GOTEBORG
UNIVERSITY

GOTHENBURG JUNE 2005

IMPLEMENTATIONS

oF PARSING ALGORITHMS
FOR LINEAR MULTIPLE
CONTEXT-FREE GRAMMARS

THESIS FOR M.A. IN COMPUTATIONAL LINGUISTICS

HAKAN BURDEN

DEPT. oF LINGUISTICS
GOTEBORG UNIVERSITY

SUPERVISOR: PETER LJUNGLOF
DEpPT. OF COMPUTING SCIENCE
CHALMERS UNIVERSITY OF TECHNOLOGY
GOTEBORG UNIVERSITY

)

Abstract

This thesis is an account of implementations of parsing algorithms for Linear Multiple
Context-Free Grammars (LMCFG). The algorithms have originally been proposed
for Parallel Multiple Context-Free Grammars (PMCFG), a superclass to LMCFG, by
Peter Ljungléf. LMCFG is a Mildly Context-Sensitive Grammar formalism.

The implementations are part of the work being carried out for the TALK project
at the departements of Linguistics at Goteborg University and Computing Science at
Chalmers University of Technology and Géteborg Univerity.

The Language Technology Group at Chalmers is currently conducting research round
the grammar formalism Grammatical Framework (GF). The important subclass context-
free GF is equivalent to PMCFG. This implies that a subset of the context-free GF
grammars can be parsed as equivalent LMCFG grammars.

Four different algorithms for parsing LMCFG are implemented, using deductive agenda-
driven chart-parsing. The first algorithm is a straightforward bottom-up strategy com-
bining items with smaller cover of the input string to items with larger cover. The
second algorithm uses a context-free approximation and then recovers the resulting
chart. The third algorithm is an active algorithm with Earley and Kilbury prediction.
And the last algorithm is incremental.

The algorithms have not been thoroughly tested as part of the work presented here.
However, preliminary testing indicate that they seem faster than the existing parser
for GF.

Sammanfattning

Den hir uppsatsen ér en redogorelse for implementeringar av parsningsalgoritmer for
Linear Multiple Context-Free Grammars (LMCFG). Algoritmerna har fran boérjan
foreslagits av Peter Ljunglof for Parallel Multiple Context-Free Grammars (PMCFQG),
en superklass till LMCFG. LMCFG é&r en milt kontextkénslig grammatikformalism.

Implementeringen dr en del av det arbete som institutionerna for Lingvistik vid Géte-
borgs Universitet och Datavetenskap pd Chalmers Tekniska Hogskola och Géteborgs
Universitet utfér inom TALK projektet.

Sprakteknologigruppen vid Chalmers bedriver bland annat forskning kring grammatik
formalismen Grammatical Framework (GF). Den viktiga subklassen context-free GF
dr ekvivalent med PMCFG. Det innebir att vissa context-free GF grammatiker kan
parsas som ekvivalenta LMCFG grammatiker.

Fyra olika algoritmer har implementerats utifran deduktiv agenda-driven chart-parsning.
Den forsta algoritmen &r en enkel bottom-up algoritm som kombinerar den erhéllna
chartinformationen nerifran och upp till storre och stérre enheter. Den andra algorit-
men utgar fran en kontextfri uppskattning och filtrerar sen ut den information som
overensstimmer med den ursprungliga LMCFG:n. Tredje algoritmen &r en variant
pa aktiv parsning med bade Earley och Kilbury filtrering som alternativ. Den sista
algoritmen &r en inkrementell algoritm.

Det har inte genomférts ndgon omfattande utvérdering av algoritmerna inom det ar-
bete som presenteras héir. Prelimindra tester antyder dock att algoritmerna &r snab-
bare dn den nuvarande parsningsalgoritmen fér GF.

ii

Acknowledgments

Time to get down to serious business. It always seems appropriate when one
has neglected life for academic virtues.

First of all I have to give Peter my sincere thanks. He’s responsible for intro-
ducing me to parsing algorithms in the first place. Parsing algorithms are more
than science, they are art forms. I'm also very grateful for the way he’s guided
me through my first major solo project.

Thank you Silverbullit for Citizen Bird.

Thank you Liverpool for your Champions League adventures. Long nights at
the computer pass by quick as anything when Juventus and Chelsea are knocked
out by The Reds. And an extra round of applause for Carragher and Dudek,
your performance in Istanbul will be a part of me for the rest of my life.

Thank you, my modernly extended family. I love you Burdens, Blabergs,
Bukowinskas and Josefsson. You’ve always believed in me and your support
has often been vital.

A very big thanks to all my friends at school. I've enjoyed your company. I
hope I won’t have to miss you.

To my friends outside, I love you. For all we have done and everything we said
we could do. T hope to see you soon.

And thank you Malva for keeping it real. Godspeed You Black Emperor. I love
you and could never have done it without you. You combine the knowledge of
a buddhist monk with a hedonists appetite for life, bringing order to chaos and
chaos to order.

Finally, Ellen, I love you ©. Thank you for all your love and support. Living
with me hasn’t always been that easy. I wish you the best and hope to be a
part of your future, for ever and ever.

/Hékan

iii

Contents

2

1 Introduction 1
1.1 Motivation 1
1.2 Structure 1
1.3 Haskell 2
Background 3
2.1 Preliminary definitionso oL 3

2.1.1 Setsand strings. 3
2.1.2 Recordsand tuples L. 4
2.2 Grammars e e e e e e e e 5
2.2.1 Context-Free Grammars 6
2.2.2 Decorated Context-Free Grammar 7
2.2.3 Mildly Context-Sensitive Grammars 8
2.2.4 Abstract and concrete syntax L. L 9
2.2.5 Grammatical Framework 10
2.2.6 Generalized Context-Free Grammars 10
2.2.7 Parallel Multiple Context-Free Grammars 11
2.2.8 PMCFG and cf-GF are equivalent! 14
23 Ranges. 14
2.3.1 Some operations on ranges 15
2.3.2 Range concatenation L. 15
2.3.3 Range restrictiono 15
2.3.4 Equivalent record types 16
24 Parsing 16
2.4.1 Recognition vs Parsing 17
2.4.2 Parsing as deduction Lo 17

2.4.3 Parseitems 18

2.4.4 Decorated parseitems 18
245 Chart 19
2.4.6 Inference rules for Decorated CFG 19
2.4.7 Earley prediction 0. 22
2.4.8 Kilbury prediction 23
2.4.9 Implementing parsing as deduction 23
2.5 Polynomial PMCFG parsing strategies 24
2.5.1 Naive algorithm 24
2.5.2 Context-free approximation algorithm 24
2.5.3 Active parsing algorithm 25
2.5.4 Incremental parsing algorithm 25
Implementation 27
3.1 Adapting the algorithms to LMCFG 28
3.2 The Naive algorithm 29
321 Ttemform 29
3.2.2 Goals for recognition 0oL 29
3.2.3 Inferencerules 30
3.2.4 Naiveparsechart. 30
3.3 The Approximative algorithm 32
3.3.1 The context-free approximation 32
3.3.2 Items for the context-free approximation 32
3.3.3 Converting the DCFG forest 33
3.3.4 Items for the recoverystep 34
3.3.5 Goals for recognition oL 34
3.3.6 Inference rules for the recovery step 34
3.3.7 Example of Approximative parsing 35
3.4 The Active algorithm 35
341 Therangefore 38
342 Ttemform 38
3.4.3 Goals for recognition 38
3.4.4 Inferencerules 39
3.4.5 Earley filtration for the Active algorithm 39

vi

3.5

3.4.6 Kilbury filtration for the Active algorithm

3.4.7 Example for the Active algorithm
The Incremental algorithm
3.5.1 Incrementality and range restriction
3.5.2 Ttemform
3.5.3 Goals for recognition
3.5.4 Inferencerules
3.5.,5 Examplerun
3.5.6 Proposed prediction strategies

4 Small-scale evaluation

4.1
4.2

Preliminary testing o Lo
Parsetable
4.2.1 Efficiency for correct sentences
422 Comments. i

4.2.3 Efficiency for incorrect sentences

5 Summary

5.1
5.2

Future work

Conclusion

Bibliography

A The code

Al
A2
A3
A4
A5
A6

ApproxParse e
ActiveParse

IncrementalParse

vii

47
47
48
48
48
49

51
o1
52

53

viii

List of Figures

1 Notations used throughout the thesis

2.1 An example of a Context-Free grammar
2.2 A Decorated CEFG
2.3 Parsetree
24 Anerasing PMCFG,
2.5 Examplechart
2.6 The chart as directed graph

2.7 An agenda-driven chart parsing algorithm for recognition

3.1 An interesting LMCFG
3.2 Naiveparsechart
3.3 The LMCFG convertedtoa CFG
3.4 Decorated context-free chart and equivalent preMCFG items

3.5 A chart for the Approximative algorithm
3.6 Activeparsechart

4.1 Evaluation of valid sentences

4.2 Evaluation of invalid sentences

A1l Typesandcode

ix

Figure 1: Notations used throughout the thesis

an input string s.t. w =wy ... w,
the empty sequence/string
a substring in w, s = w;, ..., w; 0 <i<j <|w|
a grammar, G = (C, X, S, R)
the set of non-terminals, also called the categories
the set of terminal tokens (the alphabet)
a start-symbol of a grammar s.t. S € C
the set of rules
the set of symbols, C U X
elements in C
a sequence of categories, By, ... B,
b elements in X
; L(A) a language; the language of category A
g function symbols
arity of a function or rule
sequences of linearizations or elements in V'
linearization records or sequences of linearizations,
dP=qa;...a,
the Kleene star
concatenation of two sequences
A—a=(A4,a)eR
B = afy whenever B — (3
the reflexive and transitive closure of a category
the length /size of =
natural numbers
we often use n when |z| is known
a record of any type. Often used for range records
a sequence of records, I= I'y,... Ty
record labels
k natural numbers used for indices
the range i to j
any range (i, j)
the range for the empty string
the ceiling of a range, returns (j, j)
i, 7)] the floor of a range, returns (4, 1)

Sy

Sl ® ™ E

&R S
=
)

*

S 3g oy
) 3 *

.

—
~
.
—

—
NN
~.
.
~—
JR—

Chapter 1

Introduction

1.1 Motivation

This thesis is the report for the implementations of parsing algorithms carried
out during the spring of 2005. The parsing algorithms are proposed in Peter
Ljunglof’s PhD thesis “Expressivity and Complexity of the Grammatical Frame-
work” (2004). The implementations cover a subset of the proposed algorithms.

We have tried to follow the notations of Ljunglof when possible, to make it easy
to compare the proposed algorithms with the implemented.

Grammatical Framework (GF) is one of the areas of research at Chalmers Uni-
versity of Technology. The work around GF is also a part of the work being
carried out for the TALK-project (Tools for Ambient Linguistic Knowledge) at
Chalmers and Goteborg University. For information about GF and the TALK
project, see GF (2004) and TALK (2004) respectively.

1.2 Structure

The chapters have the following structure

e Chapter 2 Background: Introduction and definition of some grammar for-
malisms. Explanation of decorated context-free parsing algorithms using
deduction and a brief description of the proposed algorithms.

e Chapter 3 Implementation: A description of the algorithms as they have
been implemented.

e Chapter 4 Small Evaluation: For several reasons there has not been any
extensive evaluation conducted. Nevertheless it is possible to draw some
conclusions, and to show some parse results.

e Chapter 5 Summary: Comments on the implementations and proposals
for future work. Rounding off the thesis.

e Appendix A The Code: The source code of the implemented algorithms.

1.3 Haskell

The algorithms are implemented in Haskell as is most of the Grammatical
Framework. It is not necessary to understand Haskell to read the report even
if the code of the implementations is in Haskell. The bulk of the implemented
code can be found in Appendix A.

Haskell is a functional programming language named after one of the pioneers in
A-calculus, Haskell B. Curry. It is based on A-calculus and statically typed. This
means that the implemented functions are defined for specific types; a function
for doubling a Float will not take an Integer as an argument. Functions can be
higher-order, meaning that a function can have other functions as arguments.

For more information on Haskell, see Hudak et al. (1999), Peyton Jones (2003)
or Thompson (1999).

Chapter 2

Background

The background chapter can roughly be divided into two parts. The first part
introduces the grammar formalisms that are background knowledge Linear Mul-
tiple Context-Free Grammars. It also gives a variant of Context-Free Grammars
called Decorated Context-Free Grammars. The second part presents the tools
for parsing. A brief account of the proposed algorithms is given at the end.

2.1 Preliminary definitions

2.1.1 Sets and strings
Concatenation of sets

Given that X and Y are sets then X -Y ={z-y|z € X, y € Y}. Further,
Xntl ={X . X"z € X} and X’ = {¢}, where € is an empty sequence.

The Kleene star

The Kleene star, *, is used to denote all possible repetitions of a set X
o0
X*=x'ux'u..ux'=Jx
0

Alphabet

A finite set of terminal tokens is called an alphabet and denoted X.

3

Strings and substrings

A string w € ¥* is a sequence w; ...w, in which each w; € 3. A substring
is any continuous part of a string. This means that every terminal token of a
string w can be seen as a substring of w.

Example Given the string w =12345; 1,34 and 2345 are all substrings of
wbut 13,1245 and 456 are not.
Language

A language, L, is a set of strings over an alphabet, ¥, i.e. £ € X*.

Example The language
{a"b'c¢" |n,i>0}
can be written as

a™b*c"

2.1.2 Records and tuples
Record

A label is an atomic symbol and a record is a set of unique label-value pairs.

Exzample If r1,...,r, are labels and x1,...,x, are values (such as ranges or
sequences of symbols) then

F:{lexl;--';rn:zn}

is a record.

Record projection
Projection on a record I' with the label r; is written I".r;. The projection will
return the value paired with ;.

Projections will either return a terminal value or another projection, giving
record projection a recursive structure.

Ezxample Given the two records

Fl = {T = FQ.TI}
r, = {r=a}

the projection I'y.r returns the projection I's.r” which in turn will give the
terminal value a.

Record unification

We define simple unification of records as
ur,=Tr;uly

Simple unification succeeds iff there is no r s.t. I'y.r # Tor

Record substitution

We can substitute one record for another in a list of records. We write the
operation as

Ty,...,Tyfi =T

meaning that in the list I'y,...T, the i:th element is substituted by I'. Sub-
stitution can also be performed on projections in records. The operation is
denoted

LBy /L]

and every projection Bg.7 in «g ..., ay, is substituted by the value given by I'y.r.

Ezxzample T, I'y, I'3[2 := T'] will substitute the second record for I', returning
Iy, T, Ts.

GivenT' ={r=aAjra;ro = A1’} and Ty = {r = a, 7 = A2.r"} then
T[A1/T1] =aaa Ay.r”.

Tuples

A tuple can be seen as a record since every record projection can be replaced
by the corresponding tuple projection.

Ezxzample As an example, the tuple T' = (z1,...,z,) is equivalent to the record
I'={1=u=;...;n = x,} and the i:th element in T is the same element
as that given by the projection I'.q.

2.2 Grammars

In the following section we will define Context-Free Grammars (CFG) and a
variant of CFG called Decorated Context-Free Grammars (DCFG). We will also
introduce the grammar formalisms Grammatical Framework (GF, Ranta, 2004)
and Parallel Multiple Context-Free Grammars (PMCFG, Seki et al., 1991). The
separation of syntax into an abstract and a concrete part will be introduced since
this is the way both GF and PMCFG handle syntax.

Figure 2.1: An example of a Context-Free grammar
A context-free grammar (adapted from Ljunglof (2004), page 17) where the
rules are

NP, VP
D, N
N

V, NP
a
many
lion
lions
fish
eat
eats

<~<z=zzo0I33w

L A

and S = sentence, NP = noun phrase, VP = verb phrase, D = determiner,
N = noun and V' = verb. Only the rules are given since it follows from R what
C, S and X are.

2.2.1 Context-Free Grammars

Context-Free Grammars (CFG) are a subclass of the Phrase Structure Gram-
mars. They are called context-free since the rules have no context-dependent
information on when they are allowed to be applied; the left-hand side of the
rule is restricted to contain a single category, (Chomsky, 1959).

A context-free grammar is a four-tuple (C, S, X, R), where

e (' is the set of non-terminal symbols,

e Y is the alphabet,

e S is the start category of G s.t. S € C and

e R is the set of rules: R C C x V* where V = C' U X is known as the set
of symbols.

An example of a CFG, recognizing a small fragment of English, can be found in
figure 2.1.

Some grammar notations

For most grammars C', S and X are obvious from R and therefore only the rules
are given.

We use the Greek letters «, 8 and 7 to denote any sequence of symbols in V. It
is common to use A — 3 instead of (A, 3) € R, and we call A the left-hand side

6

and 3 the right-hand side of the rule. Elements in § are the daughters of A.
For a sequence of symbols, a B+, we can use the rewriting relation = to write
aBy = apy iff B — f.

The empty string is denoted € and the rule A — € is called an e-rule. The number
of categories on the right-hand side of — is the arity of the rule, denoted §.

Expressivity of CFG

Expressivity features handled by a context-free grammar include

e nesting (a™b™) and

e reverse copying {ww®|w € (a Ub)*} (where abab® = baba)
For most practical uses the complexity of everyday language could be captured
within the expressivity of Context-Free Grammars. There are however some
linguistic features that do require more expressive power;

e multiple agreement (a™b™c™),

e crossed agreement (a™b™c™d™) and

e duplication {ww |w € (a Ub)*}.
For exampleShieber (1985) proposes that the subordinate clauses of Swiss Ger-

man carry a syntax containing discontinuent constituents (crossed agreement).
The same has been claimed for Dutch by Joshi (1985).

Language of a CFG

The reflexive and transitive closure of = is written as =*. The language of a
category A is then
L(A) ={we X |A=" w}

The language recognized by a grammar G is £L(G) which equals £(S) iff S is
the starting category of G.

2.2.2 Decorated Context-Free Grammar

The context-free approximation described in section 3.3 uses a form of CFG with
decorated rules. The decoration consists of a name for the rule and subscripting
each non-terminal in the right-hand side in order to facilitate implementation.
The example CFG as a Decorated CFG is shown in figure 2.2.

In all other respects a Decorated CFG (DCFG) can be seen as any other straight-
forward CFG.

Example The following context-free rule

7

Figure 2.2: A Decorated CFG
The example CFG in figure 2.1 as a Decorated CFG

NPy, VP,
Dy, Ny
N

Vi, NP
a

many
lion

lions

fish

eat

Ll lbrllbLd

~==2=2=20b

eats

S — NP, VP
can be decorated to
s:8 — Npl, VP2

many lions eat fish is an example of a sentence generated by the decorated gram-
mar. See figure 2.3 its syntactical structure.

2.2.3 Mildly Context-Sensitive Grammars

Several grammar formalisms have evolved under the name Mildly Context-
Sensitive grammars, a term coined by Joshi (1985).

Expressivity and complexity of Mildly Context-Sensitive Grammars

Mildly Context-Sensitive grammars form a subclass of Context-Sensitive gram-
mars (Chomsky, 1959) and have the following properties:
1. They can express any context-free language.

2. They have constant growth property (when ordered by increasing length
the sentences of a language do not differ by more than a constant).

3. They can be parsed in polynomial time (with respect to the length of the
input).

4. They can express multiple agreement, crossed agreement and duplication.

8

Figure 2.3: Parse tree
The string many lions eat fish is generated by the decorated grammar. The
syntactical structure of the sentence is shown below.

s:S

/\

np:NP vp:VP

N

d:D n:N v:V np:NP

many lions eat n:N

|
fish

The first and fourth of these properties are true for all Context-Sensitive gram-
mars but the second and third properties are not. The benefit of a Mildly
Context-Sensitive grammar is that it can express features beyond the expres-
sivity of CFG:s without having the full-scale time-consumption of Context-
Sensitive grammars.

In order to give formal bounds on expressivity the properties in the last point
can be defined in the following way:

e k-multiple agreement: ai*...a}"
.o, mp m1 M
o k-crossed agreement: ai"*...a, *b"" ... by

e k-duplication: {w*|w € (a Ub)*}

With these definitions, a CFG is capable of expressing at most 2-multiple agree-
ment, 1-crossed agreement and 1-duplication. The mildly context-sensitive
grammar formalism Tree Adjoining Grammars (TAG, Joshi et al. 1975) can
express 4-multiple agreement, 2-crossed agreement and 2-duplication and Mul-
tiple Context-Free Grammars (Seki et al., 1991) can express these properties for
any given k.

There are limits to what a mildly context-sensitive grammar can handle. The
language a?", which gives all sequences of a with length 2", is such an example
since it does not have a constant growth property.

2.2.4 Abstract and concrete syntax

Consider the context-free syntax rule for modifying a noun with an adjective

9

NP — AP, N

(where NP is the resulting noun phrase, AP is the modifying adjective phrase
and N is the noun). The rule can be written in two ways, depending on what
language the grammar shall generate.

Spanish modifies nouns by putting the adjective after the noun, vino blanco.
In English the adjective comes first, as in white wine, and in French the order
depends on the particular adjective in use: bon wvin but vin blanc.

Thus we would need one more rule for the word order N, A and a way of
specifying when to use which rule. Alternatively, we can separate the syntax
into an abstract and a concrete part.

The abstract rule would only specify which categories that can be combined
into a noun phrase. The different ways of realising the abstract rule would
then be described in concrete linearization rules. The grammars for Spanish,
English and French would share the abstract rule but would each have their
own concrete linearizations of it.

Advantages

There are some clear advantages of separating the abstract and the concrete
syntax.

e One abstract syntax rule can have several concrete linearizations, allow-
ing the abstract syntax to work like an interlingua between the concrete
syntaxes. This works both for translating between natural languages but
also between different kinds of output modes (plain text, XML documents,
outputting speech synthesis etc.) for a certain piece of information.

e The abstract syntax can concentrate on the main issues and let the con-
crete linearizations take care of the details.

2.2.5 Grammatical Framework

Grammatical Framework (GF; Ranta, 2004) uses the type theory of Martin-Lof
(1984) to express the semantics of natural languages, supporting higher-order
functions and dependent types.

An important subclass of GF is obtained when the abstract rules are context-
free, i.e. only contain first-order functions, and there are no dependent types.
This subclass is therefore called Context-Free GF or cf-GF for short.

2.2.6 Generalized Context-Free Grammars
Generalized Context-Free Grammars (GCFG) were introduced as a way of de-

scribing Head Grammars (HG; Pollard, 1984). It is a Turing complete (Chom-
sky, 1959) formalism. Since the 1980’s, GCFG has been used as a framework

10

for describing other grammar formalisms. One of these formalisms is Parallel
Multiple Context-Free Grammars (PMCFG; Seki et al. 1991) and one of the
conclusions in Ljunglof (2004) is that it is possible to use GCFG and PMCFG
to describe context-free GF.

GCFG separates the syntax into an abstract and a concrete part.

Abstract GCFG rules

The abstract syntax of GCFG is context-free and an abstract GCFG rule is
written as
A — f[Ay, ..., As)

There are two things that distinguish the abstract GCFG rule from an ordinary
context-free rule. The first difference is that there can only be categories in the
right-hand side of the rule. The second is the function name f , which shows
by which concrete rule the abstract rule is to be linearized.

Concrete GCFG linearizations

For every abstract function f with arity J, there is one corresponding concrete
linearization function f° defined on § arguments

fola,...,z5) =«

The concrete syntax is made up of functions over linguistic objects. The objects
are not, defined in GCFG; it is up to the specific grammar formalism to define
its own objects.

Combined GCFG rules

Sometimes it can be easier to write the abstract rule together with the concrete
linearization. The combined rule is then written

A— flAq, ..., As] :=d

where ' is the result from substituting every =z; in « for A4;.

2.2.7 Parallel Multiple Context-Free Grammars

Parallel Multiple Context-Free Grammars (PMCFG; Seki et al. 1991) are in-
stances of Generalized Context-Free Grammars. In PMCFG the linguistic ob-
jects are defined as tuples of strings and the functions are defined using string
concatenation. As we have seen, tuples can be replaced by equivalent records
(2.1.2 on page 4), so we use records of linearization information as linguistic
objects. An abstract PMCFG rule looks just like an abstract GCFG rule.

An example of a PMCFG can be found in figure 2.4 on page 13.

11

Linearization records

A linearization record is a record of linearization rows. A linearization row is
in turn a list of symbols, and a symbol is either a terminal or a projection of a
category.

The terminals’ linearization information depends on their types. Since the ter-
minals are strings in PMCFG, the terminals will be linearized by concatenation.
The categories are given their linearization information by record projections.
And record projections have a recursive structure, in the end giving a category
a string linearization.

A linearization record only containing terminals is a fully instantiated lineariza-
tion record. We denote linearization rows by a or 3. A linearization row has the
same purpose as the right-hand side of a CFG rule: It tells us how the left-hand
side is going to be linearized. A sequence of linearization rows is denoted by ®
or U. For convenience we sometimes write the linearization record

{81 = V.51 NPQ.S; So9 = VSQ NPQ.S}
as
S1 = V.51 NPQ.S, So = V.SQ NPQ.S
Ezample Consider the concrete linearization record (from figure 2.4)
S1 = VSl NPQ.S, S9 = VSQ NPQS

it has two rows, one for the label s; and one for ss. The projection V.sg

is an unbound variable, dependent on the value paired with s, in the

linearization row for V. Because of the recursive nature of projections,

sooner or later the value will be a terminal and V.sp instantiated as a
string.

Concrete PMCFG linearizations

To every abstract function f there is a linearization function f° returning a
linearization record

oz xs)={rm=ai;...;mm = an}

Combined PMCFG rules

We can write the abstract rule and the concrete linearization as a combined
rule. We then substitute every z; in ay for A;

. A — f[A4, z‘}z] A— flA1, Al =7 = A1 b
fo(ar, m) ={r=z11"0a s=Ay.s'b
s =x9.5' b} o

12

Figure 2.4: An erasing PMCFG

S — ssg[NPsg, VP]

S — Spl[P]
NPgy — npdsg[sgs V]
NPy — npapi[Dsg, N]
NP — np,[N]

VP — upesg|V, NPgg]

VP — vpepi[V, NPp]

The following grammar is taken from Ljunglof (2004), page 59.

s = NPs;.s VP.sg
s = NPy;.s VP.sy

5= Dsg.8 N.55q
5= Dp.8 N.sp
§ = N.Spl

Ssg = V.85g NPgg.5
spr = V.sp1 NPsy.s
Ssg = V.85g NPp.5
Spl = V.Spl Nppl S

Dsg — dg]] == s=a
Dy — dy[] = s=many
N — m[] = s59 = lion
sp1 = lions
N — np[] = ssg = fish
sp1 = fish
V = ve[] = ss9 = eats
Sp1 = eat

We use subscripts to distinguish between the first and the second instance of
the equivalent categories A and A in the rule’s right-hand side. Actually all
categories on the right-hand side are subscripted, so the rule

S — fl[Al:=s=ApAgq
is the shorthand notation for the rule
S — fl[A1] :=s=A1.p A1.q

However, since there is no way of confusing which A is linearized by which label,
there is no need to explicitly write out the subscripts.

Linear grammars

If there can be at most one occurrence of each possible projection A;.r in a
linearization record the PMCFG rule is linear. If all rules are linear the grammar
is linear.

13

Example In the grammar in figure 2.4 the rule

VP — vpep[V, NPp| = s59 = V.sgqg NPpy.s,
Spl = V.Spl Nppl.s

is linear since no record projection occurs twice in the linearization.

Erasing grammars

A rule is erasing if there are argument projections that have no realization in
the linearization. A grammar is erasing if it contains an erasing rule. Seki et al.
(1991) have shown that it is possible to transform an erasing grammar to a
non-erasing grammar. The non-erasing grammar can then be used for parsing
instead of the erasing grammar.

Example The grammar in figure 2.4 is erasing since the rule
S — 83¢[NPsg, VP]:= 5= NPy;.5s VP.sg
only uses the sy4 linearization of the VP:s linearization rows. The other

row (labeled s;;) is erased from the resulting linearization.

Linear Multiple Context-Free Grammars

If a grammar is linear it is called a Linear MCFG (LMCFG). If the grammar
is non-erasing and linear it is called a Linear Context-Free Rewriting System
(LCFRS, Vijay-Shanker et al. (1987)). Since there is an equivalent non-erasing
grammar for every erasing grammar it is implied that LMCFG and LCFRS are
equivalent grammar formalisms.

2.2.8 PMCFG and cf-GF are equivalent!
The result achieved by Ljunglof (2004) is to show that cf-GF and PMCFG are
equivalent formalisms. Consequently, a cf-GF can be reduced to a PMCFG and

then we can use the PMCFG for parsing. However, we will not discuss how the
equivalence can be proven.

2.3 Ranges

We use ranges in order to pinpoint partial structures for substrings in a sentence.

Range
A range is a pair of indices, (7, j) in which 0 < i <j < |w], in an input string
w. The entire string w = wy ... w, spans the range (0,n). The word w; spans

the range (i — 1,4) and the substring w;, ..., w; spans the range (i — 1, j). A

14

range with identical indices, (¢, ¢), is called an empty range and spans the empty
string.

We use p to denote any range (i, 7).

Ezxzample Given the input string abed, the range for a is (0, 1) and bc has the
range (1, 3).

Range records
If a record contains label-range pairs we call it a range record, I' = {r; =

P1y---yTn = pn}. All range records are fully instantiated, meaning there are no
variables paired with the labels.

2.3.1 Some operations on ranges

Given the range p = (i, j), the ceiling of p returns an empty range for the right
index

[p] = (4, J)

and the floor of p does the same for the left index
Lo = (i, ©)

2.3.2 Range concatenation

The result of concatenating two ranges (i, j) and (j', k) is non-deterministic,
defined only when j = j/

2.3.3 Range restriction
In order to retrieve the ranges of any substring s in a sentence w = wy ... wy,

we need to range restrict the sentence with respect to the linearization(s) for
that token. Range restriction of a string s with respect to w is defined as:

()" ={(@, 4) | s = wi1 ... w;}
If w is understood from the context we simply write (s).
Example Range restricting the terminal a with respect to the string abba will
give

(a) = (0, 1) or (3, 4)

15

Range restriction of a linearization record, ®, with respect to a sentence is
written (®). The result from range restricting a linearization record is that
every terminal token s is replaced by its range, (s). The result is of course non-
deterministic since there can be several instances of a terminal in w, resulting
in different replacements. The range restriction of two terminals next to each
other fails if range concatenation fails for the resulting ranges. Any unbound
variables in ® are unaffected by range restriction.

The above holds for range restriction of any sequence of symbols. The terminals
will be substituted by their ranges and the categories left as they are.

Example Given the string w = abba and the linearization record
P = {7“1 =a; ro = b;?‘3 = Al.r4}

range restriction would give

<(I)> = {Tl = (07 1)5 Ty = (152)7 s = Al-TI}
or {r1=1(0,1), 72 =1(2,3), r3 = A1.7"}
or {r=(3,4), 12=(1,2), r3=A1.7"}
or {T1:(3,4), 7’2:(2,3), T3—A1.T}

(o) = (0,1), A, (1,2), B
or (0, 1), A, (2, 3), B
or (3,4), A, (1,2),B
or (3,4),4A,(2,3),B

Range restricting ® = {r = a b} with abba gives

(@ = {r=1(0,2)}

The other possible solutions fail since they cannot be range concatenated.

2.3.4 Equivalent record types

A fully instantiated, range restricted linearization record will only contain ranges.
It can therefore be seen as a range record. We say that the range record

F={ri=p1;...57n = pn}t

is equivalent to the fully instantiated, range restricted linearization record

®={ri=p1;...;7 = pu}

2.4 Parsing

An introduction to parsing decorated context-free grammars using deductive
agenda-driven chart-parsing.

16

2.4.1 Recognition vs Parsing

Recognition consists of determining whether the sentence w is in the language
generated by the grammar G or not (i.e. w € £(G)). Parsing on the other hand
consists of determining the syntactical structure of w given G. The acquired
syntactical information can in turn be used to simulate the generation of w.

It is obvious that the two are linked: If there is a way to generate w from G then
w € L(G). And correspondingly, if w € L(G) then there is a way to generate
w from G. However recognition will return either True or False while parsing
will return some representation of the possible syntactical structure(s) of the
string.

2.4.2 Parsing as deduction

Parsing as deduction was introduced by Schieber, Schabes and Pereira (1995).

General form for inference rules

When viewing parsing as a deductive process new consequences are derived
by inference rules from already acquired information. The inference rules are
written as deduction rules and can have side conditions.

Given the antecedent items A; to As and the side conditions conds the conse-
quence item is C', which is written

Ary
C

An
~—{conds

Example If there is a context-free grammar rule NP — N and we already have
an N we can draw the conclusion that there is an NP

N
—{NP - N
NP

Axioms

A deduction without antecedents is always true, given that the conditions hold.
Such a deduction is called an axiom. Axioms are vital for any deduction process
since without them there will never be any antecedents for deriving the first
consequences.

Example When deductive parsing is started there are no items to derive con-
sequences from. One way to get started is to predict from the grammar.
These predictions would then be axioms. The axiom

S_)a{SHa

is a prediction that says that we will find a way to linearize the context-free
rule for the start category to match the input string.

17

2.4.3 Parse items

Parse item A parse item is a representation of a piece of information that
the parsing algorithm has acquired. The items can be implemented in many
ways, depending on which strategy is used for parsing.

Active and passive items

One way of representing the context-free rule A — «a, (8 is with the active item
[p; A — « e 3], where p is a range (7, j). This means that we have found
everything to the left of the dot e, «, between i and j, and are looking for
everything to the right of the dot, 3, in order to complete the entire range of A.
An active item thus represents a partial analysis of the input and a prediction
of what we might find later on.

If 3 is empty, [p; A — «e], we can convert the active item to [p; A] and call it a
passive item since there is no longer anything left for it to find. A passive item
represents a complete analysis of the input.

2.4.4 Decorated parse items
Decorated active items

A decorated active item has the form

o3 f: A—Jaef]

in which all categories in « are indexed and given with their range. Terminals
are given as they are.

Decorated passive items

A decorated passive item is defined as having the form
[f+ 4]

Example Given our example grammar in figure 2.2 and the sentence many
lions eat fish, we can have the passive item [(0, 1); d : D] claiming that
d : D has been found with the range (0, 1). Or we can have the active
item [(2, 3); vp : VP — V4(2, 3) @ NP3] for having found the verb in a verb
phrase, with the prediction that there is an np : NP starting at index 3.

Passive items for terminal rules (in which the right-hand side is empty) carry
enough information to enable the construction of parse trees. Passive items for
non-terminal rules do not since it is not possible to see how they came to achieve
the parse information. For instance it cannot be derived from the grammar how
the passive item [(0, 4); s : S| came to have the range (0, 4). For that we will
have to use the corresponding active item. But it is possible to derive how the
passive item [(0, 1);d : D] came to have the range (0, 1).

18

Goals for recognition

We use goal items to determine if a sentence belongs to the language of a
grammar or not. This is achieved by first parsing the sentence and then checking
if the goal item is in the chart. If it is, then recognition returns True, otherwise
False.

Goal items are dependent on the grammar and on how the implementation of
the parsing algorithm.

Ezample In the decorated chart in figure 2.5 the passive item (40)
[(0, 4); 5 : S]
is a goal item. We could also use the corresponding active item (39)

[(0, 4),8 S — NP1(O, 2), VP2(2, 4)0]

2.4.5 Chart

In order to store the results of parsing we use a set of items called a chart. We
denote the chart by C. See figure 2.5 for an example of a decorated context-free
parse chart.

Another way of looking at the chart is to describe it as a directed graph,
C=(V, E), in which V is the set of vertices, corresponding to the index posi-
tions, and F corresponds to the parse items.

The chart will depend on both the input and the grammar. However, it will
also depend on the parsing algorithm since the derived items will be different, for
different strategies. In figure 2.6 we give a directed graph of the passive items
in figure 2.5.

The left parse tree in figure 2.3, the passive items in figure 2.5 and the directed
graph 2.6 all represent the same syntactic structure. However in the chart and
graph we also retain the structure with respect to the input positions.

2.4.6 Inference rules for Decorated CFG

There are three fundamental inference rules for a deductive chart-parsing al-
gorithm (Kay, 1986; Wirén, 1992). The inference rules have been adapted for
decorated context-free parsing. For convenience we add the inference rule Con-
vert, which vonverts fully instantiated active items to passive ones. This makes
it easier to define the inference rule Combine 2.2 and to search the chart for
matching items since there will be fewer passive than active items.

The items have the form defined in 2.4.3. It is important to remember that new
items are only derived if the range concatenation succeeds. This is also the case
for range restriction.

19

Figure 2.5: Example chart
Parsing the sentence many lions eat fish gives the following decorated context-
free chart when using Earley filtering

1 [(0,0);5: 8 — eNP;, VP Predict

2 [(0,0);np: NP — eN/] Predict

3 [(0,0);np: NP — eDy, No] Predict

4 [(0,0);n: N — elion] Predict

5 [(0,0);n: N — elions] Predict

6 [(0,0);n: N — efish] Predict

7 [(0,0);d: D — eq) Predict

8 [(0,0);d: D — emany] Predict

9 [(0,1);d: D — manye] Scan 8

10 [(0,1);d : D] Convert 9

11 [(0,1);np: NP — Dy(0, 1) ® No] Combine 3, 10
12 [(1,1);n: N — elion] Predict

13 [(1,1);n: N — elions] Predict

14 [(1,1);n: N — efish] Predict

15 [(1,2);n: N — lionse] Scan 13

16 [(1,2);n: N] Convert 15

17 [(0, 2);np : NP — Dy(0, 1), No(1, 2)e] Combine 11, 16
18 [(0, 2);np : NP) Convert 17

19 [(0,2);s: S — NP;(0, 2) @ VP,] Combine 1, 18
20 [(2,2);vp: VP — eVy, NP Predict

21 [(2,2);v:V — eeat] Predict

22 [(2,2);v: V — eeats] Predict

23 [(2,3);v: V — eate] Scan 21

24 [(2,3);v: V] Convert 23

25 [(2,3);vp: VP — V1(2, 3) @ NP, Combine 20, 24
26 [(3,3);np: NP — eN4] Predict

27 [(3,3);np: NP — Dy, N Predict

28 [(3,3);n: N — elion] Predict

29 [(3, 3);n: N — elions] Predict

30 [(3,3);n: N — efish] Predict

31 [(3,3);d:D — eq Predict

32 [(3,3);d: D — emany] Predict

33 [(3,4);n: N — fishe] Scan 30

34 [(3,4);n: N] Convert 33

35 [(3,4);np: NP — Ni(3, 4)e] Combine 26, 34
36 [(3,4);np: NP Convert 35

37 [(2,4);vp: VP — V1(2, 3), NP2(3, 4)e] Combine 25, 36
38 [(2,4);vp: VP] Convert 37

39 [(0,4);s: S5 — NP1(0, 2), VPy(2,4)e] Combine 19, 38
40 [(0, 4);s: 5] Convert 39

20

Figure 2.6: The chart as directed graph
The edges are the passive items from the chart in figure 2.5. On top of the edge
we have the left-hand side and underneath is the syntactical structure of the
right-hand side.

21

Predict
f:A—=B
[(n);f:AH.m{ 0<i<|ul (21)

The axioms as given by Predict. Prediction gives an item for each rule in
R with an empty range for every input position 0 < i < |w].

Combine
[p;f:A—aeB; 3] [p';g: B
[p;f: A— aBip’ e[

{pep o (2.2)

If there is an item for the rule f : A — aBf having found a within p’
and a passive item for the category B spanning the range p” we can add
a new item to the chart, where o B has the range p.

Scan
Pif A= aesp]
p;f: A— asef]

{ pep (s (2.3)

If there is an item for the rule f : A — asf with the range p’, where the
next token is a terminal, we can add a new item where as spans p’ - (s).

For convenience, the fully instantiated active items are converted to passive
items.

Convert
[p; f: A — Be]
[p; [+ A

Fully traversed active items are converted to passive items.

Prediction is very blunt. It predicts an item for every rule at every input posi-
tion. This gives a vast number of useless items, especially if the number of rules
and/or the size of the input is very large.

2.4.7 Earley prediction

This filtering technique was introduced by Earley (1970) and is a top-down
strategy. Instead of predicting every possible rule at every possible input po-
sition Earley limits the predictions by only predicting a new item when an old
one is looking for it.

Predict

[p’;g:CHMAOé]{f:AHﬂ (2.5)

[p; f: A— of] p=1p"1

Only predict an item for the rule f : A — § when there already is an active
item looking for A. The new item’s range is the ceiling of the antecedent
item’s range.

22

Initial Prediction

[0,0):f:5—ea]l 570 (2.6)

Predict an item spanning (0, 0) for every rule in R where the left-hand
side of the rule is a start-category.

Combine and Scan are included as inference rules numbers 2.2 and 2.3.

2.4.8 Kilbury prediction

Another filtering strategy is the one proposed by Kilbury (1985), using a bottom-
up approach. An item is only predicted for a grammar rule if the rule looks for
a category that already has been found.

This prediction strategy is also called left-corner parsing (as in Carroll, 2003).

Predict-+-Combine

[p;g: B
[p;f: A— Bpef]

{f:A— Bip (2.7)

Given a passive item for B and a rule in which B is the first element of
the right-hand side we can add a new item for the rule, searching for the
rest of the right-hand side.

Predict-+Scan
f:A—sB
[p;AHs-ﬂ]{ pE(s) 29

For every rule with a substring as the first element in the right-hand side,
add an active item for the rule spanning the substring, looking for the rest
of the right-hand side.

Combine and Scan are included as inference rules numbers 2.2 and 2.3.

2.4.9 Implementing parsing as deduction

The actual implementation will depend on the grammar, the parsing algorithm
and of course the goal for parsing.

As long as the deduction process enumerates all derivable items it is of no
interest in which order they are produced. However, for efficiency reasons, we
do not want to enumerate an item more than once. Therefore the chart has to
be implemented as a set, only caching one instance of every item.

New items are added to the chart as they are derived by the inference rules.
Since each new item can in itself have new items as it’s consequence all new
items are stored in a seperate data-structure called an agenda. When an item
is removed from the agenda, all its consequences are derived. They are added
to the chart and agenda, if they are not already in the chart. This procedure

23

Figure 2.7: An agenda-driven chart parsing algorithm for recognition

algorithm : Agenda-driven Chart parsing
input : Initial Items derived from Axioms
output : True / False

data structures: Chart, a set of Items
Agenda, a collection of Items

initialize:
Chart to set of Initial Items ;
Agenda to collection of Initial Items ;

while Agenda not empty :
remove a Trigger Item from Agenda ;
compute all Consequence Items of Trigger Item ;
for each Consequence Item :
if Consequnce Item not in Chart :
then: Add Consequence Item to Chart and Agenda ;

if Goal Item in Chart :
then: True ;
else: False ;

is iterated until there are no more items in the agenda. The resulting chart
will then consist of all the syntactical information that can be derived from the
sentence with respect to the grammar.

An algorithm for agenda-driven chart parsing can be found in figure 2.7.

2.5 Polynomial PMCFG parsing strategies

Ljunglof (2004) proposes four main strategies for parsing PMCF grammars. The
strategies have in turn different filtering techniques or versions. For an extensive
description, see chapter 4 in Ljunglof (2004).

2.5.1 Naive algorithm

This is a naive algorithm with a passive and an active version. The algorithm fol-
lows a straightforward bottom-up procedure, combining parse items with ranges
covering smaller parts of the string to parse items with larger covering.

2.5.2 Context-free approximation algorithm

For this strategy the PMCFG is converted to a Decorated CFG. Parsing with the
DCFG can then be carried out using any context-free algorithm. The decorated

24

context-free approximation might give items that are incorrect since the DCFG
is overgenerating. Therefore the resulting chart needs to be filtered in a recovery
step.

The complete but unsound decorated context-free chart is recovered in two
steps. First the decorated context-free chart is transformed into a PMCFG
chart. Then the items are combined into items with discontinuous constituents
according to the original PMCFG in a way similiar to the one proposed for the
Naive algrotithm.

2.5.3 Active parsing algorithm

For the Active algorithm, an item is predicted for every possible range restriction
of every linearization record. The linearization rows of the items are traversed by
scanning and combining. Whenever a row has been fully instantiated, the next
row in the linearization record is traversed until there are no more linearization
rOWS.

Just as for context-free parsing, it can be unnecessary and time consuming to
predict an item for every rule in the grammar, so adaptions of the two filtering
strategies Earley and Kilbury to PMCF grammars are proposed.

2.5.4 Incremental parsing algorithm

An incremental parsing algorithm reads one token at a time from the input
string and computes all possible consequences from that token before reading
the next token.

The proposed strategy is similar to the Active parsing algorithm above with one
important difference: For the Active algorithm an item is predicted for every
possible range restriction of every linearization record. However, since the tokens
are read incrementally (and therefore the order of the tokens is unknown) there
has to be an item for every possible range restriction of a linearization row. The
same procedure, and argument, goes for completion.

If massive and time consuming prediction was a problem for the Active algorithm
it is an even bigger problem for the Incremental algorithm. Therefore a way of
implementing Earley and Kilbury filtering is proposed. This should make the
parsing process more time efficient.

25

26

Chapter 3

Implementation

There has not been enough time to implement all variants of the proposed
algorithms. Both the Naive and the Context-free approximation algorithms are
proposed with an active and a passive version. Only the active versions have
been implemented. The Active algorithm is implemented with both Earley and
Kilbury predictions. The Incremental algorithm is implemented but none of the
proposed prediction strategies are.

Examples

All algorithms are explained with an example section, where we parse the sen-
tence abed with respect to the grammar in figure 3.1. For the Naive, Approxi-
mative and Active algorithms the parse chart is given in full. However, for the
Incremental algorithm this would take too much space so only an abbreviated
example run is given.

The examples are given in the same notation as the algorithms. For those
interested, the algorithms can be found in code in Appendix A.

Items

Just as for the context-free parse items in 2.4.3 on page 18, it is not possible to
derive parse trees from passive items for non-terminal rules, only for terminal
rules.

In section 2.4.6 on page 19 we range restricted the terminals as they were
scanned. For the implemented algorithms range restriction is carried out at
the same time as prediction. This means that the items in the inference rules
will have ranges instead of terminals in their linearization records. A conse-
quence is that only rules that can be range restricted will be predicted as items,
possibly making the chart smaller.

27

Figure 3.1: An interesting LMCFG
In order to have a small but interesting grammar for examples we use the fol-
lowing from Ljunglof (2004), page 82.

S— fl[4 = s=ApAg
A — g[Ay, As] = p=A1.pAap,
q=A1.q As.q
A—acl] = p=aq,
g=c
A—bd]] = p=hb,
q=d

The grammar generates the language
L(S)={sspm|s € (@aUb)"}

where sy, is the homomorphic mapping s.t. each a in s is translated to ¢, and
each bis translated to d. So, the homomorphic mapping of abbab equals cddcd.
Examples of generated strings are ac, abcd and bbaddc. However, neither abc
nor abcdabed will be generated.

The language can not be described by a CFG since it contains a combination of
multiple and crossed agreement with duplication. For instance the string abbcdd
has multiple agreement on a, b, ¢ and d, crossed agreement on the pairs a — ¢
and b — d respectively and a mapped duplication of the first part of the string
abb to the second part cdd.

Notations

In some algorithms we choose to use the equivalent range record, I', for the fully
instantiated, range-restricted linearization record, ®. This is written I' = .
The equivalence is described in section 2.3.4.

A sequence By, ..., By can be denoted by the more compact B. The same goes
for range records; I'1, ..., 'y can be written as T'.

3.1 Adapting the algorithms to LM CFG

The original algorithms are designed for PMCFG, but since there are no such
grammars in use at this time in the GF environment we have adjusted the al-
gorithms for LMCFG. This also makes them more time efficient. The difference
lies in how ranges are implemented. As we have seen (section 2.2.7 on page 13)
PMCFG supports parallel linearizations for rules. In order to represent the

28

possibly multiple presence of the projection A;.r in the input, the proposed
algorithms use sets of ranges.

For a LMCFG it is enough to represent every projection with a single range
since it cannot occur more than once in any linearization record.

3.2 The Naive algorithm

The first algorithm proposed by Ljungléf is the ‘Polynomial parsing for context-
free GF’ and it has two versions, a passive and an active. The passive version
requires finding ¢ items for every rule A — f[By,..., Bs] := ® in order to make
a new item. Finding this subset of the chart is complicated and takes a lot of
time. Therefore only the active version has been implemented.

3.2.1 Item form

There are two kinds of items, active and passive.

Active item

An active item for the rule
A—f[B]:=1¥

has the form
[A— f[B' e B"]; ®;T]

in which the categories to the left of the dot e, é’, have been found with the
linearizations in the list of range records I'. W is range restricted to ®.

Passive item

A passive item consists of a category and its range record
[A;T]
Use of passive items makes it easier to implement the algorithm and also helps

when manually checking the parse result. They can be omitted with small
changes to the inference rules.

3.2.2 Goals for recognition

Given the grammar in figure 3.1 we can now define a goal item for the Naive
algorithm for any input string w

[55 {s = (0, [w])}]

29

3.2.3 Inference rules

The implemented rules are similiar to the ones proposed by Ljungléf, but note
that all range records are records over simple ranges.

Predict

A —>f[>§] =0 (3.1)

[4 = floB]; ®;] { ®e(v

Prediction gives an item for every rule in the grammar and the range
restriction of its linearization is what it has found from the beginning.
The sequence of range records is empty since none of the daughters in B
have been found yet.

Combine ~ ~ _
[A— f[BeBiB'|;®;T| [By;Tk]

A BB eBrorn B/ (3.2)

An active item looking for By and a passive item that has found By can
be combined into a new active item. The new item has found By and in
its linearization record we substitute By for its range. We also add the
passive item’s range record to the new item’s record of daughters.

The active items with fully instantiated linearizations are converted to passive
items.

Convert . .
[A — f[Be]; ®;T
[A; T

] r=a (3.3)

Every fully instantiated Active item is converted into a Passive item. The
fully instantiated linearization record is transformed into a range record
with equivalent information.

3.2.4 Naive parse chart

Figure 3.2 contains the parse chart for parsing the string abcd with the Naive
algorithm. Ttems 1 and 9 are examples of fully instantiated active items, 6 and 10
of the corresponding passive items. Prediction ensured that the four first items
were added to the chart. Items 3 and 5 were combined into item 7. The active
item 12 has been converted into item 13, which is the goal item for recognition.
Ttem 11 is the combination of items 3 and 10, i.e. the predicted item for the
rule A — g[A, A] and its corresponding passive item. It will never become
fully instantiated since range concatenation always fails when the remaining
projections in ® 4 .4, are substituted for the ranges in the passive item’s range
record.

The linearization record @, .5 q is partially instantiated and @, is the range
restricted linearization record from the grammar rule A — g[A, A] := ®. Since
there are only unbound variables in ® they carry the same information. The
range record I, gy contains the same parse information as the fully instantiated
linearization record @ 4.

30

Figure 3.2: Naive parse chart
We get the following parse chart when parsing the string abcd with the grammar
in figure 3.1 on page 28

1 [A - ac[]7 (I)<a,c>;] Predict
2 [A— bdle]; P a3] Predict
3 [A— g[eA, A];Dy;] Predict
4 [S— f[oA], Dy | Predict
5 [A4T 0] Convert 1
6 [A4T Convert 2
T [A— Q[A Al; @ (a ,c)bd;r(a,c)] Combine 3, 5
8 [A—g[Ae Al Qx4 ayaciTp,a)] Combine 3, 6
9 [A—g[A, Ae; Q4 ca)iTa, T (p,qy] Combine 6, 7
10 [A4 T ac by Convert 10
11 [A—g[de A] (ab,cd) 3 L (ac,ba)] Combine 3, 10
12 [S — flAe] 1 apeay : I'iac bay) Combine 4, 10
13 [S; T (abeay] Convert 12
where the range records are the following
Lia,e) {p=10(0,1); ¢=(2,3)}
I'o,0) {p=(12); ¢=(3,4)}
igepay = {p=100,2); ¢=(2,4)}
Diabeay = {s=1(0,4)}

and the range restricted linearization records are

Qe = {p=10(0,1); ¢=1(2,3)}
Py = {p=1(1,2); ¢=(3,4)}
Plabeay = {p=1(0,2); ¢=1(2,4)}
Plabeay = {5=0,4)}
Piaeppa = {p=1(0,1)A1.p; ¢=1(2,3) A1.q}
Ppayac = {p=1(1,2) A1.p; ¢=(3,4) A1.q}
Piapeay, = {p=1(0,2)A1.p; ¢=(2,4) A1.q}
®, = {p=A1p, As.p; ¢ = A1.q As.q}
oy = {5:A1.p, Al-q}

31

3.3 The Approximative algorithm

Parsing is performed in two steps in the Approximative algorithm. The first
step is to parse the sentence with the LMCFG converted to a Decorated CFG.
The resulting chart is then recovered in step two to a LMCFG chart.

3.3.1 The context-free approximation

In order to obtain the initial axioms for the deduction process, the LMCFG is
converted into a DCFG which is used to make an approximative parse. The
grammar conversion is done by creating a decorated context-free rule for every
row in the linearization record. This means that any rule

Aﬂf[é] =T =1, T = G
will give n new rules

fiAr — o

The parsing can then be completed as described in section 2.4.

Example The rule
A— f[é] =71 =Q1,T2 = Q9,73 = Q3
will give the following context-free rules
f:Arn — o

f:Are — ao

f:Ars — a3

Since the DCFG is over-generating compared to the LMCFG the returned parse
chart is unsound. We therefore need to retrieve the passive items from the
DCFG parse chart and check them against the LMCFG to get the discontinuous
constituents and mark them for validity.

The chart of passive DCFG items is then extended by adding the items from
prediction, to give the complete set of axioms.

The Approximative algorithm never range restricts. The ranges for the tokens
in the input are given by the decorated context-free parsing.

A consequence of reducing a context-free GF grammar to a LMCFG is that all
function names are unique. This means that every combination of an abstract
rule with a concrete linearization will be distinguishable by the function name.

3.3.2 Items for the context-free approximation

There are two items involved when we convert the chart from the approximative
parsing into axioms for the recovery step.

32

Figure 3.3: The LMCFG converted to a CFG
The rules of the example grammar 3.1 looks like this when converted to a Dec-
orated CFG

f:8s — ApAyg
g:Ap — A;.pAsp
g:Aq — A;.qAs.q
ac:Ap — a

ac:Aq — b

bd:Ap — ¢

bd:A.q — d

The subscripted numbers are for distinguishing the two categories from each
other, since they are equivalent. Here A;.q is a category of its own, not a record
projection.

Decorated item

The items returned from the approximative parsing have the same form as that
defined in 2.4.3 for active items

o f: A— e f]]

PreMCFG item

We only need the function name in the item since every combination of abstract
rule and concrete linearization has a unique function name

—,

[fsr=p;T)

T is extracted from a decorated item.

3.3.3 Converting the DCFG forest

The items in the DCFG chart are converted to preMCFG items, using the
following rule

Make PreMCFG items

p;f: Ar —:B] (3.4)
[fs7=p;T]

Tisa partition of the daughters in 3 such that,
i e {r=p|Birpef}

where I';, the i:th range record in f, will consist of the label r from the projection
B;.r in 8 and the range corresponding to B;.r in the final linearization.

33

Ezxzample Given 8= A1.7" pa,, Ao pa, then Ty = {r' = pa, tand Ty = {r" = pa,}

For the terminal rules with empty right-hand sides, T will be empty since there
are no projections. For a rule with a non-empty right-hand side I'; will consist
of the information for the i:th category in the right-hand side. In total, T will
have a range record for every daughter in the right-hand side.

3.3.4 Items for the recovery step

The recovery step uses three items.

Pre item

The items derived from the LMCFG have the following form
[A Hf[é];Fo Tiyeon,s rn;f5]

where 7; ... 1, is a list of labels, I'; is a list of |§| range records, and I' is a
range record for the labels r1,..., 71

Mark item In order to recover the chart we use mark items with dotted rules
and dotted records
[A —>f[§ og’];l—‘;foﬁ]
The idea is to move categories from the right-hand side of the dot, e, to
the left at the same time as we check if the corresponding range record
can be marked for correctness.

Passive item A passive item consists of a category and its range record
[A:T)
3.3.5 Goals for recognition

Given the grammar in figure 3.1 and the input string w we get the goal item
(95 {s = (0, [w])}]

3.3.6 Inference rules for the recovery step

Pre-Predict

A B en T AT B (35)

Every rule in the grammar is predicted as a Pre item. The context-free
approximation gives the ranges for every token in the input, so we never
need to range restrict. Instead, we use the labels ry,..., r, in ® to retrieve
the ranges given by the preMCFG items. s is a list of § range records in
which all records are empty.

34

Pre-Combine
[A— f[BiTer,mi,... to; T [fi 7 = p;T]
[A —>f[§];1",7“ =per,... rn;f”]

{f” ceTul (3.6)

If there is a PreMCFG item for the function f with a range for the label
r, we can combine that PreMCFG item with a Pre item where f is the
function name and the next label is ». Then we move the dot forward.
The new item has the unification of the antecedents record structures as
its own structure of range records.

Mark-Predict . .

[A — [B];Te;T|
[A — [oB];T; eI

(3.7)

When all record labels have been found and given a range, we can start
to check if the items have been derived in a valid way by marking the
daughters’ range records for correctness.

Mark-Combine
[A— f[Be B, B;I;T el T'] [B;Iy
[A —>f[§,Bi ° g’];l—‘;f,l—‘i ofl]

(3.8)

Record T'; can be marked for correctness if there is a passive item for
category B; that has found T';.

Convert . .
[A — f[Be];T;Te]
[A; 1]

(3.9)

Fully instantiated active items are converted to passive items.

3.3.7 Example of Approximative parsing

An example chart from top-down parsing the string abed with the DCFG can
be seen in figure 3.4. Item 8 is an example of the decorated grammar being
overgenerating. The chart will have one corresponding preMCFG item for every
decorated context-free item, which is given in the same figure.

Parsing abed gives a chart of 32 items if the decorated context-free parsing is
carried out with top-down filtering. For bottom-up filtering the resulting chart
has 38 items. The chart can be seen in figure 3.5, except for the pre items.
These can instead be found in figure 3.4 together with the fully instantiated
items from the context-free approximation.

The preMCFG item 8 gets as far as becoming a mark item, but it will never be
mark-combined since there are no passive items with the range record L'y .

3.4 The Active algorithm

The active algorithm parses without context-free approximation.

35

Figure 3.4: Decorated context-free chart and equivalent preMCFG items
The following chart of fully instantiated items is derived by parsing abed with
the DCFG in figure 3.3.

1 [(3,4);bd : A.q — d]

2 [(2,4);9:Aq— A1.q (2, 3), A2.q (3, 4)]

3 [(2,3);ac: A.g— (]

4 [(1,2);bd: A.p — B]

5 [(Oa 2);9 tAp — Ap (0’ 1), Aa.p (L 2)]

6 [(0,1);ac: A.p — q]

7 [(0,4);f:8.s— A1.p(0,2), A1.q (2, 4)]

8 [(0,3);f:8.s— A1.p(0,2), A1.q (2, 3)]
Converted to preMCFG items the decorated context-free items look like

1* [bd; {g= (3, 4)};]

2* [95 {q = (27 4)};{q = (2a 3)}5 {q = (3a 4)}]

3 acs{g=1(2,3)}]

4 [bd;{p=(1,2)}]

5 [ga {p = (Oa 2)}a {p = (07 1)}7 {p = (L 2)}]

6* [ac;{p= (0, 1)}]

[[f7 {5 = (Oa 4)}? {p = (Oa 2)}a {q (27 4)}]

8* [fa {S = (Oa 3>}a {p = (Oa 2)}a {q (27 3)}]

36

Figure 3.5: A chart for the Approximative algorithm
The chart from parsing abcd when the decorated context-free approximation is
applied top-down. The preMCFG items are numbered i* and found in figure

3.4.
1 [A—bd[];e{p, q};]
2 [A—ac[l;e{p, q}; |
3 [A—>g[A, A];o{p, Q}y{}v{}]
4 [S— flA]e{s}; {}]
5 [A—bd[];Tye{q};]
6 [A—ac[;iTae{q};]
7T [A—g[A, A;Ta e {q};Tq, T
8 S — fIAL T (abeay®; T (ab,ca)]
9 [S - f[A];Fabc.;Fab,c]
11 [A - ac[]; F(a,c>.;]
12 [A— g[A, AT ab,cay® Tiarey, U inay)
13 [A — bd[o], F(b d>7 0]
14 [A — ac[e];T 4 o3 @]
15 [A— g[eA;, AT (ap,cay; o (a,e)s Tiv,a)]
16 [S — fl®A; T (apeay; oL (ab,cay
17 [S - f[.A], Fabc; .Fab,c]
18 [A;Tpa)]
19 [A7 F(a,c)]
20 [A— g[Ae Al T (apcay; Tiaye) Tiv,ay]
21 [A — g[A, Ae];T (apca)i Ta,e) I (b,ay®]
22 [Aa F(ab,cd)]
23 [S - f[A.]7 F(abcd}? F(ab,cd}']
24 [57 F(abcd)]

where the range records, I'(.
records are as follows

e = {p=(0,1)}

L, = {p=(1,2)}
Fap = {p=1(0,2)}
Lape = {s=1(0,3)}
Lae = {p=1(0,2),¢

Pre — Predict

Pre — Predict

Pre — Predict

Pre — Predict

Pre — Combine 4%, 1
Pre — Combine 6*, 2
Pre — Combine 5%, 3
Pre — Combine 8%, 4
Pre — Combine 7%, 4
Pre — Combine 1%, 5
Pre — Combine 3%, 6
Pre — Combine 2%, 7
Mark — Predict 10
Mark — Predict 11
Mark — Predict 12
Mark — Predict 8
Mark — Predict 9
Convert 12

Convert 13

Mark — Combine 15, 19
Mark — Combine 20, 18
Convert 21

Mark — Combine 17, 22
Convert 23

y are the same as in figure 3.2. The other range

37

3.4.1 The range for ¢
For this algorithm we use a special kind of range, p¢, which denotes simulta-
neously all empty ranges (¢, i). There is an important difference between the

range (4, 1) and the variable p¢ since (i, 4) is a range with identical indices, but
pc is a constant for all empty ranges.

Operations on the epsilon-range
The range restriction of € gives (¢) = p°. Range concatenation of any range p
with the e-range gives

pp=pp=p
For the e-range, p¢, both the ceiling and the floor will return p©.
3.4.2 TItem form

Active item

Active items for the rule
A— f[é] =&, r =089
have the form
[A— f[Bl;T,r =pe B, ;T

where I is the equivalent range record for the linearization rows in ® and « has
been recognized as the range p. We are still looking for the rest of the row, 3,
and the remaining linearization rows W. Both 8 and ®’ are range restricted to
B’ and W respectively. T is the list of range records containing the information
about the daughters in [B].

Passive item

Passive items say that we have found A inside I'

[A;T7]

3.4.3 Goals for recognition

Given the grammar in figure 3.1 and the input string w we use the following
goal item

[55 {s = (0, [w])}]

38

3.4.4 Inference rules

Predict

=r
[A_’f[B‘]QT:p€OO/,ﬁ’;f:5] { Oé/,q)/€<a7(1)> (3.10)

For every rule in the grammar, predict a corresponding item that has
found the empty range. T's is a list of | B| range records. All range records
are empty since nothing has been found yet.

Complete
[A— f[B;L,r = pe,r" = a, ®;T]
[A —>f[§];l—‘,r=p,r’ = pﬁoa,(l);f]

(3.11)

When an item has found an entire linearization row we continue with the
next row by starting it off with the empty range.

Scan ~ ~
[A— f[B];T,r=p e p’a,®;T)

~ = ep -p’ 3.12
[A— f[B);T,r=pea,®;T) toerp ()

Scanning is applied when the next symbol to read is a range. This range
might be concatenated with the range for what the row has found so far. If
range concatenation succeeds, there will be a new item with the resulting
concatenation as range.

Combine

[A— f[B):T,r = p' e Bir'a, ;] [Bil] { pep T’ (g4

[A— fIB;T,r = pea,B;T[i :=17| r,cr

If the next thing to find is a projection on B;, and there is a passive item
where B; is the category, combination can be applied. The dot will then
be moved past the projection. If IV is consistent with the information the
active item has for its i:th daughter, record substitution can be used. The
range for r is the concatenation of p and the range corresponding to the
projection I'.r'.

Convert ~ ~
[A— f[B];T,r = pe;T]
[A;T,r = p

(3.14)

An active item that has fully recognized all its linearization rows is con-
verted to a passive item.

3.4.5 [Earley filtration for the Active algorithm

Earley filtration is an adaption from 2.4.7. There are three rules for Earley
prediction. The Earley predictions give passive items for the terminal rules
with fully range restricted linearizations. The rest of the rules are predicted as

39

active items. All rules with the start category as left-hand side are assumed to
be non-terminal rules, so initial prediction will only give active items.

Predict Passive

v

[...;...,T:p’oA.r...;..-]{A—>f[]: (3.15)

r=(v)

We only predict from the grammar if there is already an item looking for the
left-hand side of the rule. The Passive item has the range record corresponding
to the fully instantiated linearization record of the rule.

Predict Active

A— f[B]:==1"=a,®
o, T € {a,) (3.16)
p=1[r1

[.so.o,r=p eAr ;..]
[A— f[Bl;r = ped/,T;Ty|

This version of prediction is applied if the right-hand side is non-empty.
The new range is the ceiling of p.

Initial prediction

{ Sﬂf[é] =5=q
[S — f[B];s=(0,0)eI;Ts] L I' € ()

(3.17)

Since there are no items at first, the parsing is initiated by predicting an
item for every rule with a start category as left-hand side. T'y is a list of
range records in which all records are empty.

Complete, Scan, Combine and Convert are included as inference rules 3.11-3.14.

3.4.6 Kilbury filtration for the Active algorithm

Kilbury prediction is an adaption from 2.4.8. The Kilbury predictions are lim-
ited to grammars in which terminals only occur in rules with empty right-hand
sides. However, Seki et al. (1991) have shown that any PMCFG that does not
fulfill this requirement can be converted to an equivalent grammar that does.
An alternative would be to slightly alter the inference rules.

There are two new rules, while Complete, Combine and Convert are included
as the rules 3.11, 3.13 and 3.14. Scan is replaced by Terminal.

Predict
=
[Bi;] A/_)F fIB]:=r = Bi.r'a, @
— p— o ,T € (o, ®)
[A—)f[B];r:poa ,F;F(;[I:: Fz]] p:Fi-T/

(3.18)

We only predict a new item for a rule, if there is a Passive item for the first
category in the first linearization row. We move the dot past the category
and add the Passive item’s record to the new item’s structure of records.
The new item recieves its range from the projection I';.r’.

40

Terminal A=) 5
m{ i (3.19)

Every terminal rule is predicted as a passive item.

3.4.7 Example for the Active algorithm

The Active algorithm can be used with Earley or Kilbury filtering, or without
filtering. Parsing the string abed gives the following table for chart size

Filter Size
None 25
Earley 20
Kilbury | 15

The chart after parsing without prediction filters can be seen in figure 3.6.

Comments on the chart

Items 11 and 12 are examples of passive items; they are converted from the active
items 9 and 10 respectively. Item 5 has fully traversed its first linearization row
and has been completed to give item 7. Scanning item 8 gives an example of
concatenation with p¢. The result can be seen in item 10. Item 24 is the result
of combining the passive item 21 with the active item 23. Prediction gave the
first four items.

Both prediction strategies result in fewer items since the terminal rules are
predicted as passive items.

Earley

The use of Earley prediction gives a chart without items 1, 2, 4, 5, 6, 7, 8, 9,
10 and 15. Instead we get 4 items for the non-terminal rule A — g... where p©
is substituted for the empty ranges (0, 0)...(3, 3). The predicted item for the
start rule will be predicted with the range (0, 0) instead of p©.

Kilbury
If we instead use Kilbury prediction the same items are filtered out with two
exceptions; item 15 will be included and item 3 will not be predicted. Instead

the passive item 12 will trigger the prediction of item 14 (the combination of 3
and 12).

3.5 The Incremental algorithm

An incremental algorithm reads one token at a time. However our implementa-
tion does not, due to how we defined range restriction.

41

Figure 3.6: Active parse chart
This is the chart for parsing abed with the Active algorithm without filtering.
The range records I' | are the same as in figure 3.2. We also use

Q,, ={q¢=A1.q As.q}

and
Loy ={p= (0, 2)}

In order to fit the table on the page, the following notations are used for the
inference rules P = Predict, S = Scan, Cv = Convert, Cp = Complete and
C = Combine.

1 [A—bdip=p-e(1,2)q= (3 4)] P

2 [A—>ac[],p:p€0(0, 1)q:(27 3);] P

3 [A—g[A, A],p—p o Arp, Aap @5 {}, {}] p

4 (S — flA];s = p- @ Ar.p, Az.q;{}] P

5 [A—bdl]; p=(1,2(3 4);] 51

6 [A—ac[li;p=(0,1)eq=(23);] S 2

7 [A—>bd[],{p (17 2)}a q:pﬁ.(& 4);] Cpb

8 [A—ac[li{pr=1(0,1)}, ¢ =p 0 (2, 3);] Cp6

9 [A—=bd[li{p=(1,2)}, ¢=(3,4)e:] 57

10 [A— ac[];{p=(0,1)}, ¢=(2, 3)e;] S8

11 [A;T 5, Cv

12 [A, (a,c)] Cv 10
13 [A— g[A, Al;p=(1,2) e As.p &y : Ty, {}] C3, 11
14 [A— g[A, Al;p=(0,1) @ Ao.p @y ;T4 ¢y, {}] C3,12
15 [S— f[A;s= (1, 2) e A;. QaF(b) C4,11
16 [S— f[Al;s=(0,1)e Ay.q;T (a,)] 4,12
17 [A — g[A, A],p = (0, 2) (I) F() (b, d)] C 11, 14
18 [A— g[A, AliTay, q=pe A1 g As.q;T 0 ey, Dipay) Cp 17
19 [A— g[A, Al;Tap, g = (2, 3) @ A2.q; T4, c> Loay) C12,18
20 [A - g[A, A]arabvq ()) F(a,c)v] C11,19
21 [A;T (ap,cay] Cv 20
22 [A - g[A A] b= (O 2) AQ-p (I)quF(ab,cd)’ {}] C 3,21
23 [S - f[A] (,2)e AI-Q§F(ab,cd>] 4,21
24 [S — f[A];s = (0, 4)8; T (ap.ca)] C 23,21
25 [95 T (abedy) Cv 24

42

3.5.1 Incrementality and range restriction

Range restriction, as we have defined it, cannot handle partial results. Either
the symbol is a terminal and can be substituted by its range or it is an unbound
variable and is left as it is. When parsing incrementally this definition is not
sufficient. For instance, the range restriction (p = a, ¢ = ¢)® will fail since there
is no range for ¢ in the string a. We would need a new definition of range
restriction, allowing partial results.

To get round the problem of not having partial range restriction we range restrict
the entire input from the start. This means that the algorithm will no longer
be truly incremental. This compromise has advanteges. The efficiency of an
incremental algorithm depends to some degree on how fast the user provides the
input. In order to test how the inference rules compare to the other algorithms
it can be easier if it is in a static environment, and not given input a token at
a time.

3.5.2 Item form
Active items

The only item form is active
[A— f[Bl;T,r = pep,;T]

The items have the same form as the active items used in the Active algorithm.
However we use the notation [A;T,r = p|, where r = p is the latest recognized
row, for the item [A — ...;T,r = p e ¢;...] and call the item passive. Note
that there are no passive items implemented and that any item with a fully
instantiated row is called passive, even if there are more rows to instantiate.

3.5.3 Goals for recognition

For the example grammar 3.1 on page 28 we get the following goal item

|w]

[S = flAL s = (0, [w)i{p = (0, 7); a= (57 [w])}]

We use an active item as goal item since there are no passive items.

3.5.4 Inference rules
Notations

If we only want to be sure that two items have the same abstract rule, we denote
the rule by R.

43

Predict

AHf[B»] =0 r=qa,V¥

= — = o, 'V € (o, ®,0)
[A— f[Blir = (i, i) o o, @, WETS] | g < < |y

(3.20)

An item is predicted for every linearization row and every input position.
['s is a list of range records of length ¢ in which all records are empty.

Complete

(3.21)

[R;F,r:pofl),r’:a,\ll;f] { p
[R;T,r = p,r' = (k, k) 0 a, @, ;T | J

Whenever a linearization row is fully traversed completion is applied. This
means that an item is predicted for every remaining linearization row and
every remaining input position between the range of the traversed row and
the end of the input.

Scan .
F — / 7/ @I‘
[R, =0 ep,Q d]{p c p/ . p// (3_22)
[R;T,r=pea,®;T|

If the next item in the linearization row is a range, it is concatenated to
the range for the partially recognized row.

In the Active algorithm the inference rule Convert 3.14 added the last label-
range pair to the range record for the passive item. In the absence of passive
items we just have to remember that there is such a pair when combining.

Combine

[R:T,r = p @ Bi.r' a, ®;T] [Bi; IV, = p"] { pep -p” (3.23)

BT r=pea@Ti= (0 =p)] T @ =5

Combining is applied if the next item is a record projection and there is a
passive item for the corresponding category. The information in the i:th
range record of T’ must be consistent with the information found for the
passive item. This can be checked by a subset check since the range record
of the passive item must be fully instantiated.

3.5.5 Example run

Parsing the sentence abcd with the Incremental algorithm results in a chart
with 78 items. Therefore the example run will only briefly explain the inference
rules. The large number of items is a consequence of using (¢, ¢)-ranges instead
of p¢(section 3.4.1), and of predicting items for every linearization row.

44

Prediction

Prediction is crude. The grammar rule
A—gl[AA:=p=A1.pAsp, q=A1.qAsq

will be predicted as ten different items, one item for every row and for every
input position 0 < ¢ < 4. Examples of such items are

[A— g[AAl;p=(2,2) e A1.p As.p{q = A1.q Az.q}; {}, {}]

and

[A— g[AA];q=(2,2) e A1.qAs.q{p = A1.p A2.p}; {}, {}]

This holds for every rule, all in all predicting 35 items. The terminal rules will
have ranges instead of projections in the linearization record.

Complete

The above holds also for completion. When a linearization row is fully instanti-
ated to a range, an item is predicted for every remaining row and input position.
For example if the last row was instantiated to the range (1, 3), then in our case
this would give two possible ranges, (3, 3) and (4, 4), for every row. The chart
contains 16 items as a consequence of completion.

Scan

Scanning is carried out in exactly the same way as in the Active algorithm.

Combine

Combining is also performed in the same way as in the Active algorithm, but
with an important difference. In the incremental algorithm the range of the row
to be traversde is always known. Therefore it is always possible to give a partial
index for the items to combine. Thus the active item

[.5...r=(i,3)e{B;r"...;..]

can only be combined with a passive item

In the Active algorithm it was not always the case that the range was known.
Therefore we could not be as explicit in looking for items to combine. This
makes the Incremental inference rule for combining more efficient since we can
limit our search space. However, this will not show in runtimes and chart size
until predicting is more economic. Until then there will be far more items to
combine with at every input position.

45

3.5.6 Proposed prediction strategies

There was not enough time to implement the proposed Earley or Kilbury filter.

Earley

The Earley prediction consists of three rules for predicting, completion and ini-
tial prediction. Initial prediction is the same as the rule number 3.17, returning
items for every rule where the left-hand side is a start category. Prediction and
completion predict new items for grammar rules when the left-hand side of the
rule is searched for by an existing item.

Kilbury

New items are only predicted for linearization rows in which the first symbol
has already been found. At the same time the dot can be moved forward. There
are two rules for predicting to be combined with both Scan and Combine, giving
four new inference rules for Kilbury filtering.

46

Chapter 4

Small-scale evaluation

The algorithms have not been tested for realistic grammars and large corpi as
part of this thesis. This is due to that there was not enough time to create big
enough grammars and corpuses to test against. Some preliminary tests have
been conducted and it is possible to show how the algorithms compare for the
grammar in figure 3.1.

It is not possible to draw any conclusions from the tables on the general perfor-
mance of the algorithms. They are for showing how they perform compared to
each other for a very small grammar.

4.1 Preliminary testing

The parser used today in the GF-library converts the given grammar to a CFG
in order to make an approximate parse. As we have seen the CFG will at
most certainly be overgenerating. Therefore a recovery step is used just as in
the Approximative algorithm (3.3 on page 32). However, instead of using the
strategy we used, the GF-parser recovers the parse-result tree-by-tree.

In preliminary tests the implemented algorithms are more efficient than the
original GF-parser. A grammar for English was used in the tests. It consists of
roughly 500 GF rules. Converted to LMCFG rules this gives a grammar with
approximately 22.000 rules or 20.000 rules if converted to a CFG.

Exzample Parsing the randomely generated sentence you had begged to die here
gives roughly 60.000 context-free trees. After recovery only 6 remain. It is
the recovering of the context-free chart that makes the GF parser slower
than our implemented algorithms.

47

4.2 Parse table

4.2.1 Efficiency for correct sentences

In figure 4.1 we give the result from parsing sentences of lengths 6, 12 and 24
terminal tokens. Parsing is carried out with respect to the grammar in figure
3.1. This is by no means an extensive evaluation of the algorithms, but does
illustrate how they perform for a small grammar. Their performance could very
well turn out to be quite different when using a larger or more context-free
grammar. The used grammar generates sentences with multiple and crossed
agreement combined with duplication, all features outside the expressivity of a
CFG.

Figure 4.1: Evaluation of valid sentences
Chart sizes and running times for parsing strings of various lengths. The strings
are valid, such as abbacddec. All strings are parsed with respect to the LMCFG
on page 28. Times are in milliseconds and chart size is given in number of items.

Length
6 12 24
Naive Chart | 31 137 834
Time | <1 10 110
Approx Chart | 116 | 2980 170216
bottom-up | Time | 20 70 9910
Approx Chart | 96 2888 169818
top-down Time | <1 100 9670
Active Chart | 78 663 8207
no filter Time | <1 40 2650
Active Chart | 59 574 7778
Earley Time | 10 120 7630
Active Chart | 56 589 7917
Kilbury Time | <1 40 2560
Incremental Chart | 254 2375 34813
Time | 10 150 7760

4.2.2 Comments
The Naive algorithm

The Naive algorithm is by far the most efficient algorithm. It would be inter-
esting to see how it performs for much larger grammars.

48

The Approximative algorithm

It seems to make no difference if we implement the decorated context-free ap-
proximation with bottom-up or top-down prediction. Even if the resulting charts
are very big compared to the other algorithms, the run-times do not grow to
the same extent. One reason for the large chart size is that we use four different
kinds of items. A lot of information is duplicated as it is passed from one kind
of item to another. Many of the items are also derived from context-free parsing
which is quicker than parsing mildly context-sensitive grammars.

The Active algorithm

Using Earley prediction for the Active algorithm gives fewer items but makes
parsing a lot slower. Kilbury gives the same reduction on chart size and a slightly
quicker parsing compared to using no filtering. Remember, it is not possible to
say anything about the performance of the different prediction strategies until
they have been tested on much larger grammars.

Both prediction strategies result in fewer items as a consequence of predicting
passive items for terminal rules. This can turn out to be even more efficient
for grammars with a big percentage of terminal rules. A possible explanation
for the poor behaviour of Earley can be that the gain of top-down prediction is
lost on such a small grammar and the use of empty ranges, (4, i), instead of the
e-range, p°.

The Incremental algorithm

The performance of the incremental algorithm improves as the size of the input
grows, compared to the Approximative algorithm. Otherwise it is slow and
memory demanding,.

4.2.3 Efficiency for incorrect sentences

Chart sizes and runtimes are not only interesting when the sentence is valid. It
is just as interesting to have quick, memory efficient parsing algorithms if the
sentence is invalid. In the table in figure 4.2 all the implemented algorithms are
faster and derive less items when recognizing invalid sentences.

Especially the Approximative algorithm is much faster for rejecting sentences
in which a ¢ or d has been substituted for a or b respectively, in an otherwise
valid sentence.

49

Figure 4.2: Evaluation of invalid sentences
The strings have the form abbacdbe, i.e. somewhere in the second half of the
sentence a c or d is substituted for a or d. Parsing is carried out with respect
to the grammar in figure 3.1 on page 28. Times are in milli-seconds and chart
sizes in number of items.

Length

6 12 24

Naive Chart | 16 79 449

Time | <1 10 40
Approx Chart | 48 614 34063
bottom-up | Time | <1 30 1390
Approx Chart | 28 449 21744

top-down Time | <1 20 810
Active Chart | 32 316 4215

no filter Time | <1 20 870
Active Chart | 11 238 3837
Earley Time | <1 80 3120
Active Chart | 14 246 3929

Kilbury Time | <1 20 890
Incremental | Chart | 128 | 1538 | 21689
Time | 10 120 2490

50

Chapter 5

Summary

5.1 Future work

Further implementations

The implementations do not cover all proposed algorithms. There are passive
versions of the Naive and Approximative algorithms still left to do. It would be
interesting to implement them for the sake of comparison.

Neither of the prediction filters have been implemented for the Incremental
algorithm. The proposed Earley prediction should be easy to implement, it
is very similiar to the version of Earley used for the Active algorithm. The
implementation of Kilbury is probably more demanding.

Re-implementing the Incremental algorithm in a dynamic environment is also an
intersting future development. This will mean that an extended range restriction
has to be implemented, able to cope will partial results.

Evaluation

Further tests are necessary. For now, all we know is that the Naive algorithm is
suitable for very small grammars. Which algorithm to use for larger grammars
cannot, be decided before the algorithms have been tested on large grammars.

Readapting to PMCFG

The algorithms are implemeted for LMCFG. If we want to use the technique of
reducing a context-free GF to a PMCFG in order to get faster parsing algorithms
it is necessary to readapt the strategies to PMCFG. It might very well be that
the algorithms will parse PMCFG faster than the GF parser parses cf-GF.

Complexity

It would be a Master thesis in its own right todetermine the complexity of the
algorithms. Until proven we will just have to hope the complexity is polynomial.

51

Correctness

There has not been time to give formal proofs of the algorithms being cor-
rect. The proposed PMCFG algorithms are proved both complete and sound
by Ljunglof (2004). A comparison of his discussion with the implemented algo-
rithms indicates that the differences are too large for just copying his proofs to
our work.

For now, all we can say is that they seem to be correct.

5.2 Conclusion

We have implemented four algorithms for parsing Linear Multiple Context-Free
Grammars. A thorough testing of the algorithms with grammars of varying sizes
is necessary before any conclusions can be drawn on their overall performance.
However preliminary testing indicates that the implemented algorithms parse
an LMCF grammar faster than the existing parser for GF parses an equivalent
context-free GF grammar. It seems promising. ..

52

Bibliography

Carroll, J. (2003). Parsing. In Mitkov, R., editor, The Ozford Handbook of Com-
putational Linguistics, chapter 12, pages 233—248. Oxford University Press.

Chomsky, N. (1959). On certain formal properties of grammars. Information
and Control, 2:137-167.

GF (2004). The Grammatical Framework homepage. Located at
http://www.cs.chalmers.se/"aarne/GF/

Hudak, P., Peterson, J., and Fasel, J. (1999). A gentle introduction to Haskell
98. Technical report, Yale University. Available from the Haskell web site:
http://www.haskell.org/tutorial

Joshi, A. (1985). How much context-sensitivity is necessary for characterizing
structural descriptions — tree adjoining grammars. In Dowty, D., Karttunen,
L., and Zwicky, A., editors, Natural Language Processing: Psycholinguistic,
Computational and Theoretical Perspectives, pages 206-250. Cambridge Uni-
versity Press, New York.

Joshi, A. K., Levy, L. S., and Takahashi, M. (1975). Tree adjunct grammars.
Journal of Computer and System Sciences, 10(1):136-163.

Kay, M. (1986). Algorithm schemata and data structures in syntactic process-
ing. In Grosz, B., Jones, K., and Webber, B., editors, Readings in Natural
Language Processing, pages 35—70. Morgan Kaufman Publishers, Los Altos,
CA.

Ljunglof, P. (2004). FEzpressivity and Complexity of the Grammatical Frame-
work. PhD thesis, Géteborg University and Chalmers University of Technol-

ogy.
Martin-Lof, P. (1984). Intuitionistic Type Theory. Bibliopolis, Napoli.

Okasaki, C. (1998). Purely Functional Data Structures. Cambridge University
Press.

Peyton Jones, S. (2003). Haskell 98 Language and Libraries. Cambridge Uni-
versity Press, New York.

Pollard, C. (1984). Generalised Phrase Structure Grammars, Head Grammars
and Natural Language. PhD thesis, Stanford University.

53

Ranta, A. (2004). Grammatical Framework, a type-theoretical grammar for-
malism. Journal of Functional Programming, 14(2):145-189.

Seki, H., Matsumara, T., Fujii, M., and Kasami, T. (1991). On multiple context-
free grammars. Theoretical Computer Science, 88:191-229.

Shieber, S. (1985). Evidence against the context-freeness of natural language.
Computational Linguistics, 20(2):173-192.

Shieber, S., Schabes, Y., and Pereira, F. (1995). Principles and implementation
of deductive parsing. Journal of Logic Programming, 24(1-2):3-36.

TALK (2004). The Talk project homepage. Located at
http://www.talk-project.org/

Thompson, S. (1999). The Craft of Functional Programming, 2nd ed. Addison-
Wesley.

Vijay-Shanker, K., Weir, D., and Joshi, A. (1987). Characterizing structural
descriptions produced by various grammatical formalisms. In 25th Meeting
of the Association for Computational Linguistics.

Wirén, M. (1992). Studies in Incremental Natural-Language Analysis. PhD
thesis, Linkdping University, Linkdping, Sweden.

o4

Appendix A

The code

To fully understand the code the reader will probably need to know at least
some Haskell. There is a difference between the code developed for this thesis
and the actual code implemented into GF. The main reason being that it is a
lot easier to develop outside of GF and that GF has some features that extend
Haskell.

The function recognize is grammar dependent for all algorithms as a conse-
quence of the goal items being grammar dependent. This is apparent in the
type declaration for recognize and the same holds for the function parse in
algorithm 3.3, since the information passed to the CF parser is grammar depen-
dent. Haskell supports dependent types.

All charts are implemented as RedBlackMap:s, a RedBlackTree structure with
key-value pairs as leaves (see Okasaki, 1998 for more information on functional
data structures).

The type of a grammar is Grammar n ¢ 1 t where n is the type of the function
names, c is the type for the categories, 1 is the type for lables and t is the type
for tokens. Hence all objects used in grammars or for parsing are dependent, on
one or more of these four types. Referring to the table in figure A.1 the type
Lin c 1 t is the type for a linearization row. Its final type is dependent on the
type of the categories, lables and tokens used in the grammar.

In the implementaion of the Example grammar in figure 3.1, the type is String
for the function names, the lables and the tokens while the categories are of the
user-defined type NT.

When a linearization record is range restricted, the type is redefined from LinRec
c 1 t to LinRec c 1 Range and the corresponding instantiation of types occurs
for the tokens; Tok t becomes Tok Range .

The Nondet type is used when a function can return several solutions for the
given arguments. The functions for range restriction can give a number of
different ranges, all depending on the arguments (see 2.3.3). The reurn value
for (s) is therefore Nondet Range.

For every algorithm an example of the items in code are given. Some items are

35

Figure A.1: Types and code

The four first are the basic types of the grammar. All other types depend on
the basic types, except Nondet.

| Code: | Used for: |
c Variable type for elements in C
1 Variable type for labels
n Variable typ for function names
t Variable type for elements in X
Tok t A token of type t
Tok Range A token of type Range
Range The constructor for Range (Int, Int)
Grammar n ¢ 1 t = [Rulenclt]
Rule nc 1t =Rule c [c] (LinRec c 1t) n
Lin ¢ 1t A linearization row,
Lin 1 [Symbol (¢, 1 Int) t]
LinRec ¢ 1 t A linearization record, [Lin ¢ 1 t]
Symbol (¢, 1, Int) t | =Cat (¢, 1, Int) | Tok t
RangeRec 1 A range record, [(1, Range)]
NT The type for categories in 3.1
Cat (A, p”, 0) The category Ag.p, where A is of the type NT
AbstractRule n ¢ =(n, c, [c])
DottedRule n c =(n,c, [cl, [c])
Nondet Used when a function is non-deterministic

56

so long that they are written on several lines, following the layout of how the
items are defined in the algorithm.

A.1 ExampleGrammar

This is the example grammar in figure 3.1, written in Haskell. The projections
Aq.p, Asq

are implemented as

[Cat (A, "p", 0), Cat (4, "q", 1)]
using the type NT for the categories and String for the labels.

All categories are indexed explicitly in the code while it was an implicit feature
in the text. The indices are reduced by one to match Haskell’s list indexing.

{-- Module ------m - eo -
Filename : ExampleGrammar.hs
Author : Hakan Burden

Time-stamp : <2005-03-03, 16:00>
Description: Implementation of Example grammar 4.1
as described in Ljungldéf 2004

module Examples where

-- imported GF modules
import MCFGrammar
import Parser

-- Following Non-Terminals are used: S, A ---------mmmmmmmmmmmmm oo
data NT =S | A

deriving(Eq, Ord, Show)
-- Example grammar 4.1 ---------ommm -

ex4l = [Rule S [A] [Lin "s" [Cat (A, "p", 0),

cat (A, n ", o)]] llfll,
Rule A [A, A] [Lin "p" [Cat (A, "p", 0),
Cat (A, "p", 1) 1,
Lin llqll [cat (A, "q" , 0) ,
Cat (4, "q", 1) 11 "g"
Rule A [1 [Lin "p" [Tok "a" 1,
Lin llqll [Tok llcll]] llacll’
Rule A [1 [Lin "p" [Tok "b" 1,
Lin llqll [Tok lldll]] llbdll]

o7

A.2 Ranges

The module for all functions on ranges. Even those functions only used by one
algorithm are placed in the Ranges module and not as helper functions in the
algorithm’s module. p° is written as ERange.

{-- Module === oo e e m
Filename : Ranges.hs
Author : Hakan Burden

Time-stamp : <2005-02-12, 18:52>
Description: Functions for Ranges

__ }
module Ranges where
-- imported Haskell modules
import List
import Monad
-- imported GF modules
import MCFGrammar
import Nondet
import Parser
-- Declared new types: Linearization- and Range records as lists ----------
type LinRec ¢ 1 t = [Lin ¢ 1 t]
type RangeRec 1 = [(1, Range)]
{-- Functions ------ommm oo
Ceiling : Returns the ceiling of a Range
Concatenation : Concatenation of Ranges, Symbols and
Linearizations and records of Linearizations
Record transformation: Makes a Range record from a fully instantiated
Linearization record
Record projection : Given a label, returns the corresponding Range
Range restriction : Range restriction of Tokens, Symbols,
Linearizations and Records given a list of Tokens
Record replacment : Substitute a record for another in a list of Range
records
Argument substitution: Substitution of a Cat cat to a Tok Range, where
Range is the cover of cat
Note: The argument is still a Symbol c Range
Record Subsumation : Checks if a Range record subsumes another Range
record
Record unification : Unification of two Range records
__ }
--- Ceiling -------- - - oo
ceil :: Range -> Range
ceil ERange = ERange

ceil (Range (i, j) = (Range (j, j)

58

--- Concatenation -----------m - -

concRanges :: Range -> Range -> Nondet Range
concRanges ERange (Range (i, j)) =
return (Range (i, j))
concRanges (Range (i, j)) (Range (j’, k)) =
do guard (j == j’)
return (Range (i, k))

concSymbols :: [Symbol ¢ Range] -> Nondet [Symbol c Range]

concSymbols (Tok rng:Tok rng’:toks) = do rng” <- concRanges rng rng’
concSymbols (Tok rng’’:toks)

do syms’ <- concSymbols syms
return (sym:syms’)

return []

concSymbols (sym:syms)

concSymbols []

concLin :: Lin ¢ 1 Range -> Nondet (Lin ¢ 1 Range)
concLin (Lin 1bl syms) = do syms’ <- concSymbols syms
return (Lin 1bl syms’)

concLinRec :: LinRec ¢ 1 Range -> Nondet (LinRec ¢ 1 Range)
concLinRec = mapM concLin

--- Record transformation -------------—-—~—-~—~ -
makeRangeRec :: LinRec c¢ 1 Range -> RangeRec 1

makeRangeRec lins = map (\(Lin 1bl [Tok rng 1) -> (1lbl, rng)) lins

--- Record projection --------------mmmmm -
projection :: Eq 1 => 1 -> RangeRec 1 -> Nondet Range

projection 1 rec = maybe failure return $ lookup 1 rec

--- Range restriction ---------ccmmmmme e

rangeRestTok :: Eq t => [t] -> t -> Nondet Range
rangeRestTok toks tok = do i <- member (elemIndices tok toks)
return (makeRange (i, i + 1))

rangeRestSym :: Eq t => [t] -> Symbol a t -> Nondet (Symbol a Range)
rangeRestSym toks (Tok tok) = do rng <- rangeRestTok toks tok

return (Tok rng)
return (Cat cat)

rangeRestSym _ (Cat cat)

rangeRestlin :: Eq t => [t] -> Lin ¢ 1 t -> Nondet (Lin ¢ 1 Range)
rangeRestLin toks (Lin 1bl syms) =
do syms’ <- mapM (rangeRestSym toks) syms

59

return (Lin 1bl syms’)

rangeRestRec :: EQ t => [t] -> LinRec ¢ 1 t
-> Nondet (LinRec c¢ 1 Range)
rangeRestRec toks = mapM (rangeRestLin toks)

-- Record replacment -----------------—-—~-"—~-~—~—~ -~~~ —~

replaceRec :: [RangeRec 1] -> Int -> RangeRec 1 -> [RangeRec 1]
replaceRec recs i rec = (fst tup) ++ [rec] ++ (tail $ snd tup)
where tup = splitAt i recs

--- Argument substitution ----------------o- -

substArgSymbol :: Eq 1 => Int -> RangeRec 1 -> Symbol (c, 1, Int) Range
-> Symbol (¢, 1, Int) Range
substArgSymbol i rec (Tok rng) = (Tok rng)
substArgSymbol i rec (Cat (cat, 1bl, j))
| i==j = maybe (Cat (cat, 1bl, j)) Tok $ lookup 1lbl rec
| otherwise = (Cat (cat, 1bl, j))

substArglLin :: Eq 1 => Int -> RangeRec 1 -> Lin ¢ 1 Range
-> Lin c 1 Range
substArglin i rec (Lin 1bl syms) =
(Lin 1bl (map (substArgSymbol i rec) syms))

substArgRec :: Eq 1 => Int -> RangeRec 1 -> LinRec c 1 Range
-> LinRec ¢ 1 Range
substArgRec i rec lins = map (substArglLin i rec) lins

--- Record Subsumation -------------—--- -

subsumes :: Eq 1 => RangeRec 1 -> RangeRec 1 -> Bool
subsumes rec rec’ = and [elem r rec’ | r <- rec]

--- Record unification -------------mm -

unifyRangeRecs :: Ord 1 => [RangeRec 1 1 -> [RangeRec 1]
-> Nondet [RangeRec 1]
unifyRangeRecs recs recs’ = zipWithM unify recs recs’
where unify rec [] = return rec
unify [] rec = return rec
unify rec1’@(p1@(11, rl):recl) rec2’@(p2@(12, r2):rec2)
= case compare 11 12 of
LT -> do rec3 <- unify recl rec2’
return (pl:rec3)
GT -> do rec3 <- unify recl’ rec2
return (p2:rec3)
EQ -> do guard (rl == r2)
rec3 <- unify recl rec2
return (pl:rec3)

60

A.3 NaiveParse

The active item 11 in the naive parse chart in figure 3.2 on page 31 is written
in code as

Active ("g",A,[Al,[AD)
[Lin "p" [Tok (Range (1,2)),Cat (A,"p",1)],
Lin "q" [Tok (Range (3,4)),Cat (A,"q",1)]1]
[("p",Range (1,2)),("q",Range (3,4))]

where the dot in the DottedRule is represented as two lists of categories, [A], [A].
The passive item 13 is in turn written as

Passive S
[("s",Range (0,4))]

This is also the goal item for recognition.

{-- Module ------mm e
Filename : NaiveParse.hs
Author : Hadkan Burden

Time-stamp : <2005-02-24, 14:43>

Description: An agenda-driven implementation of the algorithm 4.2.1,
"Polynomial parsing for context-free GF",
as described in Ljungldf (2004)

module NaiveParse where

-- imported GF modules

import ExampleGrammar
import GeneralChart
import MCFGrammar
import MCFParser
import Nondet

import Parser

import Ranges

{-- Datatypes and types ----------- oo oo
NChart : A RedBlackMap with Items and NKeys
Item : The parse Items are either Active or Passive
NKey : One key for Active Items, one for Passive Items and one for
Active Items converted to Passive Items

type NChart n ¢ 1 = ParseChart (Itemn ¢ 1) (NKey c)

data Item n c 1l = Active (DottedRule n c)
(LinRec c¢ 1 Range)
(RangeRec 1)

| Passive ¢

(RangeRec 1)

61

deriving (Eq, Ord, Show)

data NKey c = Act ¢
| Pass ¢
| Final
deriving (Eq, Ord, Show)
{-- Parsing -----m oo m oo -

recognize: Returns ’True’ if the goal Item is in the parse-chart
otherwise ’False’

parse : Builds a chart from the initial agenda (given by prediction)
and the inference rules
keyof : Given an Item returns an appropriate NKey for storing the

Item in the Chart

recognize :: Grammar String NT String String -> [String] -> Bool
recognize mcfg toks =
chartMember (parse mcfg toks)
(Passive S [(”’s”, Range (0, n))]
(Pass 5)

parse :: (Eq t, Ord n, Ord ¢, Ord 1) => Grammar n ¢ 1 t -> [t]
-> NChart n c 1
parse mcfg toks = buildChart keyof [convert, combine]
(predict mcfg toks)

keyof :: Item n c 1 -> NKey c

keyof (Active (_, _, _, (next:_)) lins _) = Act next
keyof (Passive cat _) = Pass cat
keyof _ = Final

{--Inference rules —---------- oo
predict: Creates an Active Item of every Rule in the Grammar to give the
initial agenda
combine: Creates an Active Item every time it is possible to combine an
Active Item from the agenda with a Passive Item from the Chart
convert: Active Items with nothing to find are converted to Passive Items

predict :: (Eqt, Egc) => [t] -> Grammar n ¢ 1 t -> [Itemn ¢ 1]
predict mcfg toks =
[Active (f, cat, [], rhs) lins’ [] | Rule cat rhs lins f <- mcfg,
lins’ <- solutions $ rangeRestRec toks lins]

combine :: (Ord n, Ord c, Ord 1) => ParseChart (Itemn ¢ 1) (NKey c)
> Itemncl->[Itemncl]
combine chart (Active (f, cat’, found, (cat:toFind)) lins rec) =
[Active (f, cat’, found ++ [cat], toFind) lins’ (rec ++ rec’) |
Passive cat rec’ <- chartLookup chart (Pass cat),
lins’’ <- solutions $ concLinRec $ substArgRec (length found)
rec’ lins]
combine chart (Passive cat rec) =
[Active (f, cat’, found ++ [cat], toFind) lins” (rec’++ rec) |
(Active (f, cat’, found, (cat:toFind)) lins’ rec’)
<- chartLookup chart (Act cat),

62

lins” <- solutions $ concLinRec $ substArgRec (length found)
rec lins’]
combine _ _ = []

convert :: (Ord n, Ord ¢, Ord 1) => ParseChart (Itemn ¢ 1) (NKey c)
-> Itemncl->[Itemncl]
convert _ (Active (f, cat, rhs, []) lins _) =
[Passive cat (makeRangeRec lins)]
convert _=1[

A.4 ApproxParse

There are four different kinds of items for the Approximative algorithm, pre-
mcg, pre, mark and passive. The pre-mcfg item

lg:{a=(2,4);{qg=(2,3), ¢= (3, 4)}]
is written as

PreMCFG "g"
[("q",Range (2,4))]
[[("q",Range (2,3))]1,[("q",Range (3,4))1]

The pre item

[A = bd[]; {p = (1, 2)}; {q}; {}]
looks as follows
Pre ("bd",A,[1) [("p",Range (1,2))] ["q"1 [I

A mark item uses DottedRules and has two lists for separating marked range
records from unmarked ones

[A — g[AeA]; {p = (0,2),q=(2,4)};{p=(0,1),q = (2, 3)};{p= (1, 2),qg = (3, 4)}]

This item will look like

Mark ("g",A,[Al,[AD)
[("p",Range (0’2)),("q",Range (2,4))]
[("p",Range (0,1)),("q",Range (2,3))]
[[("p",Range (1,2)),("q",Range (3,4))11

when written in code. Finally we have the passive items, that look just like the
passive items for the Naive algorithm.

63

Passive S [("s",Range (0,4))]

is the goal item

{-- Module ------ oo
Filename : ApproxParse.hs
Author : Hakan Burden

Time-stamp : <2005-03-08 16:36:26>

Description: An agenda-driven implementation of the algorithm 4.3.4,
"Parsing through context-free approximation",
as described in Ljungldf (2004)

module ApproxParse where

-- imported Haskell modules
import List
import Monad

-- imported GF modules

import ConvertMCFGtoDecoratedCFG

import qualified DecoratedCFParser as CFP
import qualified DecoratedGrammar as CFG
import ExampleGrammar

import GeneralChart

import qualified MCFGrammar as MCFG
import MCFParser

import Nondet

import Parser

import Ranges

{-- Datatypes -------- oo oo
AChart: A RedBlackMap of Items and AKeys
Item : Four different Items are used:
* PreMCFG for MCFGPre-Items,
* Pre-Items are the Items returned by the pre-Functions,
* Mark-Items are the corresponding Items for the mark-Functions,
* correctly marked Mark-Items are converted to Passive Items.
AKey : One AKey for every kind of Item and one for Items to be converted

data Item n c 1 = PreMCFG n
(RangeRec 1)
[RangeRec 1]
| Pre (AbstractRule n c)
(RangeRec 1)
[1]
[RangeRec 1]
| Mark (DottedRule n c)
(RangeRec 1)
(RangeRec 1)
[RangeRec 1]
| Passive ¢

64

(RangeRec 1)
deriving (Eq, Ord, Show)

type AChart n ¢ 1 = ParseChart (Itemn c 1) (AKey nc 1)

data AKey nc1l =Pmnl
| Prnl
| Mk ¢ (RangeRec 1)
| Ps ¢ (RangeRec 1)
| Final

deriving (Eq, Ord, Show)

{-- Parsing --------m oo

recognize: Returns ’True’ if the goal Item is the parse-chart,
otherwise ’False’

parse : Builds a parse-chart from the agenda and the inference rules.
The agenda consists of the Passive Items from context-free
approximation (as PreMCFG-Items) and the Pre-Items inferred by
pre-prediction. The Context-Free parsing is done by either
bottom-up or top-down filtering

keyof : Given an Item returns an appropriate Key for storing the Item
in the Chart

recognize :: (Ord t) => Strategy
-> MCFG.Grammar String NT String t -> [t] -> Bool
recognize strategy mcfg toks =
chartMember (parse strategy mcfg toks) (Passive S rec) (Ps S rec)
where rec = [("s" , MCFG.Range (0, length toks))]

parse :: (Ord t) => CFP.Strategy -> MCFG.Grammar String NT String t
-> [t 1 -> AChart String NT String
parse strategy mcfg toks =
buildChart keyof [preCombine, markPredict, markCombine, convert]
((makePreItems (CFP.parse strategy
(CFG.pInfo (convertGrammar mcfg))
[(S, "s")] toks)) ++
(prePredict mcfg))

keyof :: Itemn c 1 -> AKey n c 1

keyof (PreMCFG f [(1bl, rng)] _) = Pm f 1bl
keyof (Pre (£, _, _) _ (1bl:_) _) = Pr £ 1bl
keyof (Mark (_, _, _, (cat:_)) _ _ (rec:_)) = Mk cat rec
keyof (Passive cat rec) = Ps cat rec
keyof _ = Final

{-- Initializing agenda ---------------- - -
makePreltems: Every Passive Item from the Context-Free chart is made into a
PreMCFG-Item

makePreltems :: (Eq ¢, Ord i) => CFG.Grammar n (Edge (¢, 1)) i t
> [Itemnc 1]
makePreltems cfchart =

65

[PreMCFG fun [(1bl, MCFG.makeRange (i, j))1 (symToRec beta) |
CFG.Rule (Edge i j (cat,lbl)) beta fun <- cfchart]

{-- Inference rules -------------mmmm -

prePredict : Predicts a Pre-Item for every Rule in the MCF grammar

preCombine : Combines a Pre-Item looking for the lable 1 with a
PreLCFG-Item for 1 into a new Pre-Item

markPredict: Predicts a Mark-Item for every Pre-Item with no lables left to
look for

markCombine: Combines a Mark-Item looking for a record rec with a Passive
Item for rec into a new Mark-Item

convert : Converts a fully marked Mark-Item into a Passive Item

prePredict :: (Ord n, Ord ¢, Ord 1) => MCFG.Grammar n ¢ 1 t
-> [Itemn c 1]
prePredict mcfg = [Pre (£, cat, rhs) [] (getLables lins)
(replicate (length rhs) [1) |
MCFG.Rule cat rhs lins f <- mcfg]

preCombine :: (Ord n, Ord ¢, Ord 1)
=> ParseChart (Itemn c 1) (AKeync 1) -> Itemnc 1l
-> [Itemn c 1]
preCombine chart (Pre head@(f, _, _) rec (1l:ls) recs) =
[Pre head (rec ++ [(1, r)]) 1ls recs” |
PreMCFG f [(1, r)] recs’ <- chartLookup chart (Pm £ 1),
recs” <- solutions (unifyRangeRecs recs recs’)]
preCombine chart (PreMCFG f [(1, r)] recs) =
[Pre head (rec ++ [(1, r)]) 1ls recs” |
Pre head rec (1l:1s) recs’ <- chartLookup chart (Pr £ 1),
recs’’ <- solutions (unifyRangeRecs recs recs’)]
preCombine _ _ = []

markPredict :: (Ord n, Ord c, Ord 1)
=> ParseChart (Itemn c 1l) (AKeync 1l) -> Itemncl
-> [Item n c 1]
markPredict _ (Pre (f, cat, rhs) rec [] recs) =
[Mark (f, cat, [], rhs) rec [] recs]
markPredict _=1[

markCombine :: (Ord n, Ord ¢, Ord 1)
=> ParseChart (Itemn c 1) (AKeync 1) -> Itemn c 1
-> [Itemn c 1]
markCombine chart (Mark (f, cat’, found, (cat:toFind)) rec’ marked
(rec:toMark)) =
[Mark (£, cat’, found ++ [cat], toFind) rec’
(marked ++ rec) toMark |
Passive cat rec <- chartLookup chart (Ps cat rec)]
markCombine chart (Passive cat rec) =
[Mark (£, cat’, found ++ [cat], toFind) rec’ (marked ++ rec)
toMark |
Mark (f, cat’, found, (cat:toFind)) rec’ marked (rec:toMark)
<- chartLookup chart (Mk cat rec)]
markCombine _ _ = []

66

convert :: (Ord n, Ord c, Ord 1)
=> ParseChart (Itemn c1) (AKeync 1) -> Itemn c 1l
-> [Item n ¢ 1]

convert _ (Mark (_, cat, _, []1) rec rec’ [])

convert _ _

[Passive cat rec]

[

{-- Helper functions =-=—--=-=- - oo oo

getLables: Returns the list of lables in LinRec

symToRec : Gives a RangeRec from the lables and ranges in the Context-Free
chart

getlLables :: LinRec ¢ 1t -> [1]
getLables lins = [1 | MCFG.Lin 1 syms <- lins]

symToRec :: Ord i => [Symbol (Edge (c, 1), i) d]
-> [[(1, MCFG.Range)11
symToRec beta =
map makeLblRng $ groupBy (\(_, d) (_, d>) -> (d==4’))
$ sortBy sBd [(Edge i j (¢, 1) , d) |
Cat (Edge i j (¢, 1), d) <- beta]
where makeLblRng edges =
[(1, (MCFG.makeRange (i, j))) |
(Edge i j (_, 1), _) <- edges]
sBd (_, d) (_, d)
| d <d’> =1LT
| d >d’ =GT
| otherwise = EQ

A.5 ActiveParse

For the Earley function initial the rules with a start symbol as left-hand side
is hard-coded. In the actual GF implementation it is substituted for the result
from the function pInfo, which returns the parse-information of the grammar.
The two rules for Earley prediction are combined into one rule in the code.

The active item 13 in figure 3.6 looks like

Active ("g",A,[A,A])
(1
(Range (1,2))
(Lin "p" [Cat (A,"p",1)])
[Lin ng" [Cat (A’"q"’o),Cat (A,"q",l)]]
[[("p",Range (1,2)),("q",Range (3,4))1,[1]

written in code. When fully instantiated and converted to a passive item it
looks like

Passive A
[("p",Range (0,2)),("q",Range (2,4))]

The inference rules for Kilbury and Earley prediction are given in the end of
the module.

67

{-- Module ------ oo
Filename : ActiveParse.hs
Author : Hadkan Burden
Time-stamp : <2005-03-24, 14:43>
Description: An agenda-driven implementation of algorithm 4.6,
"Active parsing of PMCFG",
as described in Ljungldf (2004)

module ActiveParse where

-- imported GF modules
import ExampleGrammar
import GeneralChart
import MCFGrammar
import MCFParser
import Nondet

import Parser

import Ranges

{-- Datatypes =------m oo -
AChart: A RedBlackMap with Items and AKeys
Item : Items are either Active or Passive
AKey : One key for every kind of Item and one for Active Items converted
to Passive Items

data Item n c 1 = Active (AbstractRule n c)
(RangeRec 1)
Range
(Lin ¢ 1 Range)
(LinRec ¢ 1 Range)
[RangeRec 1]
| Passive ¢
[RangeRec 1]
deriving (Eq, Ord, Show)

type AChart n ¢ 1 = ParseChart (Item n ¢ 1) (AKey c)

data AKey c = Act ¢
| Pass ¢
| Final
deriving (Eq, Ord, Show)
{-- Parsing ------mm o m oo e

recognize: If the goal Item is in the parse-chart: ’True’,
otherwise: ’False’

parse : Builds a Chart from the initial agenda, given by prediction, and
the inference rules. Parsing can be done with either Earley or
Kilbury filtering, or without filtering

keyof : Given an Item returns an appropriate Key for storing the Item in
the Chart
__ }
recognize :: Strategy -> Grammar String NT String String -> [String]
-> Bool

68

recognize strategy mcfg toks =
chartMember (parse strategy mcfg toks) item (keyof item)
where item = Passive S [("s", Range (0, n))]
n = length toks

parse :: (Ord n, Ord ¢, Ord 1, Eq t) => Strategy -> Grammar n c 1 t
-> [t] -> ParseChart (Itemn ¢ 1) (AKey c)
parse (False, False) mcfg toks =
buildChart keyof
[complete, scan, combine, convert]
(predict mcfg toks)
parse (True, False) mcfg toks =
buildChart keyof
[predictKilbury mcfg toks, complete, combine, convert]
(terminal mcfg toks)
parse (False, True) mcfg toks =
buildChart keyof
[predictEarley mcfg toks,
complete, scan, combine, convert]
(initial (take 1 mcfg) toks)

keyof :: Item n ¢ 1 -> AKey ¢

keyof (Active _ _ _ (Lin _ ((Cat (next, _, _)):_)) _ _) = Act next
keyof (Passive cat _) = Pass cat
keyof _ = Final

{--Inference rules —--------- oo oo
predict : Creates an Active Item of every Rule in the Grammar to give the
initial Agenda
complete: Predicts an Active Item for the next linearization row, if the
previous row is fully satisfied.
scan : If the next symbol to read is a range for a token, concatenate
the range for what is found so far with the range for the token
combine : Creates an Active Item every time it is possible to combine
an Active Item from the agenda with a Passive Item from the Chart
convert : Active Items with nothing to find are converted to Passive Items

predict :: EQ t => Grammar n ¢ 1 t -> [t] -> [Itemn c 1]
predict grammar toks = [Active (f, cat, rhs) [] ERange lin’ lins’
(replicate (length rhs) [1) |
Rule cat rhs lins f <- grammar,
(1lin’:1lins’)
<- solutions $ rangeRestRec toks lins]

complete :: (Ord n, Ord ¢, Ord 1) => ParseChart (Item n ¢ 1) (AKey c)
->Itemncl->[Itemncl]
complete _ (Active rule found (Range (i, j)) (Lin 1 [])
(lin:lins) recs) =
[Active rule (found ++ [(1, Range (i,j))]) ERange lin
lins recs 1]
complete _ _ = []

scan :: (Ord n, Ord ¢, Ord 1) => ParseChart (Item n ¢ 1) (AKey c)
> Itemncl->[Itemncl]

69

scan _ (Active rule found rng (Lin 1 ((Tok rng’):syms)) lins recs) =
[Active rule found rng” (Lin 1 syms) lins recs |
rng’” <- solutions $ concRanges rng rng’]
scan _ _ = []

combine :: (Ord n, Ord c, Ord 1) => ParseChart (Itemn ¢ 1) (AKey c)
-> Itemncl->[Itemnecl]
combine chart (Active rule found rng (Lin 1 ((Cat (¢, r, d)):syms))
lins recs) =
[Active rule found rng” (Lin 1 syms) lins
(replaceRec recs d found’) |
Passive _ found’ <- chartLookup chart (Pass c),
rng’ <- solutions $ projection r found’,
rng’” <- solutions $ concRanges rng rng’,
subsumes (recs !! d) found’]
combine chart (Passive ¢ found) =
[Active rule found’ rng (Lin 1 syms) lins
(replaceRec recs’ d found) |
Active rule found’ rng’ (Lin 1 ((Cat (¢, r, d)):syms))
lins recs’
<- chartLookup chart (Act c),
rng’” <- solutions $ projection r found,
rng <- solutions $ concRanges rng’ rng”,
subsumes (recs’ !! d) found]
combine _ _ = []

convert :: (Ord n, Ord ¢, Ord 1) => ParseChart (Itemn ¢ 1) (AKey c)
->Itemncl->[Itemnecl]
convert _ (Active (£, cat, rhs) found rng (Lin 1 []) [] recs) =
[Passive cat (found ++ [(1, rng)])]
convert _ _ = []

{-- Earley Filtering --------m oo oo oo e

initial : Predict an Active Item for every rule in the grammar where
the left-hand side of the rule is a start symbol

predictEarley: If there is an Active Item looking for a category and a rule
where that category is the left-hand side of a rule, predict
a new Item

initial :: Eqt => [Rule nc 1t] ->[t] -> [Itemnc 1]
initial starts toks =
[Active (f, s, rhs) [1 (Range (0, 0)) lin’ lims’
(replicate (length rhs) [1) |
Rule s rhs lins f <- starts,
(1lin’:1lins’) <- solutions $ rangeRestRec toks lins]

predictEarley mcfg toks _ (Active _ _ rng
(Lin _ ((Cat (cat, _, _)):_)) _ _) =
concat [earley rng rule | rule@(Rule cat’ _ _ _)

<- mcfg, cat == cat’]
where earley _ (Rule cat [] lins f) =
[Passive cat (makeRangeRec lins’) |
lins’ <- solutions $ rangeRestRec toks lins]
earley rng (Rule cat rhs lins f) =
[Active (f, cat, rhs) [] (ceil rng) lin’ lins’

70

(replicate (length rhs) [1) |

(1lin’:1lins’) <- solutions $ rangeRestRec toks lins]
predictEarley _ _ _ _ = []

{-- Kilbury Filtering ----------m oo oo e

predictKilbury: Predict an Active Item for a rule if there already is a
Passive Item for the first category in the first
linearization row

terminal : Predict a Passive Item for every rule with empty right-hand
side

__ }

predictKilbury mcfg toks _ (Passive (_, cat, _) found _) =

[Active (£, a, rhs) [] rng lin’ lins’ daughters |
Rule a rhs ((Lin 1 ((Cat (cat’, r, i)):syms)):lins) f <- mcfg,
cat == cat?,
lin’ <- solutions $ rangeRestLin toks (Lin 1 syms),
lins’ <- solutions $ rangeRestRec toks lins,
rng <- solutions $ projection r found,
let daughters =

(replaceRec (replicate (length rhs) []) i found)]
predictKilbury _ _ _ _ = []

terminal mcfg toks =
[Passive cat (makeRangeRec lins’) |
Rule cat [] lins f <- mcfg,
lins’ <- solutions $ rangeRestRec toks lins]

A.6 IncrementalParse

The active item

[A - g[A7 A]’ {p = (Oa 2)}7 q= (25 4).; F(ac,bd}]
where I' (4 pqy is taken from figure 3.2, will be written as

Active ("g",A,[A,A])
[("p",Range (0,2))]
(Range (2,4))
(Lin "q" [1)
1
[[("p",Range (0’1)),("q",Range (2,301,
[("p",Range (1,2)),("q",Range (3,4))11

The layout follows the definition of an active item in the code.

{-- Module ------m e eo -
Filename : IncrementalParse.hs
Author : Hakan Burden

Time-stamp : <2005-04-29, 14:10>
Description: An agenda-driven implementation of algorithm 4.6,
"Incremental PMCFG parsing",

71

as described in Ljungldf (2004)

module IncrementalParse where

-- imported Haskell modules
import List

-- imported GF modules
import ExampleGrammar
import GeneralChart
import MCFGrammar
import MCFParser
import Parser

import Ranges

import Nondet

{-- Datatypes =------m oo -

IChart:
Item

IKey

type IChart n c 1

data Item

data IKey

A RedBlackMap with Items and IKeys

: One kind of Item since the Passive Items not necessarily need to

be fully saturated, they can still have rows to recognize.

: Three kind s of IKeys; one for Items investigating an unsaturated

row, one for Items who have saturated an entire row and one for
fully saturated Items

ParseChart (Itemn c 1) (IKey ¢ 1)

Active (AbstractRule n c¢)
(RangeRec 1)
Range
(Lin ¢ 1 Range)
(LinRec ¢ 1 Range)
[RangeRec 1]
deriving (Eq, Ord, Show)

ncl

= Act ¢ 1 Int
| Pass ¢ 1 Int
| Final

deriving (Eq, Ord, Show)

{-- Parsing -------- oo

recognize:
parse

keyof

Reurns ’True’ if the goal Item is in the Chart,
otherwise ’False’

: Builds a Chart from the initial agenda, given by prediction, and

the inference rules

: Given an Item returns an appropriate IKey for storing the Item

in the Chart

recognize mcfg toks = chartMember (parse mcfg toks) item (keyof item)

where

item = Active ("f", S, [A 1)

[J (Range (0, n)) (Lin "s" [1) [

[[C "p", Range (0, n2)), ("q", Range (n2, n))]I]
n = length toks
n2 = n ‘div‘ 2

72

parse :: (Ord n, Ord ¢, Ord 1, EQ t) => Grammar n ¢ 1 t -> [t]
-> IChart nc 1
parse mcfg toks = buildChart keyof
[complete toks n, scan, combine]
(predict mcfg toks n)
where n = length toks

keyof :: Item n c 1 -> IKey c 1

keyof (Active _ _ (Range (_, j))
(Lin _ ((Cat (mext, 1bl, _)):_)) _ _)
= Act next 1bl j
keyof (Active (_, cat, _) found (Range (i, _)) (Lin 1b1 [1) _ _)
= Pass cat 1bl i
keyof _
= Final

{-- Inference Rules ---------mmmmmm oo

predict : Predicts an Item for every linearization row in every rule in the
grammar

complete: Predicts a new item for every remaining linearization row, when
the previous row is fully saturated

scan : Range concatenates the range for what is found so far with the
range of the next symbol, if it is a linearized token

combine : Combines an Active Item looking for the category cat with a
Passive Item for cat

predict :: (Eq n, Eq ¢, Eq 1, Eq t) => Grammar n ¢ 1 t -> [t] -> Int
-> [Itemn c 1]
predict mcfg toks n =
[Active (f, ¢, rhs) [1 (Range (k, k)) 1lin’ lins”
(replicate (length rhs) [1) |
Rule ¢ rhs lins f <- mcfg,
lins’ <- solutions $ rangeRestRec toks lins,
(lin’, lins’) <- select lins’,
k<-[0..n1]1]1]

complete :: (0rd n, Ord ¢, Ord 1) => [t] -> Int
-> ParseChart (Itemn ¢ 1) (IKey ¢ 1) -> Itemn c 1
-> [Itemn ¢ 1]
complete toks n _ (Active rule found rng@(Range (_, j)) (Lin 1 [])
lins recs) =
[Active rule (found ++ [(1, rng)]) (Range (k, k))
lin lins’ recs | (lin, lins’) <- select lins,
k<-[j..n1]1
complete _ _ _ _ = []

scan :: (Ord n, Ord ¢, Ord 1) => ParseChart (Itemn c 1) (IKey ¢ 1)
->Itemncl->[Itemnecl]
scan _ (Active rule found rng (Lin 1 ((Tok rng’):syms)) lins recs) =
[Active rule found rng” (Lin 1 syms) lins recs |
rng’”’ <- solutions $ concRanges rng rng’]
scan _ _ = []

73

combine :: (Ord n, Ord c, Ord 1)
=> ParseChart (Itemn c 1) (IKey ¢ 1) -> Itemn c 1
-> [Itemn c 1]
combine chart (Active rule found rng@(Range (_, j))
(Lin 1 ((Cat (¢, r, d)):syms)) lins recs) =
[Active rule found rng” (Lin 1 syms) lins
(replaceRec recs d (found’ ++ [(17, rng’)]1)) |

Active _ found’ rng’ (Lin 1’ [1) _ _
<- chartLookup chart (Pass ¢ r j),
subsumes (recs !! d) (found’ ++ [(1’, rng’)]),
rng’” <- solutions $ concRanges rng rng’]
combine chart (Active (_, ¢, _) found rng’@(Range (i, _))

(Linl1 [1)__)=
[Active rule found’ rng’” (Lin 1’ syms) lins
(replaceRec recs d (found ++ [(1, rng’)]1)) |
Active rule found’ rng (Lin 1’ ((Cat (¢, r, d)):syms))
lins recs <- chartLookup chart (Act ¢ 11),

subsumes (recs !! d) (found ++ [(1l,rng’)1),
rng’”’ <- solutions $ concRanges rng rng’]
combine _ _ = []

74

