Semi-Automated Test-Case Propagation

in Fork Ecosystems

Mukelabai Mukelabai*, Thorsten Berger*f, and Paulo Borba?

*Chalmers | University of Gothenburg, Sweden
TRuhr University Bochum, Germany
tFederal University of Pernambuco, Brazil

Abstract—Forking provides a flexible and low-cost strategy for
developers to adapt an existing project to new requirements, for
instance, when addressing different market segments, hardware
constraints, or runtime environments. Then, small ecosystems of
forked projects are formed, with each project in the ecosystem
maintained by a separate team or organization. The software
quality of projects in fork ecosystems varies with the resources
available as well as team experience, and expertise, especially
when the forked projects are maintained independently by teams
that are unaware of the evolution of other’s forks. Consequently,
the quality of forked projects could be improved by reusing test
cases as well as code, thereby leveraging community expertise and
experience, and commonalities between the projects. We propose
a novel technique for recommending and propagating test cases
across forked projects. We motivate our idea with a pre-study
we conducted to investigate the extent to which test cases are
shared or can potentially be reused in a fork ecosystem. We also
present the theoretical and practical implications underpinning
the proposed idea, together with a research agenda.

Index Terms—test propagation, code transplantation, forking

I. INTRODUCTION

Developers often create forks' of a given project to adapt it to
new requirements, for instance, different market segments, run-
time environments or hardware constraints. Consequently, sev-
eral forked projects may be created and maintained in parallel,
often independently with little-to-no integration of changes be-
tween the projects [1]. Such forks can easily form small ecosys-
tems [2] whose projects vary in quality based on the level of
quality assurance performed in each project. However, the over-
lap between the projects provides potential for test-case reuse.

Testing (e.g., unit and regression testing) is widely used [3]
to assure software quality. Yet, the level of quality assurance
in a project varies with experience, expertise, and resources
available [3], [4]. As a result, a fork ecosystem may have
projects that have weak test suites—insufficient test cases, or
duplicated effort [5] to improve their test suites, or foo many
bugs that have already been resolved in the mainline repository
or other forks [6], [7]. Developers of one project might fix
bugs and introduce test cases. Depending on the applicability
of such test cases to other projects in the fork ecosystem, which
depends on the modifications done in the projects—especially
the units under test (UUT)—ideally, other developers could
be notified and supported with a semi-automated technique to
propagate the test cases.

! Forking refers to copying a project to create a different product from it

We propose a technique for improving the quality of fork
ecosystems by supporting the reuse/sharing of test cases. Since
many forked projects exist that are maintained by different
organizations or teams, with varying expertise and experience,
their quality can be significantly improved by reusing test cases
in addition to code.

Figure 1 illustrates our idea for recommending and propagat-
ing test cases within fork ecosystems. First, when a developer
adds a test case to any project in the ecosystem (whether
mainline or fork—here, the test case is added to Src), we
assess which other projects in the ecosystem can reuse the test
case. We refer to this as the test-case applicability problem.
Here, we check that the behavior of the UUTs, including their
dependencies, is the same in both the source and target projects.
Given that fork ecosystems may be large, it is infeasible to
compare all the context code and follow all dependencies. Thus,
the challenge lies in finding a compromise between precision
(how much of the context to analyze, since behavior can be
changed through adjacent code or even project dependencies)
and performance (how fast we perform the analysis given
the size of each project and number of forks). Second, the
technique recommends the test case to the identified target
projects (7rg in this case) and if accepted by the project
maintainers, propagates the test case. We refer to this as the test-
case propagation problem. The UUTs may have been modified
in both Src and Trg, in which case we try to automatically adapt
t to Trg as much as possible, using techniques such as code-
clone detection [8], [9] or automated software transplantation
[10]. For situations where the adaptation cannot be fully

mainline propagate t to Trg
[Trg’s test suite

I ¢] forks E f‘\

I ’

Src Trg ...

test case t added in Src -
assess applicability of t

class BasicCalculatorTest {
BasicCalculator basicCalculator = new BasicCalculator();
@Test
void divide() {

assertEquals(basicCalculator.divide(®,0),Double.NaN);
}
}

Figure 1: General test-case recommendation and propagation
scenario

Src’s test suite

test case t

automated, we make suggestions to the developer regarding
which parts need to be manually adapted. The challenge here
lies in correctly mapping ¢’s context to the target project and
integrating related code (e.g., bug fixes) given different code
modification scenarios that may occur in both Src and Trg (see
Sec.II). We discuss these two research problems in detail in
sections III and IV.

Our proposed technique allows (i) notifying developers about
applicable test cases in other forked projects; (ii) detecting bugs
early when still unknown to other projects; and (iii) improved
software quality assessment as a result of test cases written
by teams with more expertise and experience, thereby also
improving the overall software quality in fork ecosystems.

II. MOTIVATION AND BACKGROUND

While bug-fix propagation between forked projects is an
active research area [6], [7], [11]-[19], we, in contrast, argue
for improved software quality assurance and early detection
of bugs in fork ecosystems by propagating test cases instead
of bug fixes only. To motivate our proposed technique, we
conducted a pre-study to investigate the extent to which test
cases are shared within fork ecosystems.

A. Pre-Study Design

We drew our sample of fork ecosystems from the Android
ecosystem [2], [20], which is one of the largest and fastest-
growing due to its large set of reused apps. Using the GitHub
API, we mined our set of subject projects as follows.

First, we collected mainline (i.e., not forked) Android
projects that had 91 or more forks each. This gave us 809
projects. We then filtered this list to obtain only Java projects
that had file contents with the word Test in it (potentially
signifying the presence of test cases); this left us with 58
projects. Each of the 58 projects had between 91 and 9,275
forks. Next, for each mainline project, we collected its forks
that had 5 or more commits and had a minimum of 30 days
between the first and last commit. We then selected the top 5
forks for each project (sorted in descending order of commits).
The final set comprised 26 mainline projects (whose forks
met our criteria above) and 64 forks, totaling 90 projects. The
26 mainline projects and their forks constitute 26 ecosystems,
which we analyzed. The majority (54 %) had 3 to 6 projects,
with 23 % having 6 projects (i.e., 1 mainline and 5 forks),
while 46 % had the smallest ecosystem size of 2 projects (1
mainline and 1 fork).

Next, we cloned all projects in each ecosystem and generated
(i) a list of all classes and methods in each project, and (ii)
a list of test cases and corresponding UUTs (classes and
methods). We identified test cases in files using the test-case
annotation keywords Test, TestCase, SmallTest, MediumTest,
and TestMethod.

Subject systems. From the 26 ecosystems, we excluded 10
whose projects had no test-case annotations (e.g., @Test) and
4 more that had fewer than 10 test cases in total. The final set
comprised 12 ecosystems totaling 43 projects—12 mainline

Ed Q1-25% EJ Q2-50% EJ Q3-75% EJ Q4-100% 1004

1.001 0.75- ‘ ‘

o

50~

o

25-

o

00- 7 7
0.25- By Class By Method
(b) Non-shared test
cases with matching
UUTs

0.00- —

M\s'smg Sha‘red

(a) Shared and missing test cases

Figure 2: (a) Proportion of missing and shared test cases in
25 %, 50 %, 75 %, and 100 % of the projects in each ecosystem;
(b) Proportion of non-shared test cases with matching UUTs
in other projects of the ecosystem.

and 31 forks, with a total of 6,569 test cases. We analyzed
this dataset [21] to answer:

e RQI: What is the proportion of shared test cases within
each fork ecosystem?

o RQ2: What proportion of non-shared test cases target
similar UUTs in other projects of the ecosystem?

B. Pre-Study Results

RQI: Proportion of Shared and Missing Test Cases. We
consider a test case shared if it exists in two or more projects
of a fork ecosystem, and missing if it is absent from at least
one project. We calculated the proportions of shared and
missing test cases over their sum, i.e., proportion of shared =
shared/(shared+missing). We calculated the proportions in four
quartiles of projects within an ecosystem; e.g., proportion of
test cases missing in 25 %, 50 %, 75 %, and 100 % of projects.
To match test cases, we used the fully qualified names of the
test methods (i.e., packageName.className.methodName).

Figure 2a indicates that more than half of our ecosystems
have over 75 % of test cases present in all their projects.
However, the left-hand side of Fig. 2a also indicates that few
projects have very high proportions of missing test cases. For
instance, 25 % of the ecosystems have more than 60 % of test
cases missing in 25 % of their projects; 75 % of test cases
missing in 50 % of their projects, and more than 87 % of test
cases missing in 75 % of their projects.

RQ?2: Proportion of non-shared test cases with similar UUT
in projects they are missing from. For each ecosystem, we
collected the set of all test cases marked missing in one or
more projects. For each missing test case, we collected its set
of UUTs: one set (I'C') of fully qualified class names under
test, and another (1T'M) of method names under test. We also
collected a set (PC') of fully qualified class names present in
all projects from which the test case is missing, and another
set (PM) of method names. We consider the test case to have
matching classes under test if |7C' N PC| > 1, and matching
methods under test if |TM N PM| > 1.

Figure 2b indicates that 75 % of the ecosystems have non-
shared test cases with matching UUTs in projects where they
are missing; with more matches by class name than method

names (as expected). For 25 % of the ecosystems, 60 % to
100 % of the non-shared test cases were found to have matching
UUTs.

Our results suggest potential for test case propagation in
fork ecosystems. However, even though we were able to match
class names and methods in target projects for missing test
cases, a detailed analysis and design is required based on how
the target UUT may be modified in practice.

C. Code-change Scenarios Affecting Propagation

Changes to UUTs may be due to refactoring, bug fixes or
addition of features. TableI presents our five main change
scenarios. The first four relate to modifications of UUT, while
the fifth relates to modifications of the test case. The added
or modified test case may apply to code that has changed in
both Src and Trg (S1), or only Src (S2), or only Trg (S3), or
old code that has not been changed in either project (S4). The
concrete example sub-scenarios indicate what recommendation
actions are taken based on what changes occurred and where.

III. STAGE 1: ASSESSING TEST-CASE APPLICABILITY

Our proposed test-case-propagation technique comprises two
main stages: assessing test-case applicability and test-case-
recommendation and propagation (Sec.IV). We now describe
how we envision the technique to work when assessing test
case applicability, followed by what research we will conduct
to realize it.

Definition 1. (Test-Case Applicability Level) A test case ¢
from a project Src is applicable to a target project Trg if its
UUTs and their dependencies are similar in both Src and Trg
based on some similarity criteria C.

A. Applicability Technique

Detecting Test Cases in Changed Code. We only detect test
cases from changes introduced after fork creation. For each test
case added or modified, we collect its UUTs and establish when
they were last changed. Our technique’s preliminary design and
implementation relies on Ghafari et al.’s [22] technique to trace
test cases to method-level UUTs. Similar to Li et al.’s [4] imple-
mentation of the Ghafari technique, we convert a given project’s
source code into srcML and compute dataflow paths that
influence each variable in an assertion statement of a test case—
a.k.a., backward slicing [23]. We use xUnit-based test case
annotations, e.g., JUnit’s @Test, to identify test cases in code.

Assessing Test-Case Existence. We check for the existence of
a test case in other projects of the fork ecosystem by comparing
its fully qualified class and method name to test-classes and
methods in the target projects. If only the test-class is matched,
we propose to compare statements in the sefup, execution, and
oracle parts of the test case to those of the target test methods
in the matched class. For this, we shall rely on techniques
such as AST differencing [24]. If we establish that the test
case does not exist, we recommend it, else we ignore it. Our
current implementation used in the pre-study only compares
class or method names without comparing inner statements.

Assessing Applicability. If the test case does not exist in the
target project, we assess whether it is applicable to the project.
To that end, we check that its UUT (the code exercised by
the test case), including its context (class or project library
dependencies referenced by the UUT) exist in the target. Since
some units may have been changed in the target, e.g., classes or
functions renamed, we apply code-change detection techniques
such as code-clone detection [8] to find such units whose
behavior is still preserved. By assessing the context of the
test case, we can estimate whether or not the behavior of its
UUT is preserved in the target project. Our technique checks,
with a certain precision, that the behavior of UUTs has not
changed; for that, it will look into the code of UUTSs and their
context, and explore code similarities following control-flow
or data-flow paths.

If the test case has matching UUTs in the target, we
recommend it, otherwise we ignore it, or, depending on the
extent to which the UUTs are modified, we adapt the test case
to the target.

B. Research Agenda

Explore Design Decisions for Test-Case Recommendation.
To assess applicability, our technique checks, with a certain
precision, that the behavior of UUTs has not changed, by
exploring control- and data-flow paths of the test case’s UUTSs
and context. This exploration is at different depths/levels that
need to be empirically calibrated to obtain a good trade-off
between precision and performance, since some projects may
be too large to analyze all dependencies. Hence, we shall
investigate (i) how much of the UUT and context we analyze
given the trade-off between precision and performance, and
(ii) how we perform the analysis. We shall rely on code-
change detection techniques, such as code-clone detection
and refactoring tools, to analyze changes to the UUT and
context in the target project. Our goal here is to maximize the
precision of the test-case applicability technique while ensuring
its practicality, considering the sizes of projects and number
of forks. We shall investigate the extent to which existing
techniques for code change-detection can be used (or improved
upon) to assess the applicability of test cases in fork ecosystems.
Therefore, we shall define criteria for assessing when a test
case can be adapted to changes introduced in the target.

IV. STAGE 2: RECOMMENDATION AND PROPAGATION

In the second stage we recommend applicable test cases to
maintainers of target projects and, if accepted, integrate the
test cases (and related code) into the target projects.

Definition 2. (Test-Case Propagation) A test case ¢ from a
source project Src is successfully propagated to target Trg, if
t has equivalent output when executed on both Src and Trg,
given the same input (if ¢ was not adapted) or similar input
(if t was adapted to Trg).

A. Propagation Technique

We perform the following steps to propagate the test case t:

Table I: Scenarios for propagating test-case ¢ from Src to Trg

code change scenario with example sub-scenarios

propagation action

S1: t applies to code changed in both Src and Trg

Sla: Test case for a function existing in both Src and Trg but modified in both projects

assess applicability and recommend accordingly

S2: t applies to old code (in Src) that has been changed in Trg

S2a: Test case for a function that exists in both Src and Trg but is modified in Trg

assess applicability and recommend accordingly

S2b: Test case for a function in Src that no longer exists in Trg ignore
S3: t applies to code that has changed in Src but not in Trg
S3a: Test case applies to a new function in Src that does not exist in 7rg ignore

S3b: Test case applies to an old function that exists in 7rg but has been modified in Src

assess applicability and recommend accordingly

S4: t applies to old code that is common to both Src and Trg
Test-case for function that is the same in both Src and Trg

recommend and propagate as is

S5: t added or modified
S5a: Test case exists only in D
S5b: Test case exists in both D and H but is modified in D only

S5c¢: Test case exists in both D and H and is modified in both projects

consider S1-S4 and assess applicability
assess test-case similarity and applicability (S1-S4)
assess test-case similarity and applicability (S1-S4)

Copy the Test Case and Attempt to Build the Target. If
the test case requires no adaptation, we copy it to the target
and attempt to build the project (Note: depending on where the
target project is hosted, we may need CI infrastructure setup
to automatically build). If the build is successful, we execute
the test case to assess equality of output when executed on
both the source and target; otherwise, we adapt the test case
to the target’s context.

Adapt the Test Case. By analyzing the test case’s data- and
control-flow dependencies (based on variables referenced in
assertion statements), we explore possible mappings between
the test case’s UUTs and the context, and those in the target.
While exploring the search space of the host’s variables to
adapt the test case, we build the target project to ensure that
it is compilable. When the project builds successfully, we
execute the test case on the target to compare with output from
the source project. We automatically adapt the test case as
much as possible. However, if this is not possible, we suggest
manual adaptation to the developer with an indication of parts
that need to be adapted, e.g., indicating variables or statements

in the test case that could not be mapped to the target’s context.

B. Research Agenda

Conceive Technique for Automatic Test-Case Adaptation.
Since code changes can occur to both test cases (see scenario
S5 in TableI) and UUT (see scenario S1-S4 in TableI), we
shall explore different techniques, such as AST differencing
[24], techniques applied in automated test repair [25], or code
transplantation techniques [10], to formalize an algorithm that
automatically adapts the test case and related code to the target
project. Through an iterative design and evaluation of the
algorithm, we aim to understand (i) the kinds of changes to
UUT under which a test case can be automatically adapted,
and (ii) the kind of manual adaptations required.

V. RELATED WORK

Test-Case Reuse and Evolution. Several studies address
redundancy in test cases to promote reuse. Most focus on
vertical reuse [26], that is, reuse of test cases over different
integration levels of a system, or within software product
lines and highly configurable systems [27], [28], or UI testing

related apps [29]-[32]. Other studies [25], [33] have focused
on supporting the co-evolution of test-cases with code artifacts,
for instance, by automatically repairing test-cases based on
code changes. However, we address test-case reuse across
forked projects that may evolve in different ways, thereby
alleviating the problem of redundant development. We also
foster community development to leverage expertise for better
quality assurance, that may otherwise not be easily realized.

Test-Case-to-Code Traceability. Several techniques have
been proposed to trace test cases to code. The majority, such as
naming convention and last call before assert, only trace classes
under test [34], [35]. Ghafari et al. [22] proposed a test-code
traceability technique that lowers the granularity to method-
level traces; to which Li et al. [4] added multi-language support.
We rely on this technique to identify UUTs of test-cases.

Code Porting and Transplantation. Several techniques [6],
[71, [11], [12], [14]-[19] have been proposed for porting code
changes across forks. However, these techniques focus on
porting feature implementation and bug-fixes. In contrast, we
aim to be proactive and improve software quality by reusing
test-cases, thereby also saving development cost spent in fixing
bugs already resolved. Furthermore, our problem scenario calls
for investigation of several aspects outlined in our research
agenda that are not addressed by previous studies.

Code Recommendation. Recommendation systems are widely
used in software engineering [36], [37], for tasks such as sug-
gesting bug-fixes, code snippets, and associated requirements.
Github offers recommendations for projects that may have
dependencies with known security vulnerabilities [38]. Other
works exist, such as using unit tests to offer code learning
examples [39], recommending test suites based on historical
data [40], and recommending when to stop performance tests
[26]. However, none of these works addresses our use case.

VI. CONCLUSION

Many software projects exist as fork ecosystems. In many cases,
developers of individual forks are unaware of the evolution of
other forks. While studies exist that are either specific to Ul-
level testing, or that focus on porting feature improvements and
bug fixes across forks, none addresses the general case of test

case recommendation and propagation. In this paper, we pre-
sented a novel approach to recommending and propagating test
cases across forked projects of the same system. We motivated
our idea with a pre-study in which we found that 75 % of the
ecosystems in our dataset had test cases that could potentially
be propagated to projects where they were missing; and that
for 25 % of the ecosystems, such non-shared test cases were be-
tween 60 % to 100 % of all non-shared test cases in the ecosys-
tem. We complemented our discussion with a research agenda.

[1]
[2]

[3]

[4]
[5]
[6]
[7]
[8]

[9]
[10]

[11]

[12]
[13]
[14]

[15]

[16]

[17]

REFERENCES

S. Zhou, B. Vasilescu, and C. Késtner, “How has forking changed in the
last 20 years? a study of hard forks on github,” in ICSE, 2020.

J. Businge, M. Openja, S. Nadi, E. Bainomugisha, and T. Berger, “Clone-
based variability management in the android ecosystem,” in /CSME,
2018.

M. Mukelabai, D. Nesi¢, S. Maro, T. Berger, and J.-P. Steghofer, “Tackling
combinatorial explosion: a study of industrial needs and practices for
analyzing highly configurable systems,” in ASE, 2018.

B. Li, C. Vendome, M. Linares-Vasquez, D. Poshyvanyk, and N. A.
Kraft, “Automatically documenting unit test cases,” in /CST, 2016.

S. Zhou, S. Stanciulescu, O. LeBenich, Y. Xiong, A. Wasowski, and
C. Kistner, “Identifying features in forks,” in /CSE, 2018.

L. Ren, “Automated patch porting across forked projects,” in ESEC/FSE,
2019.

B. Ray and M. Kim, “A case study of cross-system porting in forked
projects,” in FSE, 2012.

C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach,”
Science of computer programming, vol. 74, no. 7, pp. 470-495, 20009.
Y. Lin, X. Peng, Z. Xing, D. Zheng, and W. Zhao, “Clone-based and
interactive recommendation for modifying pasted code,” in FSE, 2015.
E. T. Barr, M. Harman, Y. Jia, A. Marginean, and J. Petke, “Automated
software transplantation,” in ISSTA, 2015.

B. Vogel-Heuser, A. Fay, 1. Schaefer, and M. Tichy, “Evolution of
software in automated production systems: Challenges and research
directions,” Journal of Systems and Software, vol. 110, pp. 54-84, 2015.
N. Meng, M. Kim, and K. S. McKinley, “Lase: locating and applying
systematic edits by learning from examples,” in /CSE, 2013.

E. T. Barr, Y. Brun, P. Devanbu, M. Harman, and F. Sarro, “The plastic
surgery hypothesis,” in FSE, 2014.

J. Rubin, K. Czarnecki, and M. Chechik, “Managing cloned variants: a
framework and experience,” in SPLC, 2013.

H. A. Nguyen, A. T. Nguyen, T. T. Nguyen, T. N. Nguyen, and H. Rajan,
“A study of repetitiveness of code changes in software evolution,” in ASE,
2013.

B. Ray, M. Kim, S. Person, and N. Rungta, “Detecting and characterizing
semantic inconsistencies in ported code,” in ASE, 2013.

B. Ray, M. Nagappan, C. Bird, N. Nagappan, and T. Zimmermann, “The
uniqueness of changes: Characteristics and applications,” in MSR, 2015.

(18]

[19]

(20]

(21]
[22]

[23]
[24]

[25]

[26]

[27]

(28]

[29]
(30]
[31]

[32]

[33]

[34]

[35]

[36]

(371

[38]
(39]

[40]

M. Gharehyazie, B. Ray, and V. Filkov, “Some from here, some from
there: Cross-project code reuse in github,” in MSR, 2017.

N. Kawamitsu, T. Ishio, T. Kanda, R. G. Kula, C. De Roover, and
K. Inoue, “Identifying source code reuse across repositories using lcs-
based source code similarity,” in SCAM, 2014.

T. Berger, R.-H. Pfeiffer, R. Tartler, S. Dienst, K. Czarnecki, A. Wasowski,
and S. She, “Variability mechanisms in software ecosystems,” Information
and Software Technology, vol. 56, no. 11, pp. 1520-1535, 2014.

The Authors, “Online Appendix,” https://bitbucket.org/easelab/
testpropagataion-prestudy/, 2020.

M. Ghafari, C. Ghezzi, and K. Rubinov, “Automatically identifying focal
methods under test in unit test cases,” in SCAM, 2015.

R. Jhala and R. Majumdar, “Path slicing,” in PLDI, 2005.

J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus,
“Fine-grained and accurate source code differencing,” in ASE, 2014.

X. Li, M. d’Amorim, and A. Orso, “Intent-preserving test repair,” in
ICST, 2019.

H. M. AlGhmadi, M. D. Syer, W. Shang, and A. E. Hassan, “An
automated approach for recommending when to stop performance tests,”
in ICSME, 2016.

S. Fischer, R. Ramler, L. Linsbauer, and A. Egyed, “Automating test
reuse for highly configurable software,” in SPLC, 2019.

E. Engstrom and P. Runeson, “Software product line testing—a systematic
mapping study,” Information and Software Technology, vol. 53, no. 1,
pp. 2-13, 2011.

G. Hu, L. Zhu, and J. Yang, “Appflow: using machine learning to
synthesize robust, reusable ui tests,” in FSE, 2018.

J.-W. Lin, R. Jabbarvand, and S. Malek, “Test transfer across mobile
apps through semantic mapping,” in ASE, 2019.

A. Rau, J. Hotzkow, and A. Zeller, “Transferring tests across web
applications,” in ICWE, 2018.

Y. Zhao, J. Chen, A. Sejfia, M. Schmitt Laser, J. Zhang, F. Sarro,
M. Harman, and N. Medvidovic, “Fruiter: a framework for evaluating ui
test reuse,” in FSE, 2020.

V. G. Yusifoglu, Y. Amannejad, and A. B. Can, “Software test-
code engineering: A systematic mapping,” Information and Software
Technology, vol. 58, pp. 123-147, 2015.

B. Van Rompaey and S. Demeyer, “Establishing traceability links between
unit test cases and units under test,” in CSMR, 2009.

A. Qusef, G. Bavota, R. Oliveto, A. De Lucia, and D. Binkley,
“Recovering test-to-code traceability using slicing and textual analysis,”
Journal of Systems and Software, vol. 88, pp. 147-168, 2014.

M. Robillard, R. Walker, and T. Zimmermann, “Recommendation systems
for software engineering,” IEEE software, vol. 27, no. 4, pp. 80-86, 2009.
U. Pakdeetrakulwong, P. Wongthongtham, and W. V. Siricharoen,
“Recommendation systems for software engineering: A survey from
software development life cycle phase perspective,” in ICITST, 2014.
Github, “Managing Security Vulnerabilities,” https://help.github.com/en/
github/managing-security-vulnerabilities, 2020.

S. M. Nasehi and F. Maurer, “Unit tests as api usage examples,” in
ICSME, 2010.

D. S. Prasad, S. Chacko, S. Ramaraju, G. K. Durbhaka et al., “Automat-
ically recommending test suite from historical data based on randomized
evolutionary techniques,” Oct. 18 2016, uS Patent 9,471,470.

https://bitbucket.org/easelab/testpropagataion-prestudy/
https://bitbucket.org/easelab/testpropagataion-prestudy/
https://help.github.com/en/github/managing-security-vulnerabilities
https://help.github.com/en/github/managing-security-vulnerabilities

