
Causes of Merge Conflicts:
A Case Study of ElasticSearch

Wardah Mahmood, Moses Chagama, Thorsten Berger, Regina Hebig
Chalmers | University of Gothenburg, Sweden

ABSTRACT
Software branching and merging allows collaborative develop-
ment and creating software variants, commonly referred to as
clone& own. While simple and cheap, a trade-off is the need to
merge code and to resolve merge conflicts, which frequently occur
in practice. When resolving conflicts, a key challenge for developer
is to understand the changes that led to the conflict. While merge
conflicts and their characteristics are reasonably well understood,
that is not the case for the actual changes that cause them.

We present a case study of the changes—on the code and on the
project-level (e.g., feature addition, refactoring, feature improve-
ment)—that lead to conflicts. We analyzed the development history
of ElasticSearch, a large open-source project that heavily relies
on branching (forking) and merging. We inspected 40 merge con-
flicts in detail, sampled from 534 conflicts not resolvable by a semi-
structured merge tool. On a code (structural) level, we classified
the semantics of changes made. On a project-level, we categorized
the decisions that motivated these changes. We contribute a catego-
rization of code- and project-level changes and a detailed dataset of
40 conflict resolutions with a description of both levels of changes.
Similar to prior studies, most of our conflicts are also small; while
our categorization of code-level changes surprisingly differs from
that of prior work. Refactoring, feature additions and feature en-
hancements are themost common causes of merge conflicts, most of
which could potentially be avoided with better development tooling.

CCS CONCEPTS
• Software and its engineering→ Collaboration in software
development; Software configuration management and version con-
trol systems; Software evolution; Maintaining software.

KEYWORDS
software merging, case study, conflict resolution
ACM Reference Format:
Wardah Mahmood, Moses Chagama, Thorsten Berger, Regina Hebig. 2020.
Causes of Merge Conflicts: A Case Study of ElasticSearch. In Proceedings
of the 14th International Working Conference on Variability Modelling of
Software-Intensive Systems (VaMoS ’20), February 5–7, 2020, Magdeburg, Ger-
many. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3377024.
3377047

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
VaMoS ’20, February 5–7, 2020, Magdeburg, Germany
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7501-6/20/02. . . $15.00
https://doi.org/10.1145/3377024.3377047

1 INTRODUCTION
Branching and merging is a common practice in software devel-
opment, often employed to create different variants of a software
system, to facilitate collaborative software development [34], or to
evolve systems in isolation (e.g., using feature branches). Branch-
ing and merging supports focused development while bringing
together developers with diverse skill sets and allowing them to
work independently on their parts of the software.

Creating software variants using branching and merging, also
known as clone& own [11, 16, 20, 38], is a simple and readily avail-
able method. As opposed to more systematic methods, such as
establishing a configurable software platform (a.k.a., software prod-
uct line [5, 9]), it allows customizing systems via cloned variants to
address different stakeholder requirements without investing into
a software platform [7, 29, 30, 41]. While clone& own is the more
common method [8], and can be supported by branching strate-
gies [39, 40] and clone-management frameworks [2, 4, 18, 27, 33–36],
it comes at the cost of software merging.

Merge conflicts can easily occur when two or more developers
simultaneously contribute to the same piece of code—with studies
reporting merge conflicts for around 16% [10] to 43 % [28] of soft-
waremerges. Often, merge tools resolve conflicts automatically [32],
relying on three-way, structured, or semi-structured merge [6] tech-
niques. The latter rely on textual merging, but exploit programming-
language syntax to some extent. Still, despite increasingly intel-
ligent merge-conflict resolution tools, developers need to resolve
conflicts manually and then require expertise in conflict resolution,
but they also need to understand the changes that led to the conflict
and that were done to both the conflicting versions.

Various studies on merge-conflict resolution exist. They report
challenges related to: understanding the changes that led to a
conflict [31], practitioners’ lack of knowledge on conflict resolu-
tion [23], and handling breaking changes made by other developers
(on other branches) [25]. Resolving conflicts is in fact one of the ma-
jor tool-related challenges in collaborative development [22]. How-
ever, while types of merge conflicts and their characteristics are
reasonably well understood, that is not the case for their causes, es-
pecially not from a higher, project-level perspective, also taking do-
main knowledge into account. A detailed, manually curated dataset
about the characteristics of changes that lead to merge conflicts
could help developers understand the causes of conflicts and ways
to avoid them through enhanced tooling and better coordination.

We present a case study on conflict resolution in ElasticSearch—a
large open-source project excessively using branching and forking.
Our focus is not on analyzing the merge conflicts, but on under-
standing the changes that led to merge conflicts, which we analyze
from a lower-level code perspective and from a higher-level project

https://doi.org/10.1145/3377024.3377047
https://doi.org/10.1145/3377024.3377047
https://doi.org/10.1145/3377024.3377047

VaMoS ’20, February 5–7, 2020, Magdeburg, Germany Mahmood, Chagama, Berger, Hebig

perspective (e.g., feature addition, refactoring, feature improve-
ment). In other words, the former explains the semantics of changes
made, and the latter the decisions that motivated these changes.

To this end, we formulated our research questions as:
RQ1: What code-level changes led to merge conflicts? We identify
code changes done before the conflict and categorize conflicts based
on structural changes in conflicting code.
RQ2: What project-level changes led to merge conflicts? We explain
and categorize the changes from a project-level perspective from
the documentation and our obtained domain knowledge.

To answer our research questions, we first identified 260 merge
commits in ElasticSearch’s mainline repository (master branch) and
then replayed the merge commits using a semi-structured merge
tool to identify 534 conflicts that cannot be resolved automatically.
We then identified and manually inspected the conflicting chunks
of the changesets, categorized them, and identified the changes that
led to them—on the code and project-level.

In summary, we contribute:
• A dataset with 534 merge conflicts in an online appendix [1].
• Detailed descriptions of a sample of 40 conflicting changes:
conflict category, mainline change description (on code-level
and on project-level, the latter explained using domain knowl-
edge), and branch change description (like for mainline).

• A categorization of conflicts and changes leading to them
on the two levels.

• Findings related to the relation of both levels of changes,
their characteristics, and other relevant insights related to
the current state-of-the-art literature on merge conflicts.

To the best of our knowledge, we are the first to contribute
a manually curated dataset of 40 merge conflicts with detailed
explanations on the rationales on a domain level—analyzing one
conflict took around one day. We are also the first who attempt to
analyze and classify the rationale behind changes made to code that
lead to merge conflicts. We hope that our results and the dataset
are useful to improve conflict-resolution tools, especially tools that
support developers understanding the changes that were done.

2 MOTIVATION
We briefly present a prestudy on ElasticSearch we conducted to
obtain a first picture on the extent and the detailed challenges
of merge conflicts, which motivated our study, together with the
current literature on merge conflicts, discussed below.

2.1 Prestudy: Integrate Features from Forks
To obtain a first understanding of merge conflicts in ElasticSearch,
we let five groups of seven student developers (from a project
course on software evolution) identify and integrate features from
ElasticSearch forks into the mainline. The goal of the prestudy was
to gain initial insights on merge conflicts and form hypothesis to
motivate the manual analysis. In total, five groups integrated 16
features from 14 forks. The groups’ reports and interviews with two
group members (in total) confirmed that resolving merge conflicts
was perceived as the most challenging task during integration.

We dug deeper and inspected the steps that the groups performed
for each feature to reach a successful integration. Specifically, we
replayed eight merges that had resulted in merge conflicts, and we

replayed the manual changes applied by the students to reach a
fully functioning system. This inspection revealed that the encoun-
tered conflicts were often due to surprisingly minor changes. This
indicated that: (i) conflicts might not always be necessary and (ii)
that their resolution poses unnecessary distraction to the devel-
opers, even if resolving the conflicts does not require much effort.
This insight was confirmed by multiple other group members we
specifically asked, who perceived it as challenging to understand
the implementation of the features, which they considered crucial
to correctly resolve conflicts. This result is also supported by McKee
et al. [31], who conduct interviews with practitioners to investigate
the factors influencing the difficulty of merge conflicts. They find
that the complexity and size of conflicting chunks, as well as the
atomicity of changesets have a direct impact on the difficulty of
merge conflicts. Overall, these prestudy results motivated us to
further investigate how merge conflicts in practice really look like
and what kinds of changes are causing them.

2.2 Merge Conflicts in the Literature
The literature on merge conflicts classifies into empirical studies
and into techniques to avoid, reduce or resolve merge conflicts.
Characteristics of Merge Conflicts. Various studies aim at un-
derstanding the characteristics of merge conflicts.

Accioly et al. [3] study conflict characteristics to understand pat-
terns of conflicts, their causes, and extents in real-world scenarios.
Specifically, they analyze merge conflicts in 123 open-source Java
projects by replaying merge scenarios using the semi-structured
merge tool FSTMerge [6], leading to nine conflict patterns reported.
Their study’s goals partly overlap with ours, as they also provide
recommendations, implications, and a classification of merge con-
flicts. However, as we will show, only two of our conflict categories
overlap with their conflict patterns. Also, while their patterns focus
on object-oriented programming, our categories are more generic.
We also look into method bodies, while their patterns primarily
focus class, method, and field declarations. and we also study the
project-level—decisions that drive the code-level changes.

Ghiotto et al. [21] analyze merge conflicts in 2,731 open-source
Java projects. They identify the conflicting chunks in the changesets
of conflicting commits, and then characterize those chunks based
on the number of chunks (rarely more than two), their size, and
the programming language constructs involved. They identify con-
structs that frequently occur in the conflicting chunks, and provide
ten association rules presenting the relationships between different
language constructs. The idea of pairwise analysis of changes to
see which of them occur together also forms the basis of the deriva-
tion of our categories. While conceptually similar, we observe no
overlap between their association rules and our conflict categories
(which relate the changes on the code level) we identified.

McKee et al. [31] study the practitioners’ perspective on conflict
resolution through interviews and a survey. Their results indicate
that the complexity of the conflicting chunks, the developer’s ex-
pertise in the domain of conflicting code, the number of lines in
the conflicting changesets, and the atomicity of the conflicting
changesets are factors that influence the resolution complexity.
They also deduce that the perceived complexity of conflicts and the
developer’s experience in the project determine how developers

Causes of Merge Conflicts: A Case Study of ElasticSearch VaMoS ’20, February 5–7, 2020, Magdeburg, Germany

approach the resolution. Specifically, a developer manually assesses
a merge conflict and then decides whether she can resolve the con-
flict or whether she should revert the merge and merge later, or pass
the task to a colleagues more familiar with the particular change.
Merge-Conflict Management. Most works aim at reducing or
avoiding merge conflicts and their negative impacts.

Guimarães and Silva [24] present the tool WeCode, which de-
tects conflicts by continuously merging changes (committed and
uncommitted) into a mainline in the background. Brun et al. [10]
present the tool Crystal for conflict identification, management, and
prevention. It builds on the concept of speculative analysis, where
it diagnoses the significant classes of conflicts and possible ways
to avoid them. Then it runs those potential solutions in the back-
ground, and reports the results to developers who can then decide
to avoid or manage conflicts. Kasi and Sarma [28] present a tool to
proactively reduce conflicts by restricting concurrent changes on
shared files through task (planned change) orders—ordered sets of
tasks given to each developer, avoiding parallel work on the same or
dependent code parts. The tool determines tasks that would result
in conflicts and restricts developers respectively to reduce conflicts.

Sarma et al. [37] focus on workspace awareness of changes in
workspace artifacts, that is, files in a software configurationmanage-
ment system. Their tool Palantir, which monitors artifact changes
and shares this information with developers—raising awareness
about parallel modifications in the same artifact. Palantir also pro-
vides visual information about conflicting changes to help devel-
opers avoid artifact dependencies and prevent conflicts.

3 METHODOLOGY
We now briefly explain our subject system ElasticSearch as well as
our methodology for extracting, analyzing, and classifying changes.
The term mainline refers to the mainline branch, and topic branch
to the one accommodating the changes merged into the mainline.

3.1 Subject System: ElasticSearch
ElasticSearch is a an open-source full-text search and analytics en-
gine that allows to store, search, and analyze big volumes of data
quickly and in near real-time [17]. With over 10,000 forks and 948
contributors, it is a highly popular Java-based open-source project.
It supports a distributed architecture providing full-text search by
indexing JSON documents. ElasticSearch is ranked to be the most
popular search engine used by enterprises according to a survey
by DB-Engines [13]. At the time of the study, the master branch
(which targeted version 7.0.0-alpha) consisted of 5,455 Java files
and 682,240 lines of code.

The development culture for ElasticSearch extensively relies on
branching and forking, making it a suitable candidate for our case
study. To implement new features and improve existing ones, Elas-
ticSearch core members and contributors mostly use forks. Occa-
sional or new contributors, who do not belong to the core team and,
therefore, have nowrite access to the repository, require a coremem-
ber to integrate their contribution bymerging it into their individual
forks. As a next step, the core member resolves any merge conflicts
or might even address issues such as missing tests before merging
into the mainline branch. During this integration, the core mem-
bers and contributors mostly use git_rebase. Only smaller defect

fixes, especially in the documentation, are typically integrated using
git_merge. Merge conflicts can occur for both kinds of integration.

3.2 Identification of Conflicts
We cloned ElasticSearch’s master branch (version 7.0.0-alpha1),
which has 682 KLOC in 5,455 Java files. Using scripts, we automati-
cally extracted allmerge commits (those with two parents), yielding
2,965 commits. We identified merge conflicts through replaying
each merge commit by recreating two branches (mainline and topic
branch) as a copy of each parent commit, and merged the two
branches using the command git merge. In total, we obtained 260
conflicting merge commits (i.e., merge commits that had conflicts).
To identify their changesets’ conflicting chunks, for each conflicting
merge commit, we retrieved its two parents’ commit hashes and
the merge date. We used the merge tool Meld, which provides a
three-way visualization of the merge (common ancestor, mainline
changeset, and branch changeset), to visualize the conflicts. We ob-
served that many arose fromwhitespace and comment changes, and
also due to different orderings of program elements, such as meth-
ods (ordering conflicts [6]). To exclude conflicts that can be resolved
by a structured merge tool, we relied on jFSTMerge [12]. It supports
semi-structured merge [6], which combines advantages of unstruc-
tured and structured merges when resolving merge conflicts.

We observed that some conflicts arise at multiple parts of a
file from cross-cutting changes, which implies that conflicts can be
cross-cutting in nature. In those cases, instead of treating the respec-
tive chunks separately, we manually identified such changes and
then also combined these into the conflicting parts, treating those
conflicts as a single conflict. As a result, we collected 534 merge
conflicts from the dataset of 260 merge commits with conflicts. For
each identified conflict we collected: merge commit hash, merge
parent commit hashes, merge date, file in the conflict, mainline
branch version, and topic branch version.

3.3 Analysis of Conflicts
We manually analyzed a random sample of 40 conflicts and the
changes causing them, the latter from two perspectives: (i) code-
level, i.e., what code edits on both sides led to conflicts, and (ii)
project-level, i.e., what type of development activities led to the
code-level changes.

To categorize the merge conflicts, we first compared the conflict-
ing changeset parts, that is, the mainline and topic branch versions,
with the common ancestor version.We then identified the structural
changes of the conflicting lines. Based on the observed structural
changes, we derived merge conflict categories. We derived the struc-
tural changes directly from the case study, and the resultant cate-
gories of code-level changes also emerged during the analysis. Each
category is a pair of changes, one representing the change in main-
line, and the other in the topic branch. For example, if in the main-
line version a method is renamed and in the topic branch a param-
eter is added in the same method, then a category would be method
rename and parameter addition. In a second iteration, we combined
similar categories and refined the categories to remove duplicates.

To obtain a complete picture on each change, we studied the com-
plete changes, i.e., also parts that did not lead to conflicts. As a sup-
port we used git diff to get changes between two branches. The

VaMoS ’20, February 5–7, 2020, Magdeburg, Germany Mahmood, Chagama, Berger, Hebig

challenge hereby was to identify what observed code-level changes
belong to the same logical change, since the branches often con-
tain multiple unrelated changes of which not all are related to the
conflict. This part of the analysis required the most (manual) effort.

As a second source for understanding the changes, we used infor-
mation from relevant commits. Since these can be all commits in the
branch, we used git_blame to view commits that made the code-
level change relevant for the studied commit. In this process, we an-
alyzed the commit messages and pull request labels using keywords,
such as refactor, improve, add, introduce, fix, remove, cleanup, prob-
lem, feature, separating, and test. If we needed deeper knowledge,
we read the description in the first message of the conversation asso-
ciated to the pull request. In rare cases, we read the complete conver-
sation to understand the documented goal of the change. One of the
authors cross checked the results to validate that they were consis-
tent with the code changes before the goal of the change was finally
documented. Based on all studied changes for the merge conflicts,
we grouped the documented goals into project-level categories.

Overall, analyzing the changes in each conflict took a day on
average, mainly since in-depth domain knowledge of the subject
system was required to analyze the changes in the source code and
to describe those changes. We documented all 40 conflicts in detail,
as well as the identified conflict categories in our appendix [1].

4 RESULTS
We now present the identified merge conflicts, categorized into
6 categories and quantified based on the categories of code-level
changes leading to them. We then explain the project-level changes,
categorized into 8 categories.

4.1 Merge Conflicts and Code-Level Changes
Table 1 provides an overview on all conflicts, which are detailed in
our online appendix [1]. The appendix explains all conflicts, their
categories, and that of the changes in detail, as well as it provides
examples. To illustrate this documentation, Fig. 1 shows that of
Conflict 1. Table 2 shows a summary of the number of conflicts for
each of the merge conflict category identified in the sample dataset,

In the following, we explain each conflict category.
Change of Method Call or Object Creation (MC_OC). With

25 conflicts, this category accounts for the majority of merge con-
flicts identified. Note that we group object creation andmethod calls
in one category for brevity. The conflicts in this category occur due
to the change in parameter type, value or amount in both branches.
More precisely, we identify the six sub-categories: Addition and/or
Removal of Parameter Values (values added in one branch with or
without removal of parameters in the other branch); Addition or
Removal of Parameter Values and Change of Parameter Value Types
(values added or removed in one branch, while in the other, one or
more parameter values changed due to changes of parameter types);
Addition or Removal and Modification of Parameter Values (value(s)
added or removed in one branch and changed in the other without
changing the parameter type); Change of Parameter Values (param-
eter values changed in both branches without changing parameter
types); Change of Reference Variable Declaration: (reference variable
renamed in one branch, and type changed in the other, and vice
versa; also, variable type or namemay be changed in both branches).

A. Dataset of changes that led to the Merge Conflicts

Appendix A.2. Changes that led to Merge Conflicts

A.2.1 Conflict 1
Category: Change of Method call or object creation

Mainline Change

Category: Test improvement

Project level perspective. Some aggregations tests were changed to use correct
document field datatypes. The change was made to not test metrics aggregations
(such as min or max) that expect a numeric value with a document field datatype
such as IP (IPv4 and IPv6 addresses). The aggregations tests were modified so that
not to return wrong aggregations which are also used in other tests.

Code level perspective. Listing below shows an example of a change in aggrega-
tions tests to use correct document field datatypes. In the example, a parameter that
return random selected DocValueFormat (document field datatype) was replaced
with a method randomNumericDocValueFormat that return random selected format
from a list of datatype formats. The list of datatype formats contains Raw, Geohash,
and IP datatypes.

protected InternalMin c r ea t eTe s t In s tance (S t r ing name , Lis t<Pipe l ineAggregator
↪→ > pipe l ineAggregato r s , Map<Str ing , Object> metaData) {

− return new InternalMin (name , randomDouble () ,
− randomFrom(DocValueFormat .BOOLEAN, DocValueFormat .GEOHASH,

↪→ DocValueFormat . IP , DocValueFormat .RAW) , p ipe l ineAggrega to r s ,
− metaData) ;
+ return new InternalMin (name , randomDouble () , randomNumericDocValueFormat

↪→ () , p ipe l i neAggregato r s , metaData) ;
}

Branch Change

Category: Feature introduction

Project level perspective. Parsing from xContent, which is an abstraction on top
of content such as Json, was added to some of the aggregations. The aggregations
are max, min, avg, sum and value count. The change was part of high level REST
client aggregations parsing feature implementation.

Code level perspective. Listing below shows a change due to addition of xContent
parsing to metrics aggregations. In the listing, test parameters for document’s field
value and format were modified. The document’s field value was improved to
randomly select infinity values. On the other hand, the document’s field format was
updated to remove geohash format and replace with decimal format.

protected InternalMin c r ea t eTe s t In s tance (S t r ing name , Lis t<Pipe l ineAggregator
↪→ > pipe l ineAggregato r s , Map<Str ing , Object> metaData) {

− return new InternalMin (name , randomDouble () ,
− randomFrom(DocValueFormat .BOOLEAN, DocValueFormat .GEOHASH,

↪→ DocValueFormat . IP , DocValueFormat .RAW) , p ipe l ineAggrega to r s ,

III

A. Dataset of changes that led to the Merge Conflicts

− metaData) ;
+ double value = f r equen t l y () ? randomDouble () : randomFrom(new Double [] {

↪→ Double .NEGATIVE_INFINITY, Double .POSITIVE_INFINITY }) ;
+ DocValueFormat fo rmatte r = randomFrom(new DocValueFormat . Decimal ("###.##"

↪→) , DocValueFormat .BOOLEAN, DocValueFormat .RAW) ;
+ return new InternalMin (name , value , formatter , p ipe l i neAggregato r s ,

↪→ metaData) ;
}

A.2.2 Conflict 2
Category: Change of Method call or object creation, Addition of statements in the
Same area

Mainline Change

Category: Refactoring

Project level perspective. There are two changes from a common ancestor version
that led to the merge conflict. In the first change, handling of write operation such
as delete was simplified in transport actions that modify data in shards. With this
change, failures occurred before executing engine’s write operations are conveyed
through a failure operation type. The failure operation type can be request failure
such as document version conflict, transient operation failure such as when initializing
shard, and environment failure such as when there is out of disk error. This change
was part of an enhancement to handle failure types appropriately since there was no
distinction between environment and request failures for the write operation.
In the second change, responsibilities to update document’s version and version type
in a shard bulk request to shard replicas after delete operation on primary shards
were moved to a caller of the operation. Before this change, update of the request
version and version type on the shard replicas was done after execution of delete
operation on the primary shard. This change was made to ensure an execution of
write operation, that is, deletion of shards does not have side effects.

Code level perspective. In order to handle the failures occurred before execut-
ing engine’s write operations appropriately, the return type of method execut-
eDeleteRequestOnPrimary was changed from WriteResult<DeleteResponse> to
Engine.DeleteResult so that to distinguish failures occurred due to delete operation
with engine level. In the second change, to ensure the execution of write operation
does not have side effects, a delete variable which holds preparation result of delete
operation on primary shard was made final and response of the delete operation was
returned to the operation caller. Furthermore, the request update responsibility was
moved to the operation caller.
− public stat ic WriteResult<DeleteResponse> executeDeleteRequestOnPrimary (

↪→ DeleteRequest request , IndexShard indexShard) {
− Engine . De lete d e l e t e = indexShard . prepareDeleteOnPrimary (r eque s t . type () ,

↪→ r eque s t . id () , r eque s t . v e r s i on () , r eque s t . vers ionType ()) ;
− indexShard . d e l e t e (d e l e t e) ;
− // update the r eque s t with the ve r s i on so i t w i l l go to the r e p l i c a s
− r eque s t . vers ionType (d e l e t e . vers ionType () .

↪→ vers ionTypeForRepl icat ionAndRecovery ()) ;

IV

Figure 1: Documentation of a conflict

Change of an Assert Statement Expression (AS_EXP). It
refers to a change made on an assert statement as a result of other
changes, such as refactoring of the class or method name, and
changes on the strings which are passed in the assert expression.

Addition of Statements in the Same Area (ADD_STMT). It
refers to one or more statements added in the same area of the code
in both mainline and topic branch version. The statements can be
added in a control-flow statement, method call or in object creation.

Modification andRemoval of Statements (MOD/RMV_ STMT).
The statements are modified in one version and removed in the
other version. The modification includes addition and removal of
statements inside control statements, that is, branching statements,
decision-making statements, and looping statements. It also include
exception handler blocks, that is, try, catch, and finally blocks.

Changes inDifferent Statements in the SameArea (D_STMT).
It refers to changes made in different, but adjacent statements.

Change of IF Statement condition (IF_C) It refers to changes
made in the if statement condition(s) in both conflicting versions
(may be due to changes in the method call used in the condition,
which may also be changed due changes in the method declaration).

4.2 Project-Level Changes
We identified eight categories of project-level changes from our
sample. Table 3 shows their frequencies in both the mainline and
the topic branch, with the most frequent ones being Refactoring
and Feature Introduction. Specifically, the categories are as follows.

Causes of Merge Conflicts: A Case Study of ElasticSearch VaMoS ’20, February 5–7, 2020, Magdeburg, Germany

Table 1: Analyzed merge conflicts in ElasticSearch and characterization of changes causing them

category code-level changes project-level changes

mainline branch mainline branch

1 MC_OC Parameter value refactoring in an object creation Parameter value refactoring in an object creation Test improvement Feature introduction
2 MC_OC,

ADD_STMT
Method declaration change (changed return type
and a parameter name)

Addition of statement Refactoring Feature introduction

Variable modifier change Addition of parameter value in an object creation
Removal of statements

3 ADD_STMT IF-statement change (addition of statements and
ELSE statements)

Addition of statement Refactoring Feature introduction

4 MC_OC Removal of parameter value in a method call Addition of parameter value in a method call Framework removal Feature introduction
Modification of a method call (object removed in
a method call)

5 MC_OC Addition of parameter value in an object creation Addition of parameter value in an object creation Refactoring Feature introduction
6 MC_OC Method call refactoring (method call assigned to a

variable)
Addition of parameter value in an object creation Refactoring Feature introduction

Modification of a parameter value in a method call
7 MC_OC Addition of parameter value in a method call Addition of parameter value in a method call Feature enhancement Feature introduction
8 AS_EXP Change of parameter value in a method call Change of parameter value in a method call Feature enhancement Feature introduction
9 MOD/RMV_STMT Removal of statements Modification of TRY-statement Bug fix Feature introduction
10 ADD_STMT Addition of statements Addition of statements Refactoring Feature introduction
11 MOD/RMV_STMT Removal of statements Modification of statements (change of FOR-loop to

WHILE-loop)
Refactoring Refactoring

Removal of statements
12 MC_OC Removal of parameter value in an object creation Addition of parameter value in an object creation Refactoring Feature introduction
13 MC_OC Addition of statement Method declaration change Breaking change fix Feature enhancement
14 MC_OC Method call declaration change Modification of parameter value Refactoring Feature enhancement

Addition of statement, Modification of statement Removal of statement (IF-statement replaced with
a statement)
Addition of statement (IF-statement)

15 MC_OC Change of parameter value in a method call Change of parameter value in a method call Feature enhancement Test improvement
16 MC_OC Removal of parameter value in a method call (1) Removal of parameter values in a method call (3) Feature enhancement Refactoring
17 ADD_STMT Addition of statements Addition of statement Feature enhancement Feature enhancement
18 MC_OC Modification of a parameter value in a method call

(a parameter value was added in a method call
passed as a parameter value)

Addition of parameter value in a method call Framework removal Feature introduction

19 MC_OC Addition of parameter value in object creation Addition of statement Feature enhancement Feature introduction
Removal of parameter value in a method call Addition of parameter value in a method call

20 MC_OC Removal of parameter value in a method call Addition of parameter value in a method call Feature enhancement Feature introduction
21 MC_OC Modification of parameter values Addition of parameter value in a method call Feature enhancement Feature introduction
22 MC_OC Addition of parameter values in an object creation Modification of a parameter value in an object cre-

ation
Bug fix Refactoring

23 MC_OC Refactoring parameter values in a method call Addition of parameter value in a method call Feature enhancement Feature introduction
Addition of statement Addition of statement

24 MC_OC Method declaration change Method declaration change Test improvement Feature enhancement
25 ADD_STMT Change of method parameter type (which led to

change of parameter’s value name inmethod calls)
Removal of statements (addition of new state-
ments)

Bug fix Bug fix

26 ADD_STMT Addition of statements Addition of statements Refactoring Refactoring
27 MC_OC Modification of a parameter value in a method call Addition of parameter value in a method call Refactoring Feature introduction

Removal of a parameter value in a method call
28 MC_OC Modification of a parameter value in an object cre-

ation
Modification of a parameter value in an object cre-
ation

Refactoring Feature introduction

29 MC_OC Modification of parameter value in a method call Modification of parameter value in a method call Refactoring Feature introduction
30 ADD_STMT Addition of statements Addition of statements Feature enhancement Feature introduction
31 ADD_STMT Addition of statement Addition of statement Feature enhancement Feature introduction

Addition of parameter values in method calls
32 MC_OC Addition of parameter value in a method call Removal of a method call Feature enhancement Feature introduction

Variable renaming (method call)
33 MC_OC Modification of variable type Variable renaming (objection creation) Refactoring Library removal

Removal of statements
34 AS_EXP Modification of parameter value in a method call Modification of parameter value in a method call Refactoring Refactoring
35 ADD_STMT Addition of statements Addition of statements Refactoring Refactoring
36 MC_OC Modification of parameter value in a method call Modification of parameter value in a method call Refactoring Refactoring
37 IF_C Change of IF-statement condition Change of IF-statement condition Library removal Refactoring
38 MC_OC Modification of a method declaration (led to mod-

ification of a method call)
Modification of a parameter value in a method call Refactoring Test improvement

39 MOD/RMV_STMT Removal of statement (a TRY-statement and a
SWITCH-statement added)

RETURN-statement refactoring (in a TRY-
statement)

Refactoring Refactoring

40 D_STMT Modification of IF-statement condition Modification of a parameter value in a method call Bug fix Refactoring

Feature Introduction. This category refers to a change that
introduces or is part of introducing a new feature. The change may
include tests added for the feature and necessary refactoring.

Refactoring. This category refers to a change that is not part
of a particular feature introduction or enhancement, but is part
of the maintenance. The change includes redesigning of an API,

VaMoS ’20, February 5–7, 2020, Magdeburg, Germany Mahmood, Chagama, Berger, Hebig

Table 2: Code-level merge conflicts

conflict category conflict sub-category # of
conflicts

Change of Method Call or Object
Creation (MC_OC)

Addition and/or Removal of Parameter Values 7

Addition or Removal of Parameter Values and
Change of Parameter Value Types

2

Addition or Removal and Modification of Pa-
rameter Values

10

Change of Parameter Values 4
Change of Reference Variable Declaration 2

Change of an Assert Statement Ex-
pression (AS_EXP)

2

Addition of Statements in the Same
Area (ADD_STMT)

9

Modification and Removal of State-
ments (MOD/RMV_STMT)

3

Change of IF Statement condition
(IF_C)

1

extraction of a method or class, replacing control flow statements,
or renaming a variable, class or method.

Feature Enhancement. This category refers to a change that
is added to an existing feature. The change may improve the quality
of the feature or extend its capabilities.

Test Improvement. This category refers to a change that im-
proves or corrects one or more tests. This do not add new tests as
they are part of feature introduction or feature enhancement. The
change may correct or add new test infrastructure.

Bug Fix. It is a change that corrects wrong requirement, their
implementation or logic, such as sequencing of statements.

Framework Removal. It is a change that removes a framework
or frameworks from the project code base. The change may include
the refactoring of the API after the framework has been removed.

Breaking Change Fix. This category refers to a change that
corrects the changes which break the usage of the API. The breaking
change may affect backward compatibility and may require actions
such as upgrading the version of the software.

Library Removal. This category refers to a change that re-
moves a library or libraries from the project code base. The change
may be followed with required refactoring.

5 FINDINGS AND RECOMMENDATIONS
We discuss preliminary findings and propose recommendations
for future research, for instance, for improving existing tools for
merge-conflict resolution. We also believe that our findings can
guide the developers to coordinate their activities in a way that
minimizes the occurrence of merge conflicts.

5.1 Conflict and Change Sizes
Most merge conflicts were due to minor changes in terms of size,
e.g., the addition of parameter values. 28 out of 40 conflicts only
consisted of one-line changes. Only twelve of the conflicts were
associated with changes involving two or more lines.

The conflict causes are small in ElasticSearch.
Observation 1 (Change Sizes)

This high number of small changes may be due to the fact
that developers in the project under study were working on sep-
arate branches, while often incorporating changes from a main-
line branch into these individual branches. “Small” merge conflicts
were primarily categorized as Addition of Statements in the Same

Table 3: Project-level changes

Change category # of Changes

Mainline Topic Branch

Feature Introduction 0 22
Refactoring 18 10
Feature Enhancement 12 4
Test Improvement 2 2
Bug Fix 4 1
Framework Removal 2 0
Breaking Change Fix 1 0
Library Removal 1 1

Area (ADD_STMT) and Addition and Removal of Statements (MOD-
/RMV_STMT).

Note that the size of a change leading to a merge conflict does
not imply that the conflicts is minor. The resolution of such “small”
merge conflicts can require larger changes as well. In fact, the
answer to the question whether conflict resolution is a complex
problem or not is inconclusive. It is perceived to be a challenging
task according to the participants of our prestudy and the results
from a few other contributions (McKee et al. [31], Gousios et al. [23],
Guzzi et al. [25]). We aim to report on these facts after completing
our ongoing study with GitHub developers.

In general, the complexity of conflict resolution is still undeter-
mined.

Observation 2 (Complexity of Conflict Resolution)
Recommendation: Impact Visualization. The state-of-the-art
tooling can be enhanced to incorporate visualizations which gener-
ate views to show the complexity of merge conflicts. In the simplest
form, the size of the conflicting blocks can be used as a measure.
Having visualizations that quantify some aspects of merge conflicts
can help to lower their psychological impact on developers. Addi-
tional developer studies can help to better understand the perceived
complexity of merge conflict resolution in a diverse set of software
systems and organizations.

5.2 Changes In Method Calls
25 out of 40 conflicts are a result of changes made in method invo-
cations or object creation—the most common cause for conflicts.

Changes in method calls are the most common cause of conflicts
in ElasticSearch.

Observation 3 (Changes in Method Calls)
This is somewhat surprising, as we would have expected to see

merge conflicts in method or constructor signatures as well. How-
ever, the results are in-line with previous findings of de Menezes
[14], who found that method invocation is the language construct
most frequently involved in merge conflicts. While this needs more
investigation, one possible explanation could be that developers
delaying the update of method calls after having updated the sig-
natures. This could cause other developers to fix the method call in
parallel. However, changes made to the calls in branch and mainline
are often not the same (e.g. change of parameters in the branch,
while a parameter addition happens in the mainline), indicating
that other mechanisms are at play. This could be volatile interfaces
in a fast changing part of the system, indicating the need for better
upfront communication between developers.

Causes of Merge Conflicts: A Case Study of ElasticSearch VaMoS ’20, February 5–7, 2020, Magdeburg, Germany

Recommendation: Refactoring Support. Having tool support
that propagates changes in signatures to the respective calls can
help prevent conflicts occurring due to change in method invoca-
tions. Especially the large number of conflicts due to parameter type
changes could be addressed with good refactoring support in IDEs.
Recommendation: Co-Evolution tooling for API design/ us-
age. Another interesting direction for future work is to investigate
whether tools should support development-time merging rather
than commit-time merging. This can be useful in cases of APIs that
are in phases of rapid change to prevent effort redundancy.

5.3 Addition of Statements
The second most common cause for conflicts is an addition of state-
ments in the same area. Furthermore, all code-level changes leading
to conflicts in our sample occurred within method bodies. This
confirms a finding by Accioly et al. [3], who found that most merge
conflicts (85%) are due to changes that are made in method bodies.

The addition of statements is the second most common cause of
merge conflicts in ElasticSearch.

Observation 4 (Addition of Statements)
Recommendation: Look-ahead support. This observation indi-
cates a need for supporting developers in identifying what part of
the code others are working on. One strategy could be to add a built-
in support in IDEs that notifies developer about current or recent
edit locations of colleagues. Similarly, IDEs could be extended to
facilitate communication about planned tasks among team mates’.
Recommendation: Control- or data-flow based merges. An-
other interesting possibility is to further investigate how often this
type of conflict indicates incompatible/contradicting changes to the
implementation. It is well possible that a large amount of such con-
flicts is caused by code pieces that is independent and just happens
to be in the same place. In this case it can be interesting to build an
automated alignment resolution support that uses control- and data-
flow of software code to synchronize multiple implementations.

5.4 Changes on the Project-Level
Refactoring was the most frequent project-level change with 28 out
of our 40 conflicts. In 15 of these 28 cases, refactoring led to changed
method invocations on the code level. 11 of these conflicts featured
the addition or removal of statements, or the modification of ex-
isting statements in the code. So, refactoring often collides, either
refactorings on the other branch, or other project-level changes
such as feature introduction or feature enhancement. This suggests
that improved tool support for refactoring propagation might help,
ideally integratedwith version-control systems [15, 19]. The second
most frequent change on the project-level were feature introduc-
tions (21 instances). 15 of these involved code-level changes in the
way methods are invoked, whereas 7 of them involved changes in
statements. The third most frequent cause of merge conflicts were
feature enhancements, which occurred in 16 scenarios. The code-
level changes corresponding to feature enhancements were mainly
made in method invocations. Finally, we observed five cases of bug
fixes and four cases of test improvement. Framework removal, li-
brary removal and breaking change fix constituted least amount of
changes leading to merge conflicts (two, two and one respectively).

Refactoring was the most frequent change in ElasticSearch, which
often collided with other refactorings or feature introductions and
enhancements on the other branch.

Observation 5 (Project-Level Changes)
Recommendation: Classification support for project-level
changes.We believe that keeping project-level decisions in perspec-
tive adds rationale to the code-level changes. Our finding indicates
that it can be possible to build automated support for classifying
code-level changes and associated project activities into project-
level changes. Heuristics might be used to achieve that. Such kind
of tool support can help in feature location, feature traceability
and annotations. Furthermore, this tool might help to facilitate the
refactoring support recommended above in Section 5.2. While a
propagation of refactorings among forks can be supported, other
activities, such as feature development or enhancements could be
more easily isolated to prevent merge conflicts.

5.5 State-of-the-Art Conflict Categories
While the merge conflict categories identified by us relate to conflict
patterns and classifications of other researchers, we still identified
new distinctions to be relevant. This can be seen in one of the ex-
ample of two merge conflict patterns found by Accioly et al. [3].
The first conflict pattern describes a situation where methods or
constructors are added with the same signature and different bodies.
This pattern is similar to our MC_OC category, since it involves
changes inside methods. However, in our sample data set there
are no merge conflicts due to changes in method or constructor
declaration. The second example of a conflict pattern by Accioly
et al. [3] consists of different edits to the same or consecutive lines
of a method or constructor. This pattern relates to multiple of our
categories: MC_OC, AS_EXP and D_STMT as they are all based
on changes performed on same or adjacent statements. Similarly,
de Menezes [14] identified language constructs involved in most
changes that led to merge conflicts: method invocation, method
declaration, method signature, variable, import, if statement, and
commentary. Accordingly de Menezes [14] work with a classifi-
cation of merge conflicts that bases on a combination of unique
language constructs found in conflicting changes. Their method in-
vocation and variable kind of conflicts seem to relate to our MC_OC
category. The if statement category may relate to multiple of our
categories: ADD_STMT, MOD/RMV_STMT, D_STMT and IF_C. On
the other hand, our sample did not include any merge conflicts
that involve import, method declaration, and method signature
language constructs. Similarly, merge conflicts that involved only
comments were ignored in our study.

While conflict categorizations were created in prior work, our
categorization upon ElasticSearch only partly overlaps with them.

Observation 6 (Conflict Categories)
Recommendation: Holistic catalog of conflict causes. This
calls for a holistic catalog of changes that can lead to merge con-
flicts. Such a catalog can help developers understand the properties
of changes and assist in the manual resolution of those merge con-
flicts. Furthermore, it can foster research towards finding generic
patterns for merge-conflict resolution, and ways to automate them.

VaMoS ’20, February 5–7, 2020, Magdeburg, Germany Mahmood, Chagama, Berger, Hebig

5.6 Practical Implications
Besides recommendations for researchers and tool providers, we
can also formulate some lessons learned for practitioners.
Coordinate Feature Introduction. Feature introduction was in-
volved in a large number of the observed merge conflicts and is an
important component of the software development life cycle. The
tasks that most commonly cause merge conflicts when performed
in parallel to feature introductions are refactoring and feature en-
hancement. This could imply that practitioners need to spend more
effort in sharing and discussing work on new features before imple-
menting them. Furthermore, practitioners working in enhancing
existing features or performing refactorings should try to raise
awareness about their work in the team.
Coordinate and Prioritize Refactorings. As seen in Table 1,
there are 6 pairs of parallel refactoring changes. These parallel
refactorings should be carefully planned since the inherent na-
ture of refactoring involves changing the structure of code. It is
therefore advised to decide on an abstract level what the devel-
oper is trying to achieve by refactoring. It might be that developers
working in parallel are trying to achieve similar results by using
different approaches. A better coordination could further reduce
development time and effort. In addition, requirement prioritization
approaches could also be incorporated to rank the importance of
every refactoring with respect to the goal it aims to achieve.
Reflect Regularly on Conflict Causes. In general, conflicts be-
tween feature implementations and feature enhancements can be
seen as hints that the features are too coupled in the system. Sim-
ilarly, we observed a conflict caused by two feature enhancements,
hinting that that either both enhancements addressed the same
feature or that both features are coupled. It would be interesting
to investigate in future work whether teams can benefit from reg-
ular reflection sessions about change types typically involved in
their merge conflicts. This might uncover needs for architectural
refactorings. Furthermore such regular reflections can help iden-
tifying potentials for improving communication. For example, one
observed merge conflict was caused by two bug fix changes. It is
surprising that different bugs are fixed by changing same part of the
code. This might either hint on a too entangled system, or on a sit-
uation where two related bugs were not identified as such upfront.

6 THREATS TO VALIDITY
Construct Validity. A threat is the categorization of merge con-
flicts based on the changes that caused them, possibly categorized
differently based on the author’s understanding of the changes. So,
we first created pairs of changes (in mainline and topic branch),
then identified similar characteristics based on the code syntax.
Internal Validity. The scripts we wrote to extract conflicting
merges and the jFSTMerge tool could have bugs, leading to false
conflicts. So, we tested the scripts several times and manually re-
viewed the conflicts. Furthermore, we might have misclassified the
changes leading to conflicts. To reduce this threat, we conducted
a thorough analysis using more than one source to understand
the changes. The commit and pull request messages together with
source code were used to obtain the understanding of the changes.

Another factor affecting the internal validity is that changes in
code were primarily analyzed by one author. However, another

author inspected the findings and discussed the results with the
primary analyst for understanding and validation.
External Validity. Our sample of 40 merge conflicts might not be
representative, and our results might not generalize to the whole
subject. To mitigate this threat, we randomly reviewed the con-
flicting changes that were not selected for the in-depth analysis to
observe whether there are cases that were not represented espe-
cially for merge conflict categorization.

Our resultsmight not generalize to systems beyond ElasticSearch,
programming languages or commercial software. However, Elastic-
Search is large and highly popular with 948 contributors and over
10,000 forks. Our merge-conflict categories are also not specific
to Java, so we believe that the results generalize to other projects
of similar scale. As future work, it can be interesting to look into
ways to automatically classify projects according to their branching
strategy by recovering information about process types [26].
Reliability. To enhance reliability, we described our study method-
ology with replication in mind, publish the dataset of conflicts
and changes with detailed descriptions in our online appendix [1]
together with relevant scripts.

7 CONCLUSION
We presented a case-study of merge conflicts in ElasticSearch. We
contribute two datasets of conflicting changes that cannot be re-
solved by a semi-structured merge tool. The first dataset contains
534 conflicting changes in all extracted merge conflicts; the second
dataset contains detailed descriptions of a sample of 40 conflicting
changes, both from a code- as well as from a project-level per-
spective. As such, the datasets can be used beyond our study, for
instance, to train future techniques that detect the change type
and appropriately visualize the changes. In fact, we learn that most
changes leading to merge conflicts are either through refactorings
or through parallel feature-oriented evolution. Detecting or visual-
izing refactorings, or making features more explicit to foster a more
isolated development, are valuable directions for future work. In ad-
dition to identifying the most frequent causes of conflicts, we found
that conflicts are often confined to method bodies, which is in line
with a related study [3]. However, the conflict categories we iden-
tified are different from that study [3], suggesting further work to
consolidate such conflict categories. Furthermore, our study largely
relied onmanual work (analyzing each conflict took around one day;
most effort was spent on analyzing the project-level changes). As
such, a limitation is the sample size, even though, it is a random sam-
ple from a large and vibrant open-source project. We plan to extend
the sample, but also conceive automated classification techniques
based on our findings, as well as we plan to look into other systems.

We plan to replicate our study to a wider and diverse set of merge
conflicts to validate and refine our findings. We also aim to explore
better ways of isolating feature-related tasks (both development
and enhancement) and to recommend edits to developers based
on the higher-level goal (project-level decision). Another future
direction is to improve detection and visualization of refactorings.
We believe that our findings and implications can be formalized to
act as a baseline for better tool support that prevents, manages, and
resolves merge conflicts in collaborative software development.

Causes of Merge Conflicts: A Case Study of ElasticSearch VaMoS ’20, February 5–7, 2020, Magdeburg, Germany

REFERENCES
[1] [n.d.]. Online Appendix. https://bitbucket.org/easelab/elasticsearchstudy.
[2] Hadil Abukwaik, Andreas Burger, Berima Andam, and Thorsten Berger. 2018.

Semi-automated feature traceability with embedded annotations. In ICSME.
[3] Paola Accioly, Paulo Borba, and Guilherme Cavalcanti. 2018. Understanding semi-

structured merge conflict characteristics in open-source java projects. Empirical
Software Engineering 23, 4 (2018), 2051–2085.

[4] Berima Andam, Andreas Burger, Thorsten Berger, and Michel Chaudron. 2017.
FLOrIDA: Feature LOcatIon DAshboard for Extracting and Visualizing Feature
Traces. In VaMoS.

[5] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. 2013. Feature-
Oriented Software Product Lines. Springer.

[6] Sven Apel, Jörg Liebig, Benjamin Brandl, Christian Lengauer, and Christian
Kästner. 2011. Semistructured Merge: Rethinking Merge in Revision Control
Systems. In ESEC/FSE. ACM, 190–200.

[7] Wesley K. G. Assunção, Roberto E. Lopez-Herrejon, Lukas Linsbauer, Silvia R.
Vergilio, and Alexander Egyed. 2017. Reengineering Legacy Applications into
Software Product Lines: A Systematic Mapping. Empirical Software Engineering
22, 6 (2017), 2972–3016.

[8] Thorsten Berger, Ralf Rublack, Divya Nair, Joanne M. Atlee, Martin Becker,
Krzysztof Czarnecki, and Andrzej Wa̧sowski. 2013. A Survey of Variability
Modeling in Industrial Practice. In VaMoS.

[9] Thorsten Berger, Jan-Philipp Steghöfer, Tewfik Ziadi, Jacques Robin, and Jabier
Martinez. 2019. The State of Adoption and the Challenges of Systematic Variabil-
ity Management in Industry. Empirical Software Engineering (2019). Preprint.

[10] Yuriy Brun, Reid Holmes, Michael D. Ernst, and David Notkin. 2011. Proactive
Detection of Collaboration Conflicts. In ESEC/FSE. New York, NY, USA.

[11] John Businge, Openja Moses, Sarah Nadi, Engineer Bainomugisha, and Thorsten
Berger. 2018. Clone-Based Variability Management in the Android Ecosystem. In
ICSME.

[12] Guilherme Cavalcanti, Paulo Borba, and Paola Accioly. 2017. Evaluating and
Improving Semistructured Merge. OOPSLA (Oct. 2017).

[13] DB-Engines. 2019. Ranking of Search Engines. https://db-engines.com/en/
ranking/search+engine.

[14] Gleiph Ghiotto Lima de Menezes. 2016. On the nature of software merge conflicts.
Ph.D. Dissertation. Federal Fluminense University.

[15] Danny Dig, Tien N Nguyen, and Ralph Johnson. 2006. Refactoring-aware software
configuration management. Technical Report UIUCDCS.

[16] Yael Dubinsky, Julia Rubin, Thorsten Berger, Slawomir Duszynski, Martin Becker,
and Krzysztof Czarnecki. 2013. An Exploratory Study of Cloning in Industrial
Software Product Lines. In CSMR.

[17] Elastic. 2017. Getting Started. https://www.elastic.co/guide/en/elasticsearch/
reference/current/getting-started.html.

[18] Sina Entekhabi, Anton Solback, Jan-Philipp Steghöfer, and Thorsten Berger. 2019.
Visualization of Feature Locations with the Tool FeatureDashboard. In SPLC.

[19] Tammo Freese. 2006. Refactoring-aware version control. In ICSE.
[20] Sergio Garcia, Daniel Strueber, Davide Brugali, Alessandro Di Fava, Philipp

Schillinger, Patrizio Pelliccione, and Thorsten Berger. 2019. Variability Modeling
of Service Robots: Experiences and Challenges. In VaMoS.

[21] Gleiph Ghiotto, Leonardo Murta, Márcio Barros, and André van der Hoek. 2018.
On the Nature of Merge Conflicts: a Study of 2,731 Open Source Java Projects
Hosted by GitHub. IEEE Transactions on Software Engineering 99, 1 (2018), 1–25.

[22] G. Gousios, M. A. Storey, and A. Bacchelli. 2016. Work Practices and Challenges
in Pull-Based Development: The Contributor’s Perspective. In ICSE.

[23] Georgios Gousios, Andy Zaidman, Margaret-Anne Storey, and Arie van Deursen.
2015. Work Practices and Challenges in Pull-based Development: The Integrator’s
Perspective. In ICSE.

[24] M. L. Guimarães and A. R. Silva. 2012. Improving early detection of software
merge conflicts. In ICSE.

[25] Anja Guzzi, Alberto Bacchelli, Yann Riche, and Arie van Deursen. 2015. Support-
ing Developers’ Coordination in the IDE (CSCW ’15).

[26] AbramHindle. 2010. Software process recovery: recovering process from artifacts.
In WCRE.

[27] Wenbin Ji, Thorsten Berger, Michal Antkiewicz, and Krzysztof Czarnecki. 2015.
Maintaining Feature Traceability with Embedded Annotations. In SPLC.

[28] Bakhtiar Khan Kasi and Anita Sarma. 2013. Cassandra: Proactive Conflict Mini-
mization Through Optimized Task Scheduling. In ICSE.

[29] Jacob Krueger and Thorsten Berger. 2020. Activities and Costs of Re-Engineering
Cloned Variants Into an Integrated Platform. In VaMoS.

[30] Max Lillack, Stefan Stanciulescu,WilhelmHedman, Thorsten Berger, and Andrzej
Wasowski. 2019. Intention-Based Integration of Software Variants. In ICSE.

[31] S. McKee, N. Nelson, A. Sarma, and D. Dig. 2017. Software Practitioner Perspec-
tives on Merge Conflicts and Resolutions. In ICSME.

[32] TomMens. 2002. A state-of-the-art survey on softwaremerging. IEEE Transactions
on Software Engineering 28, 5 (2002), 449–462.

[33] Leticia Montalvillo and Oscar Díaz. 2015. Tuning GitHub for SPL development:
branching models & repository operations for product engineers. In SPLC.

[34] Leticia Montalvillo, Oscar Díaz, and Thomas Fogdal. 2018. Reducing coordination
overhead in SPLs: peering in on peers. In SPLC.

[35] Julia Rubin and Marsha Chechik. 2013. A Framework for Managing Cloned
Product Variants. In ICSE.

[36] Julia Rubin, Krzysztof Czarnecki, and Marsha Chechik. 2015. Cloned product
variants: from ad-hoc to managed software product lines. Software Tools for
Technology Transfer 17, 5 (2015), 627–646.

[37] A. Sarma, D. F. Redmiles, and A. van der Hoek. 2012. Palantır: Early Detection of
Development Conflicts Arising from Parallel Code Changes. IEEE Transactions
on Software Engineering 38, 4 (July 2012), 889–908.

[38] Ştefan Stănciulescu, Sandro Schulze, and Andrzej Wąsowski. 2015. Forked and
Integrated Variants in an Open-Source Firmware Project. In ICSME.

[39] Ştefan Stănciulescu, Sandro Schulze, and Andrzej Wąsowski. 2015. Forked and
integrated variants in an open-source firmware project. In ICSME.

[40] Mark Staples and Derrick Hill. 2004. Experiences Adopting Software Product
Line Development Without a Product Line Architecture (APSEC).

[41] Daniel Strueber, Mukelabai Mukelabai, Jacob Krueger, Stefan Fischer, Lukas
Linsbauer, Jabier Martinez, and Thorsten Berger. 2019. Facing the Truth: Bench-
marking the Techniques for the Evolution of Variant-Rich Systems. In SPLC.

https://bitbucket.org/easelab/elasticsearchstudy
https://db-engines.com/en/ranking/search+engine
https://db-engines.com/en/ranking/search+engine
https://www.elastic.co/guide/en/elasticsearch/reference/current/getting-started.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/getting-started.html

	Abstract
	1 Introduction
	2 Motivation
	2.1 Prestudy: Integrate Features from Forks
	2.2 Merge Conflicts in the Literature

	3 Methodology
	3.1 Subject System: ElasticSearch
	3.2 Identification of Conflicts
	3.3 Analysis of Conflicts

	4 Results
	4.1 Merge Conflicts and Code-Level Changes
	4.2 Project-Level Changes

	5 Findings and Recommendations
	5.1 Conflict and Change Sizes
	5.2 Changes In Method Calls
	5.3 Addition of Statements
	5.4 Changes on the Project-Level
	5.5 State-of-the-Art Conflict Categories
	5.6 Practical Implications

	6 Threats to Validity
	7 Conclusion
	References

