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Machine learning components are essential for today’s software systems, causing a need to adapt traditional software engineering

practices when developing machine-learning-based systems. This need is pronounced due to many development-related challenges

of machine learning components such as asset, experiment, and dependency management. Recently, many asset management tools

addressing these challenges have become available. It is essential to understand the support such tools offer to facilitate research and

practice on building new management tools with native supports for machine learning and software engineering assets.

This article positions machine learning asset management as a discipline that provides improved methods and tools for performing

operations on machine learning assets. We present a feature-based survey of 18 state-of-practice and 12 state-of-research tools supporting

machine-learning asset management. We overview their features for managing the types of assets used in machine learning experiments.

Most state-of-research tools focus on tracking, exploring, and retrieving assets to address development concerns such as reproducibility,

while the state-of-practice tools also offer collaboration and workflow-execution-related operations. In addition, assets are primarily

tracked intrusively from the source code through APIs and managed via web dashboards or command-line interfaces. We identify

asynchronous collaboration and asset reusability as directions for new tools and techniques.
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1 Introduction

The momentum behind machine learning is rapidly increasing as companies recognize it as a key enabling technology

for today’s and future business challenges [87]. Similar to how it is essential to manage traditional software engineering

components during development, the effective management of machine learning components is vital for the success of

machine-learning-based software systems. However, for several reasons, improving the effectiveness of developing such

systems requires new, dedicated methods and tools.
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First, developing machine-learning-based systems requires management of a greater variety of asset types than

traditional software systems, including resource artefacts such as datasets, features, and models; software artefacts such as

source code files and hyperparameters; and metadata, including experiment metadata, execution metadata and performance

metrics [44]. Consequently, these assets require tools with relevant machine-learning-specific domain abstractions for

effective management. For example, Amershi et al. report that Microsoft teams developing machine-learning-based

systems found discovering, managing, and versioning machine-learning assets to be more complex and challenging than

other types of software engineering [3].

Second, the machine learning workflow is a non-linear stage-by-stage process with feedback loops, requiring a certain

amount of experimentation before converging to an acceptable model (Fig. 1). Similar to experimental workflows in

scientific software [34] and hardware/software integrated designs [22], the machine learning workflow involves large sets

of runs (a.k.a iterations) over different machine learning assets and quickly becomes complex. This already applies to

non-production-focused scenarios (e.g., research projects and community contests), where it is common to explore tens to

hundreds of runs [15, 15, 29, 54]. Production-focused scenarios may involve multiple machine learning components and

are even more prone to feedback loops, making extended experimentation necessary [3, 13]. The explicit management

of experiments and their associated assets can reduce the complexity and time overhead of managing assets in multiple

runs [36, 71, 82]. Specifically, it can help model developers effectively explore experimentation history, avoid redundant

effort, and recover previous experiment paths on demand. This holds just as much in the case of automatically configured

runs (e.g., hyperparameter search), where developers might be interested in understanding the experimentation history for

diagnostic purposes.

Third, in production-focused scenarios, machine learning assets such as trained models are integrated into software

systems, in which their performance is continuously monitored [38]. A common activity is retraining models after more

data has become available from newly encountered contexts or when data drift occurs. Such retraining activity then, again,

requires a non-linear stage-by-stage process of experimentation with multiple runs (indicated in Fig. 1 with the upwards

arrows from the DevOps stages). It is essential to have access to and understand the complete provenance of assets used

to train the current and earlier models to make informed decisions on retraining models and debug in-production model

behaviors. Such information can be instrumental in tracing model operational behavior to concrete experiment assets and

actions, providing information on the experimental paths previously explored during earlier runs.

Traditional software engineering methods and tools, such as version control systems (VCS), have been designed with

support for the management of software assets in mind. Therefore, they seem a tempting solution for the engineering

of machine-learning-based software systems as well. However, for the issues mentioned above, several challenges are

associated with directly adopting the traditional tools and methods for this purpose. For example, traditional VCSs

such as Git do not support advanced, domain-specific queries on machine learning assets, e.g., what data features

and hyperparameter have been used in an experiment run in which the final model precision was 0.75 or greater?

That would be informative for model developers when understanding the history of a project. Generally, managing

experimental run requires systematic provenance and versions of assets from current and previous runs to address different

machine learning experiment concerns, including traceability [59], reproducibility [7, 46, 78], and auditability [68]. Due

to the lack of explicit tooling, many practitioners adopt informal, ad hoc, or custom approaches to manage machine

learning assets [36, 75]. For example, all the developers interviewed by Hill et al. [36] could not effectively version

machine-learning-specific assets and, hence, used informal methods such as emails, spreadsheets, and notes to manage

assets during machine learning model development. Such methods may suffice for small-scale experiments; however,

large-scale experiments with many runs and collaboration requirements demand improved methods. Consequently, we
Manuscript submitted to ACM



Asset Management in Machine Learning: State-of-research and State-of-practice 3

Requirements  analysis

System requirements
analysis

Data analysis

Data collection Feature engineering &
extraction

Data cleaning Data labelling

Model training

Model design &
construction

Model evaluation

Model optimisation

Data-oriented works

Model-oriented works

Model monitoring & controlModel deployment

DevOps Works

N
on

-P
ro

du
ct

io
n 

fo
cu

se
d

Pr
od

uc
tio

n 
fo

cu
se

d

Fig. 1. Stages in a typical machine learning workflow

consider machine-learning asset management an essential discipline that offers improved machine-learning-specific asset

management and operations to address developmental concerns when building machine-learning-based systems.

Machine-learning experiment management tools, an emerging class of asset management tools, aims to address the

challenges of managing machine-learning-specific assets. Examples of such tools used in practice include MLFlow,

NeptuneML, and WandB, while examples from the literature include Deep-water [27], Runway [79], and ModelKB [28, 29].

These tools target practical experiment concerns, including reproducibility [7, 46, 78] and traceability [59], by providing

functionalities to store, track, and version assets from different experiment runs. While these tools have become available

recently, they are not fully matured yet, especially compared to their traditional counterparts. Factors affecting their

maturity include the lack of interoperability across different tools, tight coupling with specific libraries, friction, and

overhead incurred during usage due to required code instrumentation for tracking assets [60, 64]. It is essential to assess

the support found in the current tool landscape to facilitate research and practice towards improving existing tools,

developing new ones, and improving the engineering processes of machine-learning-based systems. Important questions

include: What support do these tools provide to users? What are the asset types they track? What are their commonalities

and variabilities?

This paper discusses and positions asset management as an essential discipline that provides dedicated methods and tools

to effectively address different concerns of machine learning experiments, especially for large-scale experiments. We survey

asset management support found in state-of-research and state-of-practice, in existing and proposed management tools for

machine learning experiments, identifying the types of assets supported and the operations offered to users for managing

machine learning assets. Specifically, we conduct a feature-based survey—a domain analysis to identify the characteristics

of an application domain (in our case, experiment-management tools). We model these characteristics as features in a

feature model [48, 63], an intuitive tree-like notation commonly used in software variability management [4, 10]. In the

literature, such feature-based surveys have been performed before to compare the design space of technologies, such as

model transformations [20], conversational AI systems [5], language workbenches [25], and variation control systems [53].
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Our study contributes a feature-model-based representation of tools supporting machine learning asset management—

particularly experiment management tools—focusing on asset types and supported operations. We address research

questions (see Section 3.1) about the asset types, collection, storage, and operations support offered by state-of-research

and state-of-practice tools.

Our scope in terms of machine learning paradigms is primarily focused on supervised and unsupervised machine

learning. This scope is a consequence of the support offered by the available tools identified via our systematic methodology

(see Section 3), which generally provide support for those paradigms. We exclude from our scope tools that are only

focused on one particular aspect of machine-learning asset management, e.g., model registries and model databases [57],

tools for dataset and metadata management [81], pipeline orchestration, hyper-parameter management, and visualizations.

With our study, we contribute to an increased empirical understanding of the current solution space for machine-

learning asset management. Practitioners can use our survey results to understand the asset management features provided

by available tools. Researchers can also identify gaps in the tool support for asset management and classify their new

techniques against our taxonomy (the feature model). Lastly, we hope that our result will contribute toward building new

tools with improved asset management methods for developing machine-learning-based components.

An earlier version of this work appeared in a conference publication [44], where we defined and positioned asset

management as a discipline to improve tools and techniques for engineering machine-learning-based systems and surveyed

17 state-of-practice experiment management tools. We have significantly extended this earlier paper in different ways. In

particular, we consider 12 state-of-research tools as additional subject tools and extended the resulting feature model with

new features. This extension also allows us to consider further research questions. In the previous work, we answered

the research questions RQ1–RQ4 (see Section 3.1) for the state-of-practice tools. Now we also answer these research

questions for the identified state-of-research tools. In addition, we now compare the state-of-practice and state-of-research

tools by presenting a feature matrix across the subject tools.

We proceed by presenting relevant background in Section 2 and describing our methodology in Section 3. We present

our results, including the feature model in Section 4, and discuss our findings in Section 5. In Section 6, we describe

the threats to the validity of this work. We discuss related work in Section 7, future work in Section 8 and conclude in

Section 9.

2 Machine Learning Asset Management

We now describe machine learning workflow, experiments, asset management challenges, and position machine-learning

asset management.

2.1 Machine Learning Workflow & Machine Learning Experiments

The traditional software engineering process [69] includes requirements analysis, planning, architecture design, coding,

testing, deployment, and maintenance stages. Similarly, supervised machine learning follows well-defined processes

grounded in workflows designed in the data science and data mining context. Examples include CRISP-DM [84], KDD

[26], and TDSP [56]. Figure 1 shows a simplified workflow of a supervised machine learning process lifecycle, structured

along different development stages. The workflow consists of the stages for requirements analysis, data-oriented works,

model-oriented works, and DevOps works [3, 6, 51]. The requirements analysis stages involve analyzing the system

requirements and available data, while the data-oriented stages include data collection, cleaning, labeling, and feature

engineering or extraction. Model-oriented stages include model design, training, evaluation, and optimization. The DevOps

stages include deploying machine learning models and operationalizing —monitoring and controlling—in-production
Manuscript submitted to ACM
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models. Figure 1 also shows that machine learning projects can either be production-focused or non-production-focused.

For example, machine learning projects for research papers are often non-production focused and do not require DevOps

operations. In contrast, machine-learning-based software projects are production-focused because they integrate and

operationalize models.

The exploratory and experimentation-oriented nature of machine learning projects significantly differs from traditional

software engineering. The workflow diagram in Fig. 1 contains a linear progression from requirements analysis to DevOps

stages; however, machine learning workflows are typically non-linear and include multiple feedback loops (indicated by

the upward arrows) [3]. These feedback loops reflect the multiple experiment runs (a.k.a experiment iterations) often

performed during machine learning model development. A run refers to a one-time cycle through the relevant workflow

stages, often resulting in a trained model. Each run employs specific assets’ versions (e.g., datasets, hyperparameters,

source code) within the solution space of a particular task. The machine learning workflow relies on the multiple runs of

trial-and-error steps due to the unpredictable nature of machine-learning model performance [3, 15, 88].

Consequently, experiment runs are repeatedly performed while modifying or using new assets until the process results

in a model that meets a specific target objective [6]. Such modification includes adding, removing, or engineering features,

changing learning algorithms, testing different hyperparameters, and using various performance evaluation metrics. The

decision to perform new runs is usually based on the result analysis of a current run and its model. Maintaining the

provenance of the assets and processes used during these runs is essential to address important management concerns of

machine learning model development. Also, during the DevOps works (deployment, monitoring, and control of models),

there is often a need to modify and make new experiment runs based on newly available data or drift corrections to ensure

models stay within the target objective’s course.
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Training, Tx Algorithm, Ax

(Hyper)-
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Model, Mx

Testing, Ex

Prediction, Px

Performance 
measure, Mx

Pre-model phase Post-model phase

Analysis, Yx

Fig. 2. Representation of a supervised machine-learning experiment run

Figure 2 illustrates different asset types that can be modified within the solution space of a specific run. Model training

involves training datasets, features, learning algorithms, and hyperparameters. In contrast, the model evaluation involves

test datasets, models, predictions, and performance measures. The need to carry out multiple runs is often based on the

analysis Yx of model requirements and resulting model performance Mx when tested with dataset Ex; however, a user may

use other requirement metrics to decide if a new run is required. A manual or automatic approach may be employed to

find the best performing combinations of the asset versions over several runs. The manual approach follows user-intuitive

decisions on necessary step-by-step modifications for new runs. In contrast, the automatic approach systematically

searches a pre-defined portion of the solution space (e.g., a set of hyper-parameters range) for each run—for example,

optimization experimentation using training loops. Regardless of the employed approach, several experiment runs are

often performed before arriving at the experiment’s goal. The need for asset management support is often attributed to the

complexity and time overhead that arises with manually managing the large number of asset versions resulting from the

multiple exploratory runs [36, 71, 82].
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2.1.1 Challenges of Asset Management in Machine Learning Experiments The challenges encountered during

machine learning experiments are often related to the lack of explicit tooling support to address experiment management

concerns, including reproducibility [7, 46, 78], replicability [14, 24], traceability [59], explainability [16, 67], interpretabil-

ity [17, 31], collaboration [89], and auditability [68]. In what follows, we conceptually describe different challenges of

asset management for machine learning experiments.

Standardized management methods. There is a lack of standardized and explicit management methods to store, version,

or operate the machine learning assets. Users rely on ad hoc approaches that may limit their efficiency during model

development. For example, it may be difficult to reuse or compare assets, operations, and techniques across multiple

projects [3]. The varying asset type formats (e.g., different language codebases, model, data, and metrics formats)

contribute to this challenge and limit knowledge transfer regarding asset management across various projects.

Researchers recently started developing approaches for fostering interoperability and reuse of machine learning assets

across multiple projects. For example, Mitchell et al. propose a generic framework intended to increase the transparency

of models across different application contexts and stakeholders [58].

Tracking assets and operations. Tracking machine learning assets and operations, their versions, and the decisions

engaged from one specific run to another are vital for effective machine learning asset management. Tracking the assets

and their corresponding information serves as a foundation to support different machine learning concerns. For example,

snapshots of assets, operations, and decisions should be captured per experiment run to enable support for traceability and

audibility on factual questions such as: what version of a particular asset was used for a specific experiment run? or what

operations or thought processes were considered at a specific point of an experiment?

Domain-specific operations. Asset management operations should be offered at the right abstraction level. Similar

to how traditional software IDEs support representation and querying of code artifacts (e.g., functions, variables, and

interfaces), machine learning asset management needs to offer domain-specific asset operations on abstraction levels

specific to machine learning. For example, it should allow querying for data features or hyperparameters used in a

specific run with model evaluation values as conditions. Such operations can be supported through dedicated artifact

meta-models [37].

Managing experiment concerns. Acquiring effective methods to address experiment concerns such as reproducibility,

replicability, and traceability has the potential to improve model development processes. However, there is a lack of

adequate tools that explicitly support such concerns. For reproducibility, apart from dataset and code, essential experiment

dependencies such as random seeds (for non-deterministic experiments) have to be systematically captured during the

experiment to offer developers the possibility to reproduce experiments. Traceability is an important concern requiring

systematic tracking and querying of machine-learning assets to trace operational models’ behavior to concrete experiments.

Users and collaboration. Collaboration between multiple developers is a ’soft challenge’ when working on machine

learning experiments. This is partly due to the lack of suitable tools and workflows. Currently, collaborations between

machine learning developers primarily involve sharing experiment resources or resulting models and performance metrics.

We believe that better tools suited for specific machine learning assets have the potential to improve collaboration

opportunities for developers. For example, versioning tools that support merging and branching for different asset types,

including models, can foster teamwork and asynchronous or concurrent collaboration among developers.
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Comparing, analyzing, and interpreting results. A great deal of machine learning result analysis requires the use of

visualization for easy explanation and interpretation. Hence, the ability to effectively infer decisions and conclusions from

the obtained result is comparable to explicit tools’ support in analyzing and comparing such results. Users often require

comparison across multiple runs to select appropriate models. Consequently, interpretability [17, 31] of experiment

results and explainability [67] of models are essential concerns that can benefit from addressing challenges in comparing,

analyzing, and interpreting outcomes of machine learning experiments.

2.2 Machine Learning Assets and Asset Management

Conventionally, the term asset is used for an item that has been designed for use in multiple contexts [47], such as a

design, a specification, source code, a piece of documentation, or a test suite. Machine learning practitioners and data

scientists often use the term artifact to describe different required resources during model development. These artifacts

qualify as assets in the machine learning context because of the experimental nature, which requires keeping artifacts for

future use. Conventional software engineering primarily deals with source code artifacts and, therefore, often has fewer

asset types than the engineering of machine-learning-based systems. In contrast, machine learning includes additional

artifact types, such as datasets, models, hyperparameters, and model evaluation metrics [32]. Consequently, we describe

machine learning assets as individually storable units serving specific purposes in a machine learning workflow.

In the current state of practice, it is tempting to adopt traditional software engineering techniques such as VCS

to address some of the highlighted asset management challenges. However, such tools were not designed to manage

machine-learning-specific assets nor support the intuitive and exploratory development approach of developing machine

learning components. Consequently, to address the asset management challenges, there is a need for explicit management

tools and methods that offer systematic ways to collect, organize, and manage assets used during model development and

post-model creation.

In this light, we define asset management as an essential discipline to facilitate the engineering of machine learning

experiments and machine-learning-based systems in general:

Definition 1 (Asset Management). The discipline of asset management comprises methods and tools for managing

machine-learning assets to facilitate activities involved in the development, deployment, and operation of machine-

learning-based systems. It offers structures for storing and tracking machine learning assets of different types, as well as

operations that engineers can use to address practical management concerns.

This definition emphasizes that establishing effective asset management requires efficient storage and tracking structures

(e.g., data schemas, types, modular and composable units, and interfaces) as well as properly defined operations, which

can be of different modalities (e.g., command-line tools or APIs allowing IDE integration). Asset management extends

to activities in practice areas, including dataset management, model management, hyper-parameter management, process

execution management, and report management.

Several classes of supporting tools are currently available for use during machine learning model development. Silva et

al. [21] classify the group of supporting tools used by machine learning users into five non-exclusive categories based on

their main functionality: (a) data management systems, (b) model development systems, (c) systems for the management

of machine learning model lifecycle, (d) systems for the management of machine learning models, and (e) model serving

systems. We briefly explain these categories and discuss their asset management capabilities in the following paragraphs.

Data management. The quality of datasets used in a machine learning model development plays a crucial role in the

model’s performance. Therefore, data understanding, preparation, and validation are crucial aspects of machine learning
Manuscript submitted to ACM
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engineering. In this management area, tools (e.g., OrhpeusDB) focus on the machine learning lifecycle’s data-oriented

works and provide operations such as tracking, versioning, and provenance on dataset assets.

Model development. Management tools in this area focus on model-oriented works of the machine learning lifecycle.

They provide supervised and unsupervised learning methods, such as classification, regression, and clustering algorithms,

to generate and evaluate machine learning models. The machine learning community has mainly focused on model-oriented

work, as witnessed by an extensive collection of available systems, frameworks, and libraries for model development

(e.g., PyTorch, Scikit-Learn, or TensorFlow).

Lifecycle management. Management tools in this category focus on all the machine learning lifecycle stages and

provide management support for all asset types produced during those stages. These include experiment management

tools (e.g., MLFlow, Neptune) and pipeline management tools (e.g., KubeFlow).

Model management. These tools provide more specific support for managing already produced machine learning

models. Such support includes the efficient storage and retrieval of models, model selection, and model comparison.

Model serving. Tools under this area focus on model operation. They provide efficient storage and retrieval of models

to support the deployment, monitoring, and serving process. They provide information on the lineage of related assets and

various evaluation performances of models (e.g., ModelDB).

There are overlapping asset management functionalities across the different categories described above. According to

Silva et al.’s classification, experiment management tools—the focus of this study—fall under the category of machine-

learning lifecycle management tools. Our description of the machine learning lifecycle, machine learning experiments,

and assets management also apply to deep learning, a family of machine learning based on artificial neural networks [8].

In fact, some experiment management tools specialize in support for deep learning. Machine learning experiments are a

core aspect of machine-learning development. Consequently, the rest of this paper focuses on the experiment management

tools as our subject tools because they support users with asset management support during experimentation.

3 Methodology

We now describe our methodology for identifying and analyzing our study subjects: state-of-research and state-of-practice

tools with asset management support. We describe our research questions, the data sources we used to identify our

subjects, the selection criteria, and how we extracted data from the literature and tools’ documentation to analyze our

subjects.

3.1 Research Questions

In this study, we addressed the following research questions:

RQ1 What are the machine learning assets tracked and managed by state-of-research and state-of-practice tools?

The essential machine learning asset types used during model development include the dataset used in training

machine-learning models, the scripts used in pre-processing data, and the scripts used in training and evaluating

the models. However, additional information can be considered, as tools may offer various distinct management

capabilities. Here, we analyzed our subject tools and tried to understand the various asset types they support.

RQ2 What are the mechanisms offered for collecting the assets?

Without dedicated tool support, users need to adopt manual and ad hoc methods to collect and store assets. Machine
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learning tools offering asset management capabilities should help to reduce this manual effort. We analyzed our

subject tools to identify how users can interact with them to collect the supported assets.

RQ3 How are the assets stored and version-controlled?

Similar to RQ2, we aim to identify the storage types offered by the tools. Here, we investigated how machine

learning assets are stored relative to the tools and determined the versioning capabilities offered by the tools.

RQ4 What are the management operations offered to users by the tools?

We analyzed our subject tools to identify the asset operations that they offer to users. We expected that the tools

offer management operations based on the asset management area they address or the supported asset types. For

example, tools that track datasets will likely have data-related operations, while those that support models may

provide operations such as evaluation and reproducibility of models.

RQ5 What are the commonalities and variations between the state-of-research tools and the state-of-practice tools?

Expanding on the answers for RQ1–RQ4, we aimed to understand the variabilities and commonalities between our

subject tools as found in the research literature and in practice.

The research questions RQ1–RQ5 were triangulated from two sources—tools used in practice and tools found in

research publications.

3.2 Collecting State-of-Research Tools

We conducted a Systematic Literature Review (SLR, [49]) to select the relevant literature and qualitatively analyze it to

answer our research questions.

3.2.1 Selection Criteria As proposed by Kitchenham and Charters [49], we describe the inclusion and exclusion criteria

used in this survey to filter and define the scope of tools that we analyzed. Our selection criteria ensured that we considered

relevant literature that proposed tools with machine-learning asset management support in line with our research questions.

We defined the following inclusion criteria (IC):

IC1 Written in English.

IC2 The paper presents a tool or prototype tool for managing machine learning experiments.

In addition, we defined the following exclusion criteria (EC):

EC1 The paper was published more than five years ago.

EC2 The paper does not mention machine learning or deep learning (or their corresponding abbreviations) in its title or

abstract.

EC3 The paper proposes specialized management tools with a complete focus on one machine learning asset type, e.g.,

dataset-specific or model-specific management tools.

EC4 Papers about tools popularly used in practice, e.g., TensorFlow Extended, MLFlow

EC5 Conceptualized tools, e.g., Gypscie [21]

EC6 Literature with too few details to provide adequate answers to our research questions, e.g., [74]

The reason for exclusion criteria EC1 was that, for this part of our methodology, we were only interested in capturing

the current landscape of state-of-research tools.
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3.2.2 Search Strategy For our literature search, to mitigate the chances of missing relevant literature, we relied on

multiple data sources. We started with literature known to us from our expertise in the field, followed by snowballing, and

lastly, searches in bibliography databases.

Knowledge (Source1) As our first source, we selected publications that we knew and deemed relevant for machine learning

asset management. Our knowledge and experience of machine learning and its application [1, 5, 40, 42, 43, 66, 76] guided

this selection. We applied our selection criteria (described shortly) to arrive at five publications from this source. These

publications are marked with a K in Table 1.

Snowballing (Source2) Using the five selected publications from Source1, we performed a backward and forward

snowballing search to identify further publications concerned with our research objectives. We limited the backward

snowballing search scope by publication year described in our selection criteria, which implies that the earliest publication

dates of our snowballing search results were from 2016. We identified 52 related papers through this source and arrived at

additional seven publications after applying our selection criteria. These publications are marked with SB in Table 1.

Literature Search (Source3) We carried out a manual literature search from different sources. We used DBLP, ACM

Digital Library, and Google Scholar as search engines, together with various search terms based on our research questions.

We put in a comprehensive effort to experiment with different search terms, aiming to mitigate reliability issues and

possible challenges in replicating our study. We derived these search terms from known relevant literature (as per Source1

and Source2). Beyond the final set of terms (discussed below), we experimented with additional ones iteratively. First, we

experimented with the terms "asset" and "asset management." However, these did not produce any relevant results: in the

context of machine learning, "asset management" is a new term coined in our work. Second, we experimented with the

keywords "process," "operation," and "platform." These searches only lead to redundant results already covered by the

known literature, as well as unrelated tools that do not support experiment management and were, therefore, excluded.

Using the combination of results from Source1 and Source2, we identified final key terms such as "lifecycle manage-

ment," "experiment management," and "model management." We based our literature search queries on these terms. First,

we carried out a title search on DBLP using the query

Q1 - ("machine learning" | "deep learning") & ("lifecycle" | "model" | "experiment" | "data" | "metadata") &

"management."

From this search, we obtained 75 matches. In contrast to DBLP, the ACM Digital Library allows searching on abstracts as

well. We queried it using:

Q2 - ("machine learning" OR "deep learning") AND ("lifecycle" OR "model" OR "experiment" OR "data"

OR "metadata") AND "management."

From this search, we obtained 586 results. A title scan was carried out on search results to select literature relevant to our

research objectives. This was followed by an abstract and content scan when necessary to determine the relevancy of the

literature. We found no new publication after applying our selection criteria.

3.3 Collecting State-of-practice Tools

We were also interested in analyzing tools used in practice for their asset management support. Most tools do not have

related scientific publications; consequently, we collected the relevant tools from the grey literature.
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Table 1. The state of research subject tools

Subjects Source Ref Venue

ModelHub K [54, 55] ICDE
Runway K [79] MLSys
ModelDB K [82] MoD
Deep-water K [27] SoftwareX
ModelKB K [28, 29] MoD
DeepDiva SB [2] ICFHR
Declarative SB [70, 71] NIPS
Vamsa SB [61] KDD
DLHuB SB [18] IPDPS
ModelOps SB [39] IC2E
Pdmdims SB [65] CLOUD
CANDLE SB [86] CAFC

Table 2. The state of practice subject tools

Cloud Service Software

Neptune.ml (netptune.ml) Datmo (github/datmo)

Valohai (valohai.com) Feature Forge (github/machinalis)

Weights & Biases (wandb.com) Guild (guild.ai)

Determine.ai (determined.ai) MLFlow (mlflow.org)

Comet.ml (comet.ml) Sacred (github/IDSIA)

Deepkit (github/deepkit) StudioML (github/open-research)

Dot Science (dotscience.com) Sumatra (neuralensemble.org)

PolyAxon (polyaxon.com) DVC (dvc.org)

Allegro Trains (github/allegroai) Codalab (worksheets.codalab.org/)

Access date: Aug. 2021

3.4 Selection Criteria

Our selection criteria here ensured that we consider the most relevant tools used in practice for machine learning asset

management, in line with our research questions. We defined the following inclusion criteria (IC):

IC1 Well-documented tools with enough available details to address our research questions

IC2 Tools used for management of different asset types involved in machine learning

IC3 Tools with meaningful prominence measured by at least 25 GitHub stars

In addition, we defined the following exclusion criteria (EC):

EC1 Specialized management tools such as dataset-specific or model-specific management tools.

EC2 General or multipurpose computational workflow or provenance management tools that are not specifically designed

for machine learning

EC3 General machine learning framework or model development tools

3.4.1 Search Strategy For selecting tools with machine-learning asset management support used in practice, we used

the Google search engine as our primary data source. Our query was:

("machine learning") AND ("artifacts" OR "experiments" OR "lifecycle") AND ("provenance" OR "version-

ing" OR "tracking") AND "management" AND ("framework" OR "tool" OR "platform").

From this search, we obtained 181 results. It is important to note that, as a well-known phenomenon of Google search, we

obtained an initial result of over two million counts, which later decreased to 181 after navigating to the last result page.

After applying our selection criteria, we arrived at 17 different tools. To ensure that we have selected the most relevant

state of practice tools, we identified surveys [27, 46, 83] of related tools and checked their surveyed tools against our

selection.

We included one additional tool—Codalab—based on personal experience, resulting in the final 18 tools used in

practice.

The final result of the overall selection process is presented in Tables 1 and 2.
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3.5 Data Analysis

This study aimed to characterize our subject tools using features [9] and to represent them in a feature model [48, 62]. For

the selected state-of-practice tools, we considered relevant information found in their publicly available documentation.

In a few cases, we had to test the tools for their available functionality when needed practically. For each state-of-research

tool, we considered the information provided in the corresponding literature to answer our research questions.

The analysis process was divided into different stages to study all our subjects’ features and build a feature model. First,

we performed an initial analysis of a single state-of-practice tool to identify its supported machine learning asset types, the

asset collection approaches, the storage options, and supported asset operations. We partly established the terminologies to

be used in our models. We also arranged the established features according to perspectives based on the subject tools’ sup-

port and use-cases. This led to a baseline version of our feature model. Second, we iteratively evaluated additional subjects

while modifying terminologies and the model structure to accommodate variations from the new tools being assessed. After

completing the analysis for state-of-practice subjects, we carried out a similar analysis for the state-of-research subjects.

One author read the literature selection and mapped their features to those found in the latest state-of-practice feature

model, leading to extensions of the feature model for those features that could not be mapped that way. Finally, at the

end of the final iteration, all authors met to review the latest structure for direct feedback on terminologies used and the

outcome feature model.

4 Asset Management Features

We propose a feature model–—outlined in Figures 3 to 7–—to characterize and describe the machine learning asset types

and the management support found in our subjects. In what follows, we refer to the features using a typewriter font

style. The top-level features—Asset Type, Collection, Storage, and Operation—capture the core functionalities

of the subjects in our study and correspond to our research questions RQ1–RQ4, while Table 3, Table 4, and the associated

text answer the research question RQ5. As described in the following subsections, Asset Type outlines the data types

that are tracked by our subjects; Collection describes how the assets are collected; Storage explains how the assets

are stored and versioned; Operation specifies what operation types are supported.

4.1 Asset Type (RQ1)

Unlike traditional software engineering, whose primary asset type is source code, machine learning has more diversified

asset types, such as datasets, hyper-parameters used in training, transformation codes, trained models, and evaluation

metrics. The supported types vary between our subject tools, with different levels of support. For example, some subjects

only track explicitly declared asset metadata, while others can automatically store assets. On a high level, the primary

asset types commonly associated with machine learning are datasets, source code, and generated models.

However, our subject tools provide more specialized support for different asset types to users. Hence, we define Asset

Type s as the set of data types recognized or tracked by our subjects. Particular asset types can be supported either

explicitly or implicitly. For implicit support, a tool could allow the user to specify asset types by declaring meta-data,

such as available column labels, dimensions, and data sources. Both explicit and implicit supports allow the subject tools

to offer operations such as tracking, which can help answer provenance questions, such as "what is the source of the

dataset?"

On the other hand, some subject tools store the assets and their attributes internally and offer operations such as asset

versioning. As shown in Fig. 4, our analysis identifies features Resources, Software, Metadata, and ExecutionData
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Fig. 3. Main machine learning asset management
features.
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Fig. 4. Asset Types: A representation of the data types tracked by the subjects
under study.

as the sub-features of Asset Type. Resources represent the core asset types of the machine learning workflow. In

contrast, Software refers to the implementation responsible for changing the states of these assets. The metadata and

structured information about Resource and Software are detailed as well. The Executiondata are information about

the execution of machine learning runs and the outcome of such runs.

4.1.1 Resources: Resources are commonly referred to as artifacts by many of the subject tools. We describe

Resources as the asset types required as input or produced as output from a stage of the machine learning workflow (see

Fig. 1). We identified features Dataset, Model, and Generic as the sub-feature of Asset Type. We identified Dataset

and Model as the most critical resource types. The data-oriented stages of the machine learning workflow usually require

a dataset as input and output a transformed version of it. The model-oriented stages deal with models as output and input

data for the training and testing stages. The DevOps stages also involve serving models and ingesting data for learning

inferences. We classify other assets under Resource as Generic. The tools often track such generic resources as arbitrary

resources. For example, some subject tools such as MLFlow and Neptune provide a log_artifact method to track any

arbitrary file used during an experiment. Some subject tools track resources through their metadata and do not necessarily

support the actual resource type (e.g., pointer information to location and the hash of data stored locally or on remote

cloud storage systems). For example, DeepDiva [2] manages datasets by providing paths to the file directory containing
Manuscript submitted to ACM
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the datasets. Other subject tools provide at least one dedicated method to track, provide resource-type-specific support,

and sometimes internally store the resources. We only consider the latter to support resources fully. As an example, the

subject PolyAxon allows users to use log_dataframe to track and store a dataset asset type.

Dataset: The feature Dataset is available for subjects that identify datasets as an asset type. Data is the core asset

type in machine learning since its quality plays a major role in the performance of a machine learning component. Hence,

the machine learning workflow stages of data collection, data transformation, feature extraction, model training, and

evaluation are data-dependent. The presence of the feature Dataset implies that the subject tool supports the tracking of

datasets along with experiment-associated assets to provide dataset provenance.

We found that most of our subjects, such as ModelHub, Runway, Deep-water, Neptune, and Sacred, require users

to explicitly track operations, such as pre-processing or feature engineering carried out on the datasets. The supported

dataset usually ranges from database-based data to file-based data such as spreadsheets, CSVs, or streaming datasets. For

example, Deep-Water [27] allows users to provide CSV-based datasets as the training or test datasets, while tools such as

Vamsa [61] support Panda1 Dataframes and automatically collect information about the Dataframes from Python scripts.

Model: Machine learning models are created by learning from datasets using learning algorithms. The latter are

typically provided by machine learning development frameworks, such as TensorFlow2 and SciKit-Learn3. The feature

Model is available for the subjects that identify models as an asset type. Like datasets, most subjects support direct or

indirect tracking or storing of models and their metadata to support asset management operations such as provenance

analysis. Support for the feature Model is required for certain operations, such as the model comparison from different

experimental runs or management of model evolution through different stages. Some subjects, such as ModelHub [54, 55],

offer model storage and its efficient retrieval as their primary functionality, while other subjects, such as Runway [79] and

ModelKB [28, 29], primarily track models and their metadata for post-experiment result analysis.

Generic: The presence of the feature Generic indicates support for tracking and managing any resource files

used during machine learning workflows, typically for resources required along with datasets and models. Examples

include credentials for authentication in external services that host other resources. In addition, several subjects lack

dedicated support for tracking Dataset or Model types; instead, they provide a "one-size-fits-all" tracking of resources.

Consequently, subjects with feature Generic can track all binary files of any type that are required or generated during

an experiment, without differentiating them or providing dedicated operation beyond storage.

4.1.2 Software: Traditional version control systems (VCSs), such as Git, are essential source code management tools.

The engineering of machine-learning-based systems partly involves managing the source code used to implement the

machine learning operations. Users often try to balance managing assets with traditional VCSs versus using alternative

approaches tailored toward machine learning workflow. The exploratory working style of data scientists and machine

learning practitioners challenges the effective use of traditional VCSs to manage assets when engineering machine learning

systems [6]. The pain points of data scientists and machine learning practitioners when versioning their source code also

motivate the need for a different approach to machine-learning software asset management. The feature Software refers

to implementation assets of the machine learning process, such as SourceCode, Parameter, and Notebook, which are

typically involved in the implementation of stages of the machine-learning workflow. This feature heavily relies on the

1https://pandas.pydata.org
2http://tensorflow.org
3http://scikit-learn.org
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machine learning model development tools (e.g., SciKit-Learn,4 PyTorch,5 TensorFlow,6 and Keras7) that provide a

collection of general machine learning techniques to users.

Source Code: This feature represents support for text-based files with implementation to carry out specific machine

learning operations. Managing source code (or scripts) is generally less challenging than notebook formats for functional

and large-scale engineering of machine-learning-based systems because of available IDEs to support code assistance,

dependency management, and debugging [19]. Source code consists of text-based files; therefore, it is easily version-

controlled using traditional VCSs. Consequently, about 70% of our subjects track source code via metadata, which we

represent by CodeMetadata. Other tools provide an integrated source code management approach: for example, DVC

builds on Git and provides new commands tailored toward managing source code along with other machine learning

assets.

Parameter: Hyper-parameters are parameters utilized to control the learning process of a machine learning algorithm

during the model training (e.g., learning rate, regularization, and tree depth). Some subjects track hyper-parameters to

facilitate the analysis of experiment results. Some subjects (e.g., Comet, Polyaxon, and Valoh.ai) provide hyper-parameter

tuning and search features to facilitate the model-oriented stages of a machine learning workflow. In addition to hyper-

parameters, the asset type Parameter also represents other configurable parameters that users may require to influence

their machine learning workflow.

Notebook: Similar to source code, notebooks contain the implementation to carry out specific machine learning tasks.

Notebooks, written in multiple execution cells, are usually used for small-scale, exploratory, and experimental machine

learning tasks, where it is difficult to achieve acceptable software engineering practices, such as modular design or code

reuse. Notebooks (e.g., Jupyter [50]) are crucial for reproducible machine learning workflows that require literate and

interactive programming. The feature Notebook indicates the support to track notebooks as an asset type. The feature

Notebook is available in 6 state-of-practice tools, and none of the state-of-research tools provides explicit management

options for notebook formats.

4.1.3 Metadata: Conventionally, metadata allows the semantic description of entities. In our context, as a sub-feature of

the Asset Type, Metadata represents the descriptive and structural static information about core assets, including ma-

chine learning experiments and their associated resource assets. These include information such as name, version and URI.

We identified the sub-features of Metadata as Experiment, DatasetMetadata, CodeMetadata, and ModelMetadata.

Experiment: The feature Experiment represents the main asset type with which other asset types are associated.

It is the core abstraction of experiment management tools. Other assets that our subjects track are often associated

with an experiment. This feature presents the book-keeping record of different runs performed for a machine learning

experiment.

DatasetMetadata: This feature represents support for tracking the state of datasets used in a machine learning workflow.

It represents dataset-related information, such as data location, data origin, version id, data schema, and data frame

structure.

4https://scikit-learn.org/stable/
5https://pytorch.org
6https://www.tensorflow.org
7https://keras.io
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CodeMetadata: Since source code is traditionally well handled by existing VCSs such as Git, many of our subject

tools allow users to manage SourceCode through the traditional VCSs by tracking their metadata, such as the repository

name, link, and commit hash.

ModelMetadata: This feature represents support for tracking the metadata of models generated or used in a machine

learning workflow. It represents model-related information, such as model author, creation date, input attribute schema,

and details about the model-generating source code.

4.1.4 ExecutionData: This feature represents execution-related data that the subject tools track explicitly or automati-

cally before or during the execution of a machine learning experiment. We identified dependency, job, ExecutionMetadata

and ExecutionResult as sub-features of ExecutionData.

Dependency: Tatman et al. [78] reveal that sharing an environment with source code and dataset provides the highest

level of reproducibility. Consequently, some subjects, which support experiment reproducibility, track and manage required

dependencies to reproduce models or rerun experiments. The feature Dependency helps users track data on systems’

Environment information, such as environment variables, host OS information, or hardware details; Container such

as Docker8 containers; and required Libraries and versions used for an experiment. Some subjects leverage unique

environments and dependency management systems such as Conda9 to track and manage dependency information.

Jobs: The feature Job represents the execution instructions of a machine learning experiment and how associated assets

defined by Resources and Software should be used during execution. There is usually a ’one-to-one’ or ’one-to-many’

relationship between an Experiment and its Jobs. We describe the feature Job as a Stage or a Pipeline, where a

Stage represents a single stage of the workflow, and Pipeline represents a sequence of multiple stages. Listing 1 shows

the representation of a stage and pipeline in the subject DVC. The use of Command Line Interface (CLI) commands as

execution instruction by some subjects also qualifies as a form of Job representation.

– A Stage is a basic reusable phase of a machine learning workflow, as illustrated in Fig. 1. Stages are defined with

pointers to their required assets, such as the source code, parameters, and input resources, such as datasets.

– A Pipeline represents a reusable relationship between multiple stages to produce machine learning workflow variants,

as described in Fig. 1. Subjects with support for workflow allow users to define pipelines as dependency graphs, which

use input and output resources as dependencies between stages. In Listing 1, a dependency graph is illustrated with a

featurize stage, which depends on the output of the prepare stage.

ExecutionMetadata: This feature represents all information about the execution process that the subject tools capture

while the experiment execution is ongoing. Data commonly tracked as ExecutionMetadata include hardware consump-

tion, execution states, events, and console logs. Examples of the information under hardware or system consumption

include CPU, GPU, and memory utilization for experiment tasks, while execution states indicate the progress or status of

ongoing or completed experiments. Events may be used for notifying users of essential activities during model training,

especially for long training processes. Console logs such as stderr and stdout are captured when executing machine

learning experiments.

ExecutionResult: This feature represents the assets generated as the results of an experiment or different experiment

runs. ExecutionResults are often associated with the model training stages of an experiment. This refers to the
8https://www.docker.com
9https://docs.conda.io/en/latest/
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stages: # Pipeline

prepare: # Stage

cmd: python src/prepare.py data/data.xml

deps:

- data/data.xml

- src/prepare.py

params: # Configuration

- prepare.seed

outs:

- data/prepared

featurize: # Stage

cmd: python src/featurization.py data/prepared data/features

deps:

- data/prepared

- src/featurization.py

params: # Configuration

- featurize.max_features

- featurize.ngrams

outs:

- data/features

Listing 1. An example representation of a Pipeline with two Stages in our subject DVC. This example defines two stages of an
experiment as prepare and featurize, and describes the entry point, dependency, parameters and outputs of each stage of the
experiment pipeline.

evaluation Metrics and Plots that are tracked in different forms based on machine learning tasks (e.g., sensitivity or

ROC values for classification tasks; MSE, MAPE, or R2 for regression tasks). Subjects provide specific methods such

as log_metrics or log_artifact (see Listing 2) to track performance metrics, including accuracy and training loss. These

metric values are either tracked as single value metrics or a series of metrics values in a training loop. Subjects employ

different approaches for collecting series values. For example, invoking log_metrics("metric-name", "value") multiple

times in a training loop will collect the "metrics-name" results as a series of data which can be summarized in dashboards.

Subject tools supporting metrics series value include Neptune, Valohai, Wandb, Determine AI, and DotScience. For model

training and data-oriented stages, assets of type Model and Dataset are the result indicating a relationship between the

feature ExecutionResult and feature Resources.

Our subject tools support software assets (including source code, notebooks, and parameters), resources (including

datasets, models, and generic resources), and various metadata. The commonly supported asset types are generic

files, parameters, experiment metadata, and execution results. Many of the subject tools support free-form generic

asset types and metadata, which implies limited out-of-the-box support for machine-learning-specific concerns.

What asset types are tracked by the subject tools? (RQ1)

4.2 Collection (RQ2)

The feature Collection, shown in Fig. 5, represents the options provided by our subjects to track the asset types we

identify in Section 4.1. The feature Intrusiveness shows the level of the explicit declaration required to collect the

assets. The feature Location represents the location where the subject tools collect the assets.
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# Collect a CSV-based dataframe object, 'df' using PolyAxon
log_dataframe(self, df, name, content_type='csv', step=None)

# Collect a model weights using Neptune

my_model = ...

touch.save(my_model, 'my_model.pt')

neptune.log_artifact('my_model.pt', 'model_checkpoints/my_model.pt')

# Collect a single metric value using Neptune

neptune.log_metric('test_accuracy', 0.76)

# Collect accuracy per epoch as series value using Neptune

for epoch in range(epoch_nr):

epoch_accuracy = ...

neptune.log_metric('epoch_accuracy', epoch_accuracy)

# Collect local variable of decorated function as experiment configuration using Sacred

@ex.config

def exp_parameters():

ccp_alpha = 0.1

n_estimators = 50

Listing 2. Examples of asset collection from source code using subject tools PolyAxon, Neptune, and Sacred. PolyAxon and
Neptune provide dedicated functions to track specific asset types like datasets, models, and metrics, while Sacred tracks variables
of a decorated function as experiment parameters.

Intrusiveness: This sub-feature describes the amount of instrumentation required by users to track assets. The

Intrusive collection is invasive and requires users to add special instructions and API calls in source code or de-

fine special configuration files to track desired assets. In contrast, the Non-Intrusive collection automatically tracks or

logs assets without the need for explicit instructions, API calls, or special files. Subjects with support for non-intrusive

asset collection, such as Neptune, MLFlow, Deep-Water [27] and ModelKB [28, 29], usually support a limited number of

machine-learning frameworks, such as Sci-Kit Learn, PyTorch, and TensorFlow. These subjects are designed to recognize

and interface with the supported frameworks to directly collected specific assets, such as hyperparameters, models, and

evaluation metrics.

Location: This sub-feature describes where the tool is instructed to collect assets. It can be collected from SourceCode

using predefined APIs, passed as arguments from CLI, extracted from execution Logs by parsing it, or read from

instrumented File system. The common collection point across the considered subjects is SourceCode, where the

subjects provide a library and API that users invoke to log desired assets within source code implementation. For

example, Listing 2 shows how the subject PolyAxon and Neptune are instructed through source code to collect datasets,

models, and performance metric assets. For collection at the CLI, subjects allow users to specify pointers to assets as

command arguments. For example, references to asset files can be passed via CLI. For the collection approach using

Logs, subjects collect assets by parsing the log output of experiment executions. For example, ExecutionResults such

as model performance metrics can be automatically extracted from logs generated by model training runs. With the

FileDirectory approach, subjects monitor assets from structured or instrumented file systems. Assets collected through

this method are usually Non-Intrusive since the tools automatically track changes to assets in the target file directories.
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Fig. 5. Collection feature model: A representation of collection
features used in tracking the asset types described in Section 4.1.
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Fig. 6. Storage feature model: A representation of the storage
feature identified in the subjects under study.

Some subjects allow users to specify details of asset location in special configuration files. For example, in Listing 1, the

DVC configuration file specifies the location of assets, such as datasets, source code, dependencies, and parameters.

The subject tools support both intrusive and non-intrusive asset collection methods. Assets are collected intrusively

through source code and otherwise, through CLI arguments and configuration files to collect assets from logs and

instrumented file systems. Subject tools offer collection methods specific to supported asset types or generic methods

for collecting assets of any type.

How are assets collected? (RQ2)

4.3 Storage (RQ3)

The feature Storage describes how the assets are stored and the versioning type supported by the subject tools. Figure 6

shows the sub-features of Storage.

Storage Type: The feature Storage is fundamental for our subjects, especially for cloud-based services, which provide

cloud storage capabilities for machine learning assets. We identify File System, Database, and Repository as the

storage types of our subjects. The File System type is the simplest storage type provided by our subjects: tools store

collected or tracked assets as objects on file systems. The Database type provides a more structured internal storage

option using existing database systems such as RDBM. The Repository type represents storage with version control

support. Some subjects, such as ModelHub [54, 55] and DVC, provide custom VCSs with similar functionality like

general VCSs, such as Git. It is a common practice to store source code in repositories. Consequently, many of our

subjects delegate the storage of assets, such as source code, to third-party repositories.

Limitations on storable asset sizes are usually not explicitly addressed in our data sources. The publications on

state-of-research tools often focus on their proposed functionality. The lack of explicit attention to storage size may be

attributed to data storage being cheap [23]. Similarly, many state-of-practice tools offer paid versions where users can pay
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to extend storage sizes according to their needs. For local storage, it is the user’s responsibility to manage the availability

of sufficient storage.

Storage Placement: The placement of stored assets can either be Internal or External in relation to the subject

tools. For assets stored internally, the subjects store and fully manage the assets. External indicates that assets are

not stored within the subject tool and are usually stored remotely. Externally stored assets are usually tracked through

identifier pointers and can be transferred or fetched for processing on demand. This option is suitable for large files

and scenarios where users require easy access from cloud-hosted services, such as notebooks and cloud computing

infrastructure. In many cases, subject tools offer ways to store assets internally and externally. For example, Metadata

are commonly stored internally, while Resources are stored externally.

Versioning: The support for Versioning is required to track the evolution of assets by keeping versioned assets during

the machine learning workflow. Traditional VCSs work well for typical source code repositories due to code files being

small and text-based, but are not ideal for large datasets and models. Versioning represents the versioning strategies

used in our subject tools. This feature is supported either by storing copies of assets for each time they are modified

(Asset copies), storing the deltas between assets for space efficiency (Asset delta), or versioning pipeline metadata

to reproduce assets (Pipelines). Storing copies of assets is an easy-to-implement versioning strategy, which is employed

for direct copies of assets with different naming conventions, such as semantic versioning [52]. However, storing copies

of assets is highly inefficient due to the ratio of changes to additional storage demand, especially in large files and assets.

Instead, storing the delta between different asset versions offers an efficient alternative. Rather than storing and versioning

Resource assets used, the Pipeline versioning only stores and versions pipeline metadata, which can later recreate

derived assets on demand by replicating a particular experiment run.

The assets are either stored in file systems, databases, or repositories, either internally or externally, while assets

are version controlled by storing copies of assets, the delta between changes, or versioning pipelines to recreate

derived assets. Asset storage support ranges from small cases requiring storage on local systems to large-scale

projects requiring remote storage infrastructure for large-sized assets.

How are assets stored? (RQ3)

4.4 Operations (RQ4)

We identify several primary operations supported by our subjects and represent them by the feature Operation. The

Track and Explore operations are common features supported by all subjects. Figure 7 shows the sub-features of

Operation.

Track: Tracking of machine-learning assets is the core feature offered by the subject tools. Our subject tools track

either assets or metadata about them. For intrusive collection, users choose what assets to track during machine learning

experiments, whereas for non-intrusive collection, tools automatically track specific assets from supported machine

learning frameworks. The subject tools organize the tracked assets and metadata to help users address different concerns

such as traceability raised in Section 2.1.1.

Version: The feature Version indicates support for versioning-related operations similar to the conventional VCS like

Git. For example, where Tracking simply captures, and stores selected assets during experiment runs, Versioning is a
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Fig. 7. Operation feature model: A representation of operations offered by the subjects under study.

step beyond tracking assets, as it provides Git-like operations such as commit, revert, and branch to create and recover

checkpoints of assets. Models, datasets, and pipeline metadata are the most commonly supported assets for versioning.

Essential versioning support allows users to commit a new version of assets and revert to earlier versions.

Explore: The feature Explore represents operations that help derive insight or analyze assets collected from completed

machine learning experiments. Our subject tools support users in various ways to Query assets, from simply listing all

experiment assets to advanced selection based on model performance to compare different experiment iterations or runs.

Visualize indicates the use of graphical presentations (e.g., charts and graphs) of experiments and their associated

assets, such as pipelines, parameters, and performance metrics at different points in time.

Retrieve: Retrieving stored assets for further use is an essential operation. Whereas most of our subject tools allow

users to retrieve stored assets for post-model-creation analysis, such as traceability, retrieving assets is important to
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support the reuse of machine learning assets. For example, derived assets from an earlier experiment run (e.g., transformed

datasets) can be fetched for further transformation or used for evaluating a model from another experiment run. The most
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supported approach to Retrieve or access stored assets is by GUI-based Dashboards to explore, visualize, and compare

experiment results. Other means of access include API, which provides REST interfaces or programming language APIs

to access assets stored by the subject; feature CLI exists for subjects that provide CLI commands for asset management.

Execute: The feature Execute indicates operation support that allows subject tools to manage the execution of

machine learning experiments. The tools allow users to specify the entry-point to invoke their experiments. The features

Run and Reproduce allow the execution of new and the reproduction of prior experiments, respectively. For example,

some subjects, such as ModelKB [28, 29], offer the feature Reproduce by providing functionality to package machine

learning models along with their metadata and required resources into a reusable format. The feature Multistage

indicates support for multistep execution, which is required for tools supporting the execution of multistage machine

learning experiments. Similarly, the feature Distributed indicates support of the tool to leverage parallel and distributed

computing resources when executing machine learning experiments. Multistep and Distributed features are usually

found in tools with support for managing and automating the execution of experiment pipelines.

Manage: While some subjects treat specific asset types as immutable, where any update to existing assets results in

new versions, other subjects supporting the feature Modify allow some level of modification or removal to revise already

stored assets. The amount of data generated from machine learning experiments over time can be significant. Consequently,

some subject tools allow users to archive assets, such as models and datasets. We represent this feature as Archive. We

represent the support for hyperparameter search and tuning by the feature Parameter Search. Subjects support this

feature by providing common parameter search techniques, such as exhaustive space search, simple/multiple gradient

descent, random search, list search, and range search. Model-store-specific operations often target model management

between different lifecycle stages. For example, they support users in retrieving models for testing, serving, and deploying

efficiently. We represent this operation by the feature Model Registry. Some subjects support automating the machine

learning experiments or certain aspects of the machine learning lifecycle. We present this by the feature Automation.

Similarly, the feature Dependency represents the presence of dependency management, where dependencies are often

implemented as direct acyclic graphs.

Collaborate: This feature represents the presence of collaboration features, which are often targeted at teams that need

to share assets and obtain experiment results among the team members. Users can Share, Publish, Export, Import, or

Discover machine learning experiment outcomes or other assets.

At a minimum, all subject tools allow users to track assets, while 93% allow users to explore experiment assets

using queries and visualization for comparison and insights on experiment results. Other operations enable users

to retrieve assets manually or programmatically, reproduce experiments, manage stored assets, and collaborate by

sharing or publishing assets. Often the operations address one or multiple asset management challenges, including

reproducibility, interpretability, and collaboration.

What are the supported operations? (RQ4)

4.5 Comparison of State-of-research & State-of-practice Tools (RQ5)

We present the comparison of the features found in both state-of-practice and the state-of-research subjects in Tables 3

and 4. It is important to mention that state-of-research tools can be expected to have fewer features by design, since

they usually focus on a specific research problem, such as metadata tracking [70, 71]. The state-of-practice subjects
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support more asset types than the observed state of research subjects. All the state-of-practice subjects support the

tracking of generic resources, which implies that they can track arbitrary files. Both state-of-practice and state-of-research

subjects provide the option to track parameters or hyperparameters used during machine learning experiments. While

41% of the state-of-practice tools recognize and support tracking computation notebooks as an asset type, none of our

state-of-research subjects provides dedicated support for tracking computational notebooks. Both groups of our subjects

rely heavily on metadata describing machine learning experiments and their associated assets. Although all subject tools

support static metadata assets, we observe the presence of more metadata types for the state-of-practice subjects. Roughly

half of the subjects in each group support representation of workflows as stages and pipelines. Execution results are

supported and tracked by 58% of the state-of-practice tools and 50% of the state-of-research tools, while fewer subjects

track execution metadata.
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The asset collection method supported by most subjects requires users to instrument their source code. The collection

points for both groups are primarily through source code using programming APIs provided by the subjects. In addition,

the state-of-practice subjects notably provide alternative asset collection from the command line or the use of instrumented

file systems. The tracked assets are mostly stored in file systems for the state-of-practice subjects, while the state-of-

research tools primarily employ databases. Only a few subjects, such as ModelHub, Runway, DVC, and DotScience,

employ custom or reuse traditional version control for internal asset storage. The common versioning strategies used in

both groups are based on creating copies of assets. The use of pipeline versioning is also prominently found among the

state-of-practice tools.

All state-of-practice and state-of-research subjects allow users to track the supported asset types. A few subjects

from both categories also support versioning operations similar to the conventional version control system operations.

Subjects in both categories offer support to query and visualize assets, with most subjects providing access via web-based

dashboards. Most subjects under the state-of-practice tools also offer access to assets via command-line interface and

programming APIs. Almost all state-of-practice and about half state-of-research subjects offer execution-related operations.

Similarly, operations for modifying specific stored assets are only supported by a few subjects state-of-practice, whereas

support for archiving is available by a small number of subjects in each category. Parameter search and model registry

operations are predominantly found in the state-of-practice subjects. Support to automate the execution of machine

learning workflow and manage the asset dependencies is mostly available in state-of-practice subjects. Collaboration-

related operations such as sharing, publishing, importing, exporting, and discovering assets from other users are supported

by half of the state-of-practice subjects and only one subject from state-of-research.

There are similarities in the assets types, collection, storage, and operations supported across subjects in the state-of-

practice and the state-of-research subjects. A notable difference between the two groups is the predominantly present

support for collaboration and execution-related operations (e.g., multistage and distributed execution operations,

parameter search, automation, and asset dependency management operations) offered by the state-of-practice

subjects.

Differences between State-of-research and State-of-practice Tools? (RQ5)

5 Discussion

We now discuss the results of our study.

Addressing Management Challenges. The supported features found in the subject tools have different implications for

the asset management challenges described in Section 2.1.1. Regarding standardized management methods, the lack of

uniformity on the type and how the subjects support different features and operations such as asset tracking highlights

the lack of standard practices and interoperability. However, tools such as MLFlow encourage standardized methods by

supporting models of different flavors to be packaged in standard formats with extended information (e.g., model signature

and application context). All the subject tools at a minimum support the tracking of asset metadata, highlighting asset

tracking as a core operation for asset management. Related to this is the support for versioning, which most tools support

at the "copying assets" level. While this level might be sufficient for small-sized assets, large-sized assets (e.g., datasets

and models) require more efficient versioning. To ensure that assets are tracked consistently, the asset collection process is

usually associated with the execution of particular experiment runs. For example, an instrumented Python source code file
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logs assets every time it is executed. Similarly, Guild and DVC offer CLI commands to perform experiments and log

associated assets every time a user runs experiments.

We found domain-specific operations tailored to machine learning asset types in those tools that explicitly manage

specific asset types. For example, ModelHub [54, 55] offers a domain-specific language to assist users in performing

experiment operations (e.g., evaluating a model with a given dataset as input). Domain-specific operations are not widely

supported across the subject tools. Similarly, reproducibility is the most addressed experiment concern across all the

subject tools. While most subject tools support tracking assets required to reproduce current or previous experiment runs,

only about half of them offer explicit reproducibility operations. Using a purposely designed domain-specific language for

machine learning is essential to assist users significantly. Many state-of-practice subjects offer basic collaboration features

to discover and share different development assets to improve collaboration. We expect advancement in this aspect to

achieve the level of concurrent collaboration similar to practices in traditional software engineering. Furthermore, to

improve development collaboration, it is also essential to attain interoperable asset formats through standardized methods.

Many tools employ different visualization techniques to compare, analyze, and interpret experimental results. We argue

that advancement in relevant research areas (e.g., model explainability [16, 67] and interpretability [17, 31]) should be

considered in future tools for improved result interpretation and decision making.

Arbitrary Assets and Metadata. At the very least, all subjects offer support to track static metadata and arbitrary files

as asset types during machine learning experiments. We consider this as the primary asset type support for asset tracking.

Whereas our subject tools support several asset types as described in our feature model in Fig. 4, they commonly track

the static information related to essential assets such as models, datasets, and source code. While some tools support

and internally store assets such as datasets, models, and source code, most of our subject tools allow tracking of these

assets by referencing. For example, some tools only store the pointer to serialized models, datasets, and metadata, such as

location path, version, source, and applied transformation, rather than the actual data object. Also, in scenarios where

traditional VCS manages source code, some subject tools track information such as commit hashes and messages as

the experiment progresses. A common approach for supporting arbitrary metadata allows to use simple key-value for

specifying and tracking any information of interest. While this might lead to flexibility, it can limit the potential gains of

using an experiment management tool.

Version Control Systems. When tracking text-based assets—mostly the source code—during machine learning experi-

ments, some tools depend on the versioning information obtained from traditional version control systems (VCSs) such as

Git. This approach introduces drawbacks, as it requires users to be disciplined enough to create consistent commits as

their experiment evolves. The lack of consistent commits also leads to relevant checkpoints for tracking being missing. In

addition, the dependency on traditional VCSs increases tooling complexity for users who lack Git experience and may

be a deterring factor for adoption. This approach can still be classified as ad hoc, in the sense of lacking a systematic

way to collect and manage machine learning assets effectively [36, 82]. We believe a homogeneous approach to asset

management, where a user manages all asset types from a single interface, will be a step towards encouraging the adoption

of asset management tools. To achieve such, it would seem reasonable to extend traditional VCSs to a system that can

support more machine learning asset types beyond text-based ones. This is the approach of DVC, and we consider it a

favorable approach for experiment management tools, especially for users who are familiar with Git.

Automatic Asset Collection. We observe that most subjects’ asset collection methods are intrusive, i.e., they require

users to instrument or modify their source code to track asset information. This method is tedious and error-prone and

can also deter the adoption of experiment management tools due to the associated overhead cost. Some tools such as
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ModelKB, MLFlow, and Weights & Biases support automatic asset collection in non-intrusive ways to address these

drawbacks. However, many of the tools still only support automatic asset collection for a limited number of popular

machine learning frameworks, such as TensorFlow and SciKit Learn. Consequently, the future work sections of several

considered state-of-research papers[27, 70, 71, 82] mention the need for support for additional frameworks. Some related

work promises to solve issues associated with the intrusive asset collection methods by providing implicit asset collection

using instrumented file systems [64] and AST code [28, 29].

Key Supported Operations. Our results show that tracking and exploring tracked assets and their metadata are vital

operations across the state-of-practice and state-of-research subject tools. Furthermore, dashboards and visualization

to aid the interpretation of tracked assets are mostly supported across all our subject tools. This support indicates the

crucial need to provide quick insights on multiple experiment outcomes and the evolution of associated assets: dashboards

and visualizations aid a better understanding of the relationships between different assets across multiple experiments.

According to our findings, the state-of-practice tools offer more operation varieties for users to manage assets than

the state-of-research tools. In contrast, there are few tools with support for collaboration in both state-of-research and

state-of-practice. The lacking support for collaboration may reflect the typical way of working, where users independently

work on machine learning tasks. This case is especially true in research contexts. However, there is a newer trend of

collaboration in machine learning projects, especially in big corporations, and this is evident in state-of-practice tools

with collaboration-related operation features.

Reusability. Reproducibility is one of the common objectives of using experiment management tools, and there is

a significant presence of such features across our subjects in this study. At the minimum, a subject tool that tracks

vital experiment assets and their dependencies and supports the track and retrieve operations essentially offers

reproducibility. In contrast, the operations supported by our subject tools only support the basic reusability of assets.

For example, they allow the retrieval and reuse of assets from a previous experiment iteration in another iteration or

a completely new experiment. As another example, a stage of an experiment pipeline can reuse intermediates from

previously executed experiments; i.e., the execution path of a pipeline skips unmodified stages when reproducing a

pipeline. Achieving a higher level of reusability in machine learning experiments can potentially benefit use-cases such

as synchronous collaboration and software product line (SPL) engineering [77]. However, this level of reusability is

currently challenged by the complexity associated with repurposing already built models and decomposing or merging

machine learning models [30]. Also, since every machine learning task requires a different set of learning datasets, tuned

hyperparameters, and fit learning algorithms, it becomes complicated to reuse some machine learning assets across

various experiments. Reusability of machine learning assets can significantly reduce model development time, enhance

asynchronous collaboration in development teams, and motivate assets’ evolution use-cases in SPL. We expect to see

more tools addressing the reusability challenge of machine learning assets in the future.

6 Threats to Validity

External Validity. The majority of tools surveyed are Python-based, and we identify this as a threat to external validity

since it may impact result generalization to other tools. Python will remain the most widely used language in machine

learning development, primarily because of its abundant machine-learning-related packages. Consequently, we believe

our feature model is valid for most experiment management cases. The subject tools’ chosen terminologies vary based

on the tools’ target groups (e.g., machine learning practitioners, data scientists, researchers) or experiment type (e.g.,
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multi-purpose, machine learning, or deep learning experiment). Consequently, we adopted broad terminologies through

multiple analysis iterations per tool to ensure uniformity and generalization across all subjects to enhance external validity.

Internal Validity.
Several threats to internal validity arise from our search strategies for identifying relevant tools. First, in our literature

and web searches, our sets of search terms could be incomplete. To make them as complete as possible, we incrementally

developed them, augmenting them with additional terms found in our preliminary results (in the case of state-of-practice

tools, based on the tools’ websites and documentation). We also used the additional information sources of our knowledge

and papers found via snowballing to derive terms. Second, in the snowballing strategy, our initial selection of state-of-

research publications was based on our own knowledge and assessment of the relevance, which is naturally subjective.

Using several complementary search strategies based on literature and web searches, own knowledge, and snowballing

considerably mitigates the associated threats to validity.

Since we consider a rapidly evolving technology landscape, where the subject tools and their features are subject to

constant changes, we provide the snapshot date of accessed information. Since we manually applied the selection criteria

to filter for our final subject state-of-practice tools. One threat to the internal validity might be that the collection and

filtering are subjective to individual opinions. In addition, our internet exploration using the Google search engine is

prone to varying results based on user, time, and search location—personalized user experience. These issues threaten the

ability to reproduce the exact search by other researchers. To mitigate these threats, we relied on additional data sources

of grey literature, such as market reports to increase the reliability of our data collection process.

We are limited to available online information for the cloud-based services considered in our work. Consequently, we

cannot determine internal details such as the details of their storage systems.

Conclusion and Construct Validity. None of the common threats to conclusion and construct validity provided by

Wohlin et al. [85] apply to our study.

7 Related Work

Several surveys and comparisons of tools with asset management support exist. We expect more studies in the future as

the discussions on standardized machine learning asset management and applied SE engineering practices in machine

learning development deepen.

In a recent survey, Alex et al. mine academic and grey literature to identify 29 engineering best practices for machine

learning applications [72]. They conducted a survey to show the level of adoption of the recognized engineering practices

among 300+ practitioners. Their findings suggest tech companies have higher adoption rates than non-tech companies.

The study also reveals the importance of tracking predictions with model versions and input data, which is often supported

by experiment management tools. Similar to our research, Alex et al. compare findings from the research point of view

with their related use in practice.

Isdahl et al. [46] survey machine learning platforms’ support for reproducibility of empirical results. Several platforms

considered in the study fall under the machine-learning experiment management systems—which is also the focus of

our study. The authors propose a method to assess machine learning platforms’ reproducibility and analyze features that

improve their support. Ferenc et al. [27] carry out a comparison of machine learning frameworks’ features, investigating

support for features that include data versioning, graphical dashboards, model versioning, and machine learning workflow

support. Weißgerber et al. [83] study 40 machine learning open-source platforms for support of full-stack machine

learning research with open science at its core. The authors develop an open science-centred process model that integrates
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transparency and openness for machine learning research. The authors found 11 tools and platforms to be most central to

the research process, and they further analyze them for resource management and model development capabilities.

Similar to our work, these studies [27, 46, 83] consider tools such as StudioML, MLFlow, Weights & Biases, Polyaxon,

Comet.ml, Sacred, Sumatra, and DVC. In contrast to our work, they[27, 46, 83] adopted a more coarse-grained under-

standing of assets and their management operation. This present work is the first systematic investigation of supported

asset types (e.g., differentiating between models and data), which is an essential element of the machine learning domain

and has practical implications to users of the considered tools (see the discussion in Section 5). Also, this is a first attempt

to compare the support features available in management tools used in practice and those proposed in research.

8 Future Work

For future work, we recommend several directions, based on our survey and our proposed positioning of machine learning

asset management as an essential discipline facilitating the development of machine learning-based systems.

First, there is a need for further empirical research, studying the effectiveness, usability, and potential impact of

machine learning asset management tools in the diverse scenarios encountered by practitioners—a fundamental research

challenge that we explore in a recent research agenda paper [41]. We recommend controlled experiments to evaluate

the effects of different features (e.g., asset collection) and their realization paradigms (e.g., instrumentation-based vs.

CLI-based). Such experiments require a systematic selection of subject tools representing the different available features

and paradigms, which is enabled by using our feature model as an underlying taxonomy. An orthogonal direction is to

study the effectiveness of the tools for different scenarios, including standard and special ones, e.g., large-scale experiments

with enormous datasets, large models, and vast amounts of logs and execution traces. We recommend using controlled

experiments, user studies, and action research for investigating the performance of different tools in these usage scenarios.

Second, we suggest use of mining software repository (MSR, [35]) methods to understand and characterize the unique

properties of machine learning experiments; more specifically, how the assets of such projects are structured and how

they evolve. Recent studies [11, 12, 33, 73, 80] are already exploring the use of MSR to establish empirical results on

machine learning-based software projects. Future topics of interest are investigations of the co-evolution of machine

learning assets, the asset types commonly managed in version control systems, and file naming conventions.

Third, since this work presents a feature-based survey of tools from the user’s perspective, the observed and analyzed

features are mainly external and user-visible. While some of our findings give insights into to the mechanisms employed

by the studied tools (e.g., non-intrusive vs. intrusive asset tracing), several internal aspects were outside our scope,

including the internal design and implementation of the tools. A complementary study could shed light on these aspects.

Fourth, based on our results, researchers can improve the understanding of commonalities and differences between

machine-learning experiment management tools and traditional development tools, such as IDEs, VCSs, and artifact

hosting platforms. This would pave the way for developing a new generation of software engineering tools with integrated

support for machine learning asset management. For example, one question of interest could be: what are the standard

features and workflows across the different tool classes? Establishing empirical results based on such comparisons can be

used to support design decisions on core features to be incorporated in tools, with more specialized features becoming

candidates for tool add-ons.

Finally, researchers and tool builders can develop new tools based on our identified key features, by seeking ways

to unify, combine, and expand on these features. Examples of desirable features for tools are ML-specific views and

automated recommendations for ML-specific tasks. A particular challenge is to enable the interoperability of available

tools, after they all come from different developers and vendors, and a standardized solution for asset management is
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not available yet. As a step in the this, our recent work presents EMMM [45] as a superset meta-model unifying the

conceptual structures found in specific tools, together with their relationships and dependencies. Future work could

use this metamodel to support transformations between different tools’ asset management formats, rising the level of

interopability of available tools.

9 Conclusion

This paper discussed asset management as an essential discipline that offers improved machine-learning-specific asset

management and operations to address developmental concerns when building machine-learning-based systems. It

also presented a survey of 18 state-of-practice and 12 state-of-research systematically selected tools with management

support—experiment management—for machine learning assets, identifying their common and distinguishing features.

We performed a feature-based analysis and reported our findings using feature models. We identified four top-level

features: supported asset types, collection methods, storage methods, and supported operations. Our study shows that the

state-of-practice and state-of-research tools support different asset types, predominantly metadata information describing

the experiment, generic files, parameters, and obtained results from experiment executions. Our subjects’ common

asset collection methods are intrusive and require instrumentation in source code. We found that more than half of the

state-of-practice tools delegate the storage of assets to third-party tools. We found that commonly supported operations

include tracking, exploring, and retrieving assets aimed at experiment reproducibility.
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