRe
 re
s i re
 = ( fst tup ) ++ [ re
 ℄ ++ ( tail $ snd tup )where tup = splitAt i re
s--- Argument substitution -------------------------------------------------substArgSymbol :: Eq l => Int -> RangeRe
 l -> Symbol ( 
, l, Int ) Range-> Symbol ( 
, l, Int ) RangesubstArgSymbol i re
 ( Tok rng ) = ( Tok rng )substArgSymbol i re
 ( Cat ( 
at, lbl, j ))| i==j = maybe ( Cat ( 
at, lbl, j )) Tok $ lookup lbl re
| otherwise = (Cat ( 
at, lbl, j ))substArgLin :: Eq l => Int -> RangeRe
 l -> Lin 
 l Range-> Lin 
 l RangesubstArgLin i re
 ( Lin lbl syms ) =( Lin lbl ( map (substArgSymbol i re
 ) syms ))substArgRe
 :: Eq l => Int -> RangeRe
 l -> LinRe
 
 l Range-> LinRe
 
 l RangesubstArgRe
 i re
 lins = map ( substArgLin i re
 ) lins--- Re
ord Subsumation ----------------------------------------------------subsumes :: Eq l => RangeRe
 l -> RangeRe
 l -> Boolsubsumes re
 re
' = and [ elem r re
' | r <- re
 ℄--- Re
ord unifi
ation ----------------------------------------------------unifyRangeRe
s :: Ord l => [ RangeRe
 l ℄ -> [ RangeRe
 l ℄-> Nondet [ RangeRe
 l ℄unifyRangeRe
s re
s re
s' = zipWithM unify re
s re
s'where unify re
 [℄ = return re
unify [℄ re
 = return re
unify re
1'�( p1�( l1, r1 ):re
1 ) re
2'�( p2�( l2, r2 ):re
2 )= 
ase 
ompare l1 l2 ofLT -> do re
3 <- unify re
1 re
2'return ( p1:re
3 )GT -> do re
3 <- unify re
1' re
2return ( p2:re
3 )EQ -> do guard ( r1 == r2 )re
3 <- unify re
1 re
2return ( p1:re
3 )60



A.3 NaiveParseThe a
tive item 11 in the naïve parse 
hart in �gure 3.2 on page 31 is writtenin 
ode asA
tive ("g",A,[A℄,[A℄)[Lin "p" [Tok (Range (1,2)),Cat (A,"p",1)℄,Lin "q" [Tok (Range (3,4)),Cat (A,"q",1)℄℄[("p",Range (1,2)),("q",Range (3,4))℄where the dot in the DottedRule is represented as two lists of 
ategories, [A℄,[A℄.The passive item 13 is in turn written asPassive S[("s",Range (0,4))℄This is also the goal item for re
ognition.{-- Module ----------------------------------------------------------------Filename : NaiveParse.hsAuthor : Håkan BurdenTime-stamp : <2005-02-24, 14:43>Des
ription: An agenda-driven implementation of the algorithm 4.2.1,"Polynomial parsing for 
ontext-free GF",as des
ribed in Ljunglöf (2004)--------------------------------------------------------------------------}module NaiveParse where-- imported GF modulesimport ExampleGrammarimport GeneralChartimport MCFGrammarimport MCFParserimport Nondetimport Parserimport Ranges{-- Datatypes and types ---------------------------------------------------NChart : A RedBla
kMap with Items and NKeysItem : The parse Items are either A
tive or PassiveNKey : One key for A
tive Items, one for Passive Items and one forA
tive Items 
onverted to Passive Items--------------------------------------------------------------------------}type NChart n 
 l = ParseChart ( Item n 
 l ) ( NKey 
 )data Item n 
 l = A
tive ( DottedRule n 
 )( LinRe
 
 l Range )( RangeRe
 l )| Passive 
( RangeRe
 l )61



deriving ( Eq, Ord, Show )data NKey 
 = A
t 
| Pass 
| Finalderiving ( Eq, Ord, Show ){-- Parsing ---------------------------------------------------------------re
ognize: Returns 'True' if the goal Item is in the parse-
hartotherwise 'False'parse : Builds a 
hart from the initial agenda (given by predi
tion)and the inferen
e ruleskeyof : Given an Item returns an appropriate NKey for storing theItem in the Chart--------------------------------------------------------------------------}re
ognize :: Grammar String NT String String -> [ String ℄ -> Boolre
ognize m
fg toks =
hartMember ( parse m
fg toks )( Passive S [( �s�, Range ( 0, n ))℄( Pass S )parse :: ( Eq t, Ord n, Ord 
, Ord l ) => Grammar n 
 l t -> [ t ℄-> NChart n 
 lparse m
fg toks = buildChart keyof [ 
onvert, 
ombine ℄( predi
t m
fg toks )keyof :: Item n 
 l -> NKey 
keyof ( A
tive ( _, _, _, ( next:_ )) lins _ ) = A
t nextkeyof ( Passive 
at _ ) = Pass 
atkeyof _ = Final{--Inferen
e rules --------------------------------------------------------predi
t: Creates an A
tive Item of every Rule in the Grammar to give theinitial agenda
ombine: Creates an A
tive Item every time it is possible to 
ombine anA
tive Item from the agenda with a Passive Item from the Chart
onvert: A
tive Items with nothing to find are 
onverted to Passive Items--------------------------------------------------------------------------}predi
t :: ( Eq t, Eq 
 ) => [ t ℄ -> Grammar n 
 l t -> [ Item n 
 l ℄predi
t m
fg toks =[ A
tive ( f, 
at, [℄, rhs ) lins' [℄ | Rule 
at rhs lins f <- m
fg,lins' <- solutions $ rangeRestRe
 toks lins ℄
ombine :: ( Ord n, Ord 
, Ord l ) => ParseChart ( Item n 
 l ) ( NKey 
 )-> Item n 
 l -> [ Item n 
 l ℄
ombine 
hart ( A
tive ( f, 
at', found, (
at:toFind)) lins re
 ) =[ A
tive ( f, 
at', found ++ [ 
at ℄, toFind ) lins� ( re
 ++ re
' ) |Passive 
at re
' <- 
hartLookup 
hart ( Pass 
at ),lins� <- solutions $ 
on
LinRe
 $ substArgRe
 ( length found )re
' lins ℄
ombine 
hart ( Passive 
at re
 ) =[ A
tive ( f, 
at', found ++ [ 
at ℄, toFind ) lins� ( re
'++ re
 ) |(A
tive ( f, 
at', found, ( 
at:toFind )) lins' re
')<- 
hartLookup 
hart ( A
t 
at ),62



lins� <- solutions $ 
on
LinRe
 $ substArgRe
 ( length found )re
 lins' ℄
ombine _ _ = [℄
onvert :: ( Ord n, Ord 
, Ord l ) => ParseChart ( Item n 
 l ) ( NKey 
 )-> Item n 
 l -> [ Item n 
 l ℄
onvert _ ( A
tive ( f, 
at, rhs, [℄ ) lins _ ) =[ Passive 
at ( makeRangeRe
 lins ) ℄
onvert _ _ = [℄A.4 ApproxParseThere are four di�erent kinds of items for the Approximative algorithm, pre-m
g, pre, mark and passive. The pre-m
fg item
[g; {q = (2, 4); {q = (2, 3), q = (3, 4)}]is written asPreMCFG "g"[("q",Range (2,4))℄[[("q",Range (2,3))℄,[("q",Range (3,4))℄℄The pre item

[A→ bd[]; {p = (1, 2)}; {q}; {}]looks as followsPre ("bd",A,[℄) [("p",Range (1,2))℄ ["q"℄ [℄A mark item uses DottedRules and has two lists for separating marked rangere
ords from unmarked ones
[A→ g[A•A]; {p = (0, 2), q = (2, 4)}; {p = (0, 1), q = (2, 3)}; {p = (1, 2), q = (3, 4)}]This item will look likeMark ("g",A,[A℄,[A℄)[("p",Range (0,2)),("q",Range (2,4))℄[("p",Range (0,1)),("q",Range (2,3))℄[[("p",Range (1,2)),("q",Range (3,4))℄℄when written in 
ode. Finally we have the passive items, that look just like thepassive items for the Naïve algorithm.63



Passive S [("s",Range (0,4))℄is the goal item
[S; {s = (0, 4)]{-- Module ----------------------------------------------------------------Filename : ApproxParse.hsAuthor : Håkan BurdenTime-stamp : <2005-03-08 16:36:26>Des
ription: An agenda-driven implementation of the algorithm 4.3.4,"Parsing through 
ontext-free approximation",as des
ribed in Ljunglöf (2004)--------------------------------------------------------------------------}module ApproxParse where-- imported Haskell modulesimport Listimport Monad-- imported GF modulesimport ConvertMCFGtoDe
oratedCFGimport qualified De
oratedCFParser as CFPimport qualified De
oratedGrammar as CFGimport ExampleGrammarimport GeneralChartimport qualified MCFGrammar as MCFGimport MCFParserimport Nondetimport Parserimport Ranges{-- Datatypes -------------------------------------------------------------AChart: A RedBla
kMap of Items and AKeysItem : Four different Items are used:* PreMCFG for MCFGPre-Items,* Pre-Items are the Items returned by the pre-Fun
tions,* Mark-Items are the 
orresponding Items for the mark-Fun
tions,* 
orre
tly marked Mark-Items are 
onverted to Passive Items.AKey : One AKey for every kind of Item and one for Items to be 
onverted--------------------------------------------------------------------------}data Item n 
 l = PreMCFG n( RangeRe
 l )[ RangeRe
 l ℄| Pre ( Abstra
tRule n 
 )( RangeRe
 l)[ l ℄[ RangeRe
 l ℄| Mark ( DottedRule n 
 )( RangeRe
 l )( RangeRe
 l )[ RangeRe
 l ℄| Passive 
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( RangeRe
 l )deriving ( Eq, Ord, Show )type AChart n 
 l = ParseChart ( Item n 
 l ) ( AKey n 
 l )data AKey n 
 l = Pm n l| Pr n l| Mk 
 ( RangeRe
 l )| Ps 
 ( RangeRe
 l )| Finalderiving ( Eq, Ord, Show ){-- Parsing ---------------------------------------------------------------re
ognize: Returns 'True' if the goal Item is the parse-
hart,otherwise 'False'parse : Builds a parse-
hart from the agenda and the inferen
e rules.The agenda 
onsists of the Passive Items from 
ontext-freeapproximation (as PreMCFG-Items) and the Pre-Items inferred bypre-predi
tion. The Context-Free parsing is done by eitherbottom-up or top-down filteringkeyof : Given an Item returns an appropriate Key for storing the Itemin the Chart--------------------------------------------------------------------------}re
ognize :: ( Ord t ) => Strategy-> MCFG.Grammar String NT String t -> [t℄ -> Boolre
ognize strategy m
fg toks =
hartMember ( parse strategy m
fg toks ) ( Passive S re
 ) ( Ps S re
 )where re
 = [( "s" , MCFG.Range ( 0, length toks ))℄parse :: ( Ord t ) => CFP.Strategy -> MCFG.Grammar String NT String t-> [ t ℄ -> AChart String NT Stringparse strategy m
fg toks =buildChart keyof [ preCombine, markPredi
t, markCombine, 
onvert ℄(( makePreItems ( CFP.parse strategy( CFG.pInfo ( 
onvertGrammar m
fg ))[( S, "s" )℄ toks )) ++( prePredi
t m
fg ))keyof :: Item n 
 l -> AKey n 
 lkeyof ( PreMCFG f [( lbl, rng )℄ _ ) = Pm f lblkeyof ( Pre ( f, _, _ ) _ ( lbl:_ ) _ ) = Pr f lblkeyof ( Mark ( _, _, _, ( 
at:_ )) _ _ ( re
:_ )) = Mk 
at re
keyof ( Passive 
at re
 ) = Ps 
at re
keyof _ = Final{-- Initializing agenda ---------------------------------------------------makePreItems: Every Passive Item from the Context-Free 
hart is made into aPreMCFG-Item--------------------------------------------------------------------------}makePreItems :: ( Eq 
, Ord i ) => CFG.Grammar n ( Edge ( 
, l )) i t-> [ Item n 
 l ℄makePreItems 
f
hart = 65



[ PreMCFG fun [( lbl, MCFG.makeRange ( i, j ))℄ ( symToRe
 beta ) |CFG.Rule ( Edge i j ( 
at,lbl )) beta fun <- 
f
hart ℄{-- Inferen
e rules -------------------------------------------------------prePredi
t : Predi
ts a Pre-Item for every Rule in the MCF grammarpreCombine : Combines a Pre-Item looking for the lable l with aPreLCFG-Item for l into a new Pre-ItemmarkPredi
t: Predi
ts a Mark-Item for every Pre-Item with no lables left tolook formarkCombine: Combines a Mark-Item looking for a re
ord re
 with a PassiveItem for re
 into a new Mark-Item
onvert : Converts a fully marked Mark-Item into a Passive Item--------------------------------------------------------------------------}prePredi
t :: ( Ord n, Ord 
, Ord l ) => MCFG.Grammar n 
 l t-> [ Item n 
 l ℄prePredi
t m
fg = [ Pre ( f, 
at, rhs ) [℄ ( getLables lins )( repli
ate ( length rhs ) [℄ ) |MCFG.Rule 
at rhs lins f <- m
fg ℄preCombine :: ( Ord n, Ord 
, Ord l )=> ParseChart ( Item n 
 l ) ( AKey n 
 l ) -> Item n 
 l-> [ Item n 
 l ℄preCombine 
hart ( Pre head�( f, _, _ ) re
 ( l:ls ) re
s ) =[ Pre head ( re
 ++ [( l, r )℄) ls re
s� |PreMCFG f [( l, r )℄ re
s' <- 
hartLookup 
hart ( Pm f l ),re
s� <- solutions ( unifyRangeRe
s re
s re
s' ) ℄preCombine 
hart ( PreMCFG f [( l, r )℄ re
s ) =[ Pre head ( re
 ++ [( l, r )℄) ls re
s� |Pre head re
 ( l:ls ) re
s' <- 
hartLookup 
hart ( Pr f l ),re
s� <- solutions ( unifyRangeRe
s re
s re
s' ) ℄preCombine _ _ = [℄markPredi
t :: ( Ord n, Ord 
, Ord l )=> ParseChart ( Item n 
 l ) ( AKey n 
 l ) -> Item n 
 l-> [Item n 
 l℄markPredi
t _ ( Pre ( f, 
at, rhs ) re
 [℄ re
s ) =[ Mark ( f, 
at, [℄, rhs ) re
 [℄ re
s ℄markPredi
t _ _ = [℄markCombine :: ( Ord n, Ord 
, Ord l )=> ParseChart ( Item n 
 l ) ( AKey n 
 l ) -> Item n 
 l-> [ Item n 
 l ℄markCombine 
hart ( Mark ( f, 
at', found, ( 
at:toFind )) re
' marked( re
:toMark )) =[ Mark ( f, 
at', found ++ [ 
at ℄, toFind ) re
'( marked ++ re
 ) toMark |Passive 
at re
 <- 
hartLookup 
hart ( Ps 
at re
 ) ℄markCombine 
hart ( Passive 
at re
 ) =[ Mark ( f, 
at', found ++ [ 
at ℄, toFind ) re
' ( marked ++ re
 )toMark |Mark ( f, 
at', found, ( 
at:toFind )) re
' marked ( re
:toMark )<- 
hartLookup 
hart ( Mk 
at re
 ) ℄markCombine _ _ = [℄ 66




onvert :: ( Ord n, Ord 
, Ord l )=> ParseChart ( Item n 
 l ) ( AKey n 
 l ) -> Item n 
 l-> [Item n 
 l℄
onvert _ ( Mark ( _, 
at, _, [℄ ) re
 re
' [℄ ) = [ Passive 
at re
 ℄
onvert _ _ = [℄{-- Helper fun
tions ------------------------------------------------------getLables: Returns the list of lables in LinRe
symToRe
 : Gives a RangeRe
 from the lables and ranges in the Context-Free
hart--------------------------------------------------------------------------}getLables :: LinRe
 
 l t -> [ l ℄getLables lins = [ l | MCFG.Lin l syms <- lins ℄symToRe
 :: Ord i => [ Symbol ( Edge ( 
, l ), i ) d ℄-> [[( l, MCFG.Range )℄℄symToRe
 beta =map makeLblRng $ groupBy ( \( _, d ) ( _, d' ) -> ( d == d' ))$ sortBy sBd [ ( Edge i j ( 
, l) , d ) |Cat ( Edge i j ( 
, l ), d ) <- beta ℄where makeLblRng edges =[ ( l, ( MCFG.makeRange ( i, j ))) |( Edge i j ( _, l ), _ ) <- edges℄sBd ( _, d ) ( _, d' )| d < d' = LT| d > d' = GT| otherwise = EQA.5 A
tiveParseFor the Earley fun
tion initial the rules with a start symbol as left-hand sideis hard-
oded. In the a
tual GF implementation it is substituted for the resultfrom the fun
tion pInfo, whi
h returns the parse-information of the grammar.The two rules for Earley predi
tion are 
ombined into one rule in the 
ode.The a
tive item 13 in �gure 3.6 looks likeA
tive ("g",A,[A,A℄)[℄(Range (1,2))(Lin "p" [Cat (A,"p",1)℄)[Lin "q" [Cat (A,"q",0),Cat (A,"q",1)℄℄[[("p",Range (1,2)),("q",Range (3,4))℄,[℄℄written in 
ode. When fully instantiated and 
onverted to a passive item itlooks likePassive A[("p",Range (0,2)),("q",Range (2,4))℄The inferen
e rules for Kilbury and Earley predi
tion are given in the end ofthe module. 67



{-- Module ----------------------------------------------------------------Filename : A
tiveParse.hsAuthor : Håkan BurdenTime-stamp : <2005-03-24, 14:43>Des
ription: An agenda-driven implementation of algorithm 4.6,"A
tive parsing of PMCFG",as des
ribed in Ljunglöf (2004)--------------------------------------------------------------------------}module A
tiveParse where-- imported GF modulesimport ExampleGrammarimport GeneralChartimport MCFGrammarimport MCFParserimport Nondetimport Parserimport Ranges{-- Datatypes -------------------------------------------------------------AChart: A RedBla
kMap with Items and AKeysItem : Items are either A
tive or PassiveAKey : One key for every kind of Item and one for A
tive Items 
onvertedto Passive Items--------------------------------------------------------------------------}data Item n 
 l = A
tive ( Abstra
tRule n 
 )( RangeRe
 l )Range( Lin 
 l Range )( LinRe
 
 l Range )[ RangeRe
 l ℄| Passive 
[ RangeRe
 l ℄deriving ( Eq, Ord, Show )type AChart n 
 l = ParseChart ( Item n 
 l ) ( AKey 
 )data AKey 
 = A
t 
| Pass 
| Finalderiving ( Eq, Ord, Show ){-- Parsing ---------------------------------------------------------------re
ognize: If the goal Item is in the parse-
hart: 'True',otherwise: 'False'parse : Builds a Chart from the initial agenda, given by predi
tion, andthe inferen
e rules. Parsing 
an be done with either Earley orKilbury filtering, or without filteringkeyof : Given an Item returns an appropriate Key for storing the Item inthe Chart--------------------------------------------------------------------------}re
ognize :: Strategy -> Grammar String NT String String -> [ String ℄-> Bool 68



re
ognize strategy m
fg toks =
hartMember ( parse strategy m
fg toks ) item ( keyof item )where item = Passive S [( "s", Range ( 0, n ))℄n = length toksparse :: ( Ord n, Ord 
, Ord l, Eq t ) => Strategy -> Grammar n 
 l t-> [ t ℄ -> ParseChart ( Item n 
 l ) ( AKey 
 )parse (False, False) m
fg toks =buildChart keyof[ 
omplete, s
an, 
ombine, 
onvert ℄( predi
t m
fg toks )parse (True, False) m
fg toks =buildChart keyof[ predi
tKilbury m
fg toks, 
omplete, 
ombine, 
onvert ℄( terminal m
fg toks )parse (False, True) m
fg toks =buildChart keyof[ predi
tEarley m
fg toks,
omplete, s
an, 
ombine, 
onvert ℄( initial ( take 1 m
fg ) toks )keyof :: Item n 
 l -> AKey 
keyof ( A
tive _ _ _ ( Lin _ (( Cat ( next, _, _ )):_ )) _ _ ) = A
t nextkeyof ( Passive 
at _ ) = Pass 
atkeyof _ = Final{--Inferen
e rules --------------------------------------------------------predi
t : Creates an A
tive Item of every Rule in the Grammar to give theinitial Agenda
omplete: Predi
ts an A
tive Item for the next linearization row, if theprevious row is fully satisfied.s
an : If the next symbol to read is a range for a token, 
on
atenatethe range for what is found so far with the range for the token
ombine : Creates an A
tive Item every time it is possible to 
ombinean A
tive Item from the agenda with a Passive Item from the Chart
onvert : A
tive Items with nothing to find are 
onverted to Passive Items--------------------------------------------------------------------------}predi
t :: Eq t => Grammar n 
 l t -> [ t ℄ -> [ Item n 
 l ℄predi
t grammar toks = [ A
tive ( f, 
at, rhs) [℄ ERange lin' lins'( repli
ate ( length rhs ) [℄ ) |Rule 
at rhs lins f <- grammar,( lin':lins' )<- solutions $ rangeRestRe
 toks lins ℄
omplete :: ( Ord n, Ord 
, Ord l ) => ParseChart ( Item n 
 l ) ( AKey 
 )-> Item n 
 l -> [ Item n 
 l ℄
omplete _ ( A
tive rule found ( Range ( i, j )) ( Lin l [℄ )( lin:lins ) re
s ) =[ A
tive rule ( found ++ [( l, Range ( i,j ))℄ ) ERange linlins re
s ℄
omplete _ _ = [℄s
an :: ( Ord n, Ord 
, Ord l ) => ParseChart ( Item n 
 l ) ( AKey 
 )-> Item n 
 l -> [ Item n 
 l ℄69



s
an _ ( A
tive rule found rng ( Lin l (( Tok rng' ):syms )) lins re
s ) =[ A
tive rule found rng� ( Lin l syms ) lins re
s |rng� <- solutions $ 
on
Ranges rng rng' ℄s
an _ _ = [℄
ombine :: ( Ord n, Ord 
, Ord l ) => ParseChart ( Item n 
 l ) ( AKey 
 )-> Item n 
 l -> [ Item n 
 l ℄
ombine 
hart ( A
tive rule found rng ( Lin l (( Cat ( 
, r, d )):syms ))lins re
s ) =[ A
tive rule found rng� ( Lin l syms ) lins( repla
eRe
 re
s d found' ) |Passive _ found' <- 
hartLookup 
hart ( Pass 
 ),rng' <- solutions $ proje
tion r found',rng� <- solutions $ 
on
Ranges rng rng',subsumes ( re
s !! d ) found' ℄
ombine 
hart ( Passive 
 found ) =[ A
tive rule found' rng ( Lin l syms ) lins( repla
eRe
 re
s' d found ) |A
tive rule found' rng' ( Lin l (( Cat ( 
, r, d )):syms ))lins re
s'<- 
hartLookup 
hart ( A
t 
),rng� <- solutions $ proje
tion r found,rng <- solutions $ 
on
Ranges rng' rng�,subsumes ( re
s' !! d ) found ℄
ombine _ _ = [℄
onvert :: ( Ord n, Ord 
, Ord l ) => ParseChart ( Item n 
 l ) ( AKey 
 )-> Item n 
 l -> [ Item n 
 l ℄
onvert _ ( A
tive ( f, 
at, rhs ) found rng ( Lin l [℄ ) [℄ re
s ) =[ Passive 
at ( found ++ [( l, rng )℄ ) ℄
onvert _ _ = [℄{-- Earley Filtering ------------------------------------------------------initial : Predi
t an A
tive Item for every rule in the grammar wherethe left-hand side of the rule is a start symbolpredi
tEarley: If there is an A
tive Item looking for a 
ategory and a rulewhere that 
ategory is the left-hand side of a rule, predi
ta new Item--------------------------------------------------------------------------}initial :: Eq t => [ Rule n 
 l t ℄ -> [ t ℄ -> [ Item n 
 l ℄initial starts toks =[ A
tive ( f, s, rhs ) [℄ ( Range ( 0, 0 )) lin' lins'( repli
ate ( length rhs ) [℄ ) |Rule s rhs lins f <- starts,( lin':lins' ) <- solutions $ rangeRestRe
 toks lins ℄predi
tEarley m
fg toks _ ( A
tive _ _ rng( Lin _ (( Cat ( 
at, _, _ )):_ )) _ _ ) =
on
at [ earley rng rule | rule�( Rule 
at' _ _ _ )<- m
fg, 
at == 
at' ℄where earley _ ( Rule 
at [℄ lins f ) =[ Passive 
at ( makeRangeRe
 lins' ) |lins' <- solutions $ rangeRestRe
 toks lins ℄earley rng ( Rule 
at rhs lins f ) =[ A
tive ( f, 
at, rhs ) [℄ ( 
eil rng ) lin' lins'70



( repli
ate ( length rhs ) [℄ ) |( lin':lins' ) <- solutions $ rangeRestRe
 toks lins ℄predi
tEarley _ _ _ _ = [℄{-- Kilbury Filtering -----------------------------------------------------predi
tKilbury: Predi
t an A
tive Item for a rule if there already is aPassive Item for the first 
ategory in the firstlinearization rowterminal : Predi
t a Passive Item for every rule with empty right-handside--------------------------------------------------------------------------}predi
tKilbury m
fg toks _ ( Passive ( _, 
at, _ ) found _ ) =[ A
tive ( f, a, rhs ) [℄ rng lin' lins' daughters |Rule a rhs (( Lin l (( Cat ( 
at', r, i )):syms )):lins ) f <- m
fg,
at == 
at',lin' <- solutions $ rangeRestLin toks ( Lin l syms ),lins' <- solutions $ rangeRestRe
 toks lins,rng <- solutions $ proje
tion r found,let daughters =( repla
eRe
 ( repli
ate ( length rhs ) [℄ ) i found ) ℄predi
tKilbury _ _ _ _ = [℄terminal m
fg toks =[ Passive 
at ( makeRangeRe
 lins' ) |Rule 
at [℄ lins f <- m
fg,lins' <- solutions $ rangeRestRe
 toks lins ℄A.6 In
rementalParseThe a
tive item
[A→ g[A, A]; {p = (0, 2)}, q = (2, 4)•; Γ〈ac,bd〉]where Γ〈ac,bd〉 is taken from �gure 3.2, will be written asA
tive ("g",A,[A,A℄)[("p",Range (0,2))℄(Range (2,4))(Lin "q" [℄)[℄[[("p",Range (0,1)),("q",Range (2,3))℄,[("p",Range (1,2)),("q",Range (3,4))℄℄The layout follows the de�nition of an a
tive item in the 
ode.{-- Module ----------------------------------------------------------------Filename : In
rementalParse.hsAuthor : Håkan BurdenTime-stamp : <2005-04-29, 14:10>Des
ription: An agenda-driven implementation of algorithm 4.6,"In
remental PMCFG parsing",71



as des
ribed in Ljunglöf (2004)--------------------------------------------------------------------------}module In
rementalParse where-- imported Haskell modulesimport List-- imported GF modulesimport ExampleGrammarimport GeneralChartimport MCFGrammarimport MCFParserimport Parserimport Rangesimport Nondet{-- Datatypes -------------------------------------------------------------IChart: A RedBla
kMap with Items and IKeysItem : One kind of Item sin
e the Passive Items not ne
essarily need tobe fully saturated, they 
an still have rows to re
ognize.IKey : Three kind s of IKeys; one for Items investigating an unsaturatedrow, one for Items who have saturated an entire row and one forfully saturated Items--------------------------------------------------------------------------}type IChart n 
 l = ParseChart ( Item n 
 l ) ( IKey 
 l )data Item n 
 l = A
tive ( Abstra
tRule n 
 )( RangeRe
 l )Range( Lin 
 l Range )( LinRe
 
 l Range )[ RangeRe
 l ℄deriving ( Eq, Ord, Show )data IKey 
 l = A
t 
 l Int| Pass 
 l Int| Finalderiving ( Eq, Ord, Show ){-- Parsing ---------------------------------------------------------------re
ognize: Reurns 'True' if the goal Item is in the Chart,otherwise 'False'parse : Builds a Chart from the initial agenda, given by predi
tion, andthe inferen
e ruleskeyof : Given an Item returns an appropriate IKey for storing the Itemin the Chart--------------------------------------------------------------------------}re
ognize m
fg toks = 
hartMember ( parse m
fg toks ) item ( keyof item )where item = A
tive ( "f", S, [ A ℄)[℄ ( Range ( 0, n )) ( Lin "s" [℄ ) [℄[[( "p", Range ( 0, n2 )), ( "q", Range ( n2, n ))℄℄n = length toksn2 = n `div` 2 72



parse :: ( Ord n, Ord 
, Ord l, Eq t ) => Grammar n 
 l t -> [ t ℄-> IChart n 
 lparse m
fg toks = buildChart keyof[ 
omplete toks n, s
an, 
ombine ℄( predi
t m
fg toks n )where n = length tokskeyof :: Item n 
 l -> IKey 
 lkeyof ( A
tive _ _ ( Range ( _, j ))( Lin _ (( Cat ( next, lbl, _ )):_ )) _ _ )= A
t next lbl jkeyof ( A
tive ( _, 
at, _ ) found ( Range ( i, _ )) ( Lin lbl [℄ ) _ _ )= Pass 
at lbl ikeyof _= Final{-- Inferen
e Rules -------------------------------------------------------predi
t : Predi
ts an Item for every linearization row in every rule in thegrammar
omplete: Predi
ts a new item for every remaining linearization row, whenthe previous row is fully saturateds
an : Range 
on
atenates the range for what is found so far with therange of the next symbol, if it is a linearized token
ombine : Combines an A
tive Item looking for the 
ategory 
at with aPassive Item for 
at--------------------------------------------------------------------------}predi
t :: ( Eq n, Eq 
, Eq l, Eq t ) => Grammar n 
 l t -> [ t ℄ -> Int-> [ Item n 
 l ℄predi
t m
fg toks n =[ A
tive ( f, 
, rhs ) [℄ ( Range ( k, k )) lin' lins�( repli
ate ( length rhs ) [℄ ) |Rule 
 rhs lins f <- m
fg,lins' <- solutions $ rangeRestRe
 toks lins,( lin', lins� ) <- sele
t lins',k <- [ 0..n ℄ ℄
omplete :: (Ord n, Ord 
, Ord l) => [ t ℄ -> Int-> ParseChart (Item n 
 l) ( IKey 
 l ) -> Item n 
 l-> [Item n 
 l ℄
omplete toks n _ ( A
tive rule found rng�( Range ( _, j )) ( Lin l [℄ )lins re
s ) =[ A
tive rule ( found ++ [( l, rng )℄) ( Range ( k, k ))lin lins' re
s | ( lin, lins' ) <- sele
t lins,k <- [ j..n ℄ ℄
omplete _ _ _ _ = [℄s
an :: ( Ord n, Ord 
, Ord l ) => ParseChart ( Item n 
 l ) ( IKey 
 l )-> Item n 
 l -> [ Item n 
 l ℄s
an _ ( A
tive rule found rng ( Lin l (( Tok rng' ):syms )) lins re
s ) =[ A
tive rule found rng� ( Lin l syms ) lins re
s |rng� <- solutions $ 
on
Ranges rng rng' ℄s
an _ _ = [℄ 73




ombine :: ( Ord n, Ord 
, Ord l )=> ParseChart ( Item n 
 l ) ( IKey 
 l ) -> Item n 
 l-> [ Item n 
 l ℄
ombine 
hart ( A
tive rule found rng�( Range ( _, j ))( Lin l (( Cat ( 
, r, d )):syms )) lins re
s ) =[ A
tive rule found rng� ( Lin l syms ) lins( repla
eRe
 re
s d ( found' ++ [( l', rng' )℄) ) |A
tive _ found' rng' ( Lin l' [℄ ) _ _<- 
hartLookup 
hart ( Pass 
 r j ),subsumes ( re
s !! d ) ( found' ++ [( l', rng' )℄),rng� <- solutions $ 
on
Ranges rng rng' ℄
ombine 
hart ( A
tive ( _, 
, _ ) found rng'�( Range ( i, _ ))( Lin l [℄ ) _ _ ) =[ A
tive rule found' rng� ( Lin l' syms ) lins( repla
eRe
 re
s d ( found ++ [( l, rng' )℄)) |A
tive rule found' rng ( Lin l' (( Cat ( 
, r, d )):syms ))lins re
s <- 
hartLookup 
hart ( A
t 
 l i ),subsumes ( re
s !! d ) ( found ++ [( l,rng' )℄),rng� <- solutions $ 
on
Ranges rng rng' ℄
ombine _ _ = [℄
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