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ABSTRACT
Process models for software product-line engineering focus on
proactive adoption scenarios—that is, building product-line plat-
forms from scratch. They comprise the two phases domain engineer-
ing (building a product-line platform) and application engineering
(building individual variants), each of which defines various devel-
opment activities. Establishedmore than two decades ago, these pro-
cess models are still the de-facto standard for steering the engineer-
ing of platforms and variants. However, observations from indus-
trial and open-source practice indicate that the separation between
domain and application engineering, with their respective activities,
does not fully reflect reality. For instance, organizations rarely build
platforms from scratch, but start with developing individual vari-
ants that are re-engineered into a platformwhen the need arises. Or-
ganizations also appear to evolve platforms by evolving individual
variants, and they use contemporary development activities aligned
with technical advances. Recognizing this discrepancy, we present
an updated process model for engineering software product lines.
We employ a method for constructing process theories, building on
recent literature as well as our experiences with industrial partners
to identify development activities and the orders in which these are
performed. Based on these activities, we synthesize and discuss the
new process model, called promote-pl. Also, we explain its relation
to modern software-engineering practices, such as continuous inte-
gration, model-driven engineering, or simulation testing. We hope
that our work offers contemporary guidance for product-line engi-
neers developing and evolving platforms, and inspires researchers
to build novel methods and tools aligned with current practice.
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1 INTRODUCTION
Software product-line engineering provides methods and tools for
building variant-rich systems. It allows to systematically reuse
software features (i.e., user-visible functionalities of a system) by
establishing an integrated software platform [3, 63, 82]. To build a
platform, developers employ a range of implementation techniques
called variability mechanisms [3, 32] to define variation points. Indi-
vidual variants can then be derived through configuring—enabling
or disabling features. Typical variability mechanisms comprise pre-
processors (e.g., the C preprocessor), configurable build systems,
configurator and variant-derivation tools [14, 50, 69], as well as
model-based representations of features and their constraints, called
variability models [11, 21, 76, 92]. Especially the latter are core to
manage features and to guide the derivation of individual variants.

While the underlying ideas and mechanisms employed remain
similar, their implementation and usage have evolved considerably
over the last decades, enabling organizations to rely on more ad-
vanced automation. Examples of these advancements are novel
analysis techniques for feature models, code, and test assets [7,
74, 100, 102], or the adoption of continuous integration [71, 97].
Many of these techniques have implications on the processes with
which variant-rich systems are engineered. Unfortunately, the pro-
cess models for product-line engineering have not been updated
accordingly. Consider one of the most common process models
for product-line engineering [82], as shown in Fig. 2. This model
strictly distinguishes between domain engineering (i.e., developing
the platform) and application engineering (i.e., developing variants),
defining five and four activities, respectively. This process model
should be updated to reflect, for example, the less strict separation
of domain and application engineering in practice, the evolution
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Figure 1: High-level representation of promote-pl.
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Figure 2: A typical product-line process model [82].

of product lines via their variants, and different adoption strate-
gies [49] (we detail these examples in Sec. 2). In short, we believe
that the core limitations of existing process models are the strict
separation of domain and application engineering, and the focus
on the proactive adoption strategy, which, as we will show, do not
reflect industrial and open-source practice anymore.

We present promote-pl (PROcess MOdel for round-Trip Engineer-
ing of Product Lines), an updated process model for product-line en-
gineering that we synthesized from recent literature and collabora-
tions with industry. For this purpose, we adapted methods for deriv-
ing process theories [85, 95] to elicit empirical data and synthesize
promote-pl (high-level representation in Fig. 1, explained in Sec. 4.2).
We further discuss the adaptations we implemented in promote-pl
and analyze its relations to contemporary software-engineering
practices to define research opportunities. In detail, we contribute:

• A systematically elicited process model for product-line en-
gineering that reflects recent practices, called promote-pl.

• A discussion of the adaptations we implemented and their
implications for practice as well as research.

• An analysis of relations between promote-pl and software-
engineering practices.

With these contributions, we intend to provide a more realistic and
updated process model for product-line engineering that can pro-
vide a better understanding of how organizations engineer software
platforms. Especially for researchers, promote-pl highlights the dif-
ferences between historically defined process models and industrial
practices, helping them to identify research opportunities.

2 MOTIVATION AND OBJECTIVES
In Fig. 2, we illustrate the structure of a typical product-line process
model [82]. We can see that the domain engineering encompasses
a special activity for product management as well as activities for
requirements engineering, design, implementation, and testing of
the platform. Moreover, there is a loop between these activities,
indicating evolution of the platform. Strictly separated and always
building on the defined platform is the application engineering with
the respective four activities for deriving a variant. This process
model is a high-level abstraction (i.e., Pohl et al. [82] describe the
activities in more detail, as well as the need to tailor the model to
concrete systems) that is similar to other established process mod-
els, most notably those of Northrop [79], Kang et al. [44], Czarnecki
[20], and Apel et al. [3]. However, even though some of these pro-
cess models encompass minor differences, they appear to not be in
line with contemporary practices [13], they largely disregard recent
trends of blurred boundaries between software-engineering phases
(e.g., continuous software engineering [29]), and they focus on the

proactive adoption strategy (explained shortly). For example, Pohl
et al. suggest to conduct the “Commonality analysis first,” support-
ing the proactive adoption—that is, first establishing a platform
before individual variants are derived. In contrast, our and others’
experiences with practitioners [5, 10, 11] show a dominance of re-
active and extractive adoption strategies, where organizations start
with one or multiple variants first, before eventually establishing a
platform. This means that, for instance, activities such as variability
analysis are performed later [76] than prescribed by the traditional
process models. Furthermore, platforms are typically evolved via
variants—customers request additional features, which are first in-
troduced into variants and later integrated (e.g., back-propagated)
into the platform [47]. In this paper, we describe promote-pl as
an updated process model for product-line engineering to reflect
contemporary practices as well as adoption and evolution processes
that are predominant in current practice [5, 47, 54, 84].

2.1 Example Limitations of Process Models
We exemplify (mingled) limitations of existing process models,
quoting insights from the company Danfoss with its long-living and
well-documented [30, 41–43] product line of frequency converters
in the power electronics domain. The experiences are largely in
line with our own experiences from studying industrial practice [9,
10, 12, 13, 33, 47, 54, 55, 58, 61, 64, 76, 93].
Separation of Domain and Application Engineering. We ex-
perienced that most organizations and developers do not strictly
separate (or even distinguish) domain and application engineering.
Instead, there is constant interaction between both. For example,
features are often implemented in a variant and later integrated
into the platform (see second example), for reactive and extractive
adoption the platform is even defined based on existing variants
(see third example), and processes iterate between platform and
variant (e.g., during testing). Similarly, Danfoss experienced [30]:

“[...] there was no strict separation between domain and appli-
cation engineering in the product projects [...]”

In their case, the main idea was to limit the number of changes re-
quired to adopt processes and tool chains; facilitating an extractive
adoption. So, we argue that we need a new process model that inte-
grates interactions between domain and application engineering.
Evolution of the Product Line. Existing process models define
that new requirements are propagated to the domain engineering,
features are implemented on the platform, and the variant is de-
rived afterwards. This is the ideal scenario, but most organizations
and open-source projects use the well-known concept of feature
forks [47, 58, 98] to implement new variants or platform features.
By re-integrating these forks, the platform is evolved—but this is
driven by developing and merging complete or partial variants. Ob-
viously, missing to re-integrate the variants results in clone& own
development instead of product-line engineering. Still, Danfoss
experienced that feature forks allow that [30]:

“[...] projects could keep their independence by introducing
product-specific artifacts as new features. Later on, when a
change was assessed, there would be a decision on whether the
change should be applied to other products and thus should be
integrated into the core assets.”
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The stated independence and also fast delivery are benefits of fea-
ture forks, and they align with continuous integration. Due to their
practical importance, different evolution scenarios should be added
to the process model.
Adoption Strategies. Even though, extractive and reactive adop-
tion strategies are more common in practice [11], existing process
models focus on the proactive adoption in which a product line
is planned from scratch. However, due to the economic invest-
ments and risks [17, 47, 51, 56, 91], most organizations start with
clone& own and only later migrate towards a product line. Conse-
quently, they have a variety of existing variants from which they
can, for example, recover architectures, reuse code, or analyze do-
main documentation to design the platform. This results in adopted,
new, and re-ordered activities, depending on the adoption strategy.
For instance, Danfoss [30] employed an extractive adoption, during
which the organization migrated 80% of the code and introduced
continuous integration within the first five years, but:
“Introducing pure::variants and establishing feature models for
both code and parameters, and finally including the require-
ments, would take another two years.”

As we can see in Fig. 2, this conflicts existing process models in
which a feature model is defined before the implementation (i.e., in
the domain design). So, a general process model for product-line
engineering should also incorporate different adoption strategies.

2.2 Research Objectives
Our overarching goal was to derive an updated, practice-oriented
process model for product-line engineering. This model should help
practitioners as well as researchers in understanding current prac-
tices, fostering the adoption, improvement, and future research of
product lines. To achieve this, we defined three research objectives:
RO1 Elicit empirical data about contemporary product-line engi-

neering processes and activities employed in practice.
RO2 Synthesize a common process model that puts the identified

activities into a reasonable order.
RO3 Discuss the adaptations in the process model and the impact

of contemporary software-engineering practices.
According to these objectives, we defined an empirical methodology
to elicit data (RO1) and to construct the process model, promote-pl
(RO2). Promote-pl itself (RO2) and our discussion of adaptations
and practices (RO3) represent the resulting contributions.

3 METHODOLOGY
Using a process model, we can describe how something happens in
an actual, real-world process [19]. In contrast, development method-
ologies describe an assumed “best practice” of doing something,
while a process theory is a universal description of a process [85].
We remark that researchers heavily debate about what a process
theory constitutes in detail, and some definitions are close or even
identical to a process model [85, 95]. However, following the dis-
tinction of Ralph [85], we define a process model, since we focus on
constructing a process from empirical evidence, neither claiming
that it represents best practices nor that it can explain all exist-
ing processes for product-line engineering in their entirety. As
we can only cover the product-line engineering activities that we
could identify, these two properties can, arguably, not be fulfilled;

considering, for example, the numerous tools, implementation tech-
niques, or testing strategies that exist. Moreover, future advances
in research may require changes in promote-pl.

We are not aware of a specific guideline for constructing process
models. Instead, we adapted recommendations for deriving process
theories [85, 95]. As a result, we relied on three information sources:

• First, each author suggested publications based on their
knowledge of the literature, without relying on a systematic
search (cf. Sec. 3.1). This design resembles integrative re-
views [96], which are helpful to critically reflect, synthesize,
and re-conceptualize theoretical models for mature research
areas—which was our research goal.

• Second, we extended the suggested publications based on
a systematic literature review [45], searching manually in
the last five instances of relevant venues (cf. Sec. 3.2). Our
goal was to more systematically and extensively cover the
most recent developments in product-line engineering to
understand, incorporate, and discuss current practices.

• Finally, we relied on our own experiences (also adding the
corresponding publications) of collaborating with industrial
partners that employ product-line engineering (cf. Sec. 3.3).
We used our experiences to structure our data, order activi-
ties, and discuss how practices are aligned with promote-pl.

By using these information sources, we base promote-pl in empiri-
cal evidence to strengthen its validity. In the following, we describe
each information source in more detail, our strategy to elicit data
from the publications identified (cf. Sec. 3.4), and how we synthe-
sized the data to construct promote-pl (cf. Sec. 3.5).

3.1 Knowledge-Based Literature Selection
We used our knowledge of the literature and particularly from
recently conducted (semi-)systematic literature reviews [13, 47,
76] to select publications. For this purpose, each author suggested
publications that they considered relevant, based on a publication’s
topicality and relevancy for our research goal. We discussed each
suggestion based on the following inclusion criteria, and only
incorporated a publication if we achieved mutual agreement:
IC1 The publication is written in English.
IC2 The publication describes activities of product-line engineer-

ing, suggesting at least one partial order (i.e., a minimum of
two activities in a sequence of execution).

IC3 The publication reports activities based on recent (i.e., five
years) experiences (e.g., case studies, interviews) or synthe-
sizes them from such experiences (e.g., literature reviews).

We performed an initial selection to scope our research, but also
added publications later in our analysis.
Results. In the beginning, we selected five publications that de-
scribe well-known process models for product-line engineering
(cf. Sec. 2) as baseline for our work—marked as BL in Tbl. 1. We
included these publications to have a foundation that we could
extend and refine to construct promote-pl. Note that we included
the publication of Northrop [79], due to the reported process model
being well established, even though it does not fulfill IC2 (no partial
orders). Furthermore, we agreed to add 12 additional suggestions
(marked with ER in Tbl. 1) that cover up-to-date experiences (i.e.,
IC3)— including publications with our experiences (marked with *).
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3.2 Systematic Literature Selection
To define a more systematic foundation for the process model, we
decided to perform the search and selection phase of a systematic lit-
erature review [45]. So, we did not only rely on our own knowledge,
but extended our information sources using a replicable process.
Search. We conducted a manual search among five conferences
(SPLC, VaMoS, ICSE, ESEC/FSE, ASE) and seven journals (TSE,
EMSE, TOSEM, JSS, IST, IEEE Software, SPE); aiming to avoid the
problems of automated searches [40, 57, 94]. For the conferences,
we covered their last five editions of research and industry tracks,
including the 2015 to 2019 (and additionally 2020 for VaMoS) edi-
tions for each. For the journals, we considered the years from 2016
to 2020, including online-first publications. We selected these time
spans to consider current product-line practices for promote-pl.

To conduct the search, we used DBLP as of April 7th 2020—except
for online-first publications, for which we relied on the journals’
websites as of that same date. We selected major software engi-
neering venues that employ peer-reviews and publish product-line
research, ensuring the quality of included publications. While we
certainly miss some publications that describe product-line engi-
neering processes, we argue that this selection provides a reasonable
overview of recent publications to understand what adaptations
are required to design a contemporary process model [96].
Inclusion Criteria. To select relevant publications, we employed
the same inclusion criteria as for the knowledge-based selection.
Further, we essentially added two more inclusion criteria:
IC4 The publication has been published at the research or indus-

try track of a peer-reviewed venue.
IC5 The publication does not only propose a process (e.g., new

testing methods), but this process is actually used in practice.
Using these criteria, we ensured that the selected publications actu-
ally cover real-world processes and not only proposals, for example,
for incorporating a new research tool.
Results. With themanual search, we identified 16 new publications,
which we mark with SR in Tbl. 1. Note that we do not account for
publications we already identified in the previous search in this set.
In the end, we selected 33 publications for constructing promote-pl.

3.3 Industrial Collaborations
We regularly collaborate with different industrial partners that em-
ploy product-line engineering. For instance, we worked with 12
medium- to large-sized organizations to assess their state of adopt-
ing variability management [13], interviewed experts to understand
feature-modeling practices [76], and collaborated with large organi-
zations, such as Axis [47], Saab [64], or ABB, to improve our under-
standing of product-line practices. We used our gained knowledge,
resulting publications, and ongoing discussions, to reason about
the data we elicited from the literature. Particularly, we resolved
unclear partial orders to construct promote-pl (Sec. 3.5) and based
the discussion of software-engineering practices on this knowledge.

3.4 Data Extraction
For every publication, we extracted standard bibliographic data,
namely authors, title, as well as publication venue and year. To
construct promote-pl, we further extracted all product-line engi-
neering activities (i.e., we did not consider “standard” activities,

such as requirements elicitation) that have been mentioned in their
specific wording. If these activities were in a partial order, we also
extracted that order. Moreover, we extracted the scope in which
these activities have been applied, for example, extractive adop-
tion or platform-based evolution. Finally, if we identified a specific
software-engineering practice to be used, we also documented this.
We used a table to document and manage this data—with Tbl. 1
providing a summary of that table.

3.5 Process Construction
To construct promote-pl, we executed the following steps:

(1) We collaboratively analyzed the process models presented in
the five baseline publications (marked with BL in Tbl. 1). So,
we obtained an initial understanding of the existing process
models, how to unify terminologies, and a first set of partial
orders. However, the most important outcome was a mutual
agreement on how to elicit and document partial orders.

(2) Every author suggested relevant publications, and the first
author conducted the manual search.

(3) The first author read each publication, decided whether it ful-
filled the inclusion criteria, and extracted the data described
in Sec. 3.4 if this was the case. To ensure that we did not
miss important publications or activities, the other authors
verified distinct subsets of all publications.

(4) We created a list of unique activity names (150+), which the
first author used to resolve synonyms, specify terms, and
abstract common activities. For example, we changed all oc-
currences of “product” or “system” to “variant,” and specified
“analyze requirements” according to its context (i.e., plat-
form, asset, or variant). The employed changes were verified
and agreed upon by the other authors. We remark that we
were careful and aimed not to overly abstract activities (e.g.,
we kept “build” as a detailed activity of “derive variant”),
which is why we report 99 distinct activities in Tbl. 1.

(5) We compared the different partial orders and activities based
on their scope and similarities. As a result, we defined par-
titions of the process model (e.g., adoption and evolution).

(6) We constructed the process model by merging partial orders.
To this end, the first author used re-appearing activities and
similarities in the orders, structuring these according to the
identified partitions. Then, we removed redundancies as far
as possible to derive a unified process model.

(7) To verify and agree on promote-pl, the third author inter-
viewed the first author. During this interview, the first author
explained promote-pl, design decisions, potential alternative
representations, and based on what data each model element
was incorporated. We agreed to employ smaller changes
in promote-pl to improve its comprehensibility and resolve
unclear orders of activities.

By using this methodology, we aimed to improve the validity of
promote-pl, allowing other researchers to verify and replicate it.

4 THE PROCESS MODEL PROMOTE-PL
We describe the partial orders of activities we identified from the
literature, followed by the structure and details of promote-pl.
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Table 1: Overview of the 33 publications we analyzed and the activities described (based on our unified terminology).

Ref. Venue Scope Activities in their Partial Orders (≺): • – Separator; & – Parallelism; | – Alternatives; [. . . ] – Sub-activities

BL [44] IEEE SW’02 Pro. Ado. Scope & Budget Platform ≺ Analyze Platform Requirements & Model Variability ≺ Design Architecture ≺ Design System Model ≺
Refine Architecture ≺ Design Assets • Analyze Variant Requirements & Select Features ≺ Design & Adapt Architecture ≺ Adapt
Assets & Build Variant

BL [79] IEEE SW’02 Pro. Ado. Develop Assets • Engineer Variant • Manage Platform • Design Architecture • Evaluate Architecture • Analyze Platform
Requirements • Integrate Assets • Identify Assets • Test • Configure • Scope Platform • Train Developers • Budget Platform

BL [20] UPP’04 Pro. Ado. Analyze Domain ≺ Design Architecture ≺ Implement Platform • Analyze Variant Requirements ≺ Derive Variant
BL [82] Book’05 Pro. Ado. Scope Platform ≺ Analyze Domain [Analyze Commonalities ≺ Analyze Variability ≺ Model Variability] ≺ Design Architecture ≺

Implement Platform ≺ Test Platform • Analyze Variant Requirements ≺ Design Variant ≺ Derive Variant [Configure ≺ Implement
Specifics ≺ Build Variant] ≺ Test Variant

BL [3] Book’13 Pro. Ado. Analyze Domain [Scope Platform ≺ Model Variability] ≺ Implement Platform ≺ Analyze Variant Requirements ≺ Derive Variant
ER [88] STTT’15 Ext. Ado. Analyze Commonality & Variability [Compare Requirements ≺ Diff Variants ≺ Model Variability] ≺ Design Architecture [Extract

Architecture ≺ Evaluate Architecture ≺ Refine Architecture & Variability Model] ≺ Develop Assets •Merge Variants ≺ Refactor
≺ Add Variation Points [Diff Variants ≺ Refactor] ≺ Model Variability ≺ Derive Variant • Analyze Commonality & Variability
[Model Variability ≺ Compare Requirements & Tests & Diff Variants ≺ Refine Variability Model] ≺ Extract Platform

ER [30] SPLC’16 Ext. Ado.;
Vb. Evo.

Diff Variants ≺ Analyze Variability ≺ Model Variability ≺ Add Variation Points ≺ Adopt Tooling ≺ Compare Requirements ≺ Map
Artifacts • Develop Assets [Propose Asset ≺ Analyze Asset Requirements ≺ Design Asset ≺ Implement Asset ≺ Test Asset] •
Release Platform [Plan Release ≺ Produce Release Candidate ≺ Test Platform] • Release Variant [Scope Variant ≺ Derive Variant
≺ Test Variant]

ER [5] ESE’17 Ext. Ado. Analyze Commonality & Variability [Locate Features] ≺ Model Variability ≺ Re-Engineer Artifacts
ER* [59] SPLC’17 Ext. Ado. Diff Variants ≺ Locate Features ≺ Model Variability ≺ Map Artifacts
ER* [61] SPLC’18 Ext. Ado. Model Variability ≺ Adopt Tooling • Domain Analysis • Implement Platform • Analyze Variant Requirements • Derive Variant •

Configure
ER [68] SPLC’18 Ext. Ado. Train Developers ≺ Analyze Domain ≺ Model Variability ≺ Implement Assets [Analyze Documentation | Diff Variants ≺ Refactor]
ER* [55] Chapter’19 Ext. Ado. Analyze Variability ≺ Locate Features ≺ Map Artifacts
ER* [76] ESEC/FSE’19 Ado.; Evo. Plan Variability Modeling ≺ Train Developers ≺ Model Variability ≺ Assure Quality [Evaluate Model • Test Model]
ER* [58] JSS’19 Vb. Evo. Propose Asset ≺ Analyze Asset Requirements ≺ Assign Developers ≺ Fork Platform ≺ Implement Asset ≺ Create Pull-Request ≺

Review Asset ≺ Merge into Test Environment ≺ Test Asset ≺ Merge into Platform ≺ Release Platform
ER* [100] SPLC’19 Ext. Ado.;

Vb. Evo.
Adapt Variant ≺ Propagate Adaptations • Analyze Domain ≺ Analyze Variability ≺ Locate Features • Extract Platform •Model
Variability • Extract Architecture • Refactor • Test Platform • Test Variant

ER* [47] ESEC/FSE’20 Vb. Evol. Scope Variant ≺ Design Variant ≺ Derive Variant ≺ Adapt Variant ≺ Assure Quality
ER* [54] VaMoS’20 Ext. Ado. Train Developers ≺ Analyze Domain ≺ Prepare Variants [Remove Unused Code ≺ Translate Comments ≺ Analyze Commonality

≺ Diff Variants] ≺ Analyze Variability ≺ Extract Architecture ≺ Locate Features ≺ Model Variability ≺ Extract Platform ≺ Assure
Quality

SR [108] SPLC’15 Vb. Evo. Scope Variant [Analyze Variant Requirements • Design Variant • Configure] ≺ Budget Variant ≺ Design & Implement Variant
[Analyze Variant Requirements ≺ Design & Evaluate Variant ≺ Implement & Adapt Variant ≺ — | Propagate Adaptations] ≺
Configure & Test Variant

SR [105] VaMoS’15 Ext. Ado. Analyze Variability [Diff Variants & Identify Fork Points ≺ Classify Adaptations ≺ Merge Bug Fixes | [Name Assets ≺ Merge
Assets into Hierarchy]] ≺ Add Variation Points ≺ Model Variability ≺ Locate Features ≺ Extract Platform ≺ Configure

SR [46] ESE’16 Ado. Analyze Domain [Gather Information Sources ≺ Define Reuse Criteria ≺ Collect Information ≺ Analyze & Model Variability ≺
Extract Architectures ≺ Evaluate Results] ≺ Budget Platform

SR [75] SPLC’16 Pro. Ado. Engineer Platform [Analyze Platform Requirements ≺ Design Architecture & Implement Platform ≺ Implement Assets] ≺ Derive
Variants • Manage Platform

SR [39] SPLC’16 Pro./Ext.
Ado.

Scope Platform ≺ Engineer Platform [Design System Model ≺ Design Architecture & Implement Platform ≺ Model Variability] ≺
Derive Variant [Design Variant [Design Variant Model ≺ Scope Variant ≺ Select Features] ≺ Evaluate Design [Evaluate Design
Logic ≺ Configure] ≺ Design Variant ≺ Implement Variant] ≺ Test Variant

SR [16] VaMoS’16 Pb. Evo. Analyze Variant Requirements ≺ Define Build Rules ≺ Configure & Derive Variant ≺ Test Variant
SR [103] JSS’17 Pro. Ado. Model Variability ≺ Design System Model ≺ Derive Variant
SR [34] SPLC’17 Vb. Evo. Fork Platform ≺ Test Platform ≺ Merge into Platform
SR [107] SPLC’17 Pro. Ado. Design Architecture ≺ Add Variation Points ≺ Model Variability ≺ Configure ≺ Derive Variant
SR [36] SPLC’17 Vb. Evo. Derive Variant [Scope Variant ≺ Plan Variant [Define Variant Backlog ≺ Estimate Efforts ≺ Plan Development] ≺ Build Variant

[Create Backlog ≺ Time-Box Control]] • Manage Platform [Scope & Budget Platform]
SR [18] SPLC’17 Pro. Ado. Analyze Platform Requirements [Analyze Domain ≺ Scope Platform ≺ Model Variability] ≺ Design Architecture ≺ Evaluate

Architecture & Map Artifacts ≺ Derive Variant
SR [83] ICSE-SEIP’18 Ado.;

Pro. Evo.
Analyze Platform Requirements ≺ Analyze Commonality & Variability ≺ Design Architecture ≺ Implement Platform • Analyze
Variant Requirements ≺ Scope Variant [Identify Assets & Define New Assets] ≺ Implement Assets ≺ Integrate Assets ≺ Configure
≺ Test Variant •Map Artifacts • Model Variability • Unify Variability

SR [35] SPLC’18 Vb. Evo. Define Variant Backlog ≺ Implement Variant [Analyze Variant Requirements ≺ Implement Assets ≺ Test Variant] ≺ Add Variation
Points [Design Variation Points ≺ Refactor ≺ Test Platform]

SR [90] TSE’18 Ado./Evo. Add Variation Points ≺ Adopt Tooling •Manage Knowledge • Resolve Configuration Failures • Assure Quality
SR [67] SPE’19 Ext. Ado. Plan Development [Assign Developers ≺ Assign Roles ≺ Analyze Documentation] ≺ Assemble Process [Select Techniques ≺

Adopt Tooling ≺ Assign Tasks] ≺ Extract Platform [Execute Assembled Process ≺ Document Assets ≺ Document Process]
SR [38] SPLC’19 Pro. Ado. Analyze Domain [Specify Properties ≺ Model Variability • Analyze Variant Requirements [Configure ≺ Optimization]] • Derive

Variant [Configure ≺ Integrate Assets ≺ Test Variant] • Implement Platform
BL: BaseLine; ER: Expert Review; SR: Systematic Review

Ext.: Extractive; Pro.: Proactive; Ado.: Adoption; Pb.: Platform-based; Vb.: Variant-based; Evo.: Evolution
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4.1 Contemporary PLE Practices (RO1)
In Tbl. 1, we provide an overview of all 33 publications we con-
sidered. We can see that the publications we identified based on
suggestions and the manual search cover mostly the extractive
adoption strategy and evolution, which have become major topics
in product-line engineering research [5, 8, 53, 65, 77, 100]. More-
over, the publications have been published in various venues, not
surprisingly mostly at the flagship conference for software product-
line engineering SPLC. We argue that this selection provides a
broad and contemporary overview of practice, serving as a suitable
dataset for adapting the baseline process models. However, we also
identified interesting properties of the dataset that were important
to consider while constructing promote-pl.
Activities. We unified the terminologies used in the selected pub-
lications, and abstracted activities to compare their orders. Still, we
kept 99 unique activities, far too many to integrate into promote-pl.
There are two reasons for this many activities. First, the publica-
tions vary heavily in the level of detail in which they report activi-
ties. For example, some simply state “derive product,” while others
detail single steps of this activity (e.g., “build”). Second, the pub-
lications cover various software-engineering methods (e.g., agile,
model-driven), domains (e.g., power plants, web services), imple-
mentation techniques (e.g., C preprocessor, runtime variability),
tools (e.g., fully automated derivation process, build system), and
development phases (e.g., business analysis, variant derivation).
The varying levels of details and the high diversity mean that it
is not possible to unify all terms and activities. We addressed this
issue by focusing on re-appearing activities in similar orders.
Partial Orders. As we can see in Tbl. 1, we obtained a total of
42 partial orders (without counting sub-orders or alternatives). In-
terestingly, due to the variations in the activities, there is not a
single order that is identical to another order. Still, within a specific
scope (e.g., extractive adoption), they share similarities in terms of
activities and their orders—while they are quite different between
scopes. This indicates again that we require an updated process
model for product-line engineering.

Besides the high diversity of activities, one particular reason
for the missing overlap seems to be ambiguity of what actions a
specific activity comprises. For instance, “analyze domain,” “scope
platform,” and “analyze commonality/variability” are often used
together within partial orders. However, their exact orders vary,
and sometimes one of these activities is a sub-activity of another.
This indicates that it may not be well-understood what activities
comprise what concrete actions, for instance, because different
process models vary in their definitions. To tackle this problem,
we read descriptions in the papers and relied particularly on the
descriptions of Pohl et al. [82] to reason about design decisions.

4.2 Process Model Elements (RO2)
We display the high-level abstraction of promote-pl in Fig. 1. The
adoption includes starting from existing (extractive) or planned
(proactive) variants that are integrated into a platform. Alterna-
tively, a planned or existing variant can represent the derived vari-
ant that is extended later on (reactive). During the evolution, de-
rived variants are evolved to include new features. Such variants

can be evolved individually (clone&own) or integrated into the
platform by merging features or variants (returning to adoption).

We show the detailed representation of promote-pl in Fig. 3,
using a customized representation that builds on UML activity dia-
grams [80] to ease comprehensibility. The representation comprises
nine different elements (summarized in the bottom left corner):

1) Start Nodes have essentially the samemeaning as in UML, but
we allow to start only at one; whereas UML would require
to initiate the workflow at all start nodes simultaneously.

2–3) Activities and Activity Edges have exactly the same meanings
and representations as in UML.

4) Concurrent Activities are similar to fork and join nodes in
UML, indicating that the activities connected by the arrows
are (or can be) performed at the same time

5) Decision Nodes have the same meaning as in UML, and we
explicitly allow that they may have only one outgoing edge;
representing an optional workflow.

6) We use Situational Alternative to easily represent two scenar-
ios: First, to display that variant development also reflects
parts of the reactive adoption strategy. Second, to show that
oneworkflow occurs only if artifacts of variants are extracted
(i.e., extractive adoption, evolution via variant integration).

7-9) We abstractly indicate the position of six processes and
their workflows in promote-pl, distinguishing three differ-
ent types. First, Adoption Processes ( ) are the proactive and
extractive adoption strategies (as we will explain, reactive
adoption represents an evolution process). Second, Evolu-
tion Processes ( , ) are re-appearing workflows used to
extend a product line—usually incorporating forward- and
re-engineering activities (i.e., round-trip engineering). Third,
the Management Process ( ) represents seven activities that
are concerned with enabling and managing other processes,
which is why they are performed constantly and in parallel.

We remark that we omit end nodes, since promote-pl reflects adop-
tion and evolution in a round-trip engineering style. So, the end of
all processes would mean that the product line is discontinued.

4.3 Promote-pl and Adaptations (RO2, RO3)
ADifferent Decomposition. As explained in Sec. 2, organizations
appear to decreasingly separate and distinguish domain and ap-
plication engineering, which is supported by our elicited data and
experiences. For organizations, it is more important to understand
how to adopt a platform and engineer variants, instead of consid-
ering the two phases in isolation (e.g., Danfoss reports platform
extraction without fully modeling variability first [30]). Moreover,
organizations have mixed teams that employ domain and applica-
tion engineering in parallel. For example, in some organizations, the
same team implements a new variant and refactors it into platform
assets, whereas the platform team only tests and quality-assures
assets. We reflected this primary concern of interest in promote-
pl, moving from domain and application engineering towards the
Adoption and Evolution of a product line. This is a major difference
compared to existing process models, and we explain the resulting
overarching processes of promote-pl in the following.
Product-Line Management. Some baseline process models com-
prise activities for managing a product line, often integrated into the
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Figure 3: The detailed representation of promote-pl.

domain engineering, but also as a separate phase. Our empirical data
suggests that the management process ( ) comprises a challenging
and practically important set of activities, enabling organizations to
plan and apply product-line engineering successfully.We found that
all management activities should run in parallel—to each other and
all development activities, which was also suggested before [79].

In particular, we found that seven activities are mentioned as
important, for instance, budgeting development activities, adopting
tooling as well as processes, and training developers, most of which
are mingled and require monitoring of development activities for
steering. Interestingly, such management activities have gained
less interest in the research community compared to development
activities [84]. For instance, budgeting may be supported by cost
models, and several of such models have been proposed for product-
line engineering. Unfortunately, existing cost models are often
limited (e.g., considering their scopes and foundations in empirical
data [1, 51, 54]), and only few experience reports provide guides on
how to employ them in practice [46, 78].

Product-Line Aoption. For adopting a product line, we distin-
guish between the three strategies defined by Krueger [49].

First, the proactive development process (left ) is identical to the
domain engineering of the baseline processmodels, comprising only
minor clarifications. At the beginning, an organization analyzes its
domain, comparing its commonalities (which others recommend
to start with to identify reuse potential [82]) and variability. Based
on the results, the platform is scoped and requirements are derived,
which allows to construct a variability model. As we display in Fig. 3,
variability modeling can be performed in parallel to analyzing com-
monality and variability, as both may affect each other (e.g., refining
the variability model). Considering Fig. 2, this represents “domain
requirements engineering” and “domain design” in the same order,
but in a more flexible process. Afterwards, the platform architecture
is designed and the platform with its assets as well as variation
points is implemented (i.e., “domain implementation” in Fig. 2). We
make two activities more explicit here that have been mentioned
multiple times, and thus seem important to include: adding variation
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points and mapping artifacts (e.g., assets, documentation, variabil-
ity model) to ensure traceability. Finally, the resulting product-line
platformmust be tested, released, and quality assured, again fully in
line with baseline process models. Overall, this proactive adoption
process is close to the domain engineering described by Pohl et al.
[82]—except for separating management activities and refinements
that have been pointed out explicitly in recent publications.

Second, the extractive development process (right ) is a first ex-
tension to the baseline process models. We actually found different
instantiations of this process, both usually starting with diffing
of artifacts. On the one hand, an organization can decide to per-
form a full-fledged feature-oriented integration, meaning that it
performs the same analyses (but focused on variability first [76]),
scoping, and variability modeling as in the proactive adoption. This
represents a top-down approach for extracting the product line.
However, after the modeling, an organization usually designs an
architecture by extracting and adapting an architecture from the
existing variants. Afterwards, the refactoring mainly includes lo-
cating the identified features as well as adapting their assets to the
architecture and adding variation points.

On the other hand, an organization may decide to simply inte-
grate variants without defining the platform first. Instead, the plat-
form is built by refactoring the integrated variants, which involves
identifying and locating features as well as adapting the correspond-
ing assets (e.g., adding variation points, improving re-usability)—
representing a bottom-up approach. For managing the product line,
the organizationmustmodel the refactored variability in parallel. As
for the proactive adoption, in both instantiations the organization
also has to map artifacts before the platform can be tested and even-
tually released. However, especially for the second instantiation, the
organization may iteratively integrate variants, resulting in a loop.

As we can see, the extractive development process comprises
similar activities as the proactive one. Still, there are differences
in these activities, for example, in the refactoring of the platform,
adapting assets, and the missing domain analysis (i.e., the variants
are already established in the domain). Moreover, if an organization
does not employ a feature-oriented integration, the process and its
order of activities vary considerably.

Third, the reactive adoption process is not mentioned in the pub-
lications we analyzed. However, this is rather unproblematic, since
reactive adoption is only a special case of the variant-based evolution.
Particularly, a first variant is implementedwithout the platform, and
can afterwards be extended by integrating new assets or variants
into the first one. So, promote-pl represents all adoption strategies,
and especially for the reactive adoption process we can see that
domain and application engineering are mingled.
Product-Line Evolution. The evolution of a product line is driven
by new customer requirements. So, while we distinguish between
three different evolution processes, they usually start with the de-
velopment of a new variant, and the typical application-engineering
activities used for requirements analysis and scoping the variant.
However, after understanding what new assets are required for
developing a variant (i.e., during its design) and deciding to reuse
the platform, the individual evolution processes differ.

First, platform-based evolution (left ) is typically assumed im-
plicitly in baseline process models (cf. Fig. 2). Thus, the evolution at

this point switches from application- to domain-engineering activi-
ties. The new asset must be proposed to the platform, designed to fit
the platform architecture, implemented, which also includes adding
variation points and modeling the new variability, tested, and inte-
grated. To this end, an organization may use feature forks, but the
core concept is a fast or continuous integration and close coordina-
tion with the platform. Afterwards, the variant can be derived by se-
lecting its features, defining a configuration, and identifying the cor-
responding assets for integrating them into a repository. Identifying
assets can be fully automated based on different technical solutions
(e.g., configuration managers), but without such automation devel-
opers have to identify and pull the assets from different sources.
Finally, the variant may require further adaptations that should not
be part of the platform, or can be tested and released as is. Still, we
found and experienced that organizations do not employ platform-
based evolution, but, instead, rely on the following processes.

Second, during variant-based evolution using asset propagation
(right ), an organization derives and clones a variant from its ex-
isting platform that is close to the new variant. In some cases, this
clone may even represent the complete platform, for instance, when
developing highly innovative variants that may be intended to re-
main separated. After adapting the variant by adding new assets,
the organization may find that these assets are relevant for other
variants or even the whole platform. So, assets are propagated to the
platform, employing a similar process as for platform-based evolu-
tion, namely implementing an asset for reuse, testing its functional-
ity, and finally integrating it into the platform. In particular, we ex-
perienced this evolution process for established markets where vari-
ants require new assets that have a high potential for various cus-
tomers, and thus are intended for integration early on. An important
prerequisite for this process is that the variant has not co-evolved for
too long from the platform, as this challenges asset integration (i.e.,
the platform may have changed too much for simply propagating
the asset)—in which case the third evolution process is more likely.

Third, variant-based evolution using variant integration ( ) refers
to the re-integration of complete variants into the platform. We
found this to be a common case if variants evolved for a longer
time without synchronization with the platform, for example, in
the case of highly innovative variants, co-evolution resulting in
clone& own, or reactive product-line adoption. However, we also
found that such variants are re-integrated based on the same process
as the extractive adoption: The variant is diffed and then integrated
by refactoring it to fit the platform, which may involve variability
analysis, scoping, and variability modeling first; or a direct integra-
tion and parallel variability model. So, we can see that variant-based
evolution, particularly with variant integration, switches the typical
order of domain and application engineering, first implementing a
variant to then integrate the new assets into the platform.
Domain andApplicationEngineering. The aforementioned pro-
cess descriptions already showed that domain- and application-
engineering are far more tangled and exist in varying orders com-
pared to baseline process models. So, the typical activities asso-
ciated with these two phases are represented in promote-pl, but
the individual processes iterate between them. Since this is based
on the publications we analyzed and aligns with our experiences,
it seems that these two phases are rather cross-cutting concerns
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in contemporary product-line adoption and evolution processes.
For this reason, they are still important and helpful to structure
product-line engineering, but promote-pl is an important update
to provide a more comprehensive, practice-oriented, and recent
overview of product-line practices.

By constructing promote-pl, we found:
• A switch in the primary concern of interest from domain and
application engineering to adoption and evolution.

• That important management activities must run in parallel to
the development, but seem to be less investigated in research.

• That several adaptations to previous process models were nec-
essary to incorporate the three adoption strategies.

• That variant-based evolution via asset- or variant-integration
is the major strategy to drive the evolution of a product-line.

• That domain and application engineering are rather cross-cut-
ting instead of primary decomposition concerns.

5 SE PRACTICES (RO3)
In this section, we discuss promote-pl’s relations to contemporary,
trending software-engineering practices, which are typically ap-
plied in combination.
Continuous Software Engineering. Referred to as continuous
software engineering [29], modern processes increasingly aim at
bringing different phases together—reflected in recent practices
including continuous integration [25], continuous deployment, con-
tinuous testing, or DevOps [26]. This trend is reflected in promote-
pl, bringing together domain and application engineering in an iter-
ative, round-trip-like process. The product-line literature recently
also emphasized these practices for variability management [34, 83],
and we experienced the demand for respective tool and method-
ological support first-hand with industrial partners [13].

When engineering variant-rich systems, continuous software
engineering requires a configurable (product-line) platform. For
instance, continuous deployment requires automated configuration,
since manually assembling the final system (i.e., variant) cannot
be done manually, or using clone& own for frequent (continuous)
deployment. Likewise, continuous integration facilitates evolving
the trunk using short-lived clones, and continuous testing also
requires automated configuration for running test cases.

In this light, promote-pl resolves a discrepancy between continuous
software engineering and the pre-dominant extractive and reactive
adoption strategies [11] of product lines. It supports adopting a
platform extractively or reactively, and evolving the platform via
variants. The latter, depending on the extent of architectural de-
viation from the platform (see the activity Release Variant with
its decision nodes Integrate Asset or Integrate Variant in Fig. 3),
can be integrated with the same activities as adopting a platform
extractively (deviation) or in a more continuous-integration-like
way (no deviation). This aspect of promote-pl unifies evolution and
re-engineering, and establishes round-trip engineering.
CloneManagement and Incremental Adoption of Platforms.
Organizations primarily use clone& own to implement variants [11,
13, 52], which is a cheap and readily available strategy, typically
based on using branching facilities in version-control systems [24,
98, 99]. However, the maintenance effort for cloned variants can

easily explode. To support evolution [100] before investing in a plat-
form, clone-management frameworks strive to help synchronizing
variants and keeping an overview understanding [2, 72, 81, 86, 87,
89]. A step towards clone management are governance strategies
for branching and merging [24]—explicit rules for engineers when
creating variant branches, aiming at reducing maintenance over-
head to some extent. Staples and Hill [99], for instance, provide a
branching model, which is also instantiated elsewhere [3]. However,
with an increasing number of variants, it may still be necessary to
adopt a platform. Instead of big-bang efforts, recently, incremental
adoption strategies have been proposed [2, 28], aiming at incremen-
tal benefits for incremental investments, and therefore avoiding
the risks of big-bang migrations, which disrupt development and
the ability to sell products [17, 37, 56, 91]. Finally, another common
practice is to use concepts of a configurable platform (e.g., variation
points) together with clone& own [13]. In this light, promote-pl
explicitly supports clone management as well as an incremental adop-
tion of platforms, or using both in a unified manner.
Dynamic Configuration and Adaptive Systems. Modern, adap-
tive systems require late and dynamic binding, including microser-
vice [101], cyber-physical [106], industry 4.0 [66], and cloud comput-
ing systems [23]. There, resource variations, asset availability, and
environmental changes require systems and their software to adapt
at runtime. To this end, a platformwith variability as well as parame-
terizationmechanisms needs to be adopted. A difference is that such
platforms are not necessarily variant-rich systems. Instead, param-
eterization allows tuning or customizing systems to specific needs
at runtime. Not surprisingly, several of our analyzed publications
describe product-line engineering in such contexts [16, 58, 68, 108].
In this light, the adoption strategy is rather reactive, where a single
system is developed and gradually extended with variation points, as
covered in promote-pl. Still, better methods and tools are needed to
manage and evolve dynamic and adaptive platforms [4, 60].
Agile Practices. Agile software engineering [70, 73] methodolo-
gies focus on customer involvement, small increments, and fast
feedback. Almost all agile methodologies also build on the notion
of features, including SCRUM, XP, and FDD (feature-driven de-
velopment). They also foster automated testing, which, similar to
continuous software engineering, requires configurable platforms.

We found two publications that report to adapt agile methods
for their product-line engineering: Fogdal et al. [30] underpin that
product-line and agile engineering are not conflicting, but the de-
velopers must be aware that they deliver assets to a platform that is
used by others. Slightly in contrast, Hayashi et al. [36] find that agile
methods are not ideal to Derive Variants, because the development
cycles are too short to Train Developers. However, they adapted
agile methods for evolving and throughout multiple product lines,
which facilitated their engineering. These experiences indicate that
agile methods are important, particularly to Evolve a product line
(e.g., via its variants). In this light, promote-pl does not only support
agile practices, but is also crucial given the focus of agile methods
on features, automation (similar to continuous software engineering),
and incremental evolution via variants.
Simulation in Testing. Three of the analyzed publications, and
two of our industrial partners [13], explicitly mention to use simu-
lation environments to Test their platforms and variants [13, 16, 30,
39]. While promote-pl captures these activities, more research is
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needed in this direction. In particular, this is different to sampling
variants and test them, as safety-critical systems (e.g., cars, power
plants) require an actual simulation environment to test whether
software and hardware interact correctly. Moreover, as the simu-
lators may have different properties (e.g., for transferring data) or
require additional features (e.g., forMonitoring additional data), this
can also result in simulation-specific assets (Add Variation Points).
In this light, promote-pl covers the relevant activities, and can guide
the development of supporting techniques for simulation testing.

6 THREATS TO VALIDITY
Construct Validity. Regarding construct validity, we may have
misinterpreted the terminology used in different publications. Even
more, some sets of activities have been used in varying orders
in different publications, indicating variations in the use of the
constructs we investigated. As a result, the orders of activities
we elicited may not completely represent those intended by the
authors. We mitigated this threat by building on 33 publications,
carefully reading the descriptions of activities in each publication,
and reasoning based on our experiences.
Internal Validity. Our work may be threatened by the methodol-
ogy we employed. We may have falsely disregarded publications,
missed important data during the extraction, and not derived the
most suitable process model—particularly as we also relied on our
experiences and interpretation. However, to limit these threats, we
adapted recommendations for process theory [85], suggesting that
secondary studies (e.g., systematic literature reviews) are a reliable
source for such studies to reduce the potential bias of personal
knowledge. Moreover, we were careful to not overly interpret the
data we elicited, and checked all outcomes among all authors.
External Validity. The goal of this study was not to derive a uni-
versal process theory, which is arguably not possible. Instead, we
aimed to capture how product-line engineering is currently done
based on empirical data. So, as our data also shows, several process
properties, such as the technologies used, the domain of the product
line, and the developers involved, limit the transfer of our results
to other organizations. We mitigated this external threat by consid-
ering various publications and reflecting on our industrial collab-
orations. For this reason, we argue that we mitigated this threat as
far as possible, considering our goal of analyzing current practices.
Conclusion Validity. Other researchers may derive a different
process model for product-line engineering, depending on the pub-
lications they consider, their experiences, or the construction pro-
cess. To limit this threat to the conclusion validity, we explained our
methodology, reasoned about our modeling decisions, and docu-
mented all publications we considered. Thus, we enable researchers
to replicate and verify promote-pl.

7 RELATEDWORK
Software reuse, its methods, technologies, and processes have been
studied extensively. Related to our work, de Almeida et al. [22]
survey existing domain-engineering and product-line engineering
processes. Similarly, Frakes and Kang [31] as well as Krueger [48]
provide general overviews on software reuse, including adoption
strategies, methodologies, and techniques. In contrast to us, none
of these works derives a process model, and they are rather old—
missing insights on current practices and technological advances.

Several researchers, including ourselves, have analyzed how
developers reuse software in practice. For instance, we investigated
feature-modeling practices [11, 76] in order to understand how
feature models are adopted and constructed in practice, but this is
only one activity in the process model. Van der Lindern et al. [104]
report 10 experience reports of how organizations employ product-
line engineering, and what benefits they achieved. However, these
cases are comparably old and analyzed in the context of the process
model of Pohl et al. [82]. In a similar direction Bauer and Vetro’ [6]
compare the reuse practices of two organizations, but do not derive
a process model for these. We reviewed other related work, which
describes (parts of) product-line engineering processes based on
practical experiences, to construct promote-pl (cf. Tbl. 1).

Out of the numerous literature studies on product-line engineer-
ing [15], the works of Laguna and Crespo [62], Fenske et al. [27],
and Assunção et al. [5] may be the closest to promote-pl. Laguna and
Crespo perform a systematic mapping study on product-line evo-
lution, identifying 23 studies on extractive processes. Fenske et al.
build on that study, including some additional papers based on their
selection to derive a taxonomy (which is similar to a process the-
ory [85]) of product-line re-engineering. Most recently, Assunção
et al. report a systematic literature review, also on re-engineering. In
contrast to the other two papers, the authors synthesize a high-level
process model (see the corresponding partial order in Tbl. 1). All of
these works focus on the specific processes of re-engineering prod-
uct lines, which is part of promote-pl. So, these works are comple-
mentary, and they actually argue that well-defined, contemporary
process models are needed; which we contribute with promote-pl.

8 CONCLUSION
We presented promote-pl, a modern process model for product-line
engineering. Its design is based on a systematic analysis of the
literature (experience reports and empirical studies) and our own
industrial experiences. We adapted a method for deriving process
theories to identify engineering activities and their (partial) orders
as reported in the literature, and then unified the terminology to
create an aggregated process model. The granularity of promote-pl
allows practitioners to easily map and apply activities to various
development processes—less strictly than existing process models.

Core characteristics of promote-pl, as opposed to existing process
models, which were conceived almost two decades ago, are the:

• focus on adoption and evolution strategies as the domi-
nant decomposition criteria of the process, which is more
aligned with primary organizational concerns;

• support for different adoption strategies, including the
dominant extractive and reactive platform adoptions;

• support to evolve a platform via its variants instead of
primarily via the platform itself; and

• alignment with modern practices including continuous
software engineering, agile methods, clone management, in-
cremental platform adoption, and simulation-based testing.

We envision that future research will investigate the adoption of
promote-pl in case studies, and build corresponding tool support.
Also, we hope to inspire practitioners providing experience reports
and requirements for tools supporting promote-pl.
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