RobotBT: Behavior-Tree-Based Test-Case Specification
for the Robot Framework

Sven Peldszus Noubar Akopian Thorsten Berger
Ruhr University Bochum Ruhr University Bochum Ruhr University Bochum and
Germany Germany Chalmers | University of Gothenburg

ABSTRACT

The Robot Framework is a popular and widely used test automation
framework that abstracts test case specifications toward natural
language specifications. This makes it well suited for implementing
high-level test cases, at least as long as the functions provided by
Robot can support the intended functionality. For more complicated
test cases, custom and often deeply nested functionality specifica-
tions are required, and the readability of Robot test cases tends to
decrease. We present RobotBT, a library for the Robot framework
that addresses these shortcomings by adding support for specifying
test cases using behavior trees. Behavior trees are a comprehensive
method for specifying complex behaviors based on a control flow
model that orchestrates the execution of functionality. We evaluated
RobotBT on a test suite for GUI testing from G DATA CyberDefense
AG and interviewed their engineers about the usability, readability,
and applicability of RobotBT. Our results show that BTs improve
the expressiveness and readability of Robot Framework test cases
and are applicable to practical problems.

CCS CONCEPTS

« Software and its engineering — Software testing and debug-
ging; Domain specific languages; Control structures.

KEYWORDS

Test Case Specification, Robot Framework, Behavior Tree

ACM Reference Format:

Sven Peldszus, Noubar Akopian, and Thorsten Berger. 2023. RobotBT:
Behavior-Tree-Based Test-Case Specification for the Robot Framework. In
Proceedings of the 32nd ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA 23), July 17-21, 2023, Seattle, WA, USA. ACM,
New York, NY, USA, 4 pages. https://doi.org/10.1145/3597926.3604924

1 INTRODUCTION

The Robot Framework [10] is an open-source framework for au-
tomating end-to-end, system, and Ul tests. Based on the principles
of Acceptance-Test Driven Development [7] and Behavior Driven
Development [13], one of its main goals is to provide a simple and
intuitive interface for writing and executing test cases that elim-
inates the need for extensive programming knowledge, making it
suited for non-programmers, such as domain experts. To this end,

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0221-1/23/07.
https://doi.org/10.1145/3597926.3604924

1503

Germany and Sweden

the Robot Framework provides a simple domain-specific language
(DSL) [3] to ease writing comprehensible test code.

The benefit of providing domain-specific and natural-language-
like test specifications comes at the cost of expressiveness. The
Robot Framework is limited to simple test cases that do not require
complex logic to actuate the units under test. While the logic of test
case specifications should generally be simple, GUI testing in par-
ticular often requires declaring more complex behaviors in the test
case. Imagine a test case that involves opening an application from
the Windows tray, where the icon to click can be in different loca-
tions, e.g., directly on the tray or in the grouped icons. Furthermore,
notifications may overlap this area and need to be closed first. To ad-
dress such issues, G DATA CyberDefense AG, a leading provider of
antivirus solutions, which uses Robot Framework for GUI testing of
its antivirus software, had to abstract the entire logic of the compli-
cated decision processes in its test suite to several external specifica-
tions written in high-level programming languages. This adds a new
level of complexity to the test suite, which is still difficult to read.

Similar problems in expressing complicated behavior have been
successfully addressed by the introduction of Behavior Trees (BTs)
in the robotics domain [5, 9]. A BT is a model that describes the
switching between a finite set of tasks, allowing developers to create
complex logic composed of simple tasks [4, 5]. It is constructed as
a hierarchical set of nodes that control decision making and is used
to control the behavior of autonomous systems, such as robots. BTs
are often used to model and control the decision-making processes
of these systems and can be applied to a wide range of applications.

We use behavior trees to facilitate the specification of test case
behavior by improving the readability and understandability of
test cases. Specifically, behavior trees can improve the expressive-
ness and flexibility of test cases by allowing developers to specify
complex behaviors in a clear and concise manner. Behavior trees
also foster reusability, since behavior can easily be extended and
customized by adding new nodes to the three or by modifying ex-
isting ones. Behavior trees can be especially helpful when a test
case becomes complicated due to many decisions, which threatens
the readability and maintainability of Robot test code.

We present RobotBT, a behavior tree library for Robot Frame-
work. With RobotBT, we assessed the feasibility of behavior trees
for the specification of Robot test cases. We show that it can actually
improve the specification of test cases, making them more concise
and extensible, among others. Our integration of behavior trees
with the Robot Framework was guided by two research questions:

RQ1 - Suitability: Are behavior trees suitable to express real-
world Robot test cases?

RQ2 - Comprehensibility: Do behavior trees improve the
readability and understandability of Robot test cases?

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3597926.3604924
https://doi.org/10.1145/3597926.3604924

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

Our contributions comprise the Robot Framework Behavior Tree
Library (RobotBT), a library for the Robot Framework that enables
the use of behavior trees for test case specification, and an evalu-
ation of RobotBT on a real-world Robot test suite from G DATA
CyberDefense AG. The source code of RobotBT, the full real-world
test case specification used as an example in this work, artificial
examples, and raw data are publicly available in our GitHub reposi-
tory [2]. We also provide a video demonstration of RobotBT.!

2 BACKGROUND

We now briefly introduce the Robot Framework and our running
example from G DATA’s test suite, as well as behavior trees as a
DSL for modeling behavior.

2.1 Robot Framework

The Robot Framework [10] provides a DSL called Robot for speci-
fying test cases. The DSL mainly comprises expressions, which are
composed of functions (in Robot simply called keywords) that are
either provided by the Robot framework or are user-defined. State-
ments in the form of variable assignments are also possible. The
concatenation of the functions, together with the domain-specific
syntax, allows forming natural-language-like sentences, making the
test-case specification more readable and intuitive. These functions
(i.e., keywords) can be implemented in Python or Java, or they can
be compositions of other keywords. However, while being intuitive
and domain-specific, the DSL is limited to simple test cases, lead-
ing to less-readable and inconcise expressions for complicated test
cases, which include multiple decisions to effectively actuate the
unit under test, such as for the interactions required for GUI testing.

Listing 1 shows a simple excerpt of a Robot test case that is part
of a GUI test case of G DATA CyberDefense AG. This test case tests
the opening of the user interface of their antivirus software, called
the G DATA Security Center, from the Windows system tray. As
part of this, the shown excerpt defines a composite keyword that
locates the G DATA Security Center icon in the Windows tray and
stores the location in a variable that is used to open the Security
Suite in further parts of the test case.

The excerpt calls in line 1 of Listing 1 the G DATA custom
keyword “Run And Return Status”, which takes another keyword
(“Wait Until Succeeds”) as input and stores the result of its
execution in a variable, here $_exists_sys_tray. “Wait Until
Succeeds” calls a third keyword (“Elem Should Exist”)up to a
given number of tries (10 in the example) and waits a given amount
of time (100ms) between calls. It returns true on the first success.
“Elem Should Exist” checks if an item exists in Windows at the
given location ($SYS_TRAY_GD_ICON). In lines 2 to 6, if the icon
exists, the keyword writes the location to a global variable and exits.

Similarly, the keyword definition in Listing 1 proceeds in the fol-
lowing lines for the other possible locations of the Security Center
icon. If the icon is not on the system tray, it searches in lines 7 to 10
for the Windows grouping icon and fails if it is not present. If the
grouping icon is present, the keyword opens the group in line 11,
searches the Security Center icon in the group in line 12, and eval-
uates the results like before. If the icon was not found in the group
either, in lines 19 to 21, the test case fails with an error message.

Tool demonstration on YouTube: https://youtu.be/zPKSRdAMmFaM

1504

Sven Peldszus, Noubar Akopian, and Thorsten Berger

Listing 1: Example test case specified in the Robot DSL

1 ${ exists sys tray} Run And Return Status Wait Until Succeeds
10x 100ms Elem Should Exist ${SYS TRAY GD ICON}

2 IF ${ _exists_sys_tray} == ${True}

3 ${NotGrouped Set Var ${Truc

4 Set Global Var ${NotGrouped}

5 Return From Keyword

6 END

7 ${_status} Run And Return Status Elem Should Exist
${SYS_TRAY_GROUP}

8 IF ${_status} == ${False}

9 Fail msg="Tray icon not present!"”

10 END

Open Notification Overflow Area

${ Run And Return Status Wait Until Succeeds

exists_not_ovfl}

15x 200ms Elem Should Exist ${N OVERFLOW GD ICON}
13 IF ${_exists_not_ovfl} == ${True}
14 ${NotGrouped Set Var ${False}
15 Set Global Var ${NotGrouped
16 Close Notification Overflow Area
17 Return From Keyword
18 END
19 IF ${ _exists_sys_tray} == ${False} and

${_exists_not_ovfl} == ${False}

20 Fail msg="G~DATA tray icon not found."
21 END

Although, the shown keyword is the simplest part of the G DATA
CyberDefense AG test suite, it already starts to show the impact of
the required control flow on test case readability. Yet, it does not
even use more complicated control flow concepts such as loops.

2.2 Behavior Trees

Behavior trees are executable models that allow the specification
of behavior [8]. They are a popular alternative to state machines,
especially in the robotics domain [9]. Behavior trees consist of a
hierarchical tree structure, with nodes representing either control
flow or executed actions [4, 5]. The nodes are connected by edges
that define the order of node execution. This tree structure allows
behavior trees to be easily visualized and understood, making them
a useful tool for designing and implementing complex behaviors.

One of the key benefits of behavior trees is their flexibility and
extensibility [4]. They can be easily modified or extended by adding
new nodes or modifying existing ones, allowing developers to adapt
the behavior of the system to changing requirements or environ-
ments. Behavior trees are also efficient and scalable because they
can handle large and complex behavior models without incurring
significant overhead. They are also robust and resilient as they can
continue to function even if some of the nodes fail.

To give an impression of BTs, Fig. 1 shows the robot test spec-
ification from our example in the notation of the popular graphical
behavior tree framework BehaviorTree.CPP [6]. For simplicity, the

Fallback

Sequence Sequence J [Fail J

OO

Figure 1: Behavior Tree example

Is icon on tray? J{Setlocationoficon. J[Getgroupicon.

https://youtu.be/zPK8RdMmFaM

RobotBT: Behavior-Tree-Based Test-Case Specification for the Robot Framework

actions to be performed are given in natural language. In practice,
these action nodes would trigger the invocation of functions, e.g.
written in Python, comparable to keywords in Robot. To realize the
control flow, in this example we use two different control flow nodes
of BTs. First, a Fallback node that executes all child nodes from left
to right until the first child executes successfully. If a child executes
successfully, this node returns success to its own parent or false oth-
erwise. Second, a Sequence node, which again executes all children
from left to right, but all children must execute successfully.

In addition to the control nodes shown, behavior trees also sup-
port more complicated control, such as loops and parallel execution
that are also supported by RobotBT. Overall, behavior trees are an
expressive notation for controlling the behavior of autonomous
systems. They provide a clear and concise way to specify complex
behaviors, and their flexibility, efficiency, and robustness make
them suitable for a wide range of applications.

2.3 Behavior Trees in Testing

While behavior trees have been successfully used in various do-
mains [4], in testing, to the best of our knowledge, behavior trees
have mainly been used as a specification of a system under test
in model-based testing [12]. For example, Lindsay et al. encode
requirements in behavior trees and automatically derive test cases
that are checked against this specification [11]. More related to our
work, Yan and Ma use behavior trees to orchestrate simulation test
executions and increase reuse among tests [14].

3 ROBOT TEST CASE SPECIFICATION USING
BEHAVIOR TREES

With RobotBT we provide an internal DSL [3] for Robot that allows
to specify Robot keywords using behavior trees. We leverage the
comprehensive API of Robot Framework that allows developers to
create custom libraries and extend the functionality of the frame-
work. This API provides a set of Python classes and methods that
can be used to interact with the Robot Framework run-time and
create custom keywords. To integrate behavior trees into Robot
Framework, RobotBT wraps the Python library py_trees [1] for
implementation of the behavior tree functionality and exposes its
functionality to Robot Framework through a set of keywords. This
approach allows developers to leverage the existing behavior tree
implementation, while still being able to use Robot Framework’s
keyword-driven approach for test case development.

To represent Robot Framework test cases as behavior trees, we
map each keyword to an action or condition node in the tree. The
behavior tree structure reflects the logical flow of the test case.
For example, an action node means executing a keyword without
considering possible return values, such as “Open Notification
Overflow Area” in the example. Similarly, if a test case contains a
keyword that checks for the presence of a particular item in the Win-
dows system tray, this keyword could be represented as a condition
node in the behavior tree. That is, the status of the keyword, Fail or
Pass, is passed to the parent node in the behavior tree that continues
the execution according to its control behavior, e.g., calling the next
child node of a sequence or failing itself. This allows even complex
test cases to be specified in a clear and intuitive way, which can im-
prove the readability of the test case. In addition, behavior trees can

1505

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

Listing 2: Running example specified using RobotBT

One Should Pass

. - All Should Pass

. - - Wait Until Succeeds
\$ {SYS_TRAY_GD_ICON}

. - - Set Global Var

. - All Should Pass

. - - Elem Should Exist

icon not present!"”

. - - Open Notification Overflow Area

. - - Wait Until Succeeds 15x 200ms
\$ {N_OVERFLOW_GD_ICON}

. - - Set Suite Var $NotGrouped \§${False

. - - Close Notification Overflow Area

. - Fail msg="G DATA tray icon not found."

10x 100ms Elem Should Exist

$NotGrouped

\${True}

\${SYS TRAY GROUP} msg="Tray

Elem Should Exist

be extended and modified in a flexible and maintainable way, which
can improve the extensibility and maintainability of the test case.

Listing 2 expresses the example using the syntax of RobotBT.
For realizing the control flow nodes from Figure 1 we use the two
keywords “One Should Pass” and “All Should Pass” that are
provided by RobotBT. As Robot does not support keywords that
cover multiple lines, the behavior tree is internally represented as
a single line. The line breaks only serve for structuring the Robot
code visually, which is indicated by “. . .” in Robot. The indentation
of the BT nodes is expressed by dashes in RobotBT. In the leafs,
arbitrary Robot code can be used for implementing the actions.
Accordingly, the code on the leafs is comparable to the code in
the original Robot code. For example, the leafs in lines 3 and 4
of Listing 2, are identical to the lines 1, 3, and 4 in Listing 1. The
if-statement in line 2 of Listing 1 is not necessary in RobotBT as
the “A11 Should Pass” node in Listing 2 only continues with line
4 when the keyword in line 3 returned success.

The source code of RobotBT, the full real-world test case from
G DATA CyberDefense AG used as example in this work, and arti-
ficial examples are publicly available in our GitHub repository [2].

4 EVALUATION

To answer the research questions, we evaluate RobotBT on a real-
world test suite from G DATA CyberDefense AG. Their Robot
Framework test suite targets GUI testing of their retail antivirus
software for major bugs, especially after Windows beta updates.
The test suite consists of 10 end-to-end Robot test cases of which
the first test case is contained in the RobotBT repository [2].

4.1 RQ 1 - Suitability of RobotBT

To answer RQ 1, we validate whether behavior trees are suitable
to express real Robot test cases. We focus on the expressiveness
of behavior trees to support real-world test cases, whether the
functional behavior of the test cases remains the same, and whether
there is an impact on execution times.

4.1.1 Setup. The second author of the publication translates the
10 Robot test cases of G DATA CyberDefense AG into RobotBT test
cases. Thereby, we consider two ways to translate the test cases.
First, we check whether we can express all parts of the test cases
using only behavior trees. Second, to consider the combination
of traditional and RobotBT code, as it will most-likely be used in

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

practice, we selectively translated the parts of the test cases that are
most suited for behavior trees. After the translation, we executed all
test cases and compared the test results with those of the original
test suite as well as the time needed for test execution.

4.1.2 Results. This experiment shows that RoboBT is suitable to
express real-world Robot test cases without changing the test be-
havior nor negatively impacting the execution times.

Expressiveness. We were able to express all test cases using only
behavior trees, but also in a combination with traditional Robot
code, using behavior trees where they are most appropriate. When
translating existing test cases into RobotBT test cases, it is some-
times necessary to rewrite keywords to suit the BT context. For
example, the keyword "Elem Should Exist" originally returns
True or False based on existence, but in BTs a pass or fail of the
keyword execution is required instead. Comparing the two transla-
tion approaches, we noticed that while it is possible, especially for
simple robot code, always using BTs adds overhead. However, the
selective use of BTs allows effective specification of test cases.

Correctness. The two created RobotBT test suites can be success-
fully executed and show no failing test cases. Further, we manually
forced test cases to fail, e.g., in the example by executing the test
suite when the G Data Security Center is not on the system tray.
Also in these cases, the original Robot test suite and RobotBT be-
haved identical and failed as expected.

Run Time Efficiency. To validate that RobotBT has no negative
impact on the execution times of the test cases, we executed the test
suite five times using the original Robot test suite and the test suite
adapted to RobotBT and measured the average execution times.
We observed no significant difference in run-times between the
original Robot test cases (17.1s) and the RobotBT test cases (17.06s).
Thereby, the standard derivation is relatively low with 0.167 and
0.158 respectively. In conclusion, using RobotBT has no negative
impact on the run-time efficiency of the Robot Framework.

4.2 RQ 2 - Comprehensibility

To answer RQ 2 on the comprehensibility of RobotBT, we investi-
gated the practical usability and industry acceptance of RobotBT.

4.2.1 Setup. We conducted one-on-one interviews with 5 develop-
ers from 3 different R&D teams of G DATA. The Robot Framework
experiences of the participants varied, with one being new to Robot
framework tests, while others had several years of experience.

We started with an exploratory code review where we showed
the developers the original Robot test suite and the RobotBT ver-
sions. We then asked them to provide feedback on the readability,
applicability, understandability, and overall effectiveness of using
BTs with the Robot framework. Finally, we asked them to rate the
readability of RobotBT compared to traditional Robot on a scale
from -3 for traditional Robot is much better readable to +3 for
RobotBT is much better readable.

4.2.2 Results. According to the interviewed developers there is a
significant difference between the test suits. In summary, the use of
behavior trees results in a more organized, compact and readable
code. All five developers highlighted the possibility of reducing the
test code using RobotBT while increasing the subjective readability.

1506

Sven Peldszus, Noubar Akopian, and Thorsten Berger

Correspondingly, all developers voted for +3 (RobotBT is much bet-
ter readable than plain Robot) except for one developer that voted
for +2. Altogether, the average vote was 2.8 in favor of RobotBT.
As only drawback they identified the additional effort required to
learn about behavior tree nodes, which is relatively low. They even
suggested the integration of RobotBT into the Robot core features.
For future improvements, they noted that a graphical support by
the integration would make it easier to understand and debug the
test cases and a drag-and-drop programming environment for BTs
would be particularly helpful in developing new test cases.
Overall, the results of the interviews were positive and the devel-
opers found the integration to be easy to use. They approved that
the readability increases and the will be more organized, which
in turn increases the understandability. They were all sharing the
same opinion that this feature is useful and delivers benefits.

5 CONCLUSION

The Robot framework is widely used for test automation, but prac-
tical experience shows that test case specifications quickly become
unreadable. In this work, we have shown how behavior trees can
be used to improve the specification of Robot test cases. We in-
troduced RobotBT, a Robot library that allows the specification of
Robot keywords using behavior trees. In a practical evaluation, we
used a test suite of G DATA CyberDefense AG as an industrial case
study to show that RobotBT is suitable for expressing real-world
test cases. In addition, we conducted interviews with developers
who confirmed the improved readability and practical applicability
of RobotBT. In the future, the Robot Framework could be directly
extended with the behavior tree functionality of RobotBT. We will
also investigate graphical editing support for RobotBT.

REFERENCES

3!
[2

2023. Py-Trees. https://py-trees.readthedocs.io/en/devel/

Noubar Akopian et al. 2023. GitHub Repository of RobotBT. https://github.com/
noubar/RobotFramework-BehaviorTreeLibrary

Thorsten Berger Andrzej Wasowski. 2023. Domain-Specific Languages: Effective
Modeling, Automation, and Reuse (1 ed.). Springer Cham. XVI, 486 pages.
Michele Colledanchise and Petter Ogren. 2017. How Behavior Trees Modularize
Hybrid Control Systems and Generalize Sequential Behavior Compositions, the
Subsumption Architecture, and Decision Trees. IEEE Trans. Robot. 33, 2 (2017).
Michele Colledanchise and Petter Ogren. 2018. Behavior Trees in Robotics and AL
CRC Press.

Davide Faconti. 2018-2023. BehaviorTree.CPP. https://behaviortree.github.io/
BehaviorTree.CPP/BT _basics/

M. Girtner. 2012. ATDD by Example: A Practical Guide to Acceptance Test-Driven
Development. Pearson Education.

Razan Ghzouli, Thorsten Berger, Einar Broch Johnsen, Swaib Dragule, and An-
drzej Wasowski. 2020. Behavior Trees in Action: A Study of Robotics Applications.
In International Conference on Software Language Engineering (SLE). 196-209.
Razan Ghzouli, Thorsten Berger, Einar Broch Johnsen, Andrzej Wasowski, and
Swaib Dragule. 2023. Behavior Trees and State Machines in Robotics Applications.
IEEE Trans. Software Eng. (2023).

Pekka Klirck, Janne Hérkonen, et al. 2023.
robotframework.org/

Peter A. Lindsay, Sentot Kromodimoeljo, Paul A. Strooper, and Mohamed Almorsy.
2015. Automation of Test Case Generation from Behavior Tree Requirements
Models. In ASWEC. 118-127.

Malte Lochau, Sven Peldszus, Matthias Kowal, and Ina Schaefer. 2014. Model-
Based Testing. In SFM. 310-342.

Dan North. 2006. Introducing behaviour driven development. http://dannorth.
net/introducing-bdd/

Yungiang Yan and Siyou Ma. 2018. Collaborative Simulation Testing with State
Behavior Tree. In QRS. 456-462.

RobotFramework. https://

=
&

Received 2023-05-18; accepted 2023-06-08

https://py-trees.readthedocs.io/en/devel/
https://github.com/noubar/RobotFramework-BehaviorTreeLibrary
https://github.com/noubar/RobotFramework-BehaviorTreeLibrary
https://behaviortree.github.io/BehaviorTree.CPP/BT_basics/
https://behaviortree.github.io/BehaviorTree.CPP/BT_basics/
https://robotframework.org/
https://robotframework.org/
http://dannorth.net/introducing-bdd/
http://dannorth.net/introducing-bdd/

	Abstract
	1 Introduction
	2 Background
	2.1 Robot Framework
	2.2 Behavior Trees
	2.3 Behavior Trees in Testing

	3 Robot Test Case Specification using Behavior Trees
	4 Evaluation
	4.1 RQ 1 – Suitability of RobotBT
	4.2 RQ 2 – Comprehensibility

	5 Conclusion
	References

