
Gothenburg June 2005
ImplementationsofParsing AlgorithmsforLinear MultipleContext-Free GrammarsThesis for M.A. in Computational Linguisti
s

HåkanBurdenDept. of Linguisti
sGöteborg UniversitySupervisor: Peter LjunglöfDept. of Computing S
ien
eChalmers University of Te
hnologyGöteborg University

Abstra
tThis thesis is an a

ount of implementations of parsing algorithms for Linear MultipleContext-Free Grammars (LMCFG). The algorithms have originally been proposedfor Parallel Multiple Context-Free Grammars (PMCFG), a super
lass to LMCFG, byPeter Ljunglöf. LMCFG is a Mildly Context-Sensitive Grammar formalism.The implementations are part of the work being
arried out for the TALK proje
tat the departements of Linguisti
s at Göteborg University and Computing S
ien
e atChalmers University of Te
hnology and Göteborg Univerity.The Language Te
hnology Group at Chalmers is
urrently
ondu
ting resear
h roundthe grammar formalism Grammati
al Framework (GF). The important sub
lass
ontext-free GF is equivalent to PMCFG. This implies that a subset of the
ontext-free GFgrammars
an be parsed as equivalent LMCFG grammars.Four di�erent algorithms for parsing LMCFG are implemented, using dedu
tive agenda-driven
hart-parsing. The �rst algorithm is a straightforward bottom-up strategy
om-bining items with smaller
over of the input string to items with larger
over. These
ond algorithm uses a
ontext-free approximation and then re
overs the resulting
hart. The third algorithm is an a
tive algorithm with Earley and Kilbury predi
tion.And the last algorithm is in
remental.The algorithms have not been thoroughly tested as part of the work presented here.However, preliminary testing indi
ate that they seem faster than the existing parserfor GF.SammanfattningDen här uppsatsen är en redogörelse för implementeringar av parsningsalgoritmer förLinear Multiple Context-Free Grammars (LMCFG). Algoritmerna har från börjanföreslagits av Peter Ljunglöf för Parallel Multiple Context-Free Grammars (PMCFG),en superklass till LMCFG. LMCFG är en milt kontextkänslig grammatikformalism.Implementeringen är en del av det arbete som institutionerna för Lingvistik vid Göte-borgs Universitet o
h Datavetenskap på Chalmers Tekniska Högskola o
h GöteborgsUniversitet utför inom TALK projektet.Språkteknologigruppen vid Chalmers bedriver bland annat forskning kring grammatikformalismen Grammati
al Framework (GF). Den viktiga subklassen
ontext-free GFär ekvivalent med PMCFG. Det innebär att vissa
ontext-free GF grammatiker kanparsas som ekvivalenta LMCFG grammatiker.Fyra olika algoritmer har implementerats utifrån deduktiv agenda-driven
hart-parsning.Den första algoritmen är en enkel bottom-up algoritm som kombinerar den erhållna
hartinformationen nerifrån o
h upp till större o
h större enheter. Den andra algorit-men utgår från en kontextfri uppskattning o
h �ltrerar sen ut den information somöverensstämmer med den ursprungliga LMCFG:n. Tredje algoritmen är en variantpå aktiv parsning med både Earley o
h Kilbury �ltrering som alternativ. Den sistaalgoritmen är en inkrementell algoritm.Det har inte genomförts någon omfattande utvärdering av algoritmerna inom det ar-bete som presenteras här. Preliminära tester antyder do
k att algoritmerna är snab-bare än den nuvarande parsningsalgoritmen för GF.i

ii

A
knowledgmentsTime to get down to serious business. It always seems appropriate when onehas negle
ted life for a
ademi
 virtues.First of all I have to give Peter my sin
ere thanks. He's responsible for intro-du
ing me to parsing algorithms in the �rst pla
e. Parsing algorithms are morethan s
ien
e, they are art forms. I'm also very grateful for the way he's guidedme through my �rst major solo proje
t.Thank you Silverbullit for Citizen Bird.Thank you Liverpool for your Champions League adventures. Long nights atthe
omputer pass by qui
k as anything when Juventus and Chelsea are kno
kedout by The Reds. And an extra round of applause for Carragher and Dudek,your performan
e in Istanbul will be a part of me for the rest of my life.Thank you, my modernly extended family. I love you Burdens, Blåbergs,Bukowinskas and Josefsson. You've always believed in me and your supporthas often been vital.A very big thanks to all my friends at s
hool. I've enjoyed your
ompany. Ihope I won't have to miss you.To my friends outside, I love you. For all we have done and everything we saidwe
ould do. I hope to see you soon.And thank you Malva for keeping it real. Godspeed You Bla
k Emperor. I loveyou and
ould never have done it without you. You
ombine the knowledge ofa buddhist monk with a hedonists appetite for life, bringing order to
haos and
haos to order.Finally, Ellen, I love you ♥. Thank you for all your love and support. Livingwith me hasn't always been that easy. I wish you the best and hope to be apart of your future, for ever and ever./Håkan

iii

iv

Contents
1 Introdu
tion 11.1 Motivation . 11.2 Stru
ture . 11.3 Haskell . 22 Ba
kground 32.1 Preliminary de�nitions . 32.1.1 Sets and strings . 32.1.2 Re
ords and tuples . 42.2 Grammars . 52.2.1 Context-Free Grammars 62.2.2 De
orated Context-Free Grammar 72.2.3 Mildly Context-Sensitive Grammars 82.2.4 Abstra
t and
on
rete syntax 92.2.5 Grammati
al Framework 102.2.6 Generalized Context-Free Grammars 102.2.7 Parallel Multiple Context-Free Grammars 112.2.8 PMCFG and
f-GF are equivalent! 142.3 Ranges . 142.3.1 Some operations on ranges 152.3.2 Range
on
atenation . 152.3.3 Range restri
tion . 152.3.4 Equivalent re
ord types 162.4 Parsing . 162.4.1 Re
ognition vs Parsing . 172.4.2 Parsing as dedu
tion . 17v

2.4.3 Parse items . 182.4.4 De
orated parse items . 182.4.5 Chart . 192.4.6 Inferen
e rules for De
orated CFG 192.4.7 Earley predi
tion . 222.4.8 Kilbury predi
tion . 232.4.9 Implementing parsing as dedu
tion 232.5 Polynomial PMCFG parsing strategies 242.5.1 Naïve algorithm . 242.5.2 Context-free approximation algorithm 242.5.3 A
tive parsing algorithm 252.5.4 In
remental parsing algorithm 253 Implementation 273.1 Adapting the algorithms to LMCFG 283.2 The Naïve algorithm . 293.2.1 Item form . 293.2.2 Goals for re
ognition . 293.2.3 Inferen
e rules . 303.2.4 Naïve parse
hart . 303.3 The Approximative algorithm 323.3.1 The
ontext-free approximation 323.3.2 Items for the
ontext-free approximation 323.3.3 Converting the DCFG forest 333.3.4 Items for the re
overy step 343.3.5 Goals for re
ognition . 343.3.6 Inferen
e rules for the re
overy step 343.3.7 Example of Approximative parsing 353.4 The A
tive algorithm . 353.4.1 The range for ǫ . 383.4.2 Item form . 383.4.3 Goals for re
ognition . 383.4.4 Inferen
e rules . 393.4.5 Earley �ltration for the A
tive algorithm 39vi

3.4.6 Kilbury �ltration for the A
tive algorithm 403.4.7 Example for the A
tive algorithm 413.5 The In
remental algorithm . 413.5.1 In
rementality and range restri
tion 433.5.2 Item form . 433.5.3 Goals for re
ognition . 433.5.4 Inferen
e rules . 433.5.5 Example run . 443.5.6 Proposed predi
tion strategies 464 Small-s
ale evaluation 474.1 Preliminary testing . 474.2 Parse table . 484.2.1 E�
ien
y for
orre
t senten
es 484.2.2 Comments . 484.2.3 E�
ien
y for in
orre
t senten
es 495 Summary 515.1 Future work . 515.2 Con
lusion . 52Bibliography 53A The
ode 55A.1 ExampleGrammar . 57A.2 Ranges . 58A.3 NaiveParse . 61A.4 ApproxParse . 63A.5 A
tiveParse . 67A.6 In
rementalParse . 71
vii

viii

List of Figures1 Notations used throughout the thesis x2.1 An example of a Context-Free grammar 62.2 A De
orated CFG . 82.3 Parse tree . 92.4 An erasing PMCFG . 132.5 Example
hart . 202.6 The
hart as dire
ted graph . 212.7 An agenda-driven
hart parsing algorithm for re
ognition 243.1 An interesting LMCFG . 283.2 Naïve parse
hart . 313.3 The LMCFG
onverted to a CFG 333.4 De
orated
ontext-free
hart and equivalent preMCFG items . . 363.5 A
hart for the Approximative algorithm 373.6 A
tive parse
hart . 424.1 Evaluation of valid senten
es . 484.2 Evaluation of invalid senten
es 50A.1 Types and
ode . 56
ix

Figure 1: Notations used throughout the thesis
w an input string s.t. w = w1 . . . wn

ǫ the empty sequen
e/string
s a substring in w, s = wi, . . . , wj 0 ≤ i ≤ j ≤ |w|
G a grammar, G = (C, Σ, S, R)
C the set of non-terminals, also
alled the
ategories
Σ the set of terminal tokens (the alphabet)
S a start-symbol of a grammar s.t. S ∈ C
R the set of rules
V the set of symbols, C ∪ Σ
A, B elements in C
~B a sequen
e of
ategories, B1, . . . Bn

a, b elements in Σ
L ; L(A) a language; the language of
ategory A
f, g fun
tion symbols
δ arity of a fun
tion or rule
α, β, γ sequen
es of linearizations or elements in V
Φ, Ψ linearization re
ords or sequen
es of linearizations,

Φ = α1 . . . αn
∗ the Kleene star
·
on
atenation of two sequen
es
→ A→ α ≡ (A,α) ∈ R
⇒ B ⇒ αβγ whenever B → β
⇒∗ the re�exive and transitive
losure of a
ategory
|x| the length/size of x
n, m natural numberswe often use n when |x| is known
Γ a re
ord of any type. Often used for range re
ords
~Γ a sequen
e of re
ords, ~Γ = Γ1, . . . Γn

r, s re
ord labels
i, j, k natural numbers used for indi
es
(i, j) the range i to j
ρ any range (i, j)
ρǫ the range for the empty string
⌈(i, j)⌉ the
eiling of a range, returns (j, j)
⌊(i, j)⌋ the �oor of a range, returns (i, i)

x

Chapter 1Introdu
tion
1.1 MotivationThis thesis is the report for the implementations of parsing algorithms
arriedout during the spring of 2005. The parsing algorithms are proposed in PeterLjunglöf's PhD thesis �Expressivity and Complexity of the Grammati
al Frame-work� (2004). The implementations
over a subset of the proposed algorithms.We have tried to follow the notations of Ljunglöf when possible, to make it easyto
ompare the proposed algorithms with the implemented.Grammati
al Framework (GF) is one of the areas of resear
h at Chalmers Uni-versity of Te
hnology. The work around GF is also a part of the work being
arried out for the TALK-proje
t (Tools for Ambient Linguisti
 Knowledge) atChalmers and Göteborg University. For information about GF and the TALKproje
t, see GF (2004) and TALK (2004) respe
tively.1.2 Stru
tureThe
hapters have the following stru
ture

• Chapter 2 Ba
kground: Introdu
tion and de�nition of some grammar for-malisms. Explanation of de
orated
ontext-free parsing algorithms usingdedu
tion and a brief des
ription of the proposed algorithms.
• Chapter 3 Implementation: A des
ription of the algorithms as they havebeen implemented.
• Chapter 4 Small Evaluation: For several reasons there has not been anyextensive evaluation
ondu
ted. Nevertheless it is possible to draw some
on
lusions, and to show some parse results.
• Chapter 5 Summary: Comments on the implementations and proposalsfor future work. Rounding o� the thesis.
• Appendix A The Code: The sour
e
ode of the implemented algorithms.1

1.3 HaskellThe algorithms are implemented in Haskell as is most of the Grammati
alFramework. It is not ne
essary to understand Haskell to read the report evenif the
ode of the implementations is in Haskell. The bulk of the implemented
ode
an be found in Appendix A.Haskell is a fun
tional programming language named after one of the pioneers in
λ-
al
ulus, Haskell B. Curry. It is based on λ-
al
ulus and stati
ally typed. Thismeans that the implemented fun
tions are de�ned for spe
i�
 types; a fun
tionfor doubling a Float will not take an Integer as an argument. Fun
tions
an behigher-order, meaning that a fun
tion
an have other fun
tions as arguments.For more information on Haskell, see Hudak et al. (1999), Peyton Jones (2003)or Thompson (1999).

2

Chapter 2Ba
kground
The ba
kground
hapter
an roughly be divided into two parts. The �rst partintrodu
es the grammar formalisms that are ba
kground knowledge Linear Mul-tiple Context-Free Grammars. It also gives a variant of Context-Free Grammars
alled De
orated Context-Free Grammars. The se
ond part presents the toolsfor parsing. A brief a

ount of the proposed algorithms is given at the end.2.1 Preliminary de�nitions2.1.1 Sets and stringsCon
atenation of setsGiven that X and Y are sets then X · Y = {x · y | x ∈ X , y ∈ Y }. Further,
X n+1 = {X · X n | x ∈ X } and X 0 = {ǫ}, where ǫ is an empty sequen
e.TheKleene starThe Kleene star, ∗, is used to denote all possible repetitions of a set X

X ∗ = X 0 ∪ X 1 ∪ . . . ∪ X i =

∞
⋃

0

X iAlphabetA �nite set of terminal tokens is
alled an alphabet and denoted Σ.3

Strings and substringsA string w ∈ Σ∗ is a sequen
e w1 . . . wn in whi
h ea
h wi ∈ Σ. A substringis any
ontinuous part of a string. This means that every terminal token of astring w
an be seen as a substring of w.Example Given the string w = 1 2 3 4 5; 1, 3 4 and 2 3 4 5 are all substrings of
w but 1 3, 1 2 4 5 and 4 5 6 are not.LanguageA language, L, is a set of strings over an alphabet, Σ, i.e. L ∈ Σ∗.Example The language

{ anbicn | n, i ≥ 0 }
an be written as
anb∗cn2.1.2 Re
ords and tuplesRe
ordA label is an atomi
 symbol and a re
ord is a set of unique label-value pairs.Example If r1, . . . , rn are labels and x1, . . . , xn are values (su
h as ranges orsequen
es of symbols) then

Γ = {r1 = x1; . . . ; rn = xn}is a re
ord.Re
ord proje
tionProje
tion on a re
ord Γ with the label ri is written Γ.ri. The proje
tion willreturn the value paired with ri.Proje
tions will either return a terminal value or another proje
tion, givingre
ord proje
tion a re
ursive stru
ture.Example Given the two re
ords
Γ1 = {r = Γ2.r

′}

Γ2 = {r′ = a}the proje
tion Γ1.r returns the proje
tion Γ2.r
′ whi
h in turn will give theterminal value a. 4

Re
ord uni�
ationWe de�ne simple uni�
ation of re
ords as
Γ1 ⊔ Γ2 = Γ1 ∪ Γ2Simple uni�
ation su

eeds i� there is no r s.t. Γ1.r 6= Γ2.rRe
ord substitutionWe
an substitute one re
ord for another in a list of re
ords. We write theoperation as
Γ1, . . . , Γn[i := Γ]meaning that in the list Γ1, . . .Γn the i:th element is substituted by Γ. Sub-stitution
an also be performed on proje
tions in re
ords. The operation isdenoted

Γ[Bk/Γk]and every proje
tion Bk .r in α1 . . . , αn is substituted by the value given by Γk.r.Example Γ1, Γ2, Γ3[2 := Γ] will substitute the se
ond re
ord for Γ, returning
Γ1, Γ, Γ3.Given Γ = {r = aA1.r a; r2 = A1.r

′} and Γ1 = {r = a, r′ = A2.r
′′} then

Γ[A1/Γ1] = a a aA2.r
′′.TuplesA tuple
an be seen as a re
ord sin
e every re
ord proje
tion
an be repla
edby the
orresponding tuple proje
tion.Example As an example, the tuple T = (x1, . . . , xn) is equivalent to the re
ord

Γ = {1 = x1; . . . ;n = xn} and the i:th element in T is the same elementas that given by the proje
tion Γ.i.2.2 GrammarsIn the following se
tion we will de�ne Context-Free Grammars (CFG) and avariant of CFG
alled De
orated Context-Free Grammars (DCFG). We will alsointrodu
e the grammar formalisms Grammati
al Framework (GF, Ranta, 2004)and Parallel Multiple Context-Free Grammars (PMCFG, Seki et al., 1991). Theseparation of syntax into an abstra
t and a
on
rete part will be introdu
ed sin
ethis is the way both GF and PMCFG handle syntax.5

Figure 2.1: An example of a Context-Free grammarA
ontext-free grammar (adapted from Ljunglöf (2004), page 17) where therules are
S → NP , VP

NP → D , N

NP → N

VP → V , NP

D → a

D → many

N → lion

N → lions

N → fish

V → eat

V → eatsand S = senten
e, NP = noun phrase, VP = verb phrase, D = determiner,
N = noun and V = verb. Only the rules are given sin
e it follows from R what
C, S and Σ are.2.2.1 Context-Free GrammarsContext-Free Grammars (CFG) are a sub
lass of the Phrase Stru
ture Gram-mars. They are
alled
ontext-free sin
e the rules have no
ontext-dependentinformation on when they are allowed to be applied; the left-hand side of therule is restri
ted to
ontain a single
ategory, (Chomsky, 1959).A
ontext-free grammar is a four-tuple (C, S, Σ, R), where

• C is the set of non-terminal symbols,
• Σ is the alphabet,
• S is the start
ategory of G s.t. S ∈ C and
• R is the set of rules: R ⊆ C × V ∗ where V = C ∪ Σ is known as the setof symbols.An example of a CFG, re
ognizing a small fragment of English,
an be found in�gure 2.1.Some grammar notationsFor most grammars C, S and Σ are obvious fromR and therefore only the rulesare given.We use the Greek letters α, β and γ to denote any sequen
e of symbols in V . Itis
ommon to use A→ β instead of (A, β) ∈ R, and we
all A the left-hand side6

and β the right-hand side of the rule. Elements in β are the daughters of A.For a sequen
e of symbols, αBγ, we
an use the rewriting relation ⇒ to write
αBγ ⇒ αβγ i� B → β.The empty string is denoted ǫ and the rule A→ ǫ is
alled an ǫ-rule. The numberof
ategories on the right-hand side of → is the arity of the rule, denoted δ.Expressivity of CFGExpressivity features handled by a
ontext-free grammar in
lude

• nesting (anbn) and
• reverse
opying {wwR|w ∈ (a ∪ b)∗} (where ababR = baba)For most pra
ti
al uses the
omplexity of everyday language
ould be
apturedwithin the expressivity of Context-Free Grammars. There are however somelinguisti
 features that do require more expressive power;
• multiple agreement (ambmcm),
•
rossed agreement (anbmcndm) and
• dupli
ation {ww |w ∈ (a ∪ b)∗}.For exampleShieber (1985) proposes that the subordinate
lauses of Swiss Ger-man
arry a syntax
ontaining dis
ontinuent
onstituents (
rossed agreement).The same has been
laimed for Dut
h by Joshi (1985).Language of a CFGThe re�exive and transitive
losure of ⇒ is written as ⇒∗. The language of a
ategory A is then

L(A) = {w ∈ Σ∗|A ⇒∗ w}The language re
ognized by a grammar G is L(G) whi
h equals L(S) i� S isthe starting
ategory of G.2.2.2 De
orated Context-Free GrammarThe
ontext-free approximation des
ribed in se
tion 3.3 uses a form of CFG withde
orated rules. The de
oration
onsists of a name for the rule and subs
riptingea
h non-terminal in the right-hand side in order to fa
ilitate implementation.The example CFG as a De
orated CFG is shown in �gure 2.2.In all other respe
ts a De
orated CFG (DCFG)
an be seen as any other straight-forward CFG.Example The following
ontext-free rule7

Figure 2.2: A De
orated CFGThe example CFG in �gure 2.1 as a De
orated CFG
s : S → NP1, VP2

np : NP → D1, N2

np : NP → N1

vp : VP → V1, NP2

d : D → a

d : D → many

n : N → lion

n : N → lions

n : N → fish

v : V → eat

v : V → eats

S → NP , VP
an be de
orated to
s : S → NP1, VP2

many lions eat fish is an example of a senten
e generated by the de
orated gram-mar. See �gure 2.3 its synta
ti
al stru
ture.2.2.3 Mildly Context-Sensitive GrammarsSeveral grammar formalisms have evolved under the name Mildly Context-Sensitive grammars, a term
oined by Joshi (1985).Expressivity and
omplexity of Mildly Context-Sensitive GrammarsMildly Context-Sensitive grammars form a sub
lass of Context-Sensitive gram-mars (Chomsky, 1959) and have the following properties:1. They
an express any
ontext-free language.2. They have
onstant growth property (when ordered by in
reasing lengththe senten
es of a language do not di�er by more than a
onstant).3. They
an be parsed in polynomial time (with respe
t to the length of theinput).4. They
an express multiple agreement,
rossed agreement and dupli
ation.8

Figure 2.3: Parse treeThe string many lions eat fish is generated by the de
orated grammar. Thesynta
ti
al stru
ture of the senten
e is shown below.s:S
a

a
aa

!
!

!!np:NP
Z

Z
�

�d:Dmany n:Nlions vp:VP
Z

Z
�

�v:Veat np:NPn:N�shThe �rst and fourth of these properties are true for all Context-Sensitive gram-mars but the se
ond and third properties are not. The bene�t of a MildlyContext-Sensitive grammar is that it
an express features beyond the expres-sivity of CFG:s without having the full-s
ale time-
onsumption of Context-Sensitive grammars.In order to give formal bounds on expressivity the properties in the last point
an be de�ned in the following way:
• k-multiple agreement: am

1 . . . am
k

• k-
rossed agreement: am1

1 . . . amk

k bm1

1 . . . bmk

k

• k-dupli
ation: {wk|w ∈ (a ∪ b)∗}With these de�nitions, a CFG is
apable of expressing at most 2-multiple agree-ment, 1-
rossed agreement and 1-dupli
ation. The mildly
ontext-sensitivegrammar formalism Tree Adjoining Grammars (TAG, Joshi et al. 1975)
anexpress 4-multiple agreement, 2-
rossed agreement and 2-dupli
ation and Mul-tiple Context-Free Grammars (Seki et al., 1991)
an express these properties forany given k.There are limits to what a mildly
ontext-sensitive grammar
an handle. Thelanguage a2
n , whi
h gives all sequen
es of a with length 2n, is su
h an examplesin
e it does not have a
onstant growth property.2.2.4 Abstra
t and
on
rete syntaxConsider the
ontext-free syntax rule for modifying a noun with an adje
tive9

NP → AP , N(where NP is the resulting noun phrase, AP is the modifying adje
tive phraseand N is the noun). The rule
an be written in two ways, depending on whatlanguage the grammar shall generate.Spanish modi�es nouns by putting the adje
tive after the noun, vino blan
o.In English the adje
tive
omes �rst, as in white wine, and in Fren
h the orderdepends on the parti
ular adje
tive in use: bon vin but vin blan
.Thus we would need one more rule for the word order N , A and a way ofspe
ifying when to use whi
h rule. Alternatively, we
an separate the syntaxinto an abstra
t and a
on
rete part.The abstra
t rule would only spe
ify whi
h
ategories that
an be
ombinedinto a noun phrase. The di�erent ways of realising the abstra
t rule wouldthen be des
ribed in
on
rete linearization rules. The grammars for Spanish,English and Fren
h would share the abstra
t rule but would ea
h have theirown
on
rete linearizations of it.AdvantagesThere are some
lear advantages of separating the abstra
t and the
on
retesyntax.
• One abstra
t syntax rule
an have several
on
rete linearizations, allow-ing the abstra
t syntax to work like an interlingua between the
on
retesyntaxes. This works both for translating between natural languages butalso between di�erent kinds of output modes (plain text, XML do
uments,outputting spee
h synthesis et
.) for a
ertain pie
e of information.
• The abstra
t syntax
an
on
entrate on the main issues and let the
on-
rete linearizations take
are of the details.2.2.5 Grammati
al FrameworkGrammati
al Framework (GF; Ranta, 2004) uses the type theory of Martin-Löf(1984) to express the semanti
s of natural languages, supporting higher-orderfun
tions and dependent types.An important sub
lass of GF is obtained when the abstra
t rules are
ontext-free, i.e. only
ontain �rst-order fun
tions, and there are no dependent types.This sub
lass is therefore
alled Context-Free GF or
f-GF for short.2.2.6 Generalized Context-Free GrammarsGeneralized Context-Free Grammars (GCFG) were introdu
ed as a way of de-s
ribing Head Grammars (HG; Pollard, 1984). It is a Turing
omplete (Chom-sky, 1959) formalism. Sin
e the 1980's, GCFG has been used as a framework10

for des
ribing other grammar formalisms. One of these formalisms is ParallelMultiple Context-Free Grammars (PMCFG; Seki et al. 1991) and one of the
on
lusions in Ljunglöf (2004) is that it is possible to use GCFG and PMCFGto des
ribe
ontext-free GF.GCFG separates the syntax into an abstra
t and a
on
rete part.Abstra
t GCFG rulesThe abstra
t syntax of GCFG is
ontext-free and an abstra
t GCFG rule iswritten as
A → f [A1, . . . , Aδ]There are two things that distinguish the abstra
t GCFG rule from an ordinary
ontext-free rule. The �rst di�eren
e is that there
an only be
ategories in theright-hand side of the rule. The se
ond is the fun
tion name f , whi
h showsby whi
h
on
rete rule the abstra
t rule is to be linearized.Con
rete GCFG linearizationsFor every abstra
t fun
tion f with arity δ, there is one
orresponding
on
retelinearization fun
tion f ◦ de�ned on δ arguments
f ◦(x1, . . . , xδ) = αThe
on
rete syntax is made up of fun
tions over linguisti
 obje
ts. The obje
tsare not de�ned in GCFG; it is up to the spe
i�
 grammar formalism to de�neits own obje
ts.Combined GCFG rulesSometimes it
an be easier to write the abstra
t rule together with the
on
retelinearization. The
ombined rule is then written

A → f [A1, . . . , Aδ] := α′where α′ is the result from substituting every xi in α for Ai .2.2.7 Parallel Multiple Context-Free GrammarsParallel Multiple Context-Free Grammars (PMCFG; Seki et al. 1991) are in-stan
es of Generalized Context-Free Grammars. In PMCFG the linguisti
 ob-je
ts are de�ned as tuples of strings and the fun
tions are de�ned using string
on
atenation. As we have seen, tuples
an be repla
ed by equivalent re
ords(2.1.2 on page 4), so we use re
ords of linearization information as linguisti
obje
ts. An abstra
t PMCFG rule looks just like an abstra
t GCFG rule.An example of a PMCFG
an be found in �gure 2.4 on page 13.11

Linearization re
ordsA linearization re
ord is a re
ord of linearization rows. A linearization row isin turn a list of symbols, and a symbol is either a terminal or a proje
tion of a
ategory.The terminals' linearization information depends on their types. Sin
e the ter-minals are strings in PMCFG, the terminals will be linearized by
on
atenation.The
ategories are given their linearization information by re
ord proje
tions.And re
ord proje
tions have a re
ursive stru
ture, in the end giving a
ategorya string linearization.A linearization re
ord only
ontaining terminals is a fully instantiated lineariza-tion re
ord. We denote linearization rows by α or β. A linearization row has thesame purpose as the right-hand side of a CFG rule: It tells us how the left-handside is going to be linearized. A sequen
e of linearization rows is denoted by Φor Ψ. For
onvenien
e we sometimes write the linearization re
ord
{s1 = V.s1 NP2.s; s2 = V.s2 NP2.s}as
s1 = V.s1 NP2.s, s2 = V.s2 NP2.sExample Consider the
on
rete linearization re
ord (from �gure 2.4)
s1 = V.s1 NP2.s, s2 = V.s2 NP2.sit has two rows, one for the label s1 and one for s2. The proje
tion V .s2is an unbound variable, dependent on the value paired with s2 in thelinearization row for V . Be
ause of the re
ursive nature of proje
tions,sooner or later the value will be a terminal and V .s2 instantiated as astring.Con
rete PMCFG linearizationsTo every abstra
t fun
tion f there is a linearization fun
tion f ◦ returning alinearization re
ord

f ◦(x 1 . . . xδ) = {r1 = α1; . . . ; rn = αn}CombinedPMCFG rulesWe
an write the abstra
t rule and the
on
rete linearization as a
ombinedrule. We then substitute every xi in αk for Ai

A→ f [A1, A2]
f◦(x1, x2) = {r = x1.r

′ a
s = x2.s

′ b}







A→ f [A1, A2] := r = A1.r
′ b

s = A2.s
′ b12

Figure 2.4: An erasing PMCFGThe following grammar is taken from Ljunglöf (2004), page 59.
S → ssg [NPsg , VP] := s = NPsg .s VP .ssg

S → spl [NPpl , VP] := s = NPpl .s VP .spl

NPsg → npdsg [Dsg , N] := s = Dsg .s N .ssg

NPpl → npdpl [Dsg , N] := s = Dpl .s N .spl

NP → npp [N] := s = N .spl

VP → vpcsg [V , NPsg] := ssg = V .ssg NPsg .s

spl = V .spl NPsg .s

VP → vpcpl [V , NPpl] := ssg = V .ssg NPpl .s

spl = V .spl NPpl .s

Dsg → da [] := s = a

Dpl → dm [] := s = many

N → nl [] := ssg = lion

spl = lions

N → nf [] := ssg = fish

spl = fish

V → ve [] := ssg = eats

spl = eat

We use subs
ripts to distinguish between the �rst and the se
ond instan
e ofthe equivalent
ategories A and A in the rule's right-hand side. A
tually all
ategories on the right-hand side are subs
ripted, so the rule
S → f [A] := s = A.p A.qis the shorthand notation for the rule

S → f [A1] := s = A1.p A1.qHowever, sin
e there is no way of
onfusing whi
h A is linearized by whi
h label,there is no need to expli
itly write out the subs
ripts.Linear grammarsIf there
an be at most one o

urren
e of ea
h possible proje
tion Ai.r in alinearization re
ord the PMCFG rule is linear. If all rules are linear the grammaris linear. 13

Example In the grammar in �gure 2.4 the rule
V P → vpcpl[V, NPpl] := ssg = V.ssg NPpl .s,

spl = V.spl NPpl .sis linear sin
e no re
ord proje
tion o

urs twi
e in the linearization.Erasing grammarsA rule is erasing if there are argument proje
tions that have no realization inthe linearization. A grammar is erasing if it
ontains an erasing rule. Seki et al.(1991) have shown that it is possible to transform an erasing grammar to anon-erasing grammar. The non-erasing grammar
an then be used for parsinginstead of the erasing grammar.Example The grammar in �gure 2.4 is erasing sin
e the rule
S → ssg [NPsg , VP] := s = NPsg .s VP .ssgonly uses the ssg linearization of the VP :s linearization rows. The otherrow (labeled spl) is erased from the resulting linearization.Linear Multiple Context-Free GrammarsIf a grammar is linear it is
alled a Linear MCFG (LMCFG). If the grammaris non-erasing and linear it is
alled a Linear Context-Free Rewriting System(LCFRS, Vijay-Shanker et al. (1987)). Sin
e there is an equivalent non-erasinggrammar for every erasing grammar it is implied that LMCFG and LCFRS areequivalent grammar formalisms.2.2.8 PMCFG and
f-GF are equivalent!The result a
hieved by Ljunglöf (2004) is to show that
f-GF and PMCFG areequivalent formalisms. Consequently, a
f-GF
an be redu
ed to a PMCFG andthen we
an use the PMCFG for parsing. However, we will not dis
uss how theequivalen
e
an be proven.2.3 RangesWe use ranges in order to pinpoint partial stru
tures for substrings in a senten
e.RangeA range is a pair of indi
es, (i , j) in whi
h 0 ≤ i ≤ j ≤ |w |, in an input string

w . The entire string w = w1 . . . wn spans the range (0, n). The word wi spansthe range (i− 1, i) and the substring wi, . . . , wj spans the range (i− 1, j). A14

range with identi
al indi
es, (i, i), is
alled an empty range and spans the emptystring.We use ρ to denote any range (i, j).Example Given the input string abcd, the range for a is (0, 1) and bc has therange (1, 3).Range re
ordsIf a re
ord
ontains label-range pairs we
all it a range re
ord, Γ = {r1 =
ρ1, . . . , rn = ρn}. All range re
ords are fully instantiated, meaning there are novariables paired with the labels.2.3.1 Some operations on rangesGiven the range ρ = (i, j), the
eiling of ρ returns an empty range for the rightindex

⌈ρ⌉ = (j, j)and the �oor of ρ does the same for the left index
⌊ρ⌋ = (i, i)2.3.2 Range
on
atenationThe result of
on
atenating two ranges (i, j) and (j′, k) is non-deterministi
,de�ned only when j = j ′

(i, j) · (j′, k) = (i, k) i� j = j′2.3.3 Range restri
tionIn order to retrieve the ranges of any substring s in a senten
e w = w1 . . . wnwe need to range restri
t the senten
e with respe
t to the linearization(s) forthat token. Range restri
tion of a string s with respe
t to w is de�ned as:
〈s〉

w
= {(i, j) | s = wi+1 . . . wj}If w is understood from the
ontext we simply write 〈s〉.Example Range restri
ting the terminal a with respe
t to the string abba willgive

〈a〉 = (0, 1) or (3, 4)15

Range restri
tion of a linearization re
ord, Φ, with respe
t to a senten
e iswritten 〈Φ〉. The result from range restri
ting a linearization re
ord is thatevery terminal token s is repla
ed by its range, 〈s〉. The result is of
ourse non-deterministi
 sin
e there
an be several instan
es of a terminal in w, resultingin di�erent repla
ements. The range restri
tion of two terminals next to ea
hother fails if range
on
atenation fails for the resulting ranges. Any unboundvariables in Φ are una�e
ted by range restri
tion.The above holds for range restri
tion of any sequen
e of symbols. The terminalswill be substituted by their ranges and the
ategories left as they are.Example Given the string w = abba and the linearization re
ord
Φ = {r1 = a; r2 = b; r3 = A1.r4}range restri
tion would give

〈Φ〉 = {r1 = (0, 1), r2 = (1, 2), r3 = A1.r
′}or {r1 = (0, 1), r2 = (2, 3), r3 = A1.r
′}or {r1 = (3, 4), r2 = (1, 2), r3 = A1.r
′}or {r1 = (3, 4), r2 = (2, 3), r3 = A1.r
′}Range restri
ting α = a,A, b, B with w will return

〈α〉 = (0, 1), A, (1, 2), Bor (0, 1), A, (2, 3), Bor (3, 4), A, (1, 2), Bor (3, 4), A, (2, 3), BRange restri
ting Φ = {r = a b} with abba gives
〈Φ〉 = {r = (0, 2)}The other possible solutions fail sin
e they
annot be range
on
atenated.2.3.4 Equivalent re
ord typesA fully instantiated, range restri
ted linearization re
ord will only
ontain ranges.It
an therefore be seen as a range re
ord. We say that the range re
ord

Γ = {r1 = ρ1; . . . ; rn = ρn}is equivalent to the fully instantiated, range restri
ted linearization re
ord
Φ = {r1 = ρ1; . . . ; rn = ρn}2.4 ParsingAn introdu
tion to parsing de
orated
ontext-free grammars using dedu
tiveagenda-driven
hart-parsing. 16

2.4.1 Re
ognition vs ParsingRe
ognition
onsists of determining whether the senten
e w is in the languagegenerated by the grammar G or not (i.e. w ∈ L(G)). Parsing on the other hand
onsists of determining the synta
ti
al stru
ture of w given G. The a
quiredsynta
ti
al information
an in turn be used to simulate the generation of w.It is obvious that the two are linked: If there is a way to generate w from G then
w ∈ L(G). And
orrespondingly, if w ∈ L(G) then there is a way to generate
w from G. However re
ognition will return either True or False while parsingwill return some representation of the possible synta
ti
al stru
ture(s) of thestring.2.4.2 Parsing as dedu
tionParsing as dedu
tion was introdu
ed by S
hieber, S
habes and Pereira (1995).General form for inferen
e rulesWhen viewing parsing as a dedu
tive pro
ess new
onsequen
es are derivedby inferen
e rules from already a
quired information. The inferen
e rules arewritten as dedu
tion rules and
an have side
onditions.Given the ante
edent items A1 to Aδ and the side
onditions conds the
onse-quen
e item is C, whi
h is written

A1 , ... , An

C
{condsExample If there is a
ontext-free grammar rule NP → N and we already havean N we
an draw the
on
lusion that there is an NP

N

NP
{NP → NAxiomsA dedu
tion without ante
edents is always true, given that the
onditions hold.Su
h a dedu
tion is
alled an axiom. Axioms are vital for any dedu
tion pro
esssin
e without them there will never be any ante
edents for deriving the �rst
onsequen
es.Example When dedu
tive parsing is started there are no items to derive
on-sequen
es from. One way to get started is to predi
t from the grammar.These predi
tions would then be axioms. The axiom

S → α
{S → αis a predi
tion that says that we will �nd a way to linearize the
ontext-freerule for the start
ategory to mat
h the input string.17

2.4.3 Parse itemsParse item A parse item is a representation of a pie
e of information thatthe parsing algorithm has a
quired. The items
an be implemented in manyways, depending on whi
h strategy is used for parsing.A
tive and passive itemsOne way of representing the
ontext-free rule A → α, β is with the a
tive item
[ρ;A → α • β], where ρ is a range (i, j). This means that we have foundeverything to the left of the dot •, α, between i and j, and are looking foreverything to the right of the dot, β, in order to
omplete the entire range of A.An a
tive item thus represents a partial analysis of the input and a predi
tionof what we might �nd later on.If β is empty, [ρ;A→ α•], we
an
onvert the a
tive item to [ρ;A] and
all it apassive item sin
e there is no longer anything left for it to �nd. A passive itemrepresents a
omplete analysis of the input.2.4.4 De
orated parse itemsDe
orated a
tive itemsA de
orated a
tive item has the form

[ρ; f : A→ [α • β]]in whi
h all
ategories in α are indexed and given with their range. Terminalsare given as they are.De
orated passive itemsA de
orated passive item is de�ned as having the form
[ρ; f : A]Example Given our example grammar in �gure 2.2 and the senten
e many

lions eat fish, we
an have the passive item [(0, 1); d : D]
laiming that
d : D has been found with the range (0, 1). Or we
an have the a
tiveitem [(2, 3); vp : VP → V1(2, 3)•NP2] for having found the verb in a verbphrase, with the predi
tion that there is an np : NP starting at index 3.Passive items for terminal rules (in whi
h the right-hand side is empty)
arryenough information to enable the
onstru
tion of parse trees. Passive items fornon-terminal rules do not sin
e it is not possible to see how they
ame to a
hievethe parse information. For instan
e it
annot be derived from the grammar howthe passive item [(0, 4); s : S]
ame to have the range (0, 4). For that we willhave to use the
orresponding a
tive item. But it is possible to derive how thepassive item [(0, 1); d : D]
ame to have the range (0, 1).18

Goals for re
ognitionWe use goal items to determine if a senten
e belongs to the language of agrammar or not. This is a
hieved by �rst parsing the senten
e and then
he
kingif the goal item is in the
hart. If it is, then re
ognition returns True, otherwiseFalse.Goal items are dependent on the grammar and on how the implementation ofthe parsing algorithm.Example In the de
orated
hart in �gure 2.5 the passive item (40)
[(0, 4); s : S]is a goal item. We
ould also use the
orresponding a
tive item (39)

[(0, 4); s : S → NP1(0, 2), VP2(2, 4)•]2.4.5 ChartIn order to store the results of parsing we use a set of items
alled a
hart. Wedenote the
hart by C. See �gure 2.5 for an example of a de
orated
ontext-freeparse
hart.Another way of looking at the
hart is to des
ribe it as a dire
ted graph,
C = (V , E), in whi
h V is the set of verti
es,
orresponding to the index posi-tions, and E
orresponds to the parse items.The
hart will depend on both the input and the grammar. However, it willalso depend on the parsing algorithm sin
e the derived items will be di�erent fordi�erent strategies. In �gure 2.6 we give a dire
ted graph of the passive itemsin �gure 2.5.The left parse tree in �gure 2.3, the passive items in �gure 2.5 and the dire
tedgraph 2.6 all represent the same synta
ti
 stru
ture. However in the
hart andgraph we also retain the stru
ture with respe
t to the input positions.2.4.6 Inferen
e rules for De
orated CFGThere are three fundamental inferen
e rules for a dedu
tive
hart-parsing al-gorithm (Kay, 1986; Wirén, 1992). The inferen
e rules have been adapted forde
orated
ontext-free parsing. For
onvenien
e we add the inferen
e rule Con-vert, whi
h vonverts fully instantiated a
tive items to passive ones. This makesit easier to de�ne the inferen
e rule Combine 2.2 and to sear
h the
hart format
hing items sin
e there will be fewer passive than a
tive items.The items have the form de�ned in 2.4.3. It is important to remember that newitems are only derived if the range
on
atenation su

eeds. This is also the
asefor range restri
tion. 19

Figure 2.5: Example
hartParsing the senten
e many lions eat fish gives the following de
orated
ontext-free
hart when using Earley �ltering
1 [(0, 0); s : S → •NP1, VP2] Predict

2 [(0, 0);np : NP → •N 1] Predict

3 [(0, 0);np : NP → •D1, N2] Predict

4 [(0, 0);n : N → •lion] Predict

5 [(0, 0);n : N → •lions] Predict

6 [(0, 0);n : N → •fish] Predict

7 [(0, 0); d : D → •a] Predict

8 [(0, 0); d : D → •many] Predict

9 [(0, 1); d : D → many•] Scan 8

10 [(0, 1); d : D] Convert 9
11 [(0, 1);np : NP → D1(0, 1) • N2] Combine 3, 10
12 [(1, 1);n : N → •lion] Predict

13 [(1, 1);n : N → •lions] Predict

14 [(1, 1);n : N → •fish] Predict

15 [(1, 2);n : N → lions•] Scan 13
16 [(1, 2);n : N] Convert 15
17 [(0, 2);np : NP → D1(0, 1), N2(1, 2)•] Combine 11, 16
18 [(0, 2);np : NP] Convert 17
19 [(0, 2); s : S → NP1(0, 2) • VP2] Combine 1, 18
20 [(2, 2); vp : VP → •V1, NP2] Predict

21 [(2, 2); v : V → •eat] Predict

22 [(2, 2); v : V → •eats] Predict

23 [(2, 3); v : V → eat•] Scan 21
24 [(2, 3); v : V] Convert 23
25 [(2, 3); vp : VP → V1(2, 3) •NP

2
] Combine 20, 24

26 [(3, 3);np : NP → •N 1] Predict

27 [(3, 3);np : NP → •D1, N2] Predict

28 [(3, 3);n : N → •lion] Predict

29 [(3, 3);n : N → •lions] Predict

30 [(3, 3);n : N → •fish] Predict

31 [(3, 3); d : D → •a] Predict

32 [(3, 3); d : D → •many] Predict

33 [(3, 4);n : N → fish•] Scan 30
34 [(3, 4);n : N] Convert 33
35 [(3, 4);np : NP → N1(3, 4)•] Combine 26, 34
36 [(3, 4);np : NP] Convert 35
37 [(2, 4); vp : VP → V1(2, 3), NP2(3, 4)•] Combine 25, 36
38 [(2, 4); vp : VP] Convert 37
39 [(0, 4); s : S → NP1(0, 2), VP2(2, 4)•] Combine 19, 38
40 [(0, 4); s : S] Convert 39

20

Figure 2.6: The
hart as dire
ted graphThe edges are the passive items from the
hart in �gure 2.5. On top of the edgewe have the left-hand side and underneath is the synta
ti
al stru
ture of theright-hand side.

1 2 3 40

many lions eat fish

s:S

np:NP

np:NP

d:D n:N v:V n:N

vp:VP

21

Predi
t
[(i i); f : A→ •β]

{

f : A→ β
0 ≤ i ≤ |w|

(2.1)The axioms as given by Predi
t. Predi
tion gives an item for ea
h rule in
R with an empty range for every input position 0 ≤ i ≤ |w|.Combine

[ρ′; f : A→ α •Bi β] [ρ′′; g : B]

[ρ; f : A→ α Biρ′′ • β]
{ρ ∈ ρ′ · ρ′′ (2.2)If there is an item for the rule f : A → αBβ having found α within ρ′and a passive item for the
ategory B spanning the range ρ′′ we
an adda new item to the
hart, where αB has the range ρ.S
an

[ρ′; f : A→ α • sβ]

[ρ; f : A→ αs • β]

{

ρ ∈ ρ′ · 〈s〉 (2.3)If there is an item for the rule f : A → αsβ with the range ρ′, where thenext token is a terminal, we
an add a new item where αs spans ρ′ · 〈s〉.For
onvenien
e, the fully instantiated a
tive items are
onverted to passiveitems.Convert
[ρ; f : A→ β•]

[ρ; f : A]
(2.4)Fully traversed a
tive items are
onverted to passive items.Predi
tion is very blunt. It predi
ts an item for every rule at every input posi-tion. This gives a vast number of useless items, espe
ially if the number of rulesand/or the size of the input is very large.2.4.7 Earley predi
tionThis �ltering te
hnique was introdu
ed by Earley (1970) and is a top-downstrategy. Instead of predi
ting every possible rule at every possible input po-sition Earley limits the predi
tions by only predi
ting a new item when an oldone is looking for it.Predi
t

[ρ′; g : C → γ •Aα]

[ρ; f : A→ •β]

{

f : A→ β
ρ = ⌈ρ′⌉

(2.5)Only predi
t an item for the rule f : A→ β when there already is an a
tiveitem looking for A. The new item's range is the
eiling of the ante
edentitem's range. 22

Initial Predi
tion
[(0, 0) : f : S → •α]

{f : S → α (2.6)Predi
t an item spanning (0, 0) for every rule in R where the left-handside of the rule is a start-
ategory.Combine and S
an are in
luded as inferen
e rules numbers 2.2 and 2.3.2.4.8 Kilbury predi
tionAnother �ltering strategy is the one proposed by Kilbury (1985), using a bottom-up approa
h. An item is only predi
ted for a grammar rule if the rule looks fora
ategory that already has been found.This predi
tion strategy is also
alled left-
orner parsing (as in Carroll, 2003).Predi
t+Combine
[ρ; g : B]

[ρ; f : A→ Bρ • β]
{f : A→ Biβ (2.7)Given a passive item for B and a rule in whi
h B is the �rst element ofthe right-hand side we
an add a new item for the rule, sear
hing for therest of the right-hand side.Predi
t+S
an

[ρ;A→ s • β]

{

f : A→ sβ
ρ ∈ 〈s〉

(2.8)For every rule with a substring as the �rst element in the right-hand side,add an a
tive item for the rule spanning the substring, looking for the restof the right-hand side.Combine and S
an are in
luded as inferen
e rules numbers 2.2 and 2.3.2.4.9 Implementing parsing as dedu
tionThe a
tual implementation will depend on the grammar, the parsing algorithmand of
ourse the goal for parsing.As long as the dedu
tion pro
ess enumerates all derivable items it is of nointerest in whi
h order they are produ
ed. However, for e�
ien
y reasons, wedo not want to enumerate an item more than on
e. Therefore the
hart has tobe implemented as a set, only
a
hing one instan
e of every item.New items are added to the
hart as they are derived by the inferen
e rules.Sin
e ea
h new item
an in itself have new items as it's
onsequen
e all newitems are stored in a seperate data-stru
ture
alled an agenda. When an itemis removed from the agenda, all its
onsequen
es are derived. They are addedto the
hart and agenda, if they are not already in the
hart. This pro
edure23

Figure 2.7: An agenda-driven
hart parsing algorithm for re
ognitionalgorithm : Agenda-driven Chart parsinginput : Initial Items derived from Axiomsoutput : True / Falsedata stru
tures: Chart, a set of ItemsAgenda, a
olle
tion of Itemsinitialize:Chart to set of Initial Items ;Agenda to
olle
tion of Initial Items ;while Agenda not empty :remove a Trigger Item from Agenda ;
ompute all Consequen
e Items of Trigger Item ;for ea
h Consequen
e Item :if Consequn
e Item not in Chart :then: Add Consequen
e Item to Chart and Agenda ;if Goal Item in Chart :then: True ;else: False ;is iterated until there are no more items in the agenda. The resulting
hartwill then
onsist of all the synta
ti
al information that
an be derived from thesenten
e with respe
t to the grammar.An algorithm for agenda-driven
hart parsing
an be found in �gure 2.7.2.5 Polynomial PMCFG parsing strategiesLjunglöf (2004) proposes four main strategies for parsing PMCF grammars. Thestrategies have in turn di�erent �ltering te
hniques or versions. For an extensivedes
ription, see
hapter 4 in Ljunglöf (2004).2.5.1 Naïve algorithmThis is a naïve algorithmwith a passive and an a
tive version. The algorithm fol-lows a straightforward bottom-up pro
edure,
ombining parse items with ranges
overing smaller parts of the string to parse items with larger
overing.2.5.2 Context-free approximation algorithmFor this strategy the PMCFG is
onverted to a De
orated CFG. Parsing with theDCFG
an then be
arried out using any
ontext-free algorithm. The de
orated24

ontext-free approximation might give items that are in
orre
t sin
e the DCFGis overgenerating. Therefore the resulting
hart needs to be �ltered in a re
overystep.The
omplete but unsound de
orated
ontext-free
hart is re
overed in twosteps. First the de
orated
ontext-free
hart is transformed into a PMCFG
hart. Then the items are
ombined into items with dis
ontinuous
onstituentsa

ording to the original PMCFG in a way similiar to the one proposed for theNaïve algrotithm.2.5.3 A
tive parsing algorithmFor the A
tive algorithm, an item is predi
ted for every possible range restri
tionof every linearization re
ord. The linearization rows of the items are traversed bys
anning and
ombining. Whenever a row has been fully instantiated, the nextrow in the linearization re
ord is traversed until there are no more linearizationrows.Just as for
ontext-free parsing, it
an be unne
essary and time
onsuming topredi
t an item for every rule in the grammar, so adaptions of the two �lteringstrategies Earley and Kilbury to PMCF grammars are proposed.2.5.4 In
remental parsing algorithmAn in
remental parsing algorithm reads one token at a time from the inputstring and
omputes all possible
onsequen
es from that token before readingthe next token.The proposed strategy is similar to the A
tive parsing algorithm above with oneimportant di�eren
e: For the A
tive algorithm an item is predi
ted for everypossible range restri
tion of every linearization re
ord. However, sin
e the tokensare read in
rementally (and therefore the order of the tokens is unknown) therehas to be an item for every possible range restri
tion of a linearization row. Thesame pro
edure, and argument, goes for
ompletion.If massive and time
onsuming predi
tion was a problem for the A
tive algorithmit is an even bigger problem for the In
remental algorithm. Therefore a way ofimplementing Earley and Kilbury �ltering is proposed. This should make theparsing pro
ess more time e�
ient.

25

26

Chapter 3Implementation
There has not been enough time to implement all variants of the proposedalgorithms. Both the Naïve and the Context-free approximation algorithms areproposed with an a
tive and a passive version. Only the a
tive versions havebeen implemented. The A
tive algorithm is implemented with both Earley andKilbury predi
tions. The In
remental algorithm is implemented but none of theproposed predi
tion strategies are.ExamplesAll algorithms are explained with an example se
tion, where we parse the sen-ten
e abcd with respe
t to the grammar in �gure 3.1. For the Naïve, Approxi-mative and A
tive algorithms the parse
hart is given in full. However, for theIn
remental algorithm this would take too mu
h spa
e so only an abbreviatedexample run is given.The examples are given in the same notation as the algorithms. For thoseinterested, the algorithms
an be found in
ode in Appendix A.ItemsJust as for the
ontext-free parse items in 2.4.3 on page 18, it is not possible toderive parse trees from passive items for non-terminal rules, only for terminalrules.In se
tion 2.4.6 on page 19 we range restri
ted the terminals as they weres
anned. For the implemented algorithms range restri
tion is
arried out atthe same time as predi
tion. This means that the items in the inferen
e ruleswill have ranges instead of terminals in their linearization re
ords. A
onse-quen
e is that only rules that
an be range restri
ted will be predi
ted as items,possibly making the
hart smaller. 27

Figure 3.1: An interesting LMCFGIn order to have a small but interesting grammar for examples we use the fol-lowing from Ljunglöf (2004), page 82.
S → f [A] := s = A.p A.q

A→ g[A1, A2] := p = A1.p A2.p,

q = A1.q A2.q

A→ ac[] := p = a,

q = c

A→ bd[] := p = b,

q = dThe grammar generates the language
L(S) = {s shm | s ∈ (a ∪ b)∗}where shm is the homomorphi
 mapping s.t. ea
h a in s is translated to c, andea
h b is translated to d. So, the homomorphi
 mapping of abbab equals cddcd .Examples of generated strings are ac, abcd and bbaddc. However, neither abcnor abcdabcd will be generated.The language
an not be des
ribed by a CFG sin
e it
ontains a
ombination ofmultiple and
rossed agreement with dupli
ation. For instan
e the string abbcddhas multiple agreement on a, b, c and d,
rossed agreement on the pairs a − cand b − d respe
tively and a mapped dupli
ation of the �rst part of the string

abb to the se
ond part cdd.NotationsIn some algorithms we
hoose to use the equivalent range re
ord, Γ, for the fullyinstantiated, range-restri
ted linearization re
ord, Φ. This is written Γ ≡ Φ.The equivalen
e is des
ribed in se
tion 2.3.4.A sequen
e B1, . . . ,Bδ
an be denoted by the more
ompa
t ~B . The same goesfor range re
ords; Γ1, . . . ,Γn
an be written as ~Γ.
3.1 Adapting the algorithms to LMCFGThe original algorithms are designed for PMCFG, but sin
e there are no su
hgrammars in use at this time in the GF environment we have adjusted the al-gorithms for LMCFG. This also makes them more time e�
ient. The di�eren
elies in how ranges are implemented. As we have seen (se
tion 2.2.7 on page 13)PMCFG supports parallel linearizations for rules. In order to represent the28

possibly multiple presen
e of the proje
tion Ai.r in the input, the proposedalgorithms use sets of ranges.For a LMCFG it is enough to represent every proje
tion with a single rangesin
e it
annot o

ur more than on
e in any linearization re
ord.3.2 The Naïve algorithmThe �rst algorithm proposed by Ljunglöf is the `Polynomial parsing for
ontext-free GF' and it has two versions, a passive and an a
tive. The passive versionrequires �nding δ items for every rule A→ f [B1, . . . , Bδ] := Φ in order to makea new item. Finding this subset of the
hart is
ompli
ated and takes a lot oftime. Therefore only the a
tive version has been implemented.3.2.1 Item formThere are two kinds of items, a
tive and passive.A
tive itemAn a
tive item for the rule
A→ f [~B] := Ψhas the form

[A→ f [~B′ • ~B′′]; Φ; ~Γ]in whi
h the
ategories to the left of the dot •, ~B′, have been found with thelinearizations in the list of range re
ords ~Γ. Ψ is range restri
ted to Φ.Passive itemA passive item
onsists of a
ategory and its range re
ord
[A; Γ]Use of passive items makes it easier to implement the algorithm and also helpswhen manually
he
king the parse result. They
an be omitted with small
hanges to the inferen
e rules.3.2.2 Goals for re
ognitionGiven the grammar in �gure 3.1 we
an now de�ne a goal item for the Naïvealgorithm for any input string w

[S; {s = (0, |w|)}]29

3.2.3 Inferen
e rulesThe implemented rules are similiar to the ones proposed by Ljunglöf, but notethat all range re
ords are re
ords over simple ranges.Predi
t
[A → f [•~B]; Φ;]

{

A → f [~B] := Ψ
Φ ∈ 〈Ψ〉

(3.1)Predi
tion gives an item for every rule in the grammar and the rangerestri
tion of its linearization is what it has found from the beginning.The sequen
e of range re
ords is empty sin
e none of the daughters in ~Bhave been found yet.Combine
[A → f [~B • Bk

~B ′]; Φ; ~Γ] [Bk ; Γk]

[A → f [~B ,Bk • ~B ′]; Φ′; ~Γ,Γk]
{Φ′ ∈ Φ[Bk/Γk] (3.2)An a
tive item looking for Bk and a passive item that has found Bk
anbe
ombined into a new a
tive item. The new item has found Bk and inits linearization re
ord we substitute Bk for its range. We also add thepassive item's range re
ord to the new item's re
ord of daughters.The a
tive items with fully instantiated linearizations are
onverted to passiveitems.Convert

[A → f [~B•]; Φ; ~Γ]

[A; Γ]
{Γ ≡ Φ (3.3)Every fully instantiated A
tive item is
onverted into a Passive item. Thefully instantiated linearization re
ord is transformed into a range re
ordwith equivalent information.3.2.4 Naïve parse
hartFigure 3.2
ontains the parse
hart for parsing the string abcd with the Naïvealgorithm. Items 1 and 9 are examples of fully instantiated a
tive items, 6 and 10of the
orresponding passive items. Predi
tion ensured that the four �rst itemswere added to the
hart. Items 3 and 5 were
ombined into item 7. The a
tiveitem 12 has been
onverted into item 13, whi
h is the goal item for re
ognition.Item 11 is the
ombination of items 3 and 10, i.e. the predi
ted item for therule A → g[A,A] and its
orresponding passive item. It will never be
omefully instantiated sin
e range
on
atenation always fails when the remainingproje
tions in Φ〈ab,cd〉A

are substituted for the ranges in the passive item's rangere
ord.The linearization re
ord Φ〈a,,c〉b,d is partially instantiated and Φg is the rangerestri
ted linearization re
ord from the grammar rule A → g[A, A] := Φ. Sin
ethere are only unbound variables in Φ they
arry the same information. Therange re
ord Γ〈b,d〉
ontains the same parse information as the fully instantiatedlinearization re
ord Φ〈b,d〉. 30

Figure 3.2: Naïve parse
hartWe get the following parse
hart when parsing the string abcd with the grammarin �gure 3.1 on page 28
1 [A → ac[•]; Φ〈a,c〉;] Predict

2 [A → bd [•]; Φ〈b,d〉;] Predict

3 [A → g[•A, A]; Φg ;] Predict

4 [S → f [•A]; Φf ;] Predict

5 [A; Γ〈a,c〉] Convert 1
6 [A; Γ〈b,d〉] Convert 2
7 [A → g[A •A]; Φ〈a,c〉bd ; Γ〈a,c〉] Combine 3, 5
8 [A → g[A •A]; Φ〈b,d〉ac ; Γ〈b,d〉] Combine 3, 6
9 [A → g[A, A•]; Φ〈ab,cd〉; Γ〈a,,c〉Γ〈b,d〉] Combine 6, 7
10 [A; Γ〈ac.bd〉] Convert 10
11 [A → g[A •A]; Φ〈ab,cd〉A

; Γ〈ac,bd〉] Combine 3, 10
12 [S → f [A•] : Φ〈abcd〉 : Γ〈ac,bd〉] Combine 4, 10
13 [S ; Γ〈abcd〉] Convert 12where the range re
ords are the following

Γ〈a,c〉 = {p = (0, 1); q = (2, 3)}

Γ〈b,d〉 = {p = (1, 2); q = (3, 4)}

Γ〈ac,bd〉 = {p = (0, 2); q = (2, 4)}

Γ〈abcd〉 = {s = (0, 4)}and the range restri
ted linearization re
ords are
Φ〈a,c〉 = {p = (0, 1); q = (2, 3)}

Φ〈b,d〉 = {p = (1, 2); q = (3, 4)}

Φ〈ab,cd〉 = {p = (0, 2); q = (2, 4)}

Φ〈abcd〉 = {s = 0, 4)}

Φ〈a,c〉bd = {p = (0, 1) A1.p; q = (2, 3) A1.q}

Φ〈b,d〉ac = {p = (1, 2) A1.p; q = (3, 4) A1.q}

Φ〈ab,cd〉A
= {p = (0, 2) A1.p; q = (2, 4) A1.q}

Φg = {p = A1.p, A2.p; q = A1.q A2.q}

Φf = {s = A1.p, A1.q}

31

3.3 The Approximative algorithmParsing is performed in two steps in the Approximative algorithm. The �rststep is to parse the senten
e with the LMCFG
onverted to a De
orated CFG.The resulting
hart is then re
overed in step two to a LMCFG
hart.3.3.1 The
ontext-free approximationIn order to obtain the initial axioms for the dedu
tion pro
ess, the LMCFG is
onverted into a DCFG whi
h is used to make an approximative parse. Thegrammar
onversion is done by
reating a de
orated
ontext-free rule for everyrow in the linearization re
ord. This means that any rule
A→ f [~B] := r1 = α1, . . . , rn = αnwill give n new rules

f : A.ri → αiThe parsing
an then be
ompleted as des
ribed in se
tion 2.4.Example The rule
A→ f [~B] := r1 = α1, r2 = α2 , r3 = α3will give the following
ontext-free rules

f : A.r1 → α1

f : A.r2 → α2

f : A.r3 → α3Sin
e the DCFG is over-generating
ompared to the LMCFG the returned parse
hart is unsound. We therefore need to retrieve the passive items from theDCFG parse
hart and
he
k them against the LMCFG to get the dis
ontinuous
onstituents and mark them for validity.The
hart of passive DCFG items is then extended by adding the items frompredi
tion, to give the
omplete set of axioms.The Approximative algorithm never range restri
ts. The ranges for the tokensin the input are given by the de
orated
ontext-free parsing.A
onsequen
e of redu
ing a
ontext-free GF grammar to a LMCFG is that allfun
tion names are unique. This means that every
ombination of an abstra
trule with a
on
rete linearization will be distinguishable by the fun
tion name.3.3.2 Items for the
ontext-free approximationThere are two items involved when we
onvert the
hart from the approximativeparsing into axioms for the re
overy step.32

Figure 3.3: The LMCFG
onverted to a CFGThe rules of the example grammar 3.1 looks like this when
onverted to a De
-orated CFG
f : S .s → A.p A.q
g : A.p → A1 .p A2 .p
g : A.q → A1 .q A2 .q

ac : A.p → a

ac : A.q → b

bd : A.p → c

bd : A.q → dThe subs
ripted numbers are for distinguishing the two
ategories from ea
hother, sin
e they are equivalent. Here A1.q is a
ategory of its own, not a re
ordproje
tion.De
orated itemThe items returned from the approximative parsing have the same form as thatde�ned in 2.4.3 for a
tive items
[ρ; f : A→ [α • β]]PreMCFG itemWe only need the fun
tion name in the item sin
e every
ombination of abstra
trule and
on
rete linearization has a unique fun
tion name

[f ; r = ρ; ~Γ]

~Γ is extra
ted from a de
orated item.3.3.3 Converting the DCFG forestThe items in the DCFG
hart are
onverted to preMCFG items, using thefollowing ruleMake PreMCFG items
[ρ; f : A.r → β]

[f ; r = ρ; ~Γ]
(3.4)

~Γ is a partition of the daughters in β su
h that,
Γi ⇔ {r = ρ | Bi .rρ ∈ β}where Γi, the i:th range re
ord in ~Γ, will
onsist of the label r from the proje
tion

Bi.r in β and the range
orresponding to Bi.r in the �nal linearization.33

Example Given β = A1.r
′ ρA1

, A2.r
′′ ρA2

then Γ1 = {r ′ = ρA1
} and Γ2 = {r ′′ = ρA2

}For the terminal rules with empty right-hand sides, ~Γ will be empty sin
e thereare no proje
tions. For a rule with a non-empty right-hand side Γi will
onsistof the information for the i:th
ategory in the right-hand side. In total, ~Γ willhave a range re
ord for every daughter in the right-hand side.3.3.4 Items for the re
overy stepThe re
overy step uses three items.Pre itemThe items derived from the LMCFG have the following form
[A → f [~B]; Γ • ri , . . . , rn ; ~Γδ]where ri . . . rn is a list of labels, ~Γδ is a list of | ~B| range re
ords, and Γ is arange re
ord for the labels r1, . . . , ri−1Mark item In order to re
over the
hart we use mark items with dotted rulesand dotted re
ords

[A → f [~B • ~B ′]; Γ; ~Γ • ~Γ′]The idea is to move
ategories from the right-hand side of the dot, •, tothe left at the same time as we
he
k if the
orresponding range re
ord
an be marked for
orre
tness.Passive item A passive item
onsists of a
ategory and its range re
ord
[A : Γ]3.3.5 Goals for re
ognitionGiven the grammar in �gure 3.1 and the input string w we get the goal item

[S ; {s = (0 , |w |)}]3.3.6 Inferen
e rules for the re
overy stepPre-Predi
t
[A → f [~B]; •r1, . . . , rn ; ~Γδ]

{

A → f [~B] := Φ (3.5)Every rule in the grammar is predi
ted as a Pre item. The
ontext-freeapproximation gives the ranges for every token in the input, so we neverneed to range restri
t. Instead, we use the labels r1, . . . , rn in Φ to retrievethe ranges given by the preMCFG items. ~Γδ is a list of δ range re
ords inwhi
h all re
ords are empty. 34

Pre-Combine
[A → f [~B]; Γ • r , ri , . . . rn ; ~Γ] [f ; r = ρ; ~Γ′]

[A → f [~B]; Γ, r = ρ • ri , . . . rn ; ~Γ′′]

{

~Γ′′ ∈ ~Γ ⊔ ~Γ′ (3.6)If there is a PreMCFG item for the fun
tion f with a range for the label
r, we
an
ombine that PreMCFG item with a Pre item where f is thefun
tion name and the next label is r. Then we move the dot forward.The new item has the uni�
ation of the ante
edents re
ord stru
tures asits own stru
ture of range re
ords.Mark-Predi
t

[A → [~B]; Γ•; ~Γ]

[A → [•~B]; Γ; •~Γ]
(3.7)When all re
ord labels have been found and given a range, we
an startto
he
k if the items have been derived in a valid way by marking thedaughters' range re
ords for
orre
tness.Mark-Combine

[A → f [~B • Bi, ~B ′]; Γ; ~Γ • Γi, ~Γ
′] [Bi; Γi]

[A → f [~B ,Bi • ~B ′]; Γ; ~Γ,Γi • ~Γ
′
]

(3.8)Re
ord Γi
an be marked for
orre
tness if there is a passive item for
ategory Bi that has found Γi.Convert
[A → f [~B•]; Γ; ~Γ•]

[A; Γ]
(3.9)Fully instantiated a
tive items are
onverted to passive items.3.3.7 Example of Approximative parsingAn example
hart from top-down parsing the string abcd with the DCFG
anbe seen in �gure 3.4. Item 8 is an example of the de
orated grammar beingovergenerating. The
hart will have one
orresponding preMCFG item for everyde
orated
ontext-free item, whi
h is given in the same �gure.Parsing abcd gives a
hart of 32 items if the de
orated
ontext-free parsing is
arried out with top-down �ltering. For bottom-up �ltering the resulting
harthas 38 items. The
hart
an be seen in �gure 3.5, ex
ept for the pre items.These
an instead be found in �gure 3.4 together with the fully instantiateditems from the
ontext-free approximation.The preMCFG item 8 gets as far as be
oming a mark item, but it will never bemark-
ombined sin
e there are no passive items with the range re
ord Γab,c.3.4 The A
tive algorithmThe a
tive algorithm parses without
ontext-free approximation.35

Figure 3.4: De
orated
ontext-free
hart and equivalent preMCFG itemsThe following
hart of fully instantiated items is derived by parsing abcd withthe DCFG in �gure 3.3.
1 [(3, 4); bd : A.q → d]
2 [(2, 4); g : A.q → A1.q (2, 3), A2.q (3, 4)]
3 [(2, 3); ac : A.q → c]
4 [(1, 2); bd : A.p → b]
5 [(0, 2); g : A.p → A1.p (0, 1), A2.p (1, 2)]
6 [(0, 1); ac : A.p → a]
7 [(0, 4); f : S .s → A1.p (0, 2), A1.q (2, 4)]
8 [(0, 3); f : S .s → A1.p (0, 2), A1.q (2, 3)]Converted to preMCFG items the de
orated
ontext-free items look like

1∗ [bd ; {q = (3, 4)};]
2∗ [g; {q = (2, 4)}; {q = (2, 3)}, {q = (3, 4)}]
3∗ [ac; {q = (2, 3)};]
4∗ [bd ; {p = (1, 2)};]
5∗ [g; {p = (0, 2)}; {p = (0, 1)}, {p = (1, 2)}]
6∗ [ac; {p = (0, 1)};]
7∗ [f ; {s = (0, 4)}; {p = (0, 2)}, {q = (2, 4)}]
8∗ [f ; {s = (0, 3)}; {p = (0, 2)}, {q = (2, 3)}]

36

Figure 3.5: A
hart for the Approximative algorithmThe
hart from parsing abcd when the de
orated
ontext-free approximation isapplied top-down. The preMCFG items are numbered i∗ and found in �gure3.4.
1 [A→ bd[]; •{p, q};] Pre− Predict
2 [A→ ac[]; •{p, q};] Pre− Predict
3 [A→ g[A, A]; •{p, q}; {}, {}] Pre− Predict
4 [S → f [A]; •{s}; {}] Pre− Predict
5 [A→ bd[]; Γb • {q};] Pre− Combine 4∗, 1
6 [A→ ac[]; Γa • {q};] Pre− Combine 6∗, 2
7 [A→ g[A, A]; Γab • {q}; Γa,Γb] Pre− Combine 5∗, 3
8 [S → f [A]; Γ〈abcd〉•; Γ〈ab,cd〉] Pre− Combine 8∗, 4
9 [S → f [A]; Γabc•; Γab,c] Pre− Combine 7∗, 4
10 [A→ bd[]; Γ〈b,d〉•;] Pre− Combine 1∗, 5
11 [A→ ac[]; Γ〈a,c〉•;] Pre− Combine 3∗, 6
12 [A→ g[A, A]; Γ〈ab,cd〉•; Γ〈a,c〉,Γ〈b,d〉] Pre− Combine 2∗, 7
13 [A→ bd[•]; Γ〈b,d〉; •] Mark − Predict 10
14 [A→ ac[•]; Γ〈a,c〉; •] Mark − Predict 11
15 [A→ g[•A, A]; Γ〈ab,cd〉; •Γ〈a,c〉,Γ〈b,d〉] Mark − Predict 12
16 [S → f [•A]; Γ〈abcd〉; •Γ〈ab,cd〉] Mark − Predict 8
17 [S → f [•A]; Γabc; •Γab,c] Mark − Predict 9
18 [A; Γ〈b,d〉] Convert 12
19 [A; Γ〈a,c〉] Convert 13
20 [A→ g[A •A]; Γ〈ab,cd〉; Γ〈a,c〉 • Γ〈b,d〉] Mark − Combine 15, 19
21 [A→ g[A, A•]; Γ〈ab,cd〉; Γ〈a,c〉Γ〈b,d〉•] Mark − Combine 20, 18
22 [A; Γ〈ab,cd〉] Convert 21
23 [S → f [A•]; Γ〈abcd〉; Γ〈ab,cd〉•] Mark − Combine 17, 22
24 [S; Γ〈abcd〉] Convert 23where the range re
ords, Γ〈...〉 are the same as in �gure 3.2. The other rangere
ords are as follows

Γa = {p = (0, 1)}

Γb = {p = (1, 2)}

Γab = {p = (0, 2)}

Γabc = {s = (0, 3)}

Γab,c = {p = (0, 2), q = (2, 3)}

37

3.4.1 The range for ǫFor this algorithm we use a spe
ial kind of range, ρǫ, whi
h denotes simulta-neously all empty ranges (i , i). There is an important di�eren
e between therange (i , i) and the variable ρǫ sin
e (i , i) is a range with identi
al indi
es, but
ρǫ is a
onstant for all empty ranges.Operations on the epsilon-rangeThe range restri
tion of ǫ gives 〈ǫ〉 = ρǫ. Range
on
atenation of any range ρwith the ǫ-range gives

ρ · ρǫ = ρǫ · ρ = ρFor the ǫ-range, ρǫ, both the
eiling and the �oor will return ρǫ.3.4.2 Item formA
tive itemA
tive items for the rule
A→ f [~B] := Φ, r = αβ,Φ′have the form

[A→ f [~B]; Γ, r = ρ • β′,Ψ; ~Γ]where Γ is the equivalent range re
ord for the linearization rows in Φ and α hasbeen re
ognized as the range ρ. We are still looking for the rest of the row, β′,and the remaining linearization rows Ψ. Both β and Φ′ are range restri
ted to
β′ and Ψ respe
tively. ~Γ is the list of range re
ords
ontaining the informationabout the daughters in [~B].Passive itemPassive items say that we have found A inside Γ

[A; Γ]3.4.3 Goals for re
ognitionGiven the grammar in �gure 3.1 and the input string w we use the followinggoal item
[S; {s = (0, |w|)}]38

3.4.4 Inferen
e rulesPredi
t
[A→ f [~B]; r = ρǫ • α′, β′; ~Γδ]

{

A→ f [~B] := r = α,Φ
α′,Φ′ ∈ 〈α,Φ〉

(3.10)For every rule in the grammar, predi
t a
orresponding item that hasfound the empty range. ~Γδ is a list of | ~B| range re
ords. All range re
ordsare empty sin
e nothing has been found yet.Complete
[A→ f [~B]; Γ, r = ρ•, r′ = α,Φ; ~Γ]

[A→ f [~B]; Γ, r = ρ, r′ = ρǫ • α,Φ; ~Γ]
(3.11)When an item has found an entire linearization row we
ontinue with thenext row by starting it o� with the empty range.S
an

[A→ f [~B]; Γ, r = ρ′ • ρ′′α,Φ; ~Γ]

[A→ f [~B]; Γ, r = ρ • α,Φ; ~Γ]
{ρ ∈ ρ′ · ρ′′ (3.12)S
anning is applied when the next symbol to read is a range. This rangemight be
on
atenated with the range for what the row has found so far. Ifrange
on
atenation su

eeds, there will be a new item with the resulting
on
atenation as range.Combine

[A→ f [~B]; Γ, r = ρ′ •Bi.r
′α, β; ~Γ] [Bi; Γ

′]

[A→ f [~B]; Γ, r = ρ • α, β; ~Γ[i := Γ′]]

{

ρ ∈ ρ′ · Γ′.r′

Γi ⊆ Γ′ (3.13)If the next thing to �nd is a proje
tion on Bi, and there is a passive itemwhere Bi is the
ategory,
ombination
an be applied. The dot will thenbe moved past the proje
tion. If Γ′ is
onsistent with the information thea
tive item has for its i:th daughter, re
ord substitution
an be used. Therange for r is the
on
atenation of ρ and the range
orresponding to theproje
tion Γ′.r′.Convert
[A→ f [~B]; Γ, r = ρ•; ~Γ]

[A; Γ, r = ρ]
(3.14)An a
tive item that has fully re
ognized all its linearization rows is
on-verted to a passive item.3.4.5 Earley �ltration for the A
tive algorithmEarley �ltration is an adaption from 2.4.7. There are three rules for Earleypredi
tion. The Earley predi
tions give passive items for the terminal ruleswith fully range restri
ted linearizations. The rest of the rules are predi
ted as39

a
tive items. All rules with the start
ategory as left-hand side are assumed tobe non-terminal rules, so initial predi
tion will only give a
tive items.Predi
t Passive
[. . . ; . . . , r = ρ′ •A.r . . . ; . . .]

[A; Γ]

{

A→ f [] := Ψ
Γ ≡ 〈Ψ〉

(3.15)We only predi
t from the grammar if there is already an item looking for theleft-hand side of the rule. The Passive item has the range re
ord
orrespondingto the fully instantiated linearization re
ord of the rule.Predi
t A
tive
[. . . ; . . . , r = ρ′ •A.r′ . . . ; . . .]

[A→ f [~B]; r = ρ • α′,Γ; ~Γδ]







A→ f [~B] := r′′ = α,Φ
α′,Γ ∈ 〈α,Φ〉
ρ = ⌈ρ′⌉

(3.16)This version of predi
tion is applied if the right-hand side is non-empty.The new range is the
eiling of ρ.Initial predi
tion
[S → f [~B]; s = (0, 0) • Γ; ~Γδ]

{

S → f [~B] := s = α
Γ ∈ 〈α〉

(3.17)Sin
e there are no items at �rst, the parsing is initiated by predi
ting anitem for every rule with a start
ategory as left-hand side. ~Γδ is a list ofrange re
ords in whi
h all re
ords are empty.Complete, S
an, Combine and Convert are in
luded as inferen
e rules 3.11-3.14.3.4.6 Kilbury �ltration for the A
tive algorithmKilbury predi
tion is an adaption from 2.4.8. The Kilbury predi
tions are lim-ited to grammars in whi
h terminals only o

ur in rules with empty right-handsides. However, Seki et al. (1991) have shown that any PMCFG that does notful�ll this requirement
an be
onverted to an equivalent grammar that does.An alternative would be to slightly alter the inferen
e rules.There are two new rules, while Complete, Combine and Convert are in
ludedas the rules 3.11, 3.13 and 3.14. S
an is repla
ed by Terminal.Predi
t
[Bi; Γi]

[A→ f [~B]; r = ρ • α′,Γ; ~Γδ[I := Γi]]







A→ f [~B] := r = Bi.r
′α,Φ

α′,Γ ∈ 〈α,Φ〉
ρ = Γi.r

′ (3.18)We only predi
t a new item for a rule, if there is a Passive item for the �rst
ategory in the �rst linearization row. We move the dot past the
ategoryand add the Passive item's re
ord to the new item's stru
ture of re
ords.The new item re
ieves its range from the proje
tion Γi.r
′.40

Terminal
[A; Γ]

{

A→ f [] := φ
Γ ∈ 〈φ〉

(3.19)Every terminal rule is predi
ted as a passive item.3.4.7 Example for the A
tive algorithmThe A
tive algorithm
an be used with Earley or Kilbury �ltering, or without�ltering. Parsing the string abcd gives the following table for
hart sizeFilter SizeNone 25Earley 20Kilbury 15The
hart after parsing without predi
tion �lters
an be seen in �gure 3.6.Comments on the
hartItems 11 and 12 are examples of passive items; they are
onverted from the a
tiveitems 9 and 10 respe
tively. Item 5 has fully traversed its �rst linearization rowand has been
ompleted to give item 7. S
anning item 8 gives an example of
on
atenation with ρǫ. The result
an be seen in item 10. Item 24 is the resultof
ombining the passive item 21 with the a
tive item 23. Predi
tion gave the�rst four items.Both predi
tion strategies result in fewer items sin
e the terminal rules arepredi
ted as passive items.EarleyThe use of Earley predi
tion gives a
hart without items 1, 2, 4, 5, 6, 7, 8, 9,10 and 15. Instead we get 4 items for the non-terminal rule A→ g . . . where ρǫis substituted for the empty ranges (0, 0) . . . (3, 3). The predi
ted item for thestart rule will be predi
ted with the range (0, 0) instead of ρǫ.KilburyIf we instead use Kilbury predi
tion the same items are �ltered out with twoex
eptions; item 15 will be in
luded and item 3 will not be predi
ted. Insteadthe passive item 12 will trigger the predi
tion of item 14 (the
ombination of 3and 12).3.5 The In
remental algorithmAn in
remental algorithm reads one token at a time. However our implementa-tion does not, due to how we de�ned range restri
tion.41

Figure 3.6: A
tive parse
hartThis is the
hart for parsing abcd with the A
tive algorithm without �ltering.The range re
ords Γ... are the same as in �gure 3.2. We also use
Φgq

= {q = A1.q A2.q}and
Γab = {p = (0, 2)}In order to �t the table on the page, the following notations are used for theinferen
e rules P = Predi
t, S = S
an, Cv = Convert, Cp = Complete and

C = Combine.
1 [A → bd []; p = ρǫ • (1, 2) q = (3, 4);] P

2 [A → ac[]; p = ρǫ • (0, 1) q = (2, 3);] P

3 [A → g[A, A]; p = ρǫ • A1.p, A2.p Φgq
; {}, {}] P

4 [S → f [A]; s = ρǫ • A1.p, A2 .q; {}] P

5 [A → bd []; p = (1, 2(3, 4);] S 1
6 [A → ac[]; p = (0, 1) • q = (2, 3);] S 2
7 [A → bd []; {p = (1, 2)}, q = ρǫ • (3, 4);] Cp 5
8 [A → ac[]; {p = (0, 1)}, q = ρǫ • (2, 3);] Cp 6
9 [A → bd []; {p = (1, 2)}, q = (3, 4)•;] S 7
10 [A → ac[]; {p = (0, 1)}, q = (2, 3)•;] S 8
11 [A; Γ〈b,d〉] Cv 9
12 [A; Γ〈a,c〉] Cv 10
13 [A → g[A, A]; p = (1, 2) • A2.p Φgq

; Γ〈b,d〉, {}] C 3, 11
14 [A → g[A, A]; p = (0, 1) • A2.p Φgq

; Γ〈a,c〉, {}] C 3, 12
15 [S → f [A]; s = (1, 2) • A1.q; Γ〈b,d〉] C 4, 11
16 [S → f [A]; s = (0, 1) • A1.q; Γ〈a,c〉] C 4, 12
17 [A → g[A, A]; p = (0, 2) • Φgq

; Γ〈a,c〉,Γ〈b,d〉] C 11, 14
18 [A → g[A, A]; Γab , q = ρǫ • A1.q A2.q; Γ〈a,c〉,Γ〈b,d〉] Cp 17
19 [A → g[A, A]; Γab , q = (2, 3) • A2.q; Γ〈a,c〉,Γ〈b,d〉] C 12, 18
20 [A → g[A, A]; Γab , q = (2, 4)•; Γ〈a,c〉,Γ〈b,d〉] C 11, 19
21 [A; Γ〈ab,cd〉] Cv 20
22 [A → g[A, A]; p = (0, 2) • A2.p Φgq

; Γ〈ab,cd〉, {}] C 3, 21
23 [S → f [A]; s = (0, 2) • A1.q; Γ〈ab,cd〉] C 4, 21
24 [S → f [A]; s = (0, 4)•; Γ〈ab,cd〉] C 23, 21
25 [S ; Γ〈abcd〉] Cv 24

42

3.5.1 In
rementality and range restri
tionRange restri
tion, as we have de�ned it,
annot handle partial results. Eitherthe symbol is a terminal and
an be substituted by its range or it is an unboundvariable and is left as it is. When parsing in
rementally this de�nition is notsu�
ient. For instan
e, the range restri
tion 〈p = a, q = c〉
a will fail sin
e thereis no range for c in the string a. We would need a new de�nition of rangerestri
tion, allowing partial results.To get round the problem of not having partial range restri
tion we range restri
tthe entire input from the start. This means that the algorithm will no longerbe truly in
remental. This
ompromise has advanteges. The e�
ien
y of anin
remental algorithm depends to some degree on how fast the user provides theinput. In order to test how the inferen
e rules
ompare to the other algorithmsit
an be easier if it is in a stati
 environment, and not given input a token ata time.3.5.2 Item formA
tive itemsThe only item form is a
tive

[A→ f [~B]; Γ, r = ρ • β, ψ; ~Γ]The items have the same form as the a
tive items used in the A
tive algorithm.However we use the notation [A; Γ, r = ρ], where r = ρ is the latest re
ognizedrow, for the item [A → . . . ; Γ, r = ρ • φ; . . .] and
all the item passive. Notethat there are no passive items implemented and that any item with a fullyinstantiated row is
alled passive, even if there are more rows to instantiate.3.5.3 Goals for re
ognitionFor the example grammar 3.1 on page 28 we get the following goal item
[S → f [A]; s = (0, |w|); {p = (0,

|w|

2
); q = (

|w|

2
, |w|)}]We use an a
tive item as goal item sin
e there are no passive items.3.5.4 Inferen
e rulesNotationsIf we only want to be sure that two items have the same abstra
t rule, we denotethe rule by R. 43

Predi
t
[A→ f [~B]; r = (i, i) • α′,Φ′,Ψ′; ~Γδ]







A→ f [~B] := Φ, r = α,Ψ
α′,Φ′,Ψ′ ∈ 〈α,Φ,Ψ〉
0 ≤ i ≤ |w| (3.20)An item is predi
ted for every linearization row and every input position.

~Γδ is a list of range re
ords of length δ in whi
h all re
ords are empty.Complete
[R; Γ, r = ρ • Φ, r′ = α,Ψ; ~Γ]

[R; Γ, r = ρ, r′ = (k, k) • α,Φ,Ψ; ~Γ]

{

ρ = (i, j)
j ≤ k ≤ |w|

(3.21)Whenever a linearization row is fully traversed
ompletion is applied. Thismeans that an item is predi
ted for every remaining linearization row andevery remaining input position between the range of the traversed row andthe end of the input.S
an
[R; Γ, r = ρ′ • ρ′′, α,Φ; ~Γ]

[R; Γ, r = ρ • α,Φ; ~Γ]
{ρ ∈ ρ′ · ρ′′ (3.22)If the next item in the linearization row is a range, it is
on
atenated tothe range for the partially re
ognized row.In the A
tive algorithm the inferen
e rule Convert 3.14 added the last label-range pair to the range re
ord for the passive item. In the absen
e of passiveitems we just have to remember that there is su
h a pair when
ombining.Combine

[R; Γ, r = ρ′ •Bi.r
′ α,Φ; ~Γ] [Bi; Γ

′, r′ = ρ′′]

[R; Γ, r = ρ • α,Φ; ~Γ[i := (Γ′, r′ = ρ′′)]]

{

ρ ∈ ρ′ · ρ′′

Γi ⊆ (Γ′, r′ = ρ′′)
(3.23)Combining is applied if the next item is a re
ord proje
tion and there is apassive item for the
orresponding
ategory. The information in the i:thrange re
ord of ~Γ must be
onsistent with the information found for thepassive item. This
an be
he
ked by a subset
he
k sin
e the range re
ordof the passive item must be fully instantiated.3.5.5 Example runParsing the senten
e abcd with the In
remental algorithm results in a
hartwith 78 items. Therefore the example run will only brie�y explain the inferen
erules. The large number of items is a
onsequen
e of using (i, i)-ranges insteadof ρǫ(se
tion 3.4.1), and of predi
ting items for every linearization row.44

Predi
tionPredi
tion is
rude. The grammar rule
A→ g[AA] := p = A1.p A2.p, q = A1.q A2.qwill be predi
ted as ten di�erent items, one item for every row and for everyinput position 0 ≤ i ≤ 4. Examples of su
h items are

[A→ g[AA]; p = (2, 2) •A1.p A2.p {q = A1.q A2.q}; {}, {}]and
[A→ g[AA]; q = (2, 2) •A1.q A2.q {p = A1.p A2.p}; {}, {}]This holds for every rule, all in all predi
ting 35 items. The terminal rules willhave ranges instead of proje
tions in the linearization re
ord.CompleteThe above holds also for
ompletion. When a linearization row is fully instanti-ated to a range, an item is predi
ted for every remaining row and input position.For example if the last row was instantiated to the range (1, 3), then in our
asethis would give two possible ranges, (3, 3) and (4, 4), for every row. The
hart
ontains 16 items as a
onsequen
e of
ompletion.S
anS
anning is
arried out in exa
tly the same way as in the A
tive algorithm.CombineCombining is also performed in the same way as in the A
tive algorithm, butwith an important di�eren
e. In the in
remental algorithm the range of the rowto be traversde is always known. Therefore it is always possible to give a partialindex for the items to
ombine. Thus the a
tive item

[. . . ; . . . r = (i, 3) • {Bi.r
′ . . . ; . . .]
an only be
ombined with a passive item

[B → . . . ; . . . r′ = (3, j) • φ; . . .]In the A
tive algorithm it was not always the
ase that the range was known.Therefore we
ould not be as expli
it in looking for items to
ombine. Thismakes the In
remental inferen
e rule for
ombining more e�
ient sin
e we
anlimit our sear
h spa
e. However, this will not show in runtimes and
hart sizeuntil predi
ting is more e
onomi
. Until then there will be far more items to
ombine with at every input position. 45

3.5.6 Proposed predi
tion strategiesThere was not enough time to implement the proposed Earley or Kilbury �lter.EarleyThe Earley predi
tion
onsists of three rules for predi
ting,
ompletion and ini-tial predi
tion. Initial predi
tion is the same as the rule number 3.17, returningitems for every rule where the left-hand side is a start
ategory. Predi
tion and
ompletion predi
t new items for grammar rules when the left-hand side of therule is sear
hed for by an existing item.KilburyNew items are only predi
ted for linearization rows in whi
h the �rst symbolhas already been found. At the same time the dot
an be moved forward. Thereare two rules for predi
ting to be
ombined with both S
an and Combine, givingfour new inferen
e rules for Kilbury �ltering.

46

Chapter 4
Small-s
ale evaluation
The algorithms have not been tested for realisti
 grammars and large
orpi aspart of this thesis. This is due to that there was not enough time to
reate bigenough grammars and
orpuses to test against. Some preliminary tests havebeen
ondu
ted and it is possible to show how the algorithms
ompare for thegrammar in �gure 3.1.It is not possible to draw any
on
lusions from the tables on the general perfor-man
e of the algorithms. They are for showing how they perform
ompared toea
h other for a very small grammar.4.1 Preliminary testingThe parser used today in the GF-library
onverts the given grammar to a CFGin order to make an approximate parse. As we have seen the CFG will atmost
ertainly be overgenerating. Therefore a re
overy step is used just as inthe Approximative algorithm (3.3 on page 32). However, instead of using thestrategy we used, the GF-parser re
overs the parse-result tree-by-tree.In preliminary tests the implemented algorithms are more e�
ient than theoriginal GF-parser. A grammar for English was used in the tests. It
onsists ofroughly 500 GF rules. Converted to LMCFG rules this gives a grammar withapproximately 22.000 rules or 20.000 rules if
onverted to a CFG.Example Parsing the randomely generated senten
e you had begged to die heregives roughly 60.000
ontext-free trees. After re
overy only 6 remain. It isthe re
overing of the
ontext-free
hart that makes the GF parser slowerthan our implemented algorithms.47

4.2 Parse table4.2.1 E�
ien
y for
orre
t senten
esIn �gure 4.1 we give the result from parsing senten
es of lengths 6, 12 and 24terminal tokens. Parsing is
arried out with respe
t to the grammar in �gure3.1. This is by no means an extensive evaluation of the algorithms, but doesillustrate how they perform for a small grammar. Their performan
e
ould verywell turn out to be quite di�erent when using a larger or more
ontext-freegrammar. The used grammar generates senten
es with multiple and
rossedagreement
ombined with dupli
ation, all features outside the expressivity of aCFG. Figure 4.1: Evaluation of valid senten
esChart sizes and running times for parsing strings of various lengths. The stringsare valid, su
h as abbacddc. All strings are parsed with respe
t to the LMCFGon page 28. Times are in millise
onds and
hart size is given in number of items.Length6 12 24Naïve Chart 31 137 834Time <1 10 110Approx Chart 116 2980 170216bottom-up Time 20 70 9910Approx Chart 96 2888 169818top-down Time <1 100 9670A
tive Chart 78 663 8207no �lter Time <1 40 2650A
tive Chart 59 574 7778Earley Time 10 120 7630A
tive Chart 56 589 7917Kilbury Time <1 40 2560In
remental Chart 254 2375 34813Time 10 150 7760
4.2.2 CommentsThe Naïve algorithmThe Naïve algorithm is by far the most e�
ient algorithm. It would be inter-esting to see how it performs for mu
h larger grammars.48

The Approximative algorithmIt seems to make no di�eren
e if we implement the de
orated
ontext-free ap-proximation with bottom-up or top-down predi
tion. Even if the resulting
hartsare very big
ompared to the other algorithms, the run-times do not grow tothe same extent. One reason for the large
hart size is that we use four di�erentkinds of items. A lot of information is dupli
ated as it is passed from one kindof item to another. Many of the items are also derived from
ontext-free parsingwhi
h is qui
ker than parsing mildly
ontext-sensitive grammars.The A
tive algorithmUsing Earley predi
tion for the A
tive algorithm gives fewer items but makesparsing a lot slower. Kilbury gives the same redu
tion on
hart size and a slightlyqui
ker parsing
ompared to using no �ltering. Remember, it is not possible tosay anything about the performan
e of the di�erent predi
tion strategies untilthey have been tested on mu
h larger grammars.Both predi
tion strategies result in fewer items as a
onsequen
e of predi
tingpassive items for terminal rules. This
an turn out to be even more e�
ientfor grammars with a big per
entage of terminal rules. A possible explanationfor the poor behaviour of Earley
an be that the gain of top-down predi
tion islost on su
h a small grammar and the use of empty ranges, (i, i), instead of the
ǫ-range, ρǫ.The In
remental algorithmThe performan
e of the in
remental algorithm improves as the size of the inputgrows,
ompared to the Approximative algorithm. Otherwise it is slow andmemory demanding.4.2.3 E�
ien
y for in
orre
t senten
esChart sizes and runtimes are not only interesting when the senten
e is valid. Itis just as interesting to have qui
k, memory e�
ient parsing algorithms if thesenten
e is invalid. In the table in �gure 4.2 all the implemented algorithms arefaster and derive less items when re
ognizing invalid senten
es.Espe
ially the Approximative algorithm is mu
h faster for reje
ting senten
esin whi
h a c or d has been substituted for a or b respe
tively, in an otherwisevalid senten
e.

49

Figure 4.2: Evaluation of invalid senten
esThe strings have the form abbacdbc, i.e. somewhere in the se
ond half of thesenten
e a c or d is substituted for a or d. Parsing is
arried out with respe
tto the grammar in �gure 3.1 on page 28. Times are in milli-se
onds and
hartsizes in number of items. Length6 12 24Naïve Chart 16 79 449Time <1 10 40Approx Chart 48 614 34063bottom-up Time <1 30 1390Approx Chart 28 449 21744top-down Time <1 20 810A
tive Chart 32 316 4215no �lter Time <1 20 870A
tive Chart 11 238 3837Earley Time <1 80 3120A
tive Chart 14 246 3929Kilbury Time <1 20 890In
remental Chart 128 1538 21689Time 10 120 2490

50

Chapter 5Summary
5.1 Future workFurther implementationsThe implementations do not
over all proposed algorithms. There are passiveversions of the Naïve and Approximative algorithms still left to do. It would beinteresting to implement them for the sake of
omparison.Neither of the predi
tion �lters have been implemented for the In
rementalalgorithm. The proposed Earley predi
tion should be easy to implement, itis very similiar to the version of Earley used for the A
tive algorithm. Theimplementation of Kilbury is probably more demanding.Re-implementing the In
remental algorithm in a dynami
 environment is also anintersting future development. This will mean that an extended range restri
tionhas to be implemented, able to
ope will partial results.EvaluationFurther tests are ne
essary. For now, all we know is that the Naïve algorithm issuitable for very small grammars. Whi
h algorithm to use for larger grammars
annot be de
ided before the algorithms have been tested on large grammars.Readapting to PMCFGThe algorithms are implemeted for LMCFG. If we want to use the te
hnique ofredu
ing a
ontext-free GF to a PMCFG in order to get faster parsing algorithmsit is ne
essary to readapt the strategies to PMCFG. It might very well be thatthe algorithms will parse PMCFG faster than the GF parser parses
f-GF.ComplexityIt would be a Master thesis in its own right todetermine the
omplexity of thealgorithms. Until proven we will just have to hope the
omplexity is polynomial.51

Corre
tnessThere has not been time to give formal proofs of the algorithms being
or-re
t. The proposed PMCFG algorithms are proved both
omplete and soundby Ljunglöf (2004). A
omparison of his dis
ussion with the implemented algo-rithms indi
ates that the di�eren
es are too large for just
opying his proofs toour work.For now, all we
an say is that they seem to be
orre
t.5.2 Con
lusionWe have implemented four algorithms for parsing Linear Multiple Context-FreeGrammars. A thorough testing of the algorithms with grammars of varying sizesis ne
essary before any
on
lusions
an be drawn on their overall performan
e.However preliminary testing indi
ates that the implemented algorithms parsean LMCF grammar faster than the existing parser for GF parses an equivalent
ontext-free GF grammar. It seems promising. . .

52

BibliographyCarroll, J. (2003). Parsing. In Mitkov, R., editor, The Oxford Handbook of Com-putational Linguisti
s,
hapter 12, pages 233�248. Oxford University Press.Chomsky, N. (1959). On
ertain formal properties of grammars. Informationand Control, 2:137�167.GF (2004). The Grammati
al Framework homepage. Lo
ated athttp://www.
s.
halmers.se/~aarne/GF/Hudak, P., Peterson, J., and Fasel, J. (1999). A gentle introdu
tion to Haskell98. Te
hni
al report, Yale University. Available from the Haskell web site:http://www.haskell.org/tutorialJoshi, A. (1985). How mu
h
ontext-sensitivity is ne
essary for
hara
terizingstru
tural des
riptions � tree adjoining grammars. In Dowty, D., Karttunen,L., and Zwi
ky, A., editors, Natural Language Pro
essing: Psy
holinguisti
,Computational and Theoreti
al Perspe
tives, pages 206�250. Cambridge Uni-versity Press, New York.Joshi, A. K., Levy, L. S., and Takahashi, M. (1975). Tree adjun
t grammars.Journal of Computer and System S
ien
es, 10(1):136�163.Kay, M. (1986). Algorithm s
hemata and data stru
tures in synta
ti
 pro
ess-ing. In Grosz, B., Jones, K., and Webber, B., editors, Readings in NaturalLanguage Pro
essing, pages 35�70. Morgan Kaufman Publishers, Los Altos,CA.Ljunglöf, P. (2004). Expressivity and Complexity of the Grammati
al Frame-work. PhD thesis, Göteborg University and Chalmers University of Te
hnol-ogy.Martin-Löf, P. (1984). Intuitionisti
 Type Theory. Bibliopolis, Napoli.Okasaki, C. (1998). Purely Fun
tional Data Stru
tures. Cambridge UniversityPress.Peyton Jones, S. (2003). Haskell 98 Language and Libraries. Cambridge Uni-versity Press, New York.Pollard, C. (1984). Generalised Phrase Stru
ture Grammars, Head Grammarsand Natural Language. PhD thesis, Stanford University.53

Ranta, A. (2004). Grammati
al Framework, a type-theoreti
al grammar for-malism. Journal of Fun
tional Programming, 14(2):145�189.Seki, H., Matsumara, T., Fujii, M., and Kasami, T. (1991). On multiple
ontext-free grammars. Theoreti
al Computer S
ien
e, 88:191�229.Shieber, S. (1985). Eviden
e against the
ontext-freeness of natural language.Computational Linguisti
s, 20(2):173�192.Shieber, S., S
habes, Y., and Pereira, F. (1995). Prin
iples and implementationof dedu
tive parsing. Journal of Logi
 Programming, 24(1�2):3�36.TALK (2004). The Talk proje
t homepage. Lo
ated athttp://www.talk-proje
t.org/Thompson, S. (1999). The Craft of Fun
tional Programming, 2nd ed. Addison-Wesley.Vijay-Shanker, K., Weir, D., and Joshi, A. (1987). Chara
terizing stru
turaldes
riptions produ
ed by various grammati
al formalisms. In 25th Meetingof the Asso
iation for Computational Linguisti
s.Wirén, M. (1992). Studies in In
remental Natural-Language Analysis. PhDthesis, Linköping University, Linköping, Sweden.

54

Appendix AThe
odeTo fully understand the
ode the reader will probably need to know at leastsome Haskell. There is a di�eren
e between the
ode developed for this thesisand the a
tual
ode implemented into GF. The main reason being that it is alot easier to develop outside of GF and that GF has some features that extendHaskell.The fun
tion re
ognize is grammar dependent for all algorithms as a
onse-quen
e of the goal items being grammar dependent. This is apparent in thetype de
laration for re
ognize and the same holds for the fun
tion parse inalgorithm 3.3, sin
e the information passed to the CF parser is grammar depen-dent. Haskell supports dependent types.All
harts are implemented as RedBla
kMap:s, a RedBla
kTree stru
ture withkey-value pairs as leaves (see Okasaki, 1998 for more information on fun
tionaldata stru
tures).The type of a grammar is Grammar n
 l t where n is the type of the fun
tionnames,
 is the type for the
ategories, l is the type for lables and t is the typefor tokens. Hen
e all obje
ts used in grammars or for parsing are dependent onone or more of these four types. Referring to the table in �gure A.1 the typeLin
 l t is the type for a linearization row. Its �nal type is dependent on thetype of the
ategories, lables and tokens used in the grammar.In the implementaion of the Example grammar in �gure 3.1, the type is Stringfor the fun
tion names, the lables and the tokens while the
ategories are of theuser-de�ned type NT.When a linearization re
ord is range restri
ted, the type is rede�ned from LinRe

 l t to LinRe

 l Range and the
orresponding instantiation of types o

ursfor the tokens; Tok t be
omes Tok Range .The Nondet type is used when a fun
tion
an return several solutions for thegiven arguments. The fun
tions for range restri
tion
an give a number ofdi�erent ranges, all depending on the arguments (see 2.3.3). The reurn valuefor 〈s〉 is therefore Nondet Range.For every algorithm an example of the items in
ode are given. Some items are55

Figure A.1: Types and
odeThe four �rst are the basi
 types of the grammar. All other types depend onthe basi
 types, ex
ept Nondet.Code: Used for:
 Variable type for elements in Cl Variable type for labelsn Variable typ for fun
tion namest Variable type for elements in ΣTok t A token of type tTok Range A token of type RangeRange The
onstru
tor for Range (Int, Int)Grammar n
 l t = [Rule n
 l t ℄Rule n
 l t = Rule
 [
 ℄ (LinRe

 l t) nLin
 l t A linearization row,Lin l [Symbol (
, l Int) t ℄LinRe

 l t A linearization re
ord, [Lin
 l t ℄Symbol (
, l, Int) t = Cat (
, l, Int) | Tok tRangeRe
 l A range re
ord, [(l, Range)℄NT The type for
ategories in 3.1Cat (A, �p�, 0) The
ategory A0.p, where A is of the type NTAbstra
tRule n
 = (n,
, [
 ℄)DottedRule n
 = (n,
, [
 ℄, [
 ℄)Nondet Used when a fun
tion is non-deterministi

56

so long that they are written on several lines, following the layout of how theitems are de�ned in the algorithm.A.1 ExampleGrammarThis is the example grammar in �gure 3.1, written in Haskell. The proje
tions
A1.p, A2.qare implemented as[Cat (A, "p", 0), Cat (A, "q", 1)℄using the type NT for the
ategories and String for the labels.All
ategories are indexed expli
itly in the
ode while it was an impli
it featurein the text. The indi
es are redu
ed by one to mat
h Haskell's list indexing.{-- Module --Filename : ExampleGrammar.hsAuthor : Håkan BurdenTime-stamp : <2005-03-03, 16:00>Des
ription: Implementation of Example grammar 4.1as des
ribed in Ljunglöf 2004--}module Examples where-- imported GF modulesimport MCFGrammarimport Parser-- Following Non-Terminals are used: S, A ---------------------------------data NT = S | Aderiving(Eq, Ord, Show)-- Example grammar 4.1 --ex41 = [Rule S [A ℄ [Lin "s" [Cat (A, "p", 0),Cat (A, "q", 0) ℄℄ "f",Rule A [A, A ℄ [Lin "p" [Cat (A, "p", 0),Cat (A, "p", 1) ℄,Lin "q" [Cat (A, "q", 0),Cat (A, "q", 1) ℄℄ "g",Rule A [℄ [Lin "p" [Tok "a" ℄,Lin "q" [Tok "
" ℄℄ "a
",Rule A [℄ [Lin "p" [Tok "b" ℄,Lin "q" [Tok "d" ℄℄ "bd" ℄57

A.2 RangesThe module for all fun
tions on ranges. Even those fun
tions only used by onealgorithm are pla
ed in the Ranges module and not as helper fun
tions in thealgorithm's module. ρǫ is written as ERange.{-- Module --Filename : Ranges.hsAuthor : Håkan BurdenTime-stamp : <2005-02-12, 18:52>Des
ription: Fun
tions for Ranges--}module Ranges where-- imported Haskell modulesimport Listimport Monad-- imported GF modulesimport MCFGrammarimport Nondetimport Parser-- De
lared new types: Linearization- and Range re
ords as lists ----------type LinRe

 l t = [Lin
 l t ℄type RangeRe
 l = [(l, Range)℄{-- Fun
tions ---Ceiling : Returns the
eiling of a RangeCon
atenation : Con
atenation of Ranges, Symbols andLinearizations and re
ords of LinearizationsRe
ord transformation: Makes a Range re
ord from a fully instantiatedLinearization re
ordRe
ord proje
tion : Given a label, returns the
orresponding RangeRange restri
tion : Range restri
tion of Tokens, Symbols,Linearizations and Re
ords given a list of TokensRe
ord repla
ment : Substitute a re
ord for another in a list of Rangere
ordsArgument substitution: Substitution of a Cat
at to a Tok Range, whereRange is the
over of
atNote: The argument is still a Symbol
 RangeRe
ord Subsumation : Che
ks if a Range re
ord subsumes another Rangere
ordRe
ord unifi
ation : Unifi
ation of two Range re
ords--}--- Ceiling ---
eil :: Range -> Range
eil ERange = ERange
eil (Range (i, j) = (Range (j, j)58

--- Con
atenation ---
on
Ranges :: Range -> Range -> Nondet Range
on
Ranges ERange (Range (i, j)) =return (Range (i, j))
on
Ranges (Range (i, j)) (Range (j', k)) =do guard (j == j')return (Range (i, k))
on
Symbols :: [Symbol
 Range ℄ -> Nondet [Symbol
 Range ℄
on
Symbols (Tok rng:Tok rng':toks) = do rng� <-
on
Ranges rng rng'
on
Symbols (Tok rng�:toks)
on
Symbols (sym:syms) = do syms' <-
on
Symbols symsreturn (sym:syms')
on
Symbols [℄ = return [℄
on
Lin :: Lin
 l Range -> Nondet (Lin
 l Range)
on
Lin (Lin lbl syms) = do syms' <-
on
Symbols symsreturn (Lin lbl syms')
on
LinRe
 :: LinRe

 l Range -> Nondet (LinRe

 l Range)
on
LinRe
 = mapM
on
Lin--- Re
ord transformation ---makeRangeRe
 :: LinRe

 l Range -> RangeRe
 lmakeRangeRe
 lins = map (\(Lin lbl [Tok rng ℄) -> (lbl, rng)) lins--- Re
ord proje
tion ---proje
tion :: Eq l => l -> RangeRe
 l -> Nondet Rangeproje
tion l re
 = maybe failure return $ lookup l re
--- Range restri
tion ---rangeRestTok :: Eq t => [t ℄ -> t -> Nondet RangerangeRestTok toks tok = do i <- member (elemIndi
es tok toks)return (makeRange (i, i + 1))rangeRestSym :: Eq t => [t ℄ -> Symbol a t -> Nondet (Symbol a Range)rangeRestSym toks (Tok tok) = do rng <- rangeRestTok toks tokreturn (Tok rng)rangeRestSym _ (Cat
at) = return (Cat
at)rangeRestLin :: Eq t => [t ℄ -> Lin
 l t -> Nondet (Lin
 l Range)rangeRestLin toks (Lin lbl syms) =do syms' <- mapM (rangeRestSym toks) syms59

return (Lin lbl syms')rangeRestRe
 :: Eq t => [t ℄ -> LinRe

 l t-> Nondet (LinRe

 l Range)rangeRestRe
 toks = mapM (rangeRestLin toks)-- Re
ord repla
ment --repla
eRe
 :: [RangeRe
 l ℄ -> Int -> RangeRe
 l -> [RangeRe
 l ℄repla
eRe
 re
s i re
 = (fst tup) ++ [re
 ℄ ++ (tail $ snd tup)where tup = splitAt i re
s--- Argument substitution ---substArgSymbol :: Eq l => Int -> RangeRe
 l -> Symbol (
, l, Int) Range-> Symbol (
, l, Int) RangesubstArgSymbol i re
 (Tok rng) = (Tok rng)substArgSymbol i re
 (Cat (
at, lbl, j))| i==j = maybe (Cat (
at, lbl, j)) Tok $ lookup lbl re
| otherwise = (Cat (
at, lbl, j))substArgLin :: Eq l => Int -> RangeRe
 l -> Lin
 l Range-> Lin
 l RangesubstArgLin i re
 (Lin lbl syms) =(Lin lbl (map (substArgSymbol i re
) syms))substArgRe
 :: Eq l => Int -> RangeRe
 l -> LinRe

 l Range-> LinRe

 l RangesubstArgRe
 i re
 lins = map (substArgLin i re
) lins--- Re
ord Subsumation --subsumes :: Eq l => RangeRe
 l -> RangeRe
 l -> Boolsubsumes re
 re
' = and [elem r re
' | r <- re
 ℄--- Re
ord unifi
ation --unifyRangeRe
s :: Ord l => [RangeRe
 l ℄ -> [RangeRe
 l ℄-> Nondet [RangeRe
 l ℄unifyRangeRe
s re
s re
s' = zipWithM unify re
s re
s'where unify re
 [℄ = return re
unify [℄ re
 = return re
unify re
1'�(p1�(l1, r1):re
1) re
2'�(p2�(l2, r2):re
2)=
ase
ompare l1 l2 ofLT -> do re
3 <- unify re
1 re
2'return (p1:re
3)GT -> do re
3 <- unify re
1' re
2return (p2:re
3)EQ -> do guard (r1 == r2)re
3 <- unify re
1 re
2return (p1:re
3)60

A.3 NaiveParseThe a
tive item 11 in the naïve parse
hart in �gure 3.2 on page 31 is writtenin
ode asA
tive ("g",A,[A℄,[A℄)[Lin "p" [Tok (Range (1,2)),Cat (A,"p",1)℄,Lin "q" [Tok (Range (3,4)),Cat (A,"q",1)℄℄[("p",Range (1,2)),("q",Range (3,4))℄where the dot in the DottedRule is represented as two lists of
ategories, [A℄,[A℄.The passive item 13 is in turn written asPassive S[("s",Range (0,4))℄This is also the goal item for re
ognition.{-- Module --Filename : NaiveParse.hsAuthor : Håkan BurdenTime-stamp : <2005-02-24, 14:43>Des
ription: An agenda-driven implementation of the algorithm 4.2.1,"Polynomial parsing for
ontext-free GF",as des
ribed in Ljunglöf (2004)--}module NaiveParse where-- imported GF modulesimport ExampleGrammarimport GeneralChartimport MCFGrammarimport MCFParserimport Nondetimport Parserimport Ranges{-- Datatypes and types ---NChart : A RedBla
kMap with Items and NKeysItem : The parse Items are either A
tive or PassiveNKey : One key for A
tive Items, one for Passive Items and one forA
tive Items
onverted to Passive Items--}type NChart n
 l = ParseChart (Item n
 l) (NKey
)data Item n
 l = A
tive (DottedRule n
)(LinRe

 l Range)(RangeRe
 l)| Passive
(RangeRe
 l)61

deriving (Eq, Ord, Show)data NKey
 = A
t
| Pass
| Finalderiving (Eq, Ord, Show){-- Parsing ---re
ognize: Returns 'True' if the goal Item is in the parse-
hartotherwise 'False'parse : Builds a
hart from the initial agenda (given by predi
tion)and the inferen
e ruleskeyof : Given an Item returns an appropriate NKey for storing theItem in the Chart--}re
ognize :: Grammar String NT String String -> [String ℄ -> Boolre
ognize m
fg toks =
hartMember (parse m
fg toks)(Passive S [(�s�, Range (0, n))℄(Pass S)parse :: (Eq t, Ord n, Ord
, Ord l) => Grammar n
 l t -> [t ℄-> NChart n
 lparse m
fg toks = buildChart keyof [
onvert,
ombine ℄(predi
t m
fg toks)keyof :: Item n
 l -> NKey
keyof (A
tive (_, _, _, (next:_)) lins _) = A
t nextkeyof (Passive
at _) = Pass
atkeyof _ = Final{--Inferen
e rules --predi
t: Creates an A
tive Item of every Rule in the Grammar to give theinitial agenda
ombine: Creates an A
tive Item every time it is possible to
ombine anA
tive Item from the agenda with a Passive Item from the Chart
onvert: A
tive Items with nothing to find are
onverted to Passive Items--}predi
t :: (Eq t, Eq
) => [t ℄ -> Grammar n
 l t -> [Item n
 l ℄predi
t m
fg toks =[A
tive (f,
at, [℄, rhs) lins' [℄ | Rule
at rhs lins f <- m
fg,lins' <- solutions $ rangeRestRe
 toks lins ℄
ombine :: (Ord n, Ord
, Ord l) => ParseChart (Item n
 l) (NKey
)-> Item n
 l -> [Item n
 l ℄
ombine
hart (A
tive (f,
at', found, (
at:toFind)) lins re
) =[A
tive (f,
at', found ++ [
at ℄, toFind) lins� (re
 ++ re
') |Passive
at re
' <-
hartLookup
hart (Pass
at),lins� <- solutions $
on
LinRe
 $ substArgRe
 (length found)re
' lins ℄
ombine
hart (Passive
at re
) =[A
tive (f,
at', found ++ [
at ℄, toFind) lins� (re
'++ re
) |(A
tive (f,
at', found, (
at:toFind)) lins' re
')<-
hartLookup
hart (A
t
at),62

lins� <- solutions $
on
LinRe
 $ substArgRe
 (length found)re
 lins' ℄
ombine _ _ = [℄
onvert :: (Ord n, Ord
, Ord l) => ParseChart (Item n
 l) (NKey
)-> Item n
 l -> [Item n
 l ℄
onvert _ (A
tive (f,
at, rhs, [℄) lins _) =[Passive
at (makeRangeRe
 lins) ℄
onvert _ _ = [℄A.4 ApproxParseThere are four di�erent kinds of items for the Approximative algorithm, pre-m
g, pre, mark and passive. The pre-m
fg item
[g; {q = (2, 4); {q = (2, 3), q = (3, 4)}]is written asPreMCFG "g"[("q",Range (2,4))℄[[("q",Range (2,3))℄,[("q",Range (3,4))℄℄The pre item

[A→ bd[]; {p = (1, 2)}; {q}; {}]looks as followsPre ("bd",A,[℄) [("p",Range (1,2))℄ ["q"℄ [℄A mark item uses DottedRules and has two lists for separating marked rangere
ords from unmarked ones
[A→ g[A•A]; {p = (0, 2), q = (2, 4)}; {p = (0, 1), q = (2, 3)}; {p = (1, 2), q = (3, 4)}]This item will look likeMark ("g",A,[A℄,[A℄)[("p",Range (0,2)),("q",Range (2,4))℄[("p",Range (0,1)),("q",Range (2,3))℄[[("p",Range (1,2)),("q",Range (3,4))℄℄when written in
ode. Finally we have the passive items, that look just like thepassive items for the Naïve algorithm.63

Passive S [("s",Range (0,4))℄is the goal item
[S; {s = (0, 4)]{-- Module --Filename : ApproxParse.hsAuthor : Håkan BurdenTime-stamp : <2005-03-08 16:36:26>Des
ription: An agenda-driven implementation of the algorithm 4.3.4,"Parsing through
ontext-free approximation",as des
ribed in Ljunglöf (2004)--}module ApproxParse where-- imported Haskell modulesimport Listimport Monad-- imported GF modulesimport ConvertMCFGtoDe
oratedCFGimport qualified De
oratedCFParser as CFPimport qualified De
oratedGrammar as CFGimport ExampleGrammarimport GeneralChartimport qualified MCFGrammar as MCFGimport MCFParserimport Nondetimport Parserimport Ranges{-- Datatypes ---AChart: A RedBla
kMap of Items and AKeysItem : Four different Items are used:* PreMCFG for MCFGPre-Items,* Pre-Items are the Items returned by the pre-Fun
tions,* Mark-Items are the
orresponding Items for the mark-Fun
tions,*
orre
tly marked Mark-Items are
onverted to Passive Items.AKey : One AKey for every kind of Item and one for Items to be
onverted--}data Item n
 l = PreMCFG n(RangeRe
 l)[RangeRe
 l ℄| Pre (Abstra
tRule n
)(RangeRe
 l)[l ℄[RangeRe
 l ℄| Mark (DottedRule n
)(RangeRe
 l)(RangeRe
 l)[RangeRe
 l ℄| Passive
 64

(RangeRe
 l)deriving (Eq, Ord, Show)type AChart n
 l = ParseChart (Item n
 l) (AKey n
 l)data AKey n
 l = Pm n l| Pr n l| Mk
 (RangeRe
 l)| Ps
 (RangeRe
 l)| Finalderiving (Eq, Ord, Show){-- Parsing ---re
ognize: Returns 'True' if the goal Item is the parse-
hart,otherwise 'False'parse : Builds a parse-
hart from the agenda and the inferen
e rules.The agenda
onsists of the Passive Items from
ontext-freeapproximation (as PreMCFG-Items) and the Pre-Items inferred bypre-predi
tion. The Context-Free parsing is done by eitherbottom-up or top-down filteringkeyof : Given an Item returns an appropriate Key for storing the Itemin the Chart--}re
ognize :: (Ord t) => Strategy-> MCFG.Grammar String NT String t -> [t℄ -> Boolre
ognize strategy m
fg toks =
hartMember (parse strategy m
fg toks) (Passive S re
) (Ps S re
)where re
 = [("s" , MCFG.Range (0, length toks))℄parse :: (Ord t) => CFP.Strategy -> MCFG.Grammar String NT String t-> [t ℄ -> AChart String NT Stringparse strategy m
fg toks =buildChart keyof [preCombine, markPredi
t, markCombine,
onvert ℄((makePreItems (CFP.parse strategy(CFG.pInfo (
onvertGrammar m
fg))[(S, "s")℄ toks)) ++(prePredi
t m
fg))keyof :: Item n
 l -> AKey n
 lkeyof (PreMCFG f [(lbl, rng)℄ _) = Pm f lblkeyof (Pre (f, _, _) _ (lbl:_) _) = Pr f lblkeyof (Mark (_, _, _, (
at:_)) _ _ (re
:_)) = Mk
at re
keyof (Passive
at re
) = Ps
at re
keyof _ = Final{-- Initializing agenda ---makePreItems: Every Passive Item from the Context-Free
hart is made into aPreMCFG-Item--}makePreItems :: (Eq
, Ord i) => CFG.Grammar n (Edge (
, l)) i t-> [Item n
 l ℄makePreItems
f
hart = 65

[PreMCFG fun [(lbl, MCFG.makeRange (i, j))℄ (symToRe
 beta) |CFG.Rule (Edge i j (
at,lbl)) beta fun <-
f
hart ℄{-- Inferen
e rules ---prePredi
t : Predi
ts a Pre-Item for every Rule in the MCF grammarpreCombine : Combines a Pre-Item looking for the lable l with aPreLCFG-Item for l into a new Pre-ItemmarkPredi
t: Predi
ts a Mark-Item for every Pre-Item with no lables left tolook formarkCombine: Combines a Mark-Item looking for a re
ord re
 with a PassiveItem for re
 into a new Mark-Item
onvert : Converts a fully marked Mark-Item into a Passive Item--}prePredi
t :: (Ord n, Ord
, Ord l) => MCFG.Grammar n
 l t-> [Item n
 l ℄prePredi
t m
fg = [Pre (f,
at, rhs) [℄ (getLables lins)(repli
ate (length rhs) [℄) |MCFG.Rule
at rhs lins f <- m
fg ℄preCombine :: (Ord n, Ord
, Ord l)=> ParseChart (Item n
 l) (AKey n
 l) -> Item n
 l-> [Item n
 l ℄preCombine
hart (Pre head�(f, _, _) re
 (l:ls) re
s) =[Pre head (re
 ++ [(l, r)℄) ls re
s� |PreMCFG f [(l, r)℄ re
s' <-
hartLookup
hart (Pm f l),re
s� <- solutions (unifyRangeRe
s re
s re
s') ℄preCombine
hart (PreMCFG f [(l, r)℄ re
s) =[Pre head (re
 ++ [(l, r)℄) ls re
s� |Pre head re
 (l:ls) re
s' <-
hartLookup
hart (Pr f l),re
s� <- solutions (unifyRangeRe
s re
s re
s') ℄preCombine _ _ = [℄markPredi
t :: (Ord n, Ord
, Ord l)=> ParseChart (Item n
 l) (AKey n
 l) -> Item n
 l-> [Item n
 l℄markPredi
t _ (Pre (f,
at, rhs) re
 [℄ re
s) =[Mark (f,
at, [℄, rhs) re
 [℄ re
s ℄markPredi
t _ _ = [℄markCombine :: (Ord n, Ord
, Ord l)=> ParseChart (Item n
 l) (AKey n
 l) -> Item n
 l-> [Item n
 l ℄markCombine
hart (Mark (f,
at', found, (
at:toFind)) re
' marked(re
:toMark)) =[Mark (f,
at', found ++ [
at ℄, toFind) re
'(marked ++ re
) toMark |Passive
at re
 <-
hartLookup
hart (Ps
at re
) ℄markCombine
hart (Passive
at re
) =[Mark (f,
at', found ++ [
at ℄, toFind) re
' (marked ++ re
)toMark |Mark (f,
at', found, (
at:toFind)) re
' marked (re
:toMark)<-
hartLookup
hart (Mk
at re
) ℄markCombine _ _ = [℄ 66

onvert :: (Ord n, Ord
, Ord l)=> ParseChart (Item n
 l) (AKey n
 l) -> Item n
 l-> [Item n
 l℄
onvert _ (Mark (_,
at, _, [℄) re
 re
' [℄) = [Passive
at re
 ℄
onvert _ _ = [℄{-- Helper fun
tions --getLables: Returns the list of lables in LinRe
symToRe
 : Gives a RangeRe
 from the lables and ranges in the Context-Free
hart--}getLables :: LinRe

 l t -> [l ℄getLables lins = [l | MCFG.Lin l syms <- lins ℄symToRe
 :: Ord i => [Symbol (Edge (
, l), i) d ℄-> [[(l, MCFG.Range)℄℄symToRe
 beta =map makeLblRng $ groupBy (\(_, d) (_, d') -> (d == d'))$ sortBy sBd [(Edge i j (
, l) , d) |Cat (Edge i j (
, l), d) <- beta ℄where makeLblRng edges =[(l, (MCFG.makeRange (i, j))) |(Edge i j (_, l), _) <- edges℄sBd (_, d) (_, d')| d < d' = LT| d > d' = GT| otherwise = EQA.5 A
tiveParseFor the Earley fun
tion initial the rules with a start symbol as left-hand sideis hard-
oded. In the a
tual GF implementation it is substituted for the resultfrom the fun
tion pInfo, whi
h returns the parse-information of the grammar.The two rules for Earley predi
tion are
ombined into one rule in the
ode.The a
tive item 13 in �gure 3.6 looks likeA
tive ("g",A,[A,A℄)[℄(Range (1,2))(Lin "p" [Cat (A,"p",1)℄)[Lin "q" [Cat (A,"q",0),Cat (A,"q",1)℄℄[[("p",Range (1,2)),("q",Range (3,4))℄,[℄℄written in
ode. When fully instantiated and
onverted to a passive item itlooks likePassive A[("p",Range (0,2)),("q",Range (2,4))℄The inferen
e rules for Kilbury and Earley predi
tion are given in the end ofthe module. 67

{-- Module --Filename : A
tiveParse.hsAuthor : Håkan BurdenTime-stamp : <2005-03-24, 14:43>Des
ription: An agenda-driven implementation of algorithm 4.6,"A
tive parsing of PMCFG",as des
ribed in Ljunglöf (2004)--}module A
tiveParse where-- imported GF modulesimport ExampleGrammarimport GeneralChartimport MCFGrammarimport MCFParserimport Nondetimport Parserimport Ranges{-- Datatypes ---AChart: A RedBla
kMap with Items and AKeysItem : Items are either A
tive or PassiveAKey : One key for every kind of Item and one for A
tive Items
onvertedto Passive Items--}data Item n
 l = A
tive (Abstra
tRule n
)(RangeRe
 l)Range(Lin
 l Range)(LinRe

 l Range)[RangeRe
 l ℄| Passive
[RangeRe
 l ℄deriving (Eq, Ord, Show)type AChart n
 l = ParseChart (Item n
 l) (AKey
)data AKey
 = A
t
| Pass
| Finalderiving (Eq, Ord, Show){-- Parsing ---re
ognize: If the goal Item is in the parse-
hart: 'True',otherwise: 'False'parse : Builds a Chart from the initial agenda, given by predi
tion, andthe inferen
e rules. Parsing
an be done with either Earley orKilbury filtering, or without filteringkeyof : Given an Item returns an appropriate Key for storing the Item inthe Chart--}re
ognize :: Strategy -> Grammar String NT String String -> [String ℄-> Bool 68

re
ognize strategy m
fg toks =
hartMember (parse strategy m
fg toks) item (keyof item)where item = Passive S [("s", Range (0, n))℄n = length toksparse :: (Ord n, Ord
, Ord l, Eq t) => Strategy -> Grammar n
 l t-> [t ℄ -> ParseChart (Item n
 l) (AKey
)parse (False, False) m
fg toks =buildChart keyof[
omplete, s
an,
ombine,
onvert ℄(predi
t m
fg toks)parse (True, False) m
fg toks =buildChart keyof[predi
tKilbury m
fg toks,
omplete,
ombine,
onvert ℄(terminal m
fg toks)parse (False, True) m
fg toks =buildChart keyof[predi
tEarley m
fg toks,
omplete, s
an,
ombine,
onvert ℄(initial (take 1 m
fg) toks)keyof :: Item n
 l -> AKey
keyof (A
tive _ _ _ (Lin _ ((Cat (next, _, _)):_)) _ _) = A
t nextkeyof (Passive
at _) = Pass
atkeyof _ = Final{--Inferen
e rules --predi
t : Creates an A
tive Item of every Rule in the Grammar to give theinitial Agenda
omplete: Predi
ts an A
tive Item for the next linearization row, if theprevious row is fully satisfied.s
an : If the next symbol to read is a range for a token,
on
atenatethe range for what is found so far with the range for the token
ombine : Creates an A
tive Item every time it is possible to
ombinean A
tive Item from the agenda with a Passive Item from the Chart
onvert : A
tive Items with nothing to find are
onverted to Passive Items--}predi
t :: Eq t => Grammar n
 l t -> [t ℄ -> [Item n
 l ℄predi
t grammar toks = [A
tive (f,
at, rhs) [℄ ERange lin' lins'(repli
ate (length rhs) [℄) |Rule
at rhs lins f <- grammar,(lin':lins')<- solutions $ rangeRestRe
 toks lins ℄
omplete :: (Ord n, Ord
, Ord l) => ParseChart (Item n
 l) (AKey
)-> Item n
 l -> [Item n
 l ℄
omplete _ (A
tive rule found (Range (i, j)) (Lin l [℄)(lin:lins) re
s) =[A
tive rule (found ++ [(l, Range (i,j))℄) ERange linlins re
s ℄
omplete _ _ = [℄s
an :: (Ord n, Ord
, Ord l) => ParseChart (Item n
 l) (AKey
)-> Item n
 l -> [Item n
 l ℄69

s
an _ (A
tive rule found rng (Lin l ((Tok rng'):syms)) lins re
s) =[A
tive rule found rng� (Lin l syms) lins re
s |rng� <- solutions $
on
Ranges rng rng' ℄s
an _ _ = [℄
ombine :: (Ord n, Ord
, Ord l) => ParseChart (Item n
 l) (AKey
)-> Item n
 l -> [Item n
 l ℄
ombine
hart (A
tive rule found rng (Lin l ((Cat (
, r, d)):syms))lins re
s) =[A
tive rule found rng� (Lin l syms) lins(repla
eRe
 re
s d found') |Passive _ found' <-
hartLookup
hart (Pass
),rng' <- solutions $ proje
tion r found',rng� <- solutions $
on
Ranges rng rng',subsumes (re
s !! d) found' ℄
ombine
hart (Passive
 found) =[A
tive rule found' rng (Lin l syms) lins(repla
eRe
 re
s' d found) |A
tive rule found' rng' (Lin l ((Cat (
, r, d)):syms))lins re
s'<-
hartLookup
hart (A
t
),rng� <- solutions $ proje
tion r found,rng <- solutions $
on
Ranges rng' rng�,subsumes (re
s' !! d) found ℄
ombine _ _ = [℄
onvert :: (Ord n, Ord
, Ord l) => ParseChart (Item n
 l) (AKey
)-> Item n
 l -> [Item n
 l ℄
onvert _ (A
tive (f,
at, rhs) found rng (Lin l [℄) [℄ re
s) =[Passive
at (found ++ [(l, rng)℄) ℄
onvert _ _ = [℄{-- Earley Filtering --initial : Predi
t an A
tive Item for every rule in the grammar wherethe left-hand side of the rule is a start symbolpredi
tEarley: If there is an A
tive Item looking for a
ategory and a rulewhere that
ategory is the left-hand side of a rule, predi
ta new Item--}initial :: Eq t => [Rule n
 l t ℄ -> [t ℄ -> [Item n
 l ℄initial starts toks =[A
tive (f, s, rhs) [℄ (Range (0, 0)) lin' lins'(repli
ate (length rhs) [℄) |Rule s rhs lins f <- starts,(lin':lins') <- solutions $ rangeRestRe
 toks lins ℄predi
tEarley m
fg toks _ (A
tive _ _ rng(Lin _ ((Cat (
at, _, _)):_)) _ _) =
on
at [earley rng rule | rule�(Rule
at' _ _ _)<- m
fg,
at ==
at' ℄where earley _ (Rule
at [℄ lins f) =[Passive
at (makeRangeRe
 lins') |lins' <- solutions $ rangeRestRe
 toks lins ℄earley rng (Rule
at rhs lins f) =[A
tive (f,
at, rhs) [℄ (
eil rng) lin' lins'70

(repli
ate (length rhs) [℄) |(lin':lins') <- solutions $ rangeRestRe
 toks lins ℄predi
tEarley _ _ _ _ = [℄{-- Kilbury Filtering ---predi
tKilbury: Predi
t an A
tive Item for a rule if there already is aPassive Item for the first
ategory in the firstlinearization rowterminal : Predi
t a Passive Item for every rule with empty right-handside--}predi
tKilbury m
fg toks _ (Passive (_,
at, _) found _) =[A
tive (f, a, rhs) [℄ rng lin' lins' daughters |Rule a rhs ((Lin l ((Cat (
at', r, i)):syms)):lins) f <- m
fg,
at ==
at',lin' <- solutions $ rangeRestLin toks (Lin l syms),lins' <- solutions $ rangeRestRe
 toks lins,rng <- solutions $ proje
tion r found,let daughters =(repla
eRe
 (repli
ate (length rhs) [℄) i found) ℄predi
tKilbury _ _ _ _ = [℄terminal m
fg toks =[Passive
at (makeRangeRe
 lins') |Rule
at [℄ lins f <- m
fg,lins' <- solutions $ rangeRestRe
 toks lins ℄A.6 In
rementalParseThe a
tive item
[A→ g[A, A]; {p = (0, 2)}, q = (2, 4)•; Γ〈ac,bd〉]where Γ〈ac,bd〉 is taken from �gure 3.2, will be written asA
tive ("g",A,[A,A℄)[("p",Range (0,2))℄(Range (2,4))(Lin "q" [℄)[℄[[("p",Range (0,1)),("q",Range (2,3))℄,[("p",Range (1,2)),("q",Range (3,4))℄℄The layout follows the de�nition of an a
tive item in the
ode.{-- Module --Filename : In
rementalParse.hsAuthor : Håkan BurdenTime-stamp : <2005-04-29, 14:10>Des
ription: An agenda-driven implementation of algorithm 4.6,"In
remental PMCFG parsing",71

as des
ribed in Ljunglöf (2004)--}module In
rementalParse where-- imported Haskell modulesimport List-- imported GF modulesimport ExampleGrammarimport GeneralChartimport MCFGrammarimport MCFParserimport Parserimport Rangesimport Nondet{-- Datatypes ---IChart: A RedBla
kMap with Items and IKeysItem : One kind of Item sin
e the Passive Items not ne
essarily need tobe fully saturated, they
an still have rows to re
ognize.IKey : Three kind s of IKeys; one for Items investigating an unsaturatedrow, one for Items who have saturated an entire row and one forfully saturated Items--}type IChart n
 l = ParseChart (Item n
 l) (IKey
 l)data Item n
 l = A
tive (Abstra
tRule n
)(RangeRe
 l)Range(Lin
 l Range)(LinRe

 l Range)[RangeRe
 l ℄deriving (Eq, Ord, Show)data IKey
 l = A
t
 l Int| Pass
 l Int| Finalderiving (Eq, Ord, Show){-- Parsing ---re
ognize: Reurns 'True' if the goal Item is in the Chart,otherwise 'False'parse : Builds a Chart from the initial agenda, given by predi
tion, andthe inferen
e ruleskeyof : Given an Item returns an appropriate IKey for storing the Itemin the Chart--}re
ognize m
fg toks =
hartMember (parse m
fg toks) item (keyof item)where item = A
tive ("f", S, [A ℄)[℄ (Range (0, n)) (Lin "s" [℄) [℄[[("p", Range (0, n2)), ("q", Range (n2, n))℄℄n = length toksn2 = n `div` 2 72

parse :: (Ord n, Ord
, Ord l, Eq t) => Grammar n
 l t -> [t ℄-> IChart n
 lparse m
fg toks = buildChart keyof[
omplete toks n, s
an,
ombine ℄(predi
t m
fg toks n)where n = length tokskeyof :: Item n
 l -> IKey
 lkeyof (A
tive _ _ (Range (_, j))(Lin _ ((Cat (next, lbl, _)):_)) _ _)= A
t next lbl jkeyof (A
tive (_,
at, _) found (Range (i, _)) (Lin lbl [℄) _ _)= Pass
at lbl ikeyof _= Final{-- Inferen
e Rules ---predi
t : Predi
ts an Item for every linearization row in every rule in thegrammar
omplete: Predi
ts a new item for every remaining linearization row, whenthe previous row is fully saturateds
an : Range
on
atenates the range for what is found so far with therange of the next symbol, if it is a linearized token
ombine : Combines an A
tive Item looking for the
ategory
at with aPassive Item for
at--}predi
t :: (Eq n, Eq
, Eq l, Eq t) => Grammar n
 l t -> [t ℄ -> Int-> [Item n
 l ℄predi
t m
fg toks n =[A
tive (f,
, rhs) [℄ (Range (k, k)) lin' lins�(repli
ate (length rhs) [℄) |Rule
 rhs lins f <- m
fg,lins' <- solutions $ rangeRestRe
 toks lins,(lin', lins�) <- sele
t lins',k <- [0..n ℄ ℄
omplete :: (Ord n, Ord
, Ord l) => [t ℄ -> Int-> ParseChart (Item n
 l) (IKey
 l) -> Item n
 l-> [Item n
 l ℄
omplete toks n _ (A
tive rule found rng�(Range (_, j)) (Lin l [℄)lins re
s) =[A
tive rule (found ++ [(l, rng)℄) (Range (k, k))lin lins' re
s | (lin, lins') <- sele
t lins,k <- [j..n ℄ ℄
omplete _ _ _ _ = [℄s
an :: (Ord n, Ord
, Ord l) => ParseChart (Item n
 l) (IKey
 l)-> Item n
 l -> [Item n
 l ℄s
an _ (A
tive rule found rng (Lin l ((Tok rng'):syms)) lins re
s) =[A
tive rule found rng� (Lin l syms) lins re
s |rng� <- solutions $
on
Ranges rng rng' ℄s
an _ _ = [℄ 73

ombine :: (Ord n, Ord
, Ord l)=> ParseChart (Item n
 l) (IKey
 l) -> Item n
 l-> [Item n
 l ℄
ombine
hart (A
tive rule found rng�(Range (_, j))(Lin l ((Cat (
, r, d)):syms)) lins re
s) =[A
tive rule found rng� (Lin l syms) lins(repla
eRe
 re
s d (found' ++ [(l', rng')℄)) |A
tive _ found' rng' (Lin l' [℄) _ _<-
hartLookup
hart (Pass
 r j),subsumes (re
s !! d) (found' ++ [(l', rng')℄),rng� <- solutions $
on
Ranges rng rng' ℄
ombine
hart (A
tive (_,
, _) found rng'�(Range (i, _))(Lin l [℄) _ _) =[A
tive rule found' rng� (Lin l' syms) lins(repla
eRe
 re
s d (found ++ [(l, rng')℄)) |A
tive rule found' rng (Lin l' ((Cat (
, r, d)):syms))lins re
s <-
hartLookup
hart (A
t
 l i),subsumes (re
s !! d) (found ++ [(l,rng')℄),rng� <- solutions $
on
Ranges rng rng' ℄
ombine _ _ = [℄

74

