
ConfigFix: Interactive Configuration
Conflict Resolution for the Linux Kernel

Patrick Franz∗, Thorsten Berger†∗, Ibrahim Fayaz‡, Sarah Nadi§, Evgeny Groshev∗
∗Chalmers |University of Gothenburg †Ruhr University Bochum ‡VecScan AB (Vector Sweden) §University of Alberta

Abstract—Highly configurable systems are highly complex
systems. The Linux kernel is arguably one of the most well-
known examples. Given its vast configuration space, researchers
have used it to conduct many empirical studies as well as to
build dedicated methods and tools for analyzing, configuring,
testing, optimizing, and maintaining the kernel. However, despite
a large body of work, mainly bug fixes that were the result
of such research made it back into the kernel’s source tree.
Unfortunately, Linux users still struggle with kernel configuration
and resolving configuration conflicts, since the kernel largely
lacks automated support. Additionally, there are technical and
community requirements for supporting automated conflict
resolution in the kernel, for example, using a pure C-based
solution that uses only compatible third-party libraries (if any).

With the aim of contributing back to the Linux community,
we present CONFIGFIX, a tooling that we integrated with the
Linux kernel configurator, that is purely implemented in C,
and that is finally a working solution able to produce fixes
for configuration conflicts. We describe our experiences of
building upon the large body of research done on the kernel
configuration mechanisms as well as how we designed and
realized CONFIGFIX while adhering to the Linux kernel’s
community requirements and standards. CONFIGFIX not only
helps Linux kernel users obtain their desired configuration, but
our implemented semantic abstraction provides the basis for
many of the above techniques supporting kernel configuration.

Index Terms—software configuration, semantic abstraction,
conflict resolution, Linux kernel

I. INTRODUCTION

The Linux kernel is the world’s largest software development
project [20] by the number of its contributors. Being highly
versatile, the kernel operates in a diversity of environments,
ranging from Android phones to large supercomputer clusters.
As such, it is not only a successful operating-system kernel, but
also a highly configurable system [67]—nowadays boasting 28
million lines of code [47] and over 15,000 configuration options
(a.k.a., features [?], [11]). To this end, the kernel relies on mech-
anisms known from the fields of software product lines [8], [18],
model-driven engineering [25], and software configuration [13].
Specifically, the Linux kernel includes a configurable build sys-
tem [16], preprocessor-enabled variation points, a model-based
representation of configuration options and their constraints
(a.k.a., variability model) [17], [51], and an interactive config-
urator tool [67]. Being completely open source, with a vast
evolution history available, researchers have studied many dif-
ferent aspects of it, including software evolution [35], [76], [7],
[?] and software maintenance [73], [34], [5], [36] aspects, as
well as its configuration mechanisms—the focus of this paper.

Fig. 1. The kernel configurator extended with CONFIGFIX

Studies of the Linux kernel’s configuration mechanisms
started back in 2007 [66], [67], [71], followed in 2010 by
our and other researchers’ studies of its variability modeling
language Kconfig and its variability model [64], [17]. Examples
include the evolution of this model [49], the co-evolution
and consistency of variation points [57], [?], [52], [53], [40],
[70], as well as the synthesis of variability models from
code [65], [51]. Despite all the above research efforts related
to configuration, users of the kernel did not benefit directly yet.
They still struggle with creating their desired configuration [33],
given the huge configuration space and intricate constraints
among features. Beyond a simple and very limited support
for choice propagation, the configurator does not offer any
intelligent support for resolving configuration conflicts. Often,
enabling a feature requires transitively changing many others.
As such, achieving the desired configuration can be laborious
and error-prone, which is unfortunate given all the work in the
research community that never made it back into the kernel.

Only few contributions originating from research made it
back into the kernel, and mainly in the form of bug fixes [56],
[70], [52]. While there are tools such as Coccinelle [48] and Un-
dertaker [69] that become known and often individually adopted
among kernel developers, none were formally integrated into
the kernel codebase or are listed as a necessary kernel tool. In
2015, the situation was about to change with the Kconfig-sat

Published at the
43rd International Conference on Software Engineering (ICSE 2021), Software Engineering in Practice (SEIP) track

initiative [41], where kernel developers recognized the need and
got in touch with researchers working on kernel configuration
studies, including us. Given our experience with studying the
Linux kernel’s configuration information and developing tools
to analyze it, we decided it was time to give back to the Linux
community and try to practically integrate these techniques
into the kernel configurator. In fact, implementing a sound
translation of the variability model to propositional logics
(which is a semantic abstraction) given the expressiveness and
intricate semantics of the Kconfig language (explained shortly),
has long been an open problem. Multiple translations were
proposed [63], [3], [39], but each has its own shortcomings [29].

In this paper, we describe experiences over a decade of dif-
ferent efforts on reverse-engineering the formal semantics from
the Linux kernel configurator and implementing sound semantic
abstractions. These are the prerequisite for many techniques and
use cases supporting software configuration. After providing an
overview on the Linux kernel’s configuration tooling, research
efforts on it, and their historical perspective, we introduce our
tool CONFIGFIX. It offers intelligent configuration support for
the Linux kernel configurator and realizes a pure-C implementa-
tion of a semantic abstraction and a technique to resolve config-
uration conflicts. Upon a current configuration (an assignment
of features to values) and a set of features whose values the
user wants to change, CONFIGFIX calculates fixes to reach the
desired configuration. We built on our and others’ prior work in
the field to realize a translation of the kernel’s variability model
into propositional logics, to implement a configuration-conflict
resolution algorithm relying on solving satisfiability problems
(SAT), and to integrate both into the graphical configurator
tool xconfig. Our work led to finally obtaining a viable solution
integratable in the kernel’s source tree. CONFIGFIX is freely
available [4], together with details about its evaluation.

II. SOFTWARE CONFIGURATION AND THE LINUX KERNEL

We now briefly introduce the field of software configuration
and the Linux kernel’s configuration facilities.

A. Software Configuration
Software configuration is concerned with methods to configure
software, originally stemming from the field of product config-
uration, a subfield of AI [32], [59]. The challenge is to obtain a
configuration that meets end-user requirements, considering all
constraints among the configuration options (i.e., features). The
configuration process is typically supported with an interactive
configurator tool, offering support for propagating choices and
resolving configuration conflicts. Software configurators [9],
[10] have been studied in many domains [18], [77], [14],
including configurable systems software (e.g., Linux kernel,
eCos operating system or 3D printer firmware [66], [17], [45],
[15], [63]), automotive [31], avionics [61], and telecommunica-
tion systems [68], embedded and safety-critical software [74],
[43], [12], [60], as well as web-based configuration [6].

B. The Linux Kernel and its Configurator
The Linux kernel’s configurability aims at customizing the
kernel beyond its core functionality of CPU & memory

management towards many different hardware architectures
(ranging from embedded devices to supercomputer
architectures) and including optional functionality, such
as device or filesystem drivers. Currently, over 15,000
configuration options (henceforth called features [?], [11]),
control variation points in C source files using conditional
compilation directives (e.g., #if) of the C preprocessor. These
features also control the inclusion of individual files in the
build process. In addition to this static mechanism, many
features control loadable kernel modules (e.g., network or
USB drivers) that can be loaded dynamically at runtime.

Users configure the kernel interactively via its configurator,
which exists in three variants. Figure 1 shows the graphical con-
figurator xconfig. The other two variants target shell users. All
features come with default values, and users can then assign val-
ues to the individual features according to their types and con-
straints, establishing a configuration. The features, their organi-
zation in a hierarchy, and their constraints are declared in files
using the Kconfig language, which are input to the configurator.

Xconfig supports basic validity checking of configuration
choices as well as simple imperative choice propagation. The
latter, given the absence of an intelligent reasoner, needs
to be encoded with a dedicated imperative mechanism in
Kconfig (explained shortly), which is error-prone and, given
its imperative nature, cannot be used to resolve configuration
conflicts. In contrast, various open-source [50], [28], [15] and
commercial [19], [44] configurators come with a reasoner.

C. The Kconfig Language

At the core of the Linux kernel configurator is Kconfig—a
domain-specific language for variability modeling. Originally
created for Linux, it has since been adopted by at least ten other
open-source projects (e.g., BusyBox) [17]. A core challenge in
the research community was obtaining a sound logical represen-
tation of the main semantics of Kconfig as a prerequisite to de-
velop analyses and configuration techniques. However, Kconfig
is surprisingly expressive with exceptionally intricate semantics.
Language Concepts. Kconfig comes with a textual syntax
and concepts known from feature modeling (a popular kind
of variability modeling language) [38], [27], [54]: a hierarchy
of features, different feature types, feature groups (e.g., OR,
XOR or MUTEX groups), and cross-tree constraints [17]. The
main semantics of a feature model describe the set of all
possible configurations. Since feature modeling languages are
typically limited to Boolean features and constraints, they can
easily be translated into propositional logics.

Kconfig’s syntax and semantics go well beyond feature
modeling. For scaling the variability model and configuration
process, Kconfig incorporates concepts such as visibility con-
ditions (to conditionally show whole subtrees), modularization
concepts, derived defaults and features, hierarchy manipulation),
and an expressive constraint language including comparison,
arithmetic, and String operators. Interestingly, features can also
inherit constraints of their parents in non-transparent ways.
Furthermore, Kconfig has a domain-specific vocabulary (main
keywords) that fosters comprehension among Linux developers.

Features can be of different types: bool, tristate,
string, hex, and int. Tristate features control the binding
mode of features and can have three values: y (yes, compile into
kernel), n (no, do not compile) or m (mod, compile as loadable
kernel module). Their evaluation follows Kleene’s rules for
three-state logics [42]. Intuitively, the value of a tristate feature
is encoded as 0, 1 or 2. The logical operators are then defined
over numbers: && returns the minimum and || the maximum
of the two operands, and ! returns 2 minus the operand.

All these concepts substantially complicate Kconfig’s syntax
and semantics. In fact, many intricate semantic interactions
between different language elements exist—most notably
between seven language constructs to express constraints
(prompt, default, depends on, select, imply,
visible if, and range). For instance, a default value
becomes a constraint when the feature is not visible, as
determined by other constraints. Further details are in
Kconfig’s official documentation [58] and our prior work [63],
[17], including our reverse-engineered denotational semantics
of Kconfig. Finally, Kconfig is continuously extended with
language constructs, such as recently with the statement
imply (gitlab.freedesktop.org/panfrost/linux/commit/237e3ad0) as
a special case of the select statement used for imperative
choice propagation. The latter is significantly driving the
complexity of the Kconfig semantics. The select statement
interacts with other Kconfig elements in intricate ways. This
in fact complicated our and others’ efforts realizing a sound
semantic abstraction. We believe it would have been better
to keep the language cleaner and separately implement choice
propagation via a reasoner, as CONFIGFIX does.

In summary, Kconfig’s complexity results from the design of
its configurator tooling. Instead of performing language engi-
neering [26], [46] and adopting a configurator that comes with
more intelligent reasoning capabilities [9], we learned that the
community prefers transparent and easily scriptable solutions as
opposed to heavy machinery, such as off-the-shelf reasoners that
may be difficult to understand. We learned this preference from
the discussion on the kernel mailing list preceding the introduc-
tion of Kconfig and its tooling. An alternative candidate was a
configurator tool and language with built-in conflict-resolution
support, which the community explicitly decided against.

Kconfig is a popular language, but surprisingly expressive,
coming with intricate syntax and semantics. The kernel
community preferred the script-style xconfig and Kconfig
over more systematically engineered tooling, mainly to be
able to fully control and evolve the tooling.

Kconfig Language and Configurator Design

Language Semantics and Abstractions. Motivated by
prospective empirical insights and being able to evaluate
research prototype tools, researchers started looking into
Kconfig and its tooling back in 2007 [66], [67], [71]. This was
followed up with holistic studies of Kconfig, its tooling, and
its models in 2010 [64], [17]. For instance, we were the first to
formally describe the semantics of Kconfig, which allowed its

translation into propositional logic both by ourselves and other
researchers [63], which resulted in the first translation tool
called LVAT [62]. Around the same time, Zengler and Küchlin
also provided a translation into propositional logics [80], [29].
Furthermore, the tool Undertaker [3] identifies dead #ifdef
code (whose constraints conflict with the variability model)
and also came with a translation into propositional logics. As
part of the TypeChef infrastructure [40], Kästner implemented
KConfigReader [39]. Recently, Fernandez-Amoros et al. [30]
proposed another translation which, however, ignores Tristate
features (i.e., a large part of the semantics).

A translation into SMT was created by Xiong et al. [79], who
presented RangeFix—a technique to generate configuration
conflict fixes for non-propositional configuration spaces. For
non-Boolean features, it provides ranges to which the value
needs to be changed to resolve a conflict. Our fix generation
is conceptually based on RangeFix, but has simplifications
since we do not need all computation steps.

A translation not originating from researchers exists
as well. As part of Google’s Summer of Code, Vegard
Nossum contributed Satconfig [55], which comes with a
pure-C translation and allows reasoning via the SAT solver
PicoSAT [24], for instance, completing a configuration based
on an initial, partial configuration. We previously investigated
Satconfig [37], but found shortcomings in the handling of
tristate features, leading to incorrect fixes; there was also
limited documentation of the implementation. Still, Satconfig
was fast, indicating that a C-based solution can be scaled to
the size of the kernel’s varibility model. It also showed the
advantages of running a SAT solver directly in the configurator
tool, as well as the feasibility of implementing the translation
in pure-C. Its design inspired our data structures.

With the exception of one tool [30], all produce propositional
formulas in conjunctive normal form (required by SAT solvers)
and typically apply a Tseitin transformation [75], which
introduces auxiliary variables to avoid formula explosion.

A systematic comparison [29] of LVAT [62], Undertaker [3],
and KConfigReader [39] showed that all had shortcomings
in their abstraction of Kconfig’s semantics. Notably,
KConfigReader could correctly handle most of Kconfig’s
semantics, which steered our decision to re-implement
KConfigReader’s translation in C with some deviations.

Over the last decade, multiple researchers and one practi-
tioner implemented propositional abstractions for Kconfig—
to provide the basis for SAT-based reasoning, system
analysis techniques, and guiding users configuring the
kernel. None of these abstractions was fully sound and
complete, given the complexity of the Kconfig language.

Kconfig Semantic Abstraction

The Kconfig-SAT Initiative. In October 2015, the Kernel
developer Luis R. Rodriguez contacted researchers including us
who have worked on SAT-based configuration support for the
Linux kernel and Linux package management. After discussing
configuration issues related to Kconfig, and after being made

https://gitlab.freedesktop.org/panfrost/linux/commit/237e3ad0

Fig. 2. A configuration conflict in xconfig

aware of our research, he launched the Kconfig-SAT initiative
(with a wiki page [41] and a mailing list [2]). Kconfig-SAT
is now also described in the Kconfig documentation [58].

Among the kernel community, the awareness for needing
intelligent configuration support rose, despite some skepticism
about SAT solvers by Linus Torvalds: “The SAT solver will
only hurt, because it will bring in all those irrelevant people
who are interested in SAT solving, not in making things easy
for users” (lists.linuxfoundation.org/pipermail/ksummit-discuss/2017-
June/004499). Overall, our interaction via the mailing list was
insightful, as it helped understanding the community and
obtaining requirements. For instance, in addition to providing
sound fixes, a solution should be fast for user acceptance [37].

III. CONFIGFIX

We introduce the notion of configuration conflict, give a
practical introduction into CONFIGFIX, and discuss its design.

A. Configuration Conflicts

A conflict arises when changing the value of one or multiple
features violates a constraint. To resolve conflicts, users need
to (transitively) follow the dependencies, which is laborious
and error-prone. A survey [33] found that users are commonly
challenged with conflict resolution in the kernel configurator,
with 20 % of the survey respondents needing roughly “a few
dozen minutes” to resolve a conflict. The feature descriptions
only provide incomplete and sometimes hard to understand (or
even incorrect) advice, leading to users blindly choosing default
or recommended values without grasping the consequences.
Furthermore, default values sometimes contradict with the
advice, for instance, when the description recommends enabling

a feature, but the default value is “no” (disabled). As such, re-
solving conflicts can be particularly challenging and frustrating
for inexperienced users, who then simply resort to guessing.

Let us illustrate configuration conflicts with a feature that
has particularly complex constraints. Figure 2 shows the feature
“QorIQ DPAA2 fsl-mc bus driver” (a bus infrastructure driver)
in xconfig. Currently, it cannot be enabled (checkbox not se-
lectable, indicated by missing underscores in columns “M” and
“Y”) due to the following unmet constraint (the current values
of the involved features are shown at the bottom of Fig. 2):

depends on OF && (ARCH_LAYERSCAPE ||
(COMPILE_TEST && (ARM || ARM64 ||
X86_LOCAL_APIC || PPC)))

Xconfig does not even show which parts of the constraint
are unmet. The user needs to manually resolve the conflict
by transitively looking at the features’ dependencies, taking
the full richness of its constraint language into account, which
might mean needing to enable and disable a set of many
features at the same time. Doing so, however, might have ripple
effects by triggering the imperative choice propagation (select
statement) in xconfig, which might in turn invalidate the user’s
resolution. The user might not even realize what other features
the imperative choice propagation is enabling or disabling. De-
pending on constraints, the respective feature might not even be
visible to the users in the configurator, further challenging the
configuration process. The goal of CONFIGFIX is to facilitate
this conflict resolution process by automatically finding the
feature values needed to reach a desired configuration.

B. CONFIGFIX Overview

Workflow. Figure 3 shows the overall workflow of CONFIGFIX

from the end user’s perspective. 1 shows the view the user
sees once they launch xconfig and have chosen “Show All
Options” from the Options menu. This option shows features
that would have normally been hidden, because they have unmet
dependencies. The user can then identify the features they wish
to enable, and click on “Add Symbol” which will add the feature
to the bottom left pane, as shown in 2 . At that point, the
user can change the value of the feature to “Y”, “M” or “N”.
The option “M” is greyed out for this feature since the feature
cannot be compiled as a loadable kernel module (“M”=module).
Instead, it will be compiled directly into the kernel binary
(“Y”=yes) or not at all (“N”=no). Once the user has added
all the features they would like to change the values for, they
can click on “Calculate Fixes,” which will call CONFIGFIX’s
internal conflict resolution algorithm with the list of features
specified in the bottom left pane. The returned solutions will
be displayed in the bottom right pane as shown in 3 . Each
solution is a set of feature values that need to be applied in
order to set the wanted value(s) for the feature(s) indicated
in 2 . As there can be multiple ways to satisfy the user
constraints, each specific solution can be viewed by selecting it
from the Solutions combobox. The user can then apply any of
the solutions, either by letting CONFIGFIX apply all changes
automatically or by changing every feature manually.

https://lists.linuxfoundation.org/pipermail/ksummit-discuss/2017-June/004499
https://lists.linuxfoundation.org/pipermail/ksummit-discuss/2017-June/004499

Fig. 3. User’s workflow using CONFIGFIX inside xconfig

Technical Details. Currently, CONFIGFIX depends on the
library GLib [72] which needs to be installed before xconfig
can be started. There is, however, no need to either install or set
up a SAT solver for this purpose as this is done automatically.

Given the demand, CONFIGFIX also offers an export into

DIMACS [1]—a file format accepted by many SAT solvers.
The export can be launched via make cfoutconfig.

C. Solution Overview

Figure 4 illustrates CONFIGFIX’s fix calculation. First, CONFIG-
FIX translates the Kconfig model into a propositional formula
according to the Kconfig semantics we reverse-engineered and
re-implemented (and discuss shortly in Sec. IV-A). It then trans-
lates this formula into conjunctive normal form (CNF) to be
able to later process it with a SAT solver. The formula encoding
the Kconfig variability model represents the hard constraints
that must always be satisfied. In other words, CONFIGFIX
cannot violate any of these constraints during its fix generation.
As input, CONFIGFIX also takes in the current configuration (a
list of features and their corresponding values) and the user’s
configuration goal (a list of features to change and their desired
values). CONFIGFIX considers the current configuration as soft
constraints, since some of the current feature values in the
configuration will need to change. As the next step, CONFIGFIX
creates a single formula that is a conjunction of all hard and
soft constraints and then queries the SAT solver for satisfiability.
If it is satisfiable, then there is nothing to find fixes for, and the
desired values can be applied. Otherwise, CONFIGFIX triggers
our C-based RangeFix implementation to calculate fixes.

D. Fix Generation

Given a conflict, we want to find a fix that requires a minimal
number of changes to the configuration. In the literature, various
conflict-resolution algorithms exist [32], but many are not
applicable here. They either produce only one fix, a long list of
fixes (challenging users to identify/apply the most suitable one),
or they only offer limited support for non-Boolean constraints.
We selected RangeFix [79], which was designed to mitigate
these shortcomings. Its fixes adhere to three main properties:
Correctness (any configuration resulting from a fix must be
correct, i.e. satisfy the violated constraints), Maximality of
ranges (when ranges overlap, the fix shall contain a maximum
range), and Minimality of changes (the number of features that
need to be changed should be reasonably minimal—realized
using heuristics we defined—to avoid unnecessarily breaking
feature values set by the user before). RangeFix generates fixes
in three stages. Its input is an abstraction of a variability model
(e.g., CNF formula), where features are represented by variables.
In stage 1, all minimal sets of variables that have to be changed,
are generated. These sets are called diagnoses. In stages 2 and
3, the new values for each variable in a diagnosis are calculated.

We now explain the algorithm using an example. Let us
define the tuple (V, e, c) as a constraint violation, where V
is a set of variables, e a configuration with a value defined
for each variable and c a set of constraints which is violated.
The set of constraints c represents hard constraints and the
set of variables V and their configuration e represent the soft
constraints. The goal is to find a new configuration e′, such
that c is satisfied. We define our set of variables V as:

{m : Boolean, a : Integer, b : Integer}

Fig. 4. Overview of ConfigFix’s components

We define a set of constraints as:

(m → a > 10) ∧ (¬m → b > 10) ∧ (a < b)

Finally, a configuration e with values for the three variables
is required: {m := True, a := 6, b := 5}. This configuration
violates the first and third constraints.

RangeFix generates the diagnoses during the first stage by
using a constraint solver’s ability to find unsatisfiable cores.
During each iteration in the first step, a constraint from an
unsatisfiable core is removed and the diagnoses are extended
until no more unsatisfiable core is found. Applying this to our
example yields the following two diagnoses: {m, b} and {a, b}.
At this point, we know that we need to change either {m, b}
or {a, b} to resolve the conflict.

The stages 2 and 3 are subsequently performed together
for each diagnosis. First, all unchanged variables are replaced
by their current values during stage 2. Finally, in stage 3,
the violated constraints are minimized via heuristic rules we
defined and split into minimal clauses to generate the fixes.
This leads to the following two fixes for the conflict:
• [m := False, b : b > 10]
• [(a, b) : a > 10 ∧ a < b]

If any of these two fixes is applied, all previously violated
constraints will be satisfied again. If the first fix is chosen, then
m needs to be set to False and b simply to any value larger

than 10. If the second fix is chosen, then a needs to be set to a
value larger than 10, and b must simply be larger than a. This il-
lustrates the advantages of RangeFix compared to other conflict-
resolution algorithms. While there are infinitely many possible
solutions, the user is presented with only the minimal set.
Others might have presented only one of the two solutions or
a long list of possible solutions, since there are infinitely many
possible combinations that satisfy a being smaller than b in the
second fix. As such, CONFIGFIX returns a maximum of three
fixes for each conflict even if more fixes exist. In most cases,
presenting three fixes for a user is sufficient to choose a suitable
fix and generating more fixes can take significantly more time.

E. Example Fix

Given a default configuration, assume a user wants to
enable the feature MEDIA_TUNER_SIMPLE. The feature
has dependencies, and its parent feature depends on other
features via visibility conditions. In the default configuration,
the parent is hidden and the dependencies are not met, so it
is not configurable by the user.

For this conflict, eight possible fixes exist and each fix
changes the values of five features, although some values
change implicitly through Kconfig’s imperative choice
propagation (select statements). Generally, the feature can
be enabled through two different means: The parent feature
can be made visible and then the user can explicitly set a
value for MEDIA_TUNER_SIMPLE after its dependencies
have been met. The other possibility is to enable the feature
through a select statement while keeping it invisible.

In the first case, there are four possible fixes that make the
feature visible such that the user can then set an explicit value.
These four fixes only differ in one symbol and one such fix is
the following:

• MEDIA_SUPPORT => yes
• MEDIA_DIGITAL_TV_SUPPORT => yes
• MEDIA_SUBDRV_AUTOSELECT => no
• MEDIA_TUNER_SIMPLE => yes

In the latter case, there are again four possible fixes only
differing in a single symbol. One such fix ensuring that the
feature is selected and, therefore, enabled is:

• MEDIA_SUPPORT => yes
• MEDIA_ANALOG_TV_SUPPORT => yes

The feature is invisible, though, and it might not be
obvious to the user why the feature has been enabled.
In the end, all eight fixes calculated are able to enable
MEDIA_TUNER_SIMPLE in one way or another.

IV. EXPERIENCES AND CHALLENGES

We now discuss experiences and challenges faced when
realizing CONFIGFIX. Overall, our first attempt [37] was much
closer to the RangeFix implementation. We experimented
with the C-based translation by Vegard Nossum (cf. Sec. II-C)
and an existing Scala-based RangeFix implementation
prototypically integrated into xconfig, but which only covered
the first of the three stages of RangeFix. We surveyed kernel
developers and Kconfig-SAT members about the user interface
we implemented, and provided screencasts illustrating the

solution [37]. The results contributed to the present attempt,
where we focused on a purely C-based translation and fix
generation, the C-based SAT solver Picosat [23], and an
improved integration into xconfig.

A. Semantic Abstractor

The largest challenge was obtaining a sound and stable logical
abstraction of Kconfig. To obtain requirements, we interacted
with the community, specifically via the kconfig-sat mailing
list. We recognized a strong preference for SAT solvers, as
opposed to more expressive solvers, such as SMT [21]. Even
though, the latter could support a larger part of the semantics,
it was pointed out that integrating a SAT solver could also
help at other places in the kernel, especially CPU scheduling
support. Furthermore, SMT solvers are typically slower, and
not many come with a GPL-compatible license, as required
for integration into the kernel’s codebase. In order to make
the integration into the various kernel configurators as easy as
possible, we also decided that it should be possible to compile
the SAT solver with the tools needed to compile every kernel
configurator, such as gcc. This requirement excluded some
modern and very fast solvers, including CaDiCaL [22].

In general, our options for realizing a propositional semantic
abstraction for a SAT solver were to (i) develop a new
translation from scratch, to (ii) build on Satconfig (cf. Sec. II-C)
or to (iii) investigate other existing alternatives. Strategy (i) has
the disadvantage of lacking a reference, when the translation
is checked for correctness. Since correctness was essential,
we disregarded this strategy. As explained above, Satconfig
showed deficiencies in handling tristate features and in
code documentation. Based on others’ systematic comparison of
translations [29] (also cf. Sec. II-C), we chose to re-implement
and extend the Scala-based KConfigReader [39].

Our overall strategy was to inspect the translation in
KConfigReader, to re-implement it freely in C, being inspired
by data structures from Satconfig, and to test the translation
incrementally with smaller, hand-crafted models, thereby also
debugging and fixing our implementation as well as remaining
deficiencies of KConfigReader. Finally, we tested with example
conflicts in the full kernel model (we described one of these con-
flicts in Sec. III-E). KConfigReader works accurately for bool
and tristate features, as well as for many non-Boolean
properties, but with some remaining smaller limitations.

Adapting and re-implementing KConfigReader in C allowed
the direct integration into the kernel configurator in the kernel
source tree. It also allowed us to use the configurator’s parser
to parse the variability model, which provides robustness as
the parser is regularly maintained. We traversed the internal,
AST-based representation and stored intermediate results in our
own C data structures. A challenge was to implement scalable
representations of the propositional formula in C, in a way that
it can be easily traversed and transformed into conjunctive nor-
mal form by applying logical laws and a Tseitin transformation.
As a consequence, some parts of the translation had to be imple-
mented in a completely different way than in KConfigReader.

To account for limitations, we needed to deviate from the
semantics realized in KConfigReader. One example was the
translation of the imperative choice propagation—over 10,000
select statements exist in the whole variability model.
So, how to model this type of constraint has substantial
impact on the performance. KConfigReader models the
select-constraints in a single constraint for the feature that
is selected. An advantage of this behavior is the number of
constraints, since there will only be one constraint for each
selected feature. The disadvantage is that the constraints can
potentially become very large formulas, when a feature is
selected by many other features. As these formulas need to
be converted into CNF, large formulas can easily result in
hundreds or thousands of CNF clauses.

B. Choosing a SAT Solver

Choosing PicoSAT [23] was inspired by Satconfig (cf.
Sec. II-C), which showed that PicoSAT can be easily integrated
into the kernel. More importantly, it: (i) is written in C and
can be compiled with gcc; (ii) has a C-API, so can be called
directly within xconfig without needing external calls; (iii) has
a Linux-compatible license (MIT); (iv) can identify and return
unsatisfiable cores; and (v) is reasonably fast [24]. This made
PicoSAT our best candidate. However, a downside was that the
solver is outdated and not actively maintained anymore, despite
still being used in industry. Still, it has a well-structured
implementation and is fast enough for interactive fix generation.

C. GUI Integration

We extended the graphical configurator xconfig to provide an
intuitive interface for entering the desired feature values, for
observing the proposed fixes, and for applying the desired ones.
We decided on having the conflict resolution integrated within
the same window to follow conflict resolution interfaces found
in other configurators, specifically that of ECOS [78], [33],
[17]. We added a new pane at the bottom of xconfig to collect
the features desired by the user. The view is divided into
two parts: (i) the collected feature list and (ii) the solutions
CONFIGFIX produces.

D. Scalability and Performance Improvements

The main challenge was translating the huge formulas of the
full kernel variability model with over 15,000 features into CNF.
Notably, the encoding of certain Kconfig aspects had a substan-
tial impact on the resulting CNF and SAT solver performance.

To improve the performance of the SAT solver, we changed
the encoding of the select statement by splitting up the
various statements Instead of a single constraint for a selected
feature, each select statement now creates constraints on
its own. But, since this also had an affect on how we encoded
the dependencies of a feature, introducing a new variable was
needed, which indicates whether a feature has been selected.
This significantly simplified the constraint encoding.

While we have increased the number of constraints in total
by several thousand constraints, we were able to reduce the
number of CNF clauses and auxiliary variables significantly. As

a consequence, a single run of PicoSAT became more than 65 %
faster than it was before. A disadvantage of this decision is,
that we lost the ability to syntactically check our constraints for
equivalence against the constraints produced by KConfigReader.
Still, the gain in performance justified this decision, and we
conceived an alternative evaluation, explained shortly.

We achieved a final translation time of the entire Linux
kernel variability model into a CNF formula of around 1.5
seconds on an Intel i7 laptop. The first run of PicoSAT to
check for satisfiability takes about 2.5 to 3 seconds. Finally,
finding fixes for a conflict can be achieved in as little as 1
second in some cases, although the number depends heavily
on the conflict and the number of enabled features. The most
impact on improving the performance came from incorporating
our domain/expert knowledge into the translation, including
effective formula splitting and using a Tseitin transformation.

V. EVALUATION

We now discuss our evaluation of CONFIGFIX.

A. Conflict and Fix Generation

With over 15,000 features, the configuration space for the
Linux kernel is huge and, therefore, crafting a small number
of examples to be evaluated is not sufficient. Instead, a more
systematic approach is needed. We make use of the kernel’s
ability to generate random configurations, and then we create
random conflicts for each of those.

To obtain sufficiently diverse test data, we use the kernel’s
randconfig tool to generate configuration samples for three
of the more popular architectures supported by the kernel:
x86_64, arm64, and openrisc. This tool also allows to
skew the probabilities for the features of type bool and
tristate to be enabled; we create configuration samples
for probabilities ranging from 10 % to 90 % for a feature to be
set to no. These steps allow us to evaluate the performance
of CONFIGFIX for varying proportions of enabled features in
configurations on different architectures.

For each random configuration, we then introduce conflicts
by randomly choosing target features that: (i) have a prompt
(i.e., are not completely invisible, like derived features [17]),
(ii) are of type bool or tristate, (iii) are not a choice
group, and (iv) have at least one other possible value that is
different from the current one and cannot be selected at the
moment. In the case of tristate options with two values
that cannot be selected at the moment, the target value is
randomly chosen from these two values.

While finding fixes, CONFIGFIX may not return results for
two reasons. First, a fix may not exist. Some features depend on
other architecture-specific options; therefore, they can only be
configured for certain architectures. Second, CONFIGFIX may
also not return fixes due to bugs in our implementation or de-
sign. In order to objectively evaluate CONFIGFIX, we, therefore,
want to ensure that our chosen target features can be configured
(i.e., the conflict can indeed be resolved) for the used architec-
ture to rule out the first possibility. To achieve this, we generate
a base configuration for each architecture using randconfig

Fig. 5. Distribution of fix sizes (number of features that CONFIGFIX indicates
need to be changed) related to conflict size (number of unchangeable features
that a user wants to change). The first box shows the distribution of fix size
across all conflict sizes. Diagram cut-off at 75 (more outliers exist).

with the probability of 100% for a feature to be enabled. Such
base configuration will have as many enabled features as possi-
ble. For each configuration sample, we restrict the selection of
conflicting features to those that can receive their target values
on the chosen architecture, as witnessed by the base configura-
tion. We create such resolvable conflicts containing between 1–
10 features and let CONFIGFIX generate fixes for each conflict.

B. Results

We generated 27 random configuration samples with a varying
propotion of enabled features for the three target architectures
(x86_64, arm64, and openrisc). For each configuration,
we created 50 conflicts containing between 1–10 features to
change. This resulted in 1,350 conflicts for CONFIGFIX to
solve. We ran the tests on a Lubuntu 19.10 virtual machine
allocated with 2 CPU cores and 10 GB RAM, on a macOS
host with an Intel i7-4850HQ CPU @ 2.3 GHz and 16
GB RAM. We imposed a time limit of 300 seconds for fix
generation. CONFIGFIX took between 1.8–355.1 seconds per
fix (mean of 70.6 and median of 41.7 seconds).

Table I summarizes the results. Out of the 1,350 conflicts,
CONFIGFIX returned at least one fix for 1,055 (78.2 %)
conflicts and resolved 723 (53.6%) conflicts. It did not
produce any fixes for the remaining 295 conflicts mostly due
to timeouts. For the 1,055 conflicts that received at least one
fix, CONFIGFIX produced a total of 2,482 fixes (recall our
intentional limitation to a maximum of three fixes per conflict,
as discussed in Sec. III-D). The obtained fixes comprise 2–175
features that needed to be changed.

Fig. 5 shows the distribution of fix size for each conflict size
(cut-off at a fix size of 75). The distributions are left-skewed,
with an average fix size of 23 features, and the majority of
the fixes lying around the median of 20 features. The figure
shows that in general, fix sizes demonstrate a seemingly
linear dependence on the conflict size. This indicates that
CONFIGFIX can be used for resolving conflicts of varying
sizes without the risk of fix size explosion.

TABLE I
EVALUATION RESULTS

metric value

number of sampled configurations 271

conflict sizes 1–10

total generated conflicts for evaluation 1,3502 (100.0 %)
conflicts with >= 1 fix produced by CONFIGFIX 1,055 (78.2 %)
number of resolved conflicts 723 (53.6 %)

total number of fixes produced by CONFIGFIX 2,482 (100.0 %)
fixes that resolve the conflict 1,609 (65.0 %)

fully applicable and resolves conflict 1,317 (53.0 %)
not fully applicable, but resolves conflict 292 (12.0 %)
does not resolve conflict 868 (35.0 %)

1 One for each architecture and probability.
2 For each configuration sample, five conflicts of each size.

We also analyzed the outcome of each fix, summarized in
Table I. The optimal outcome—fully applicable and resolves
conflict—was achieved for 1,317 of these fixes (53 %). A
non-optimal, but acceptable outcome—not fully applicable,
but resolves conflict—was achieved for 292 fixes (12 %).
This means some of the values specified in the fix cannot be
applied, but it resolves the conflict nonetheless. It contains
invalid or redundant feature values, but the target features,
which are part of the fix, can be changed. Finally, 868 (35 %)
fixes were invalid—does not resolve conflict. So, in summary,
65 % of the fixes returned by CONFIGFIX resolved the conflict.

While the ideal outcome would have been to resolve all
conflicts, we believe that this percentage is still acceptable given
that the semantic abstraction is sound, but cannot be complete.
While perhaps an encoding into SMT could yield a slightly
better result, recall that there was a strong preference amongst
the Linux community for SAT solving using a C-based solver.

VI. THREATS TO VALIDITY

Internal Validity. As KConfigReader cannot parse recent
kernels anymore, we relied on testing our semantic abstraction
with small hand-crafted examples and then compare the output
of both tools. We created those examples to cover as much as
possible of the Kconfig semantics. However, the kernel boasts
over 15,000 configuration options and we cannot be sure that
our examples cover all the semantics used in the kernel.
Construct Validity. We used artificial randomly generated
conflicts to evaluate CONFIGFIX. We do not know if
these generated conflicts are representative of conflicts that
developers face in practice. However, our evaluation involved
the same configurators that are used by the Linux kernel users
and our conflicts, despite being randomly generated, originate
from the same variability model that these users would use.
Additionally, we perform the evaluation across several kernel
architectures to make sure our results are not skewed towards
a single architecture. In the future, we plan to conduct an
evaluation that involves real Linux kernel users to determine
if CONFIGFIX can generate useful fixes for them.
External Validity. Our work is focused on the configuration of
the Linux kernel. We did not try our approach on other projects

that use Kconfig (E.g., BusyBox). While expanding to other sys-
tems is feasible, we intentionally focus on supporting the Linux
kernel, given its wide-spread usage and importance in modern
computer systems. We believe our results are relevant not only
to the Linux practitioners but also to the research community—
since the kernel is a more representative example of a highly
configurable system than purely academic models [17].

VII. CONCLUSION

We reported experience of leveraging results from 13 years of
academic research. We created the tool CONFIGFIX providing
interactive configuration conflict resolution support for the
Linux kernel, by adhering to all requirements coming from
the Linux community within the Kconfig-SAT initiative [41].
CONFIGFIX realizes a transformation of the configurator’s
underlying language Kconfig into a propositional abstraction, as
well as it provides a configuration-conflict resolution technique
that can guide users achieving their desired configuration. We
believe that our tool [4] can help the Linux kernel community
not only supporting the configuration process, but also
conduct further analyses of the kernel’s configuration facilities.
Likewise, we invite researchers to evaluate their novel
techniques upon the transformation, as well as to improve the
fix generation (e.g., optimize for certain quality attributes).

REFERENCES

[1] “DIMACS,” www.satcompetition.org/2009/format-benchmarks2009.html.
[2] “kconfig-sat,” https://groups.google.com/forum/#!forum/kconfig-sat.
[3] “Undertaker,” https://vamos.informatik.uni-erlangen.de/trac/undertaker.
[4] “ConfigFix,” https://bitbucket.org/easelab/configfix, 2020.
[5] I. Abal, C. Brabrand, and A. Wasowski, “42 variability bugs in the linux

kernel: A qualitative analysis,” in ASE, 2014.
[6] E. Abbasi, A. Hubaux, M. Acher, Q. Boucher, P. Heymans, A. Heymans,

F. FSR, and W. Region, “What’s in a web configurator? empirical results
from 111 cases,” University of Namur, Tech. Rep., 2012.

[7] G. Antoniol, U. Villano, E. Merlo, and M. Di Penta, “Analyzing cloning
evolution in the linux kernel,” Information and Software Technology,
vol. 44, no. 13, pp. 755–765, 2002.

[8] S. Apel, D. Batory, C. Kästner, and G. Saake, Feature-Oriented Software
Product Lines. Springer, 2013.

[9] R. Bashroush, M. Garba, R. Rabiser, I. Groher, and G. Botterweck, “Case
tool support for variability management in software product lines,” ACM
Comput. Surv., vol. 50, no. 1, Mar. 2017.

[10] D. Benavides, S. Segura, and A. Ruiz-Cortés, “Automated analysis of
feature models 20 years later: A literature review,” Information Systems,
vol. 35, no. 6, pp. 615–636, 2010.

[11] T. Berger, D. Lettner, J. Rubin, P. Grünbacher, A. Silva, M. Becker,
M. Chechik, and K. Czarnecki, “What is a feature? a qualitative study
of features in industrial software product lines,” in SPLC, 2015.

[12] T. Berger, D. Nair, R. Rublack, J. M. Atlee, K. Czarnecki, and
A. Wasowski, “Three cases of feature-based variability modeling in
industry,” in MODELS, 2014.

[13] T. Berger, R.-H. Pfeiffer, R. Tartler, S. Dienst, K. Czarnecki, A. Wasowski,
and S. She, “Variability mechanisms in software ecosystems,” Information
and Software Technology, vol. 56, no. 11, pp. 1520–1535, 2014.

[14] T. Berger, R. Rublack, D. Nair, J. M. Atlee, M. Becker, K. Czarnecki, and
A. Wasowski, “A survey of variability modeling in industrial practice,”
in VaMoS, 2013.

[15] T. Berger and S. She, “Formal semantics of the CDL language,” 2010,
technical Note. Available at http://thorsten-berger.net/cdl_semantics.pdf.

[16] T. Berger, S. She, R. Lotufo, K. Czarnecki, and A. Wasowski, “Feature-
to-code mapping in two large product lines,” in SPLC, 2010.

[17] T. Berger, S. She, R. Lotufo, A. Wasowski, and K. Czarnecki, “A Study
of Variability Models and Languages in the Systems Software Domain,”
IEEE Trans. Softw. Eng., vol. 39, no. 12, pp. 1611–1640, Dec. 2013.

http://www.satcompetition.org/2009/format-benchmarks2009.html
https://groups.google.com/forum/#!forum/kconfig-sat
https://vamos.informatik.uni-erlangen.de/trac/undertaker
https://bitbucket.org/easelab/configfix
http://thorsten-berger.net/cdl_semantics.pdf

[18] T. Berger, J.-P. Steghöfer, T. Ziadi, J. Robin, and J. Martinez, “The state
of adoption and the challenges of systematic variability management
in industry,” Empirical Software Engineering, vol. 25, pp. 1755–1797,
2020.

[19] D. Beuche, “Variants and variability management with pure::variants,”
in SPLC, 2004.

[20] S. Bhartiya, “Linux is the largest software development project on the
planet: Greg Kroah-Hartman,” http://cio.com/article/3069529.

[21] A. Biere, M. Heule, H. van Maaren, and T. Walsh, Handbook of Satisfi-
ability: Volume 185 Frontiers in Artificial Intelligence and Applications.
Amsterdam, The Netherlands, The Netherlands: IOS Press, 2009.

[22] A. Biere, “CaDiCaL Simplified Satisfiability Solver,” http://fmv.jku.at/
cadical.

[23] ——, “PicoSAT,” http://fmv.jku.at/picosat.
[24] ——, “Adaptive Restart Strategies for Conflict Driven SAT Solvers,” in

SAT, 2008.
[25] M. Brambilla, J. Cabot, and M. Wimmer, Model-driven software

engineering in practice. Morgan & Claypool, 2017.
[26] B. Combemale, R. France, J.-M. Jézéquel, B. Rumpe, J. Steel, and

D. Vojtisek, Engineering modeling languages: Turning domain knowledge
into tools. CRC Press, 2016.

[27] K. Czarnecki and U. W. Eisenecker, Generative Programming: Methods,
Tools, and Applications, 2000.

[28] D. Dhungana, P. Grünbacher, and R. Rabiser, “The DOPLER Meta-Tool
for Decision-Oriented Variability Modeling: a Multiple Case Study,” J.
ASE, vol. 18, no. 1, pp. 77–114, Mar. 2011.

[29] S. El-Sharkawy, A. Krafczyk, and K. Schmid, “Analysing the kconfig
semantics and its analysis tools,” in GPCE, 2015.

[30] D. Fernandez-Amoros, R. Heradio, C. Mayr-Dorn, and A. Egyed, “A
kconfig translation to logic with one-way validation system,” in SPLC,
2019.

[31] R. Flores, C. Krueger, and P. Clements, “Mega-Scale Product Line
Engineering at General Motors,” in Proc. SPLC, 2012.

[32] A. Hubaux, D. Jannach, C. Drescher, L. Murta, T. Männistö, K. Czarnecki,
P. Heymans, T. Nguyen, and M. Zanker, “Unifying software and product
configuration: A research roadmap,” in ConfWS, 2012.

[33] A. Hubaux, Y. Xiong, and K. Czarnecki, “A User Survey of Configuration
Challenges in Linux and eCos,” in VaMoS, 2012.

[34] A. Israeli and D. G. Feitelson, “Characterizing software maintenance
categories using the linux kernel,” The Hebrew University of Jerusalem,
Tech. Rep. 2009–10, 2009.

[35] ——, “The linux kernel as a case study in software evolution,” Journal
of Systems and Software, vol. 83, no. 3, pp. 485–501, 2010.

[36] Y. Jiang, B. Adams, and D. M. German, “Will my patch make it? and
how fast? case study on the linux kernel,” in MSR, 2013.

[37] D. Jonsson, “A case study of interactive conflict-resolution support
in software configuration,” Master’s thesis, Chalmers University of
Technology, 2016.

[38] K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson, “Feature-
oriented domain analysis (FODA) feasibility study,” Carnegie-Mellon
University, Pittsburgh, PA, USA, Tech. Rep., 1990.

[39] C. Kästner, “KConfig Reader,” https://github.com/ckaestne/kconfigreader.
[40] C. Kästner, P. G. Giarrusso, T. Rendel, S. Erdweg, K. Ostermann, and

T. Berger, “Variability-aware parsing in the presence of lexical macros
and conditional compilation,” in OOPSLA, 2011.

[41] Kernelnewbies, “Linux kconfig SAT integration,” https://kernelnewbies.
org/KernelProjects/kconfig-sat, accessed: 2019-12-05.

[42] S. C. Kleene, “On notation for ordinal numbers,” The Journal of Symbolic
Logic, vol. 3, no. 4, pp. 150–155, 1938.

[43] C. W. Krueger, D. Churchett, and R. Buhrdorf, “Homeaway’s transition
to software product line practice: Engineering and business results in 60
days,” in SPLC, 2008.

[44] C. W. Krueger and P. C. Clements, “Systems and software product line
engineering with biglever software gears,” in SPLC, 2013.

[45] J. Krueger, W. Gu, H. Shen, M. Mukelabai, R. Hebig, and T. Berger, “To-
wards a better understanding of software features and their characteristics:
A case study of marlin,” in VaMoS, 2018.

[46] R. Lämmel, Software languages: Syntax, semantics, and metaprogram-
ming. Springer, 2018.

[47] M. Larabel, “The Linux Kernel Enters 2020 At 27.8 Million Lines In
Git But With Less Developers For 2019,” https://www.phoronix.com/
scan.php?page=news_item&px=Linux-Git-Stats-EOY2019.

[48] J. Lawall and G. Muller, “Coccinelle: 10 years of automated evolution
in the linux kernel,” in USENIX ATC, 2018.

[49] R. Lotufo, S. She, T. Berger, K. Czarnecki, and A. Wasowski, “Evolution
of the Linux Kernel Variability Model,” in SPLC, 2010.

[50] J. Meinicke, T. Thüm, R. Schröter, F. Benduhn, T. Leich, and G. Saake,
Mastering Software Variability with FeatureIDE. Springer, 2017.

[51] S. Nadi, T. Berger, C. Kästner, and K. Czarnecki, “Where do configuration
constraints stem from? an extraction approach and an empirical study,”
IEEE Trans. Softw. Eng., vol. 41, no. 8, pp. 820–841, 2015.

[52] S. Nadi and R. C. Holt, “Make it or break it: Mining anomalies from
linux kbuild,” in WCRE, 2011, pp. 315–324.

[53] ——, “Mining kbuild to detect variability anomalies in linux,” in CSMR,
2012.

[54] D. Nešić, J. Krüger, S. Stănciulescu, and T. Berger, “Principles of Feature
Modeling,” in FSE, 2019.

[55] V. Nossum, “satconfig,” https://github.com/vegard/linux-2.6/tree/v4.7+
kconfig-sat, accessed: 2019-12-05.

[56] Y. Padioleau, J. Lawall, R. R. Hansen, and G. Muller, “Documenting
and automating collateral evolutions in linux device drivers,” SIGOPS
Oper. Syst. Rev., vol. 42, no. 4, p. 247–260, Apr. 2008.

[57] L. Passos, R. Queiroz, M. Mukelabai, T. Berger, S. Apel, K. Czarnecki,
and J. Padilla, “A study of feature scattering in the linux kernel,” IEEE
Trans. Softw. Eng., vol. 47, pp. 146–164, 2021.

[58] L. Passos, L. Teixeira, N. Dintzner, S. Apel, A. Wasowski, K. Czarnecki,
P. Borba, and J. Guo, “Coevolution of variability models and related
software artifacts,” Empirical Softw. Engg., vol. 21, no. 4, pp. 1744–1793,
Aug. 2016.

[59] R. Zippel et al., “kconfig-language.txt,” in the kernel tree at kernel.org.
[60] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach.

Prentice Hall, 2010.
[61] K. Schmid, I. John, R. Kolb, and G. Meier, “Introducing the pulse

approach to an embedded system population at testo ag,” in ICSE, 2005.
[62] D. C. Sharp, “Reducing avionics software cost through component based

product line development,” in DASC, 1998.
[63] S. She, “LVAT,” https://github.com/shshe/linux-variability-analysis-tools.
[64] S. She and T. Berger, “Formal semantics of the kconfig language,” 2010,

technical Note. www.eng.uwaterloo.ca/ shshe/kconfigsemantics.pdf .
[65] S. She, R. Lotufo, T. Berger, A. Wasowski, and K. Czarnecki, “The

variability model of the linux kernel,” in VaMoS, 2010.
[66] ——, “Reverse engineering feature models,” in ICSE, 2011.
[67] J. Sincero, H. Schirmeier, W. Schröder-Preikschat, and O. Spinczyk, “Is

The Linux Kernel a Software Product Line?” in SPLC-OSSPL, 2007.
[68] J. Sincero and W. Schröder-Preikschat, “The linux kernel configurator

as a feature modeling tool,” in ASPL, 2008.
[69] M. Svahnberg and J. Bosch, “Evolution in software product lines: Two

cases,” Journal of Software Maintenance, vol. 11, no. 6, pp. 391–422,
Nov. 1999.

[70] R. Tartler, C. Dietrich, J. Sincero, W. Schröder-Preikschat, and
D. Lohmann, “Static analysis of variability in system software: The
90,000 #ifdefs issue,” in USENIX ATC, 2014.

[71] R. Tartler, D. Lohmann, J. Sincero, and W. Schröder-Preikschat, “Feature
consistency in compile-time-configurable system software: Facing the
linux 10,000 feature problem,” in EuroSys, 2011.

[72] R. Tartler, J. Sincero, W. Schröder-Preikschat, and D. Lohmann, “Dead
or alive: Finding zombie features in the linux kernel,” in FOSD, 2009.

[73] The GNOME Project, “GLib Reference Manual,” https://developer.gnome.
org/glib/unstable/, accessed: 2021-01-27.

[74] Y. Tian, J. Lawall, and D. Lo, “Identifying linux bug fixing patches,” in
ICSE, 2012.

[75] P. Toft, D. Coleman, and J. Ohta, “A cooperative model for cross-
divisional product development for a software product line,” in SPLC,
2000.

[76] G. Tseitin, “On the complexity of derivation in propositional calculus,”
Zapiski Nauchnykh Seminarov LOMI, vol. 8, 01 1983.

[77] Q. Tu and M. W. Godfrey, “Evolution in open source software: A case
study,” in ICSM, 2000.

[78] F. J. van der Linden, K. Schmid, and E. Rommes, Software Product
Lines in Action, 2007.

[79] B. Veer and J. Dallaway, “The eCos component writer’s guide,” the
eCos component writer’s guide, Available from http://ecos.sourceware.
org/docs-2.0/cdl-guide/cdl-guide.html.

[80] Y. Xiong, H. Zhang, A. Hubaux, S. She, J. Wang, and K. Czarnecki,
“Range fixes: Interactive error resolution for software configuration,” IEEE
Trans. Softw. Eng., vol. 41, no. 6, pp. 603–619, June 2015.

[81] C. Zengler and W. Küchlin, “Encoding the linux kernel configuration in
propositional logic,” in ECAI, 2010.

http://cio.com/article/3069529
http://fmv.jku.at/cadical
http://fmv.jku.at/cadical
http://fmv.jku.at/picosat
https://github.com/ckaestne/kconfigreader
https://kernelnewbies.org/KernelProjects/kconfig-sat
https://kernelnewbies.org/KernelProjects/kconfig-sat
https://www.phoronix.com/scan.php?page=news_item&px=Linux-Git-Stats-EOY2019
https://www.phoronix.com/scan.php?page=news_item&px=Linux-Git-Stats-EOY2019
https://github.com/vegard/linux-2.6/tree/v4.7+kconfig-sat
https://github.com/vegard/linux-2.6/tree/v4.7+kconfig-sat
kernel.org
https://github.com/shshe/linux-variability-analysis-tools
http://www.eng.uwaterloo.ca/~shshe/kconfig_semantics.pdf
https://developer.gnome.org/glib/unstable/
https://developer.gnome.org/glib/unstable/
http://ecos.sourceware.org/docs-2.0/cdl-guide/cdl-guide.html
http://ecos.sourceware.org/docs-2.0/cdl-guide/cdl-guide.html

	Introduction
	Software Configuration and the Linux Kernel
	Software Configuration
	The Linux Kernel and its Configurator
	The Kconfig Language

	ConfigFix
	Configuration Conflicts
	ConfigFix Overview
	Solution Overview
	Fix Generation
	Example Fix

	Experiences and Challenges
	Semantic Abstractor
	Choosing a SAT Solver
	GUI Integration
	Scalability and Performance Improvements

	Evaluation
	Conflict and Fix Generation
	Results

	Threats to Validity
	Conclusion
	References

