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ABSTRACT
Comprehending and characterizing the spread and interaction of
features in a software system is know to be difficult and error-prone.
This paper presents FeatureVista, a lightweight tool providing in-
teractive, glyph-based, and iconic visualization concepts designed
to visually characterize the feature locations in software assets
(source code). FeatureVista supports navigating between software
components and features in an equal fashion. Our pilot study in-
dicates that FeatureVista is intuitive and supports comprehending
features. It helps to precisely characterize relations among features
in large software systems and to contrast explicit software com-
ponent definitions (e.g., package, class, method) with annotated
feature portions—which so far was a largely manual and error-
prone activity, albeit essential to get an adequate understanding of
a software system. We suggest research directions for true, feature-
oriented interfaces that can be used to manage software assets.

CCS CONCEPTS
• Software and its engineering → Object oriented development;
Software maintenance tools.
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1 INTRODUCTION
Software is often built around the notion of features—abstract enti-
ties describing the functional and non-functional aspects of a soft-
ware system [15]. Modern agile processes, including feature-driven
development, SCRUM, and XP, often rely on features to plan and
manage software. In product-line engineering [3, 16, 29], features
represent the common and variable aspects of individual products,
typically organized in a feature model [20, 32]. Other common soft-
ware entities (e.g., files, classes or components) are usually confined
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to abstraction boundaries enforced by a technological space. How-
ever, in reality, rather few concerns adhere to abstraction bound-
aries when implemented—which features are not confined to [6, 34]
and therefore provide a unique perspective on software systems.

Explicit feature representations are known to improve the com-
prehension and maintainability of software systems [19, 24, 26, 27,
33, 38, 43]. However, features are often scattered [35] across soft-
ware assets, which hampers their comprehension—especially un-
derstanding the relationship between features and software assets
(e.g., packages, classes, methods), as well as understanding the inter-
action between features [6]. Given this challenge, modularizing fea-
tures has long been one of the holy grails in research, as witnessed
by the proposal of different modularization technologies [4, 5, 7, 9–
11, 23, 37, 39, 40], which are often specific to a programming para-
digm (mostly object-oriented programming) or even a programming
language. However, modularizing features and adopting such amod-
ularization technology requires substantial overhead and changes
developers’ workflows [25]. We take a different stance and advocate
that developers declare features with lightweight techniques (e.g.,
embedded annotations [19, 30, 41, 42], explained shortly) and use
novel ways of interacting with the software assets via features.

We envision an interactive way of interfacing with assets via
features. In this paper, we work towards this vision by providing
interactive and feature-oriented visualization concepts that are re-
lated to (and also visualize) object-oriented software structures.
We adopt concepts from the visualization community and provide
an integrated, feature-oriented view on object-oriented programs,
together with interactive navigation facilities. We hope that these
visualizations provide a basis to eventually create more modern
ways of interacting with assets, establishing features as pivotal en-
tities that bridge the gap between domain experts and developers.

We propose a novel, interactive visualization called FeatureVista.
It supports comprehending a complex feature-annotated software
system by contrasting feature definitions with an explicit, object-
oriented software structure. Navigation is supported through a nav-
igation technique that equally balances features and structural com-
ponents. While this short paper aims at demonstrating the concepts,
we report on an early a pilot study with a software engineer. The en-
gineer was able to complete a set of tasks related to system compre-
hension about features and their—potentially scattered—locations
in the system, whose object-oriented structures it also visualizes.

We contribute interactive feature-oriented visualization and nav-
igation concepts, implemented in the tool FeatureVista. We provide
a demonstration video [1]. The feature-annotated dataset of our
running example (explained shortly) is also available online.1

1https://bitbucket.org/easelab/datasetbitcoinwallet
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Figure 1: The main visualizations of FeatureVista

2 FEATUREVISTA
We now discuss the main visualization concepts of FeatureVista. Its
current implementation realizes a visualization of a codebase where
features are defined in a textual feature model and their locations
directly represented as embedded annotations in the source code
following the FAXE syntax [41]. As a running example we use a
popular open-source Android app: Bitcoin Wallet, a popular imple-
mentation of a cryptocurrency wallet.2 It is as large as 50 KLOC
spread over 269 Java classes and interfaces. The app comprises 99
features organized in a feature hierarchy of depth 5. The features
were manually declared and annotated in the Bitcoin Wallet app
in previous work [27, 28].

2.1 FeatureVista in a Nutshell
Figure 1 gives an overview of the visualization of FeatureVista on
a version of the Bitcoin Wallet app annotated with feature annota-
tions. Since FeatureVista is interactive, we recommend watching an
online video that demonstrates the visualization [1]. FeatureVista
is made of some visual and connected panes, detailed below.
Initial pane. PaneA is called the initial pane and represents the ini-
tial visualization of FeatureVista. The initial pane gives an overview
of the feature model and the code base, and it shows where a pro-
gram understanding activity begins from. The feature model, repre-
sented as a tree, is given on the left-hand side (C in Figure 1). Large

2https://github.com/bitcoin-wallet/bitcoin-wallet

gray boxes (D) indicate packages contained in the Bitcoin Wallet
app. Inner boxes (E) represent classes and interfaces of the app.
Iconic visual representation. FeatureVista employs numerous
techniques, called iconic visual representation [21], that map visual
attributes to multidimensional data elements. The initial visual-
ization contains various such iconic visual representations. For
example, the feature model (C) maps the font size used to write the
feature name with the number of classes the feature contributes to.
A feature that contributes to many classes is written using a large
text font while a feature that contributes to none or a few classes
uses a small text font. Classes are represented as inner-boxes (E) and
their size reflects the number of lines of code that define the class.
Interactivity. Visualizations offered by FeatureVista are highly
interactive and provide numerous ways to highlight and focus
on a particular set of features and/or source code units. Each fea-
ture shows in the feature model (C) acts as a switch for which a
practitioner can activate by simply clicking on it. As illustrated in
Figure 1, the feature Codecs is highlighted in yellow, the feature
ExchangeRates is in red, and BlockchainSync in green.
Class inspection. A class (i.e., inner boxes, E) may be selected
for further inspection by left-clicking on it. A selected class is sur-
rounded by a thick blue border and a new pane appears on the right
to inspect some properties of the class. In Figure 1, a class is selected,
near the E mark, and its selection had the effect to open pane B.

https://github.com/bitcoin-wallet/bitcoin-wallet
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Figure 2: Feature inspector

The B pane provides various relevant information about the
class, including source code, metrics, and the dependency visualiza-
tion, which is shown in Figure 1 (due to space restriction, only the
dependency visualization offered by the class inspector is detailed
in this paper). For the selected class (TransactionsAdapter in the
figure, marked with G) the dependency visualization shows classes
that depend on it (i.e., incoming classes, marked with F), and classes
that the selected class depends on (i.e., outgoing classes, G). The
class selected in paneA is at the center of pane B represented using
a class glyph (described below). Incoming classes are located on the
left and outgoing classes are located on the right of the inspected
class. The dependency visualization also lists the features (I) that
contribute to the selected class.
Feature inspection. When a feature is selected in (i) the feature
model (C) provided by the initial pane (A) or (ii) the small panel
that lists features that contribute to a class (I), a feature inspector
is open as a new pane.

By clicking on FeatureWallet, located in C, the B pane is replaced
by the J pane, as shown in Figure 2. The feature inspector lists the
classes that are contributed by the selected feature. These classes
are ordered along their size (in terms of lines of code).
Navigation. FeatureVista allows one to navigate through the source
code either by following dependencies between classes and between
features. Each class or feature can offer an inspector by clicking
on it. The navigation follows a cascading list technique (also called
Miller columns, adopted by Finder on macOS). Selecting one ele-
ment opens a new pane or replaces the one located on the right.

Figure 3 illustrates a chain of four panels, starting from the initial
pane, J, located on the left-most side. In J a feature is selected, which
opens the feature inspector in K. A class is selected in K, which
opens a class inspector in L. A feature is selected in L, which opens
a new feature inspector in M.
Class glyph.A class is represented as a vertical gray bar. The height
of the bar indicates the number of lines of code. For example, in
Figure 1, the class TransactionAdapted (G) is higher then all the
classes that it depends on (H) since its representing gray box is
higher. One of the incoming classes is however larger.

    …
    //&begin[ExchangeRates]
    public RequestCoinsViewModel(final Application application) {
        super(application);
        this.application = (WalletApplication) application;
        this.freshReceiveAddress = new FreshReceiveAddressLiveData(this.application);
        this.ownName = new ConfigOwnNameLiveData(this.application); //&line[OwnName]
        this.exchangeRate = new SelectedExchangeRateLiveData(this.application);
        //&begin[QRCode]
        this.qrCode.addSource(freshReceiveAddress, new Observer<Address>() {
            @Override
            public void onChanged(final Address receiveAddress) {
                maybeGenerateQrCode(); //&line[Generation]
            });
        //&end[QRCode]
        …
    }
    //&end[ExchangeRates]
    …

Figure 4: Class glyph
Annotations are represented by superposing smaller boxes. Hori-

zontal offset indicates nesting of the annotations. Consider Figure 4.
The figure illustrates how the class glyph is generated from a small
code excerpt. The code portion belongs to the feature Exchang-
eRates, marked by the FAXE annotations [41]. Since the feature
ExchangeRates is selected in Figure 1, C, this annotation is high-
lighted in red in the class glyph. The code portion contains other
annotations, OwnName, QRCode, and Generation. Since none of
these features are selected in C, they are painted in dark gray in
Figure 4, the default color for non-selected features. Annotations
can be nested, as such, Generation is withinQRCode, itself contained
in ExchangeRates. The depth of the nesting is visually indicated
with a translation to the right. The class glyph is used to represent
each class in the represented software system.

2.2 Visual Properties
Our visualizations cover the following comprehension use-cases.
Features locations. Features may be selected in the feature model
(C). Selecting a feature underlines classes that are contributed by
the selected feature. Several features may be selected to reveal their
locations in terms of their class contribution.

The featuremodel in Figure 1, markedwithC, have three selected
features, Codecs, ExchangeRates, SendCoins, and BlockchainSync.
The contribution of each of these features is highlighted in the
classes (D) by underlining these classes. Each feature is associated
to a color, and the underline uses the feature color. For example,
we see a large class that is contributed by three features, located
near by the mark D, Figure 1. Overall, we deduce many points of
interaction between these features across the classes composing
the system analyzed.
Context scoping. In the initial pane (A in Figure 1) features may be
selected in the feature model (C). Selected features define a context
that is kept along the navigation. Whenever one navigates through
the system by selecting features or classes, only the feature that
were initially selected are highlighted. Other features are painted
in dark gray. For example, Figure 3 shows a chain of four panes.
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Figure 3: Navigation through a chain of panes

Features that are highlighted in panes K, L, and M are the one
selected in pane J.
Contribution to a particular class. Moving the mouse cursor
above a class in the initial pane (A in Figure 1) highlights the
features that contribute to the class indicated by the cursor.

Figure 5 illustrates the highlight triggered by moving the mouse
cursor above the class named WalletTransactionsFragment. In
addition to displaying a little popup window that indicates the class
name, number of fan-in and -out, all the contributing features are
highlighted. Each feature has a color that is determined from a
linear distribution across all the leave features of the feature model.

Since contributing features are highlighted by simply moving the
mouse cursor, a very low-effort action, a practitioner can browse

Figure 5: Hovering a class highlights contributing features

the system by simply moving the mouse around to immediately
see the features contributing to a particular class.

3 PILOT EVALUATION
We evaluated whether FeatureVista supports the ability to form
a comprehension view of the different software components (e.g.,
package, class) and features by designing a formal pilot experi-
ment [22]. In the following, we describe our experiment design and
report preliminary results.
Pilot Design. The pilot was guided by three research questions:
RQ1. Can FeatureVista support developers when identifying fea-
tures with characteristics of their relationship with different soft-
ware components and metrics?
RQ2. Can FeatureVista support developers when identifying soft-
ware components with characteristics of their relationship with
features and software metrics?
RQ3. Does FeatureVista help developers understanding the rela-
tionships (e.g., feature interaction) between the different features?

With RQ1 and RQ2 we aim to evaluate our tool ability to pro-
vide a comprehensive view of the different software components
and features and inspect their characteristics. With RQ3 we want
to investigate the extent in which our tool provides a support to
understand the feature relationships. Using the running example in
Section 2, we created nine task-based questions to answer our RQs,
see table 1. The questions were shared with a software engineer,
which we asked to also share how she used the tool to answer each
question and her opinion about the tool. To prepare the engineer
for using the tool a demo video that briefly describes the tool was
shared with her. The data collected from the participant was quali-
tative one combining her task answers and a free-text to reflect on
each task experience. We used Miles and Huberman [31] qualitative
data analysis method with thematic analysis [44] to identify and
analyze a theme patterns in the provided answers. We were able to
group questions’ answers by improvement comments.
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Table 1: Task-based questions used in the pilot evaluation

Related Question
RQ

Q1. Which feature is the largest in the system, in terms of
classes?

RQ1 Q2. Which feature is the largest in the system, in terms of
packages?
Q3. Which feature is the largest in the system, in terms of lines
of code?

Q4. Which class is the most diverse in terms of features?
RQ2 Q5. Which class is the largest, in terms of lines of code?

Q6. Which packages is the largest, in terms of number of
classes?

Q7. Is there an interaction between feature A and feature B on
the class level?
follow-up if yes : Q7.1 How many classes contribute to both
feature A and B?

RQ3 Q8. How do features interact in class X?
Q9. How is the feature C spread along the dependency graph,
of the class X?

Pilot Results. The results from the participant showed the ability
to use FeatureVista to answer all the tasks correctly. An overall sat-
isfaction for using the tool was reported and it was described that
the tool was intuitive and easy to use for forming a comprehensive
understanding of the Bitcoin software features and software com-
ponents. The following comments for improvement were given. For
Q3 and Q5, she reported that the intuitive visual representation that
reflects using the size of an element (class or feature) what is usually
a code level metric makes it easy to spot this information. However,
one concern was raised in case two elements’ size looked pretty
similar in the visual inspection. The same comments were given to
Q1, where the size of feature font was the used indicator. In Q2, Q4
and Q6, by navigating pane A and B, refer to (A and B in Figure 1),
the participant was able to easily spot the answers. But for Q2, an
additional interaction was needed with the feature model in pane
A by selecting each feature and counting the highlighted packages.
The same applied to Q4 but using pane B to extract the information.
It was highlighted for both questions that it could be cumbersome
for users with bigger feature model to extract the information. For
Q7, Q8 and Q9, the participant was able to identify the feature
interactions and their spread along different dependent classes (Q9)
using the tool interactivity and the different views it provides (e.g.,
dependencies tab, classes tab). The participant described that the
tool gave her an overall understanding of the features interactions.

4 RELATEDWORK
Various prior works proposed visualization technique to assist prac-
titioners in understanding feature location and feature interactions.

Greevy et al. [18] combine static information and dynamic be-
haviors by providing a 3D visualization to assess execution traces.
Urli et al. [46] proposed variability blueprint to visualize large
feature model. Their blueprint emphasizes the representation of
constraints between features. Entekhabi et al. [17] and Andam et al.
[2] propose dashboards to visualize features and their locations and
to ease browsing them, for which they rely on embedded feature
annotations as we do [19, 41]. For such annotations, Martinson et

al. [30] provide an IntelliJ plugin helping to write such annotations
during development and assuring their consistency. Pleuss et al.
[36] propose a visual approach to assist practitioners to configure
systems with the help of feature models. Trinidad et al. [45] develop
a 3D visualization to draw large feature models. Such representa-
tion has the benefit over 2D representation to reduce the amount
of necessary scrolling.

FeatureVista was designed by considering the experience of these
previous works [8, 12, 18, 46], but has novel concepts to navigate
and assess the mapping between features and a base source code.

5 CONCLUSION AND DIRECTIONS
This paper contributes to the state of the art in understanding
feature interaction using an interactive visualization. FeatureVista
produces an interactive visualization from an annotated source
code to explore features’ location with respect to other software
components and their interaction. The results of our pilot experi-
ment show that FeatureVista is easy to use and supports forming a
comprehensive understanding of feature interactions and location.
A natural next step is to empirically assess FeatureVista by design-
ing and applying a mixed-method evaluation. In particular, we plan
to collect and contrast results of a narrative data (e.g., think aloud
protocol) with numerical data (e.g., metrics describing performance
to complete well defined tasks).

In the longer-term, towards evolving these feature-oriented vi-
sualizations into a real interfaces that can be used to manage the
underlying (object-oriented) assets, we envision the following di-
rections for future work.

FeatureVista has been designed for Java, but it is largely applica-
ble to other programming languages, even in presence of particular
notion of component (e.g., traits as in Scala and Pharo [14], class
extensions as in Swift [13]).
Feature-Oriented Workflows.While agile engineering methods
are focused around the notion of features, managing assets via them
is still an open problem. We need to understand and establish ef-
ficient workflows [25] that are realizable in visual, feature-oriented
interfaces, ideally building upon those that FeatureVista provides.
Feature-OrientedViews. Feature-orientation helpsmanaging com-
plex software systems. However, to support working on individual
features or subsets of features, we need to establish effective filter-
ing mechanisms for the visualizations proposed by FeatureVista.
This needs to address the problems of re-integrating (i.e., consider-
ing the view-update problem) edited views.
Visualizing Feature-Oriented Evolution. Developers often need
to understand the past evolution of a software system to effectively
evolve it. FeatureVista’s visualizations only show a snapshot of a
system. Conceiving effective ways to visualize the prior evolution
in terms of features is an open problem, calling for proposals from
the community.
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