
Towards Mapping Control Theory and Software
Engineering Properties using Specification Patterns

Ricardo Caldas and Razan Ghzouli
Chalmers | U. of Gothenburg, Sweden

Alessandro V. Papadopoulos
Mälardalen University, Sweden

Patrizio Pelliccione
Chalmers | U. of Gothenburg, Sweden
Gran Sasso Science Institute, Italy

Danny Weyns
KU Leuven, Belgium
Linnaeus U., Sweden

Thorsten Berger
Chalmers | U. of Gothenburg, Sweden
Ruhr University Bochum, Germany

Abstract—A traditional approach to realize self-adaptation in
software engineering (SE) is by means of feedback loops. The
goals of the system can be specified as formal properties that are
verified against models of the system. On the other hand, control
theory (CT) provides a well-established foundation for designing
feedback loop systems and providing guarantees for essential
properties, such as stability, settling time, and steady state error.
Currently, it is an open question whether and how traditional
SE approaches to self-adaptation consider properties from CT.
Answering this question is challenging given the principle differ-
ences in representing properties in both fields. In this paper, we
take a first step to answer this question. We follow a bottom up
approach where we specify a control design (in Simulink) for a
case inspired by Scuderia Ferrari (F1) and provide evidence for
stability and safety. The design is then transferred into code (in C)
that is further optimized. Next, we define properties that enable
verifying whether the control properties still hold at code level.
Then, we consolidate the solution by mapping the properties in
both worlds using specification patterns as common language and
we verify the correctness of this mapping. The mapping offers
a reusable artifact to solve similar problems. Finally, we outline
opportunities for future work, particularly to refine and extend
the mapping and investigate how it can improve the engineering
of self-adaptive systems for both SE and CT engineers.

Keywords-Self-adaptive systems, feedback loops, control theory,
properties, mapping of properties.

I. INTRODUCTION

Providing evidence that a self-adaptive system behaves accord-
ing to the stakeholders’ requirements is challenging [1]–[3],
especially when the system operates in uncertain environments.
A potential remedy is to exploit principles from control
theory (CT) to engineer self-adaptive systems [4]. Control
theory provides a mathematical framework for designing and
analyzing dynamic systems, offering a formal basis to provide
guarantees for control properties such as stability, overshoot,
and settling time. For computing systems, CT has primarily
been used to manage low-level resources, such as CPU cycles,
communication bandwidth, and hardware [5]. Recently, there
has been an increasing interest in applying the mathematical
framework of CT to control software elements [6]–[10] as well.

A common approach in software engineering (SE) to provide
guarantees for a self-adaptive system is to test it against its

requirements, or formally, by specifying formal properties1 that
are verified against models of the self-adaptive system [12]–
[14]. Such formal approaches work case by case using tools
such as model checkers. On the other hand, CT-based solutions
provide guarantees by design—that is, controller models
properly designed according to the mathematical principles of
CT satisfy the target CT properties. Yet, understanding how,
and to what extent, traditional SE approaches to self-adaptation
consider and comply with properties from CT is challenging
given the principle differences between the two paradigms.

In this paper, we take a first step towards determining
whether and how traditional SE approaches to self-adaptation
consider properties from CT. The relationship between SE
approaches to self-adaptation and CT has been investigated
from different angles. One line of research—reflected in Brun
et al. [12] and Filieri et al. [15], among others—determines
the mapping of the elements of a CT feedback loop design
to the elements of the MAPE-K architecture [16]. Another
line of research—reflected in Shevtsov et al. [17] and Caldas
et al. [18], among others—studies the synthesis of controllers
for correct and efficient adaptation based on control theory.
Recently, Cámara et al. [19] made a step forward in bridging
the gap by proposing a mapping between CT properties and
self-adaptive systems properties relying on a common language.
We stand on their shoulders to investigate the foundational
issue of whether and to what extent properties of traditional
SE approaches to self-adaptation consider properties from CT.

Inspired by a concrete case—the Simulink-model-based spe-
cification of a control design by Scuderia Ferrari (F1) [20]—the
engineering process used in our work includes adaptation goal
identification, CT design, controller implementation and integra-
tion, and finally validating the implementation against the goals.
Once the goals include CT properties, the challenge arises to
check whether the implementation satisfies those CT properties.
Here, the interplay between SE and CT takes place. For
instance, suppose that the software engineers introduce a fault
in the software when optimizing C code, and suppose that this

1A property expresses what a system should or should not do, or how a
system should or should not behave. To analyze a property, we need a property
specification [11] that for instance can be verified against a model. In this
paper, the term property refers to formally specified properties.

“This work has been submitted to the IEEE for possible publication.
Copyright may be transferred without notice, after which this version may no
longer be accessible.”

fault induces behavior that violates the requirement of keeping a
safe distance from the vehicle ahead, previously guaranteed by
the controller design. How can the test engineers verify that the
safety requirements considered by the control engineers in the
design still hold? To enable engineers to check CT properties on
the implementation, we envision a mapping between CT proper-
ties and SE properties (here formulated in LTL). A formulation
of CT properties in some kind of temporal logic might enable,
for instance, the use of model checkers (e.g., DIVINE [21]
or Uppaal [22]), monitoring techniques (e.g., Larva [23] or
PREDIMO [24]), and model-based testing [25]. To that end,
we perform initial steps towards determining the mapping by
exploiting so-called property specification patterns [26], [27].
We show the overall engineering process and mapping through
an example of adaptive cruise control. We also check the
defined mapping between CT and SE properties by investigating
whether the LTL formula (SE property) presents the same
behaviors that can be observed at the CT simulation level (CT
property). To that end, we use the model checker DIVINE [21].
The results of the validation are promising, indicating feasibility
and effectiveness of identified mappings between CT and SE
properties. We provide an online replication package [28], in-
cluding our artifacts (e.g., Simulink model) and further details.

II. BACKGROUND AND MOTIVATION

Engineering Process. Engineering a controller to realise self-
adaptation typically involves an iterative process where control
experts work separately from software engineers [29]. Such a
process usually comprises six steps: (1) identify the adaptation
goals, (2) identify the knobs (a.k.a., configuration options
or calibration parameters), (3) devise the system model, (4)
design the controller, (5) implement and integrate the controller,
and (6) test and validate the system [15]. Especially step
(5), the implementation and integration of controllers into
a larger system, is considered a challenging task [30]. In
principle, engineers follow a model-driven approach [31], [32],
relying on a variety of tools and modeling languages (e.g.,
(MATLAB/Simulink, Modelica, SCADE), where the control
model is transformed into hardware- and environment-specific
models and eventually into source code. Still the generated
code, as we learned from the Ferrari case, needs to be further
optimized and customized before it can be integrated into a
larger system. This requires extensive manual modification of
the code [33]—an error-prone activity that may introduce bugs
that are hard to spot without proper verification techniques. In
addition, when the controller becomes part of a larger system,
it is also influenced by it, further questioning whether the
necessary CT properties still hold. Apparently, verifying code
requires SE verification techniques, but to what extent the
system does (or can) address CT properties is an open question.
CT versus SE Properties. Mapping and comparing SE
and CT properties is challenging. The former are typically
formulated over a model of the system (often graph-based, such
as a finite or a Büchi automaton) and expressed in a formal
language, such as in temporal logics or in a process algebra.
The latter are completely defined in algebraic formulations.

While challenging, we believe that a mapping between the
properties of the two worlds might be facilitated by expressing
them in a common notation. Current approaches, such as
Cámara et al. [19], use a formal language as common notation.
Although flexible, specifying properties using a common
formal language can be time-consuming and prone to errors.

Process and Properties at Ferrari. We further illustrate
this problem based on the process followed by Scuderia
Ferrari [20]. The manufacturer develops software for high-
performance racing cars under tight one-week sprints. A typical
requirement to be addressed from the control software involves
four engineers: control experts, software developers, testers, and
track engineers. At the highest level of development, control
experts specify controller behavior using block diagrams aiming
to guarantee the required control properties (e.g., stability,
settling time, overshoot). The controller specifications are
transformed into lower-level C code, where software engineers
apply customizations and optimizations. The modified code
is then thoroughly tested using software-in-the-loop (SIL) or
hardware-in-the-loop (HIL) techniques. At the testing level,
testers and control experts monitor the simulated behavior to
guarantee that it behaves according to the design, i.e., that the
car behavior complies with the control properties. Finally, the
control software is deployed. At runtime, the track application
engineers constantly monitor, elicit bug-fixing or improvement
requirements, and in emergency cases perform hot-fixes to the
running vehicle. The pipeline is executed in 7 days of intense
work, from which half is concerned with specification, two
with coding, one with testing, and the last three with validation.

Mapping Properties using Specification Patterns. As mo-
tivated above, understanding the extent to which properties
considered by traditional SE approaches to self-adaptation cover
fundamental properties of CT urges for a mapping between
the two. To this end, we propose a technique that uses patterns
to map CT properties to SE properties. Inspired by the process
and details of how Ferrari engineers controllers, in this short
paper, we demonstrate the feasibility and effectiveness of
mapping CT and SE properties. Specifically, we design an
example control model in Simulink with guarantees for CT
properties. The model is then transformed into C code and
is subject to modifications. Next, we define properties and
verify whether the control properties still hold at code level. To
consolidate the solution, we map the properties in both worlds
using specification patterns as a common language, and we
verify the correctness of this mapping. In the next sections III
to V we explain this process using a running example.

III. SYSTEM MODEL DESIGN

The process starts with the design of a control model that
complies to specific requirements. Using Simulink, we designed
an adaptive cruise control (ACC), a driver assistance system,
for a vehicle (ego vehicle). We modeled a scenario where the
ego vehicle is provided with an ACC that automatically tracks
a set velocity and adjusts the ego vehicle speed to maintain a
safe distance from a preceding vehicle (lead vehicle) [34]. The

Fig. 1. Simulation excerpt of the designed CT model. Left: relation between acceleration, and leading and ego vehicles’ speed. Right: relation between Drel

and Dsafe, and the switching behavior between space mode and speed mode controllers.

ACC system has two operating modes: (1) Speed control where
the ego vehicle follows a given speed (Vset) and (2) spacing
control to keep a safe distance from the lead vehicle (Dsafe).

We used a model-based approach to design two propor-
tional–integral–derivative (PID) controllers, speed mode PID
and space mode PID, that guarantee the requirement: “If the
relative distance between the two vehicles (Drel) is less than a
safe distance (Dsafe), the controller of the ego vehicle should
adjust its speed (Vego) for Drel to become greater than Dsafe,
otherwise follow a given velocity (Vset).” In other words, if the
safety of the vehicle is breached, the controller should adjust the
vehicle’s speed to maintain a safe distance. The relative distance
(Drel) is the difference between the ego vehicle’s position (xego)
and the lead vehicle’s position (xlead), see Eq. (1). The safe
distance is a function of the ego vehicle velocity, Eq. (2), where
Ddefault is the standstill default spacing and Tgap × Vego is the
gap between the vehicles. Tgap is chosen to enable the ego
vehicle to break without crashing the leading vehicle [35].

Drel = xlead − xego (1)

Dsafe = Ddefault + Tgap × Vego (2)

The switching between the two PIDs depends on a velocity
error (ev) and a distance error (ed), see Eq. (3). We have used
a state-based notation that produces the activation signal (1 for
speed mode and -1 for space mode) followed by a switch to
implement the mode switching in Simulink. With the switch
the two PIDs do not operate simultaneously, satisfying the
safety requirements.

Mode =

{
1 speed mode if ev = Vset − Vego < 0

−1 space mode if ed = Dsafe −Drel > 0
(3)

Figure 1 shows an excerpt of the simulation showing the
behavior of the designed controllers for 45 sec. In this setting,
we simulated a scenario where the speed of the lead vehicle
varies in time according to a sine wave resulting in changes
in the distance between the two vehicles. The ACC switches
between the space controller and the speed controller to keep
the ego vehicle safe. At the moment 27 sec a breach in the
safety requirement occurs resulting in the ACC reacting to keep
safety. The reaction must lead into a state where the system

settles around an equilibrium point. If this happens, the system
is said to be stable.2

IV. MODELING STABILITY AS A SE PROPERTY

Guaranteeing that the system is stable at code-level (as
illustrated in Fig. 1), requires that the property is modeled in a
formal language such as a graph-based formulation, temporal
logic, or process algebra. In this section we explain how we
modeled stability using linear temporal logic.

A control system is stable even if the error e(t) is not
converging to zero, but the error is bounded. More specifically,
in control terms, if the initial value of the system output is
“close” to the equilibrium value, then the evolution over time
of the output of the system will be bounded [19].

Fig. 2. Illustration of the CT property Stability for a step input.

Importantly, at some point the system must reach a so-
called steady-state, where the signal is bounded. Therefore,
we formalize steady-state beforehand. Let us suppose that a
system is stimulated by a unitary step. Given the current state
of the system’s response output (vx), the equilibrium value
(veq) estimated with the output samples and the acceptance
margin (α) for convergence. With this in mind we formulate
the steady-state condition (SS).

SS ≡ |vx − veq| ≤ α (4)

2There are techniques for the analysis of the stability of hybrid systems
based on the physical model of the system, see [36], but the description of
such techniques is beyond the scope of the paper.

Equation (4) asserts that the steady-state condition holds
when the distance between the current value and the equilibrium
value is bounded by the acceptance margin.

The stability property is defined by the ability to reach and
stay at steady-state. The output measurement of stable systems
converges to steady-state if the system is ‘excited’ by an input.
Figure 2 illustrates the response to a step input where the set of
output values (vx) is within a band defined by the acceptance
margin (α). The acceptance margin is a limiting value relative
to the equilibrium point (veq).

How to formulate the CT stability property in LTL? We
exploit specification patterns as a common language to create
the mapping between CT and SE properties. A specification
pattern [26], [27] is defined as a tuple <Scope, Pattern>.
A Scope determines the extent of a program execution over
which the pattern holds3. Examples of scopes are Globally
(entire execution trace) and After X (execution trace after a
state/event X). A Pattern describes a generalized recurring
system attribute [27]. Examples of patterns are Universality
(a property that always holds) and Existence (a property
that eventually holds). A property can be specified by one
specification pattern or a composition of multiple patterns
using a nesting operator. For instance, the Universality and the
Existence patterns might be composed under the Globally scope
to obtain the Globally, Universality Existence (i.e., �♦P).

We rely on a syntactical comparison of CT and SE properties
to map them using specification patterns. In our running
example, we analyze the stability property from the two
viewpoints. Stability as a CT property is represented by a
feedback loop in which the ego’s actual position is fed back
into the controller. The ego’s position is used to calculate
the relative difference between vehicles and determine which
acceleration will restore ego’s safe position. In other words,
stability determines the ability of the ego vehicle to restore
and maintain itself in a wanted state for undetermined time.

Globally Untimed Existence Universality

Globally eventually always SS holds.

We formalize the Stability property by employing the speci-
fication pattern Globally Existence, which aims at describing
that events/states eventually holds, nested with Globally Uni-
versality specifying the case that the events/states always hold.
Syntactically, the Globally Existence Universality coincides
with the stability property. The Globally Existence Universality
is represented in temporal logic as shown in Eq. (5).

Stability ≡ ♦(�SS) (5)

In our running example, the ego vehicle must restore its
position beyond the safety distance whenever the ego vehicle
gets too close to the leading vehicle and maintains the safe
distance. Therefore, we defined the steady-state as a function
of Eqs. (1) and (2), where vx = Drel, veq = Dsafe, and α =

3https://matthewbdwyer.github.io/psp/patterns/scopes.html

Fig. 3. Using DIVINE 4 to get confidence on the CT-SE properties mapping.

0.05×Dsafe. Lastly, stability in the running example’s context
can be formulated as shown in Eq. (6).

Stability ≡ ♦(�(Drel −Dsafe > α)) (6)

It is important to note the absence of the absolute operation
around Drel −Dsafe. In this specific case, when the distance
between ego and the leading car is greater than α = 0.05 ×
Dsafe the safety requirement is not violated and the system is
considered stable.

V. CHECKING THE MAPPING

In this section, we use model checking to increase the
confidence about the correctness of the mapping4. To that end,
we model check the SE property with three different scenarios
in which we can attest whether the requirement is satisfied or
not by visualizing the CT simulation output. Thus, we check
the correctness of the mapping by comparing whether the LTL
formula (SE property) holds in comparison with the expected
result observed in the CT simulation level (CT property). As
exemplified by Figure 3, in simulation, we capture the former
three scenarios behavior using Simulink. We auto-generate the
C++ code for the System model using Simulink Coder5 for
each scenario. Using DIVINE 46 we assure the correctness of
our mapping by feeding both the generated Büchi Automata
in never claim representation7 (SE property) and the generated
C++ code (CT property behavior) to the model checker.

The scenarios in Table I are tailored to show whether there
is a semantic equivalence between safety at CT level and SE
level. Therefore, they need to explore the different behavior that
might occur during system execution. To generate the scenarios,
we changed the initial settings of the experiment with different
vehicle’s starting positions (x0) and starting speeds (v0).

We ran the simulation and model checked all scenarios on a
Ubuntu 18.04, processor Intel(R) Core(TM) i7-8665U CPU @

4Instructions on how to replicate our experiments as well as the technicalities
of the model checking process are available in our online appendix [28].

5https://se.mathworks.com/products/simulink-coder.html
6https://divine.fi.muni.cz/index.html
7The Büchi Automata in never claim was manually encoded within DIVINE.

https://matthewbdwyer.github.io/psp/patterns/scopes.html
https://se.mathworks.com/products/simulink-coder.html
https://divine.fi.muni.cz/index.html

TABLE I
SCENARIOS

ID v0 ego v0 lead x0 ego x0 lead Description

Case 1 10 km/h 30 km/h 10 m 50 m Ego is always at
a safe distance.

Case 2 20 km/h 25 km/h 3 m 5 m Ego recovers
from unsafe
distance.

Case 3 40 km/h 15 km/h 10 m 20 m Ego cannot re-
cover from un-
safe distance.

1.90GHz, and 32GB memory. All the scenarios returned the
expected result, the Stability property (Eq. (6)) holds for cases
1 and 2 but not for case 3, see Table II.

TABLE II
MODEL CHECKING RESULTS

ID Mem. Used Exec. Time Ground-Truth Result

Case 1 323.9 MB 3.70sec true true

Case 2 328.5 MB 3.59sec true true

Case 3 326.4 MB 3.18sec false false

The model checking results8 return either Error found or
No error found. In our case, Error found translates to true
in Table II, and the other way around for Error found. Such
translation results from how checking liveness in DIVINE 4
and how we have implemented the Stability property.

VI. RELATED WORK

We start with related work that discusses properties of self-
adaptive systems from a SE perspective. Then we discuss
related work that emphasizes the importance of relating
traditional SE properties to CT properties.

Back in 2012, the authors of [37] performed a systematic
literature review on the use of formal methods in self-adaptive
systems. The results show that safety, liveness, and reachability
are the main properties considered and these properties are
primarily used to verify the efficiency/performance, reliability,
and functionality of self-adaptive systems. While instrumental
for SE properties considered in self-adaptive systems, the
authors do not look into a mapping with CT properties.

The community papers [1] and [2] that emerged from a
Dagstuhl seminar state that assuring that a self-adaptive system
complies with its requirements requires an enduring process
that spans the whole lifetime of the system. The authors refer
to this process as “perpetual assurances” and emphasize that
control theory offers a basis to design solutions that provide
such assurances.

The study in [38] is a pioneering work mapping between
quality attributes of self-adaptive systems and properties of
control theory. For instance, performance with latency and
throughput is mapped to settling time. The proposed mapping

8See folder ‘reports’ in our online appendix [28]

is done based on terminology derived from a literature survey.
In [7], the authors derived a mapping between software qualities
and control properties based on the results of a systematic
literature review on control-theoretical software adaptation. For
instance, guaranteeing settling time may be associated with
most software qualities since the property refers to guarantees
on the time it takes to bring measured quality property close
to its goal. In both papers, the presented mapping stayed at a
high level in comparison to our work.

The most relevant paper for the work presented in this
paper is [19]. In that paper, the authors mapped key properties
that characterize self-adaptive systems to control properties,
leveraging the formalization of both in temporal logic. While
that work relies on a general formal notation to identify the
mapping between SE and CT properties, our work leverages
on the structures of a set of established patterns.

The paper [39] highlights recent efforts on self-stabilization
in aggregate computing, for instance [40]–[42]. These efforts
focus on providing guarantees for control-based properties
to algorithms for self-organization of distributed systems, in
contrast to mapping how properties are considered in both
SE and CT. Furthermore, such effort reinforces the promising
path of using of CT tooling for safety assurance provision for
aggregate algorithms.

VII. CONCLUSION AND FUTURE WORK

To improve the engineering of self-adaptive systems, we
proposed a technique to unify the properties used in CT design
and those used in SE verification. Our technique relies on
using existing specification patterns as a common notation.
To that end, we follow a bottom-up approach inspired by
Scuderia Ferrari to provide evidence for safety requirements
from both CT and SE viewpoints. The properties are mapped
using property specification patterns as a common language.
Such properties are formalized in LTL and fed into DIVINE 4
to consolidate the proposed mapping through model checking.
Our initial results are promising based on the mapping.

Future work should identify and map further properties and
extend the exploration space of our validation. Our systematic
approach for validation of our mapping provides a pathway
for building evidence that the mapping is sound. Specifically,
we believe the CT properties settling time, overshoot, steady-
state error should be mapped to the properties widely used
for verification for self-adaptation, e.g., reachability, security,
privacy, availability. In this work, we considered a CT property
that does not require explicit time and for this reason it was
enough to map it to untimed property specification patterns, i.e.
those initially proposed in [26]. It is worth mentioning that there
exist also properties specification patterns with explicit time
as well as with probability [27], which might be exploited for
other CT properties, when needed. It would be also interesting
to extend, if needed, the catalog of specification patterns with
specific patterns that are tailored to CT properties. We believe
that the mapping could be an important contribution to both
the SE and CT communities, by giving, on one side, a concrete
instrument for engineering trustworthy and safe autonomous

system, and, on the other side, it might facilitate the cross-
fertilisation among the two communities. Another direction for
future research concerns the investigation of the topics of this
paper with companies producing autonomous systems involving
both CT controllers and software produced by developers.

ACKNOWLEDGMENT

This work is supported by the Wallenberg AI, Autonomous
Systems and Software Program (WASP) funded by the Knut
and Alice Wallenberg Foundation. This work is also partly
supported by the Swedish Research Council (VR) via the
“PSI” project. The authors also acknowledge financial support
from Centre of EXcellence on Connected, Geo-Localized
and Cybersecure Vehicle (EX-Emerge), funded by Italian
Government under CIPE resolution n. 70/2017 (Aug. 7, 2017).

REFERENCES

[1] R. De Lemos et al., “Software engineering for self-adaptive systems:
Research challenges in the provision of assurances,” in Software
Engineering for Self-Adaptive Systems III. Assurances. Springer, 2017.

[2] D. Weyns et al., “Perpetual assurances for self-adaptive systems,” in
Software Engineering for Self-Adaptive Systems III. Assurances. Springer,
2017.

[3] D. Weyns, “Introduction to self-adaptive systems: A contemporary
software engineering perspective.” Wiley, 2020.

[4] Hellerstein et al., Feedback control of computing systems. Wiley Online
Library, 2004, vol. 10.

[5] Xiaoyun Zhu, Zhikui Wang, and S. Singhal, “Utility-driven workload
management using nested control design,” in 2006 American Control
Conference, 2006, pp. 6 pp.–.

[6] A. Filieri, H. Hoffmann, and M. Maggio, “Automated design of self-
adaptive software with control-theoretical formal guarantees,” in 36th
International Conference on Software Engineering. ACM, 2014.

[7] S. Shevtsov et al., “Control-theoretical software adaptation: A systematic
literature review,” IEEE Transactions on Software Engineering, vol. 44,
no. 8, pp. 784–810, 2018.

[8] M. Maggio et al., “Automated control of multiple software goals using
multiple actuators,” in 11th Joint Meeting on Foundations of Software
Engineering. ACM, 2017.

[9] K. Angelopoulos et al., “Engineering self-adaptive software systems:
From requirements to model predictive control,” ACM Transactions on
Autonomous and Adaptive Systems, vol. 13, no. 1, 2018.

[10] M. Maggio et al., “Control-system stability under consecutive deadline
misses constraints,” in 32nd Euromicro Conference on Real-Time Systems.
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

[11] L. Lamport, “Who builds a house without drawing blueprints?” Commu-
nications of the ACM, vol. 58, no. 4, pp. 38–41, 2015.

[12] Y. Brun et al., Engineering Self-Adaptive Systems through Feedback
Loops. Springer, 2009.

[13] M. U. Iftikhar and D. Weyns, in International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, 2014.

[14] R. Calinescu et al., “Engineering trustworthy self-adaptive software with
dynamic assurance cases,” IEEE Transactions on Software Engineering,
vol. 44, no. 11, pp. 1039–1069, 2017.

[15] A. Filieri et al., “Software engineering meets control theory,” in
IEEE/ACM 10th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems. IEEE, 2015.

[16] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, no. 1, pp. 41–50, 2003.

[17] S. Shevtsov, D. Weyns, and M. Maggio, “Handling new and changing
requirements with guarantees in self-adaptive systems using simca,” in
IEEE/ACM 12th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, 2017.

[18] R. D. Caldas et al., “A hybrid approach combining control theory and ai
for engineering self-adaptive systems,” in IEEE/ACM 15th International
Symposium on Software Engineering for Adaptive and Self-Managing
Systems, 2020.

[19] J. Cámara et al., “Towards bridging the gap between control and self-
adaptive system properties,” in IEEE/ACM 15th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems, 2020.

[20] C. Silenzi, “Software Engineering in Ferrari F1,” in 37th International
Conference on Software Engineering - Volume 1. IEEE Press, 2015.

[21] Z. Baranová et al., “Model checking of C and C++ with DIVINE 4,”
in Automated Technology for Verification and Analysis, ser. LNCS, vol.
10482. Springer, 2017, pp. 201–207.

[22] J. Bengtsson et al., “UPPAAL — a Tool Suite for Automatic Verification
of Real–Time Systems,” in Workshop on Verification and Control of
Hybrid Systems III, ser. LNCS, no. 1066. Springer–Verlag, 1995.

[23] C. Colombo, G. J. Pace, and G. Schneider, “Larva — safer monitoring
of real-time java programs (tool paper),” in 7th IEEE International
Conference on Software Engineering and Formal Methods, 2009.

[24] P. Zhang et al., “Automatic generation of predictive monitors from
scenario-based specifications,” Information and software technology,
vol. 98, pp. 5–31, 2018.

[25] H. G. Gurbuz and B. Tekinerdogan, “Model-based testing for software
safety: a systematic mapping study,” Software Quality Journal, vol. 26,
no. 4, pp. 1327–1372, 2018.

[26] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Patterns in property spec-
ifications for finite-state verification,” in 21st International Conference
on Software engineering, 1999, pp. 411–420.

[27] M. Autili et al., “Aligning qualitative, real-time, and probabilistic
property specification patterns using a structured english grammar,” IEEE
Transactions on Software Engineering, vol. 41, no. 7, pp. 620–638, 2015.

[28] R. Caldas and R. Ghzouli, “Online appendix,” 2021. [Online]. Available:
https://doi.org/10.5281/zenodo.5201544

[29] J. Liu et al., “Actor-oriented control system design: A responsible frame-
work perspective,” IEEE Transactions on Control Systems Technology,
vol. 12, no. 2, pp. 250–262, 2004.

[30] J. L. Hellerstein, “Engineering autonomic systems,” in Proceedings of the
6th international conference on Autonomic computing, 2009, pp. 75–76.

[31] P. Neis, M. A. Wehrmeister, and M. F. Mendes, “Model driven software
engineering of power systems applications: literature review and trends,”
IEEE Access, vol. 7, pp. 177 761–177 773, 2019.

[32] J. Schaefer et al., “Future automotive embedded systems enabled by
efficient model based software development,” SAE Technical Paper, Tech.
Rep., 2021.

[33] F. Křikava et al., “Contracts-based control integration into software sys-
tems,” in Software Engineering for Self-Adaptive Systems III. Assurances.
Springer, 2017.

[34] G. Marsden, M. McDonald, and M. Brackstone, “Towards an under-
standing of adaptive cruise control,” Transportation Research Part C:
Emerging Technologies, 2001.

[35] T.-W. Lin, S.-L. Hwang, and P. A. Green, “Effects of time-gap settings
of adaptive cruise control (acc) on driving performance and subjective
acceptance in a bus driving simulator,” Safety science, 2009.

[36] R. Goedel, R. G. Sanfelice, and A. R. Teel, “Hybrid dynamical systems:
modeling stability, and robustness,” 2012.

[37] D. Weyns et al., “A survey of formal methods in self-adaptive systems,”
in 5th International C* Conference on Computer Science and Software
Engineering, 2012.

[38] N. M. Villegas et al., “A framework for evaluating quality-driven self-
adaptive software systems,” in 6th International Symposium on Software
engineering for Adaptive and Self-managing Systems, 2011.

[39] M. Viroli et al., “From distributed coordination to field calculus and
aggregate computing,” Journal of Logical and Algebraic Methods in
Programming, vol. 109, no. 2019, p. 100486, 2019.

[40] S. Dasgupta and J. Beal, “A Lyapunov analysis for the robust stability
of an adaptive Bellman-Ford algorithm,” 2016 IEEE 55th Conference on
Decision and Control, CDC 2016, no. Cdc, pp. 7282–7287, 2016.

[41] M. Viroli et al., “Engineering resilient collective adaptive systems by self-
stabilisation,” ACM Transactions on Modeling and Computer Simulation,
vol. 28, no. 2, 2018.

[42] Y. Mo et al., “A resilient leader election algorithm using aggregate
computing blocks,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 3336–3341,
2020.

https://doi.org/10.5281/zenodo.5201544

	Introduction
	Background and Motivation
	System Model Design
	Modeling Stability as a SE Property
	Checking the Mapping
	Related Work
	Conclusion and Future Work
	References

