
A Common Notation and Tool Support for
Embedded Feature Annotations

Tobias Schwarz
Chalmers | University of Gothenburg

Wardah Mahmood
Chalmers | University of Gothenburg

Thorsten Berger
Chalmers | University of Gothenburg

ABSTRACT
Features are typically used to describe the functionalities of soft-
ware systems. They help understanding systems as well as planning
their evolution and managing systems. Especially agile methods
foster their use. However, to use features, their locations need to be
known. When not documented, they are easily forgotten and then
need to be recovered, which is costly. While automated feature-
location techniques exist, they are not usable in practice given their
inaccuracies. We take a different route and advocate to record lo-
cations early using a lightweight annotation system, where feature
information is embedded in software assets. However, given the
potential design space of annotations, a unified notation and tool
support is needed. Extending our prior work, we present a unified,
concise notation for embedded annotations, which we implemented
in FAXE, a library for parsing and retrieving such annotations, use-
able in third-party tooling. We demonstrate its use, especially for
an advanced use case of feature-oriented isolated development by
automating partial commits.

CCS CONCEPTS
• Software and its engineering → Software product lines;
Traceability.

KEYWORDS
feature location, embedded annotations, partial commits
ACM Reference Format:
Tobias Schwarz, Wardah Mahmood, and Thorsten Berger. 2020. A Common
Notation and Tool Support for Embedded Feature Annotations. In 24th ACM
International Systems and Software Product LineConference - Volume B (SPLC
’20), October 19–23, 2020, MONTREAL, QC,Canada. ACM, New York, NY,
USA, 4 pages. https://doi.org/10.1145/3382026.3431253

1 INTRODUCTION
Features are commonly used to abstractly and intuitively describe
the functionality of software systems [6]. They allow keeping an
overview understanding of complex systems, providing a common
language for different stakeholders, ranging from developers to
domain and business experts. Agile development methods, such as
Scrum, XP and FDD rely on features to plan the development. In
variant-rich systems, such as software product lines, features help

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SPLC ’20, October 19–23,2020, MONTREAL, QC, Canada
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7570-2/20/10. . . $15.00
https://doi.org/10.1145/3382026.3431253

distinguishing the variants. Furthermore, many developers label
commit messages with the feature they implement, as well as they
align commits with features.

Using features to manage and evolve systems requires know-
ing their locations. If not documented, the developers’ knowledge
about features diminishes quickly and requires recovering the fea-
ture locations in software assets (e.g., code, models, requirements,
documentation), which is in fact one of the most common activities
of developers [11, 15, 18]. In large and complex systems, this ac-
tivity can easily become laborious and error-prone [18], especially
when features are scattered [13] across the software assets. Even
though, automated feature-location tools have been proposed [15],
they require project-specific setup effort and often yield too many
false positives to be useful in practice.

To avoid these problems, features and their locations should be
documented explicitly. Two strategies exist: documenting feature
information externally to the assets, such as in feature databases,
or documenting feature information internally by embedding it
into the software assets [4, 7–10, 16, 17]. The former strategy re-
quires external tools (e.g., feature databases [14]), a universal way
to exactly refer to locations inside software assets, as well as a
method of keeping them updated during software evolution. The
latter strategy requires an annotation system with a standardized
concise and intuitive syntax to embed the feature information into
software assets. But, adding embedded annotations during develop-
ment is cheap, and the annotations evolve naturally together with
the assets, with little maintenance overhead [8].

We advocate that developers add embedded feature annotations
into software assets during development. The annotations facili-
tate locating and browsing features and their locations quickly, for
instance, when maintaining features (e.g., delete or split features),
and propagating feature implementations across cloned variants in
clone& own scenarios. In addition, embedded annotations enable
feature-oriented software evolution [12], by exploiting feature loca-
tions to calculate feature metrics and provide feature visualizations,
which allow intuitively monitoring software progress. Figure 1
shows some visualizations from FeatureDashboard [7]. On the left
are mappings between features and (model, code and documenta-
tion) files; on the right are mappings between features and folders.
The annotations also facilitate re-engineering cloned variants into
an integrated platform, where they can be converted into variability
annotations (e.g., #IFDEF preprocessor annotations or feature flags)
to make features optional or to capture the differences between
cloned and adapted features. In contrast to variability annotations,
as we will show, our embedded annotations are (i) more flexible,
as they do not need to align with syntactic structures of programs,
(ii) more lightweight, as they do not require heavyweight tooling
and project setups, and (iii) they also capture mandatory features.

However, no unified notation exists for embedded feature an-
notations. To exploit their potential, a concise and flexible syntax

https://doi.org/10.1145/3382026.3431253
https://doi.org/10.1145/3382026.3431253

SPLC ’20, October 19–23,2020, MONTREAL, QC, Canada Tobias Schwarz, Wardah Mahmood, and Thorsten Berger
Visualization of Feature Locations with FeatureDashboard SPLC ’19, September 9–13, 2019, Paris, France

Figure 4: View for relations-
hips of features to files

Figure 5: View for relations-
hips of features to folders

the feature hierarchy (from the model) and feature locations. Users
can modify the preferences to filter files (e.g., specific file extension
or folders). Three tabs are provided: Feature Model, Resources, and
Traces. The features and the resources shown within the first two
tabs are selectable, and the selections are used in the Traces tab.

The Feature Model tab shows the selected project’s features along
with their hierarchy according to the featuremodel defined in Clafer
syntax in the project. The feature model representation of the model
in Fig. 1 is shown in Fig. 3 within this tab. Here, features that are
annotated in some source files of the project but not in the feature
model are represented in red as root features. In this tab the features
can be filtered and selected. Features selected in this tab are used
by the tab Traces to show the selected features’ locations and by
other visualisation views, as explained in the following.

The Resources tab represents all files and folders in the imported
project with their corresponding hierarchy, and allows filtering and
selecting the resources for the user as shown in Fig. 3. Resources
selected are used in the Traces tab to show the features related to
those resources, and by other views of FeatureDashboard as well.
Together with the Feature Model tab, it is thus possible to focus on
relevant features and resources in all views of FeatureDashboard.

The Traces tab shows the feature locations of the selected features
in the Feature Model tab and the selected resources in the Resources
tab. Fig. 3 shows an example of feature locations in the Traces tab
for the features and resources selected in the Feature model and
Resources tabs. Each feature location is listed with its feature, the
path within the project, and where applicable, the line numbers. If
the relation of a feature and a file or folder is stated in a mapping
file, the line numbers column is empty. The table of traces can be
sorted and its data can be exported. In addition, double-clicking
on a table row containing an embedded annotation will open the
corresponding file and highlight the annotated line or code block.
Feature-to-File View. The relations between features selected in
the FeatureDashboard view and relevant files are visualized in this
view. Figure 4 shows an example. A connection between a feature
(represented by a green rectangle) and a file (blue rectangle) indica-
tes that the relation is established in a mapping file or by feature
annotations within the file itself. It is also indicated if multiple
selected features are implemented in the same files.

Double-clicking the Additional files box will show additional files
that a feature is implemented in, but the other features are not. The
reasoning behind this is to divide the information into different mo-
dules to reduce the elements in a single view. In this view, clicking
on a file (docs.pdf in Fig. 4) will highlight the connections, which

Figure 6: Common features
between projects

Figure 7: Features tangled
with Camera

makes it easier to see which features are implemented in that file.
Clicking on a file box will open that file in the editor and highlight
the annotated code block.
Feature-to-Folder View. Similar to the Feature-to-File view, this
view visualizes the relations between features and folders, as shown
in Fig. 5. Green and blue rectangles represent features and folders,
respectively. The links between a folder and a feature indicate that
either the feature is annotated in a file within that folder or the
relation is directly mentioned by a mapping file. Hierarchical folder
representations are also shown by links between folders.
Common Features View. This view visualizes features different
projects (or variants) have in common. A matrix that relates all
open projects (rows) to all found features (columns) indicates that
a feature is contained in a project with a green cell. An example is
shown in Fig. 6.
Feature Tangling View. This view visualizes features that are
tangled with each other. This is useful for identifying the parts of
a system that are potentially affected if that particular feature is
modified. It is also possible to see whether some selected features
are tangled with each other in the Feature-to-File view. The Fea-
ture Tangling view, however, visualizes all tangled features for a
selection. As with the other views, the considered feature must be
selected in the FeatureDashboard view first. Figure 7 shows the tang-
led features with feature Camera. The blue rectangle in this view
represents the selected feature, and the green ones are the features
tangled with it. The link between the features can be double-clicked
to see more detailed information regarding the two features in the
Feature-to-File and Feature-to-Folder views.
Metrics View. All metrics proposed by Andam et al. [2] are calcu-
lated and shown in this view. The Feature Metrics tab shows feature
metrics for the selected features in the selected projects, as shown
in Fig. 8. The Resource Metrics tab shows feature-related metrics
for different resources and averages for suitable metrics from the
Feature Metrics tab. If the user has not selected any resources in

Figure 8: Metrics for features

Figure 1: Visualizations of feature locations in files and fold-
ers using the tool FeatureDashboard [7]

is needed, that developers can rely on. Specifically, it should be
intuitive, easy to learn and use, and concise. It should also provide
the basis for further tools (e.g., for visualizing or browsing features
using feature dashboards [4, 7, 12]). In fact, given the huge design
space for such annotations, we experienced first hand that, without
well-defined syntax and semantics for embedded annotations, (tool)
developers interpret our annotation system differently, challenging
the reuse of annotations and tool interoperability.

We present a unified syntax for specifying embedded feature
annotations and tool support for managing annotations in software
assets. Our contribution is threefold. First, building on our prior
work [3, 4, 7, 8], we design and evaluate a consolidated notation
for embedded feature annotations. The syntax is programming-
language-independent, established with input and experience from
industry. Second, we provide the tool FAXE (Feature Annotation
eXtraction Engine) [2]—a stand-alone library usable in third-party
applications, such as feature dashboards—to process feature anno-
tations in large software projects. Third, we demonstrate a more
advanced use case enabled by our annotations and FAXE: feature-
based partial commits to facilitate isolated development on the
granularity of features (instead of whole branches or forks). These
allow to align commits with features, among others, easing release
engineering (e.g., via cherry-picking) and collaboration of develop-
ers who are typically assigned to features.

2 EMBEDDED ANNOTATIONS
The annotation system allows mapping features to many kinds of
software assets (code and non-code)—at the granularity of whole
folders and files, and also textual assets at an arbitrary granularity
(e.g., classes, methods, code blocks, lines). The exact specifications
with grammars can be found online [1]. For illustration, our running
example is Bitcoin-Wallet, an Android app we annotated before [9].

2.1 Design Methodology
We iteratively designed the system, discussing many design alter-
natives (discussed shortly), which we assessed regarding the design
properties: intuitive, useful, easy-to-learn, easily applicable, flexible-
to-use, non-redundant, succinct, robust during software evolution and
reuse, and requiring minimal developer effort. We documented the
rationale and discussed also the placement in assets, the respective
keywords used in the syntax, and ways of referring to features in
the annotations. We evaluated the syntax with respect to the design
properties using a survey with fellow researchers and industrial
collaborators.

2.2 Embedded Annotations Design Decisions
We utilize the specific escape syntax for comments in the host lan-
guage to make the specification independent of the programming
language. For specifying code annotations, we choose the ‘begin’
keyword instead of ‘open’ and ‘start,’ as we find that more intuitive.
We allow developers to interleave feature annotations, only requir-
ing the developers to add an ending annotation for every begin an-
notation. For mapping single lines of code to features (i.e., line anno-
tations), we discussed two alternative ways: adding the annotation
before the line or adding it at the end of the line, favoring the latter to
facilitate parsing. We allow specifying multiple features in a single
annotation, in addition to having separate ending annotations for
each feature. To provide flexibility, we do not require feature names
to be unique across the (containing) feature model. To uniquely
reference features in the annotations, we employ the use of least
partially qualified (LPQ) paths, which are shortest possible paths
needed to uniquely identify a feature (explained in detail in Sec. 2.3).

2.3 The Notation and Its Practical Use
Feature Model. To organize features in a hierarchy, we use a sim-
ple textual notation inspired by the Clafer modeling language [5]—
allowing easier creation and modification without dedicated tools.

Developers add the feature-model file in the project’s root folder.
The first line is the root feature, which is named after the project.
Each feature is listed as a line in the file, with tab-based indentation
reflecting the feature hierarchy. While not needed in our use cases,
developers could also specify relations among features, whichmight
be useful later e.g., when making features optional. Figure 2 (top-
right) illustrates the feature-model design.
Feature References. As mentioned above, we do not enforce fea-
ture names to be unique in the model to provide flexibility. To
concisely refer to non-unique features, we use their LPQ path re-
lated to the feature hierarchy. A feature is prefixed with the shortest
excerpt of its full path that makes it unique. The feature names in
LPQ are conjoined with “::”. See the features named Codecs in Fig. 2
(top right). They can be uniquely referred to as Bluetooth::Codecs
and BitcoinWallet::Codecs.
Feature-to-Folder Mappings. To map a folder to a feature, the
developer adds a .feature-to-folder file in the folder itself. Features
mapped to the folder are listed in individual lines. Such feature-
to-folder mappings are more stable than feature-to-file mappings
during evolution, as they are usually retained during folder rename,
move and clone& own operations. An example .feature-to-folder
file is shown in Fig. 2 (bottom right).

BitcoinWallet
Bluetooth

Codecs
BitcoinBalance

DonateCoins
SendCoins

Codecst

ProjectRoot
|--feature-model.cfr
|-- src

|-- de
|-- schildbach

|-- wallet
|-- data
|-- offline
|-- service
|-- ui
|-- util
|-- .feature-to-file
|-- .feature-to-folder
|-- Configuration.java
|-- Constants.java
|-- Logging.java
|-- WalletApplication.java

Configuration.java
BitcoinWallet

Bluetooth
SendCoins

feature-model

.feature-to-file

.feature-to-folder

Figure 2: Feature model, feature-to-file, and feature-to-
folder mappings illustrated for our running example

A Common Notation and Tool Support for Embedded Feature Annotations SPLC ’20, October 19–23,2020, MONTREAL, QC, Canada

58 p u b l i c c l a s s Wa l l e tBa l anceF ragment ex t end s Fragment { . . .
219 //&begin[DonateCoins]
220 p r i v a t e vo id handleDonate () {
221 //&begin[SendCoins]
222 S endCo i n sAc t i v i t y . s t a r tDon a t e (a c t i v i t y , nu l l ,

FeeCategory . ECONOMIC , 0) ; //&line[Fee]
223 //&end[SendCoins]
224 }
225 //&end[DonateCoins]

Listing 1: Illustration of fragment and line annotations
Feature-to-File Mapping. Feature-to-file mappings are stored in
a separate .feature-to-file file, which resides in the same folder as
the mapped files. To map a file to a feature, the developer adds or
extends this mapping file. Files names and feature references are
written in individual lines, separated by commas, where the file(s)
in one line map to the feature(s) specified in the next line. All file
assets, regardless of their type (e.g., binary, model, and test) can be
mapped to features using our syntax. An example file .feature-to-
file is shown in Fig. 2.
Fragment Annotations. As explained above, developers specify
embedded code annotations in comments. The above is followed by
an ampersand and keyword ‘begin’ or ‘end’, followed by comma-
separated feature references in LPQ. The scope of a fragment anno-
tation is the set of lines between the respective begin and end.
Line Annotations. Line annotations are a special case of fragment
annotation, where the scope of the annotation is limited to one line
of text. Line annotations are also specified as comments, where the
ampersand is followed by the ‘line’ keyword and the feature refer-
ences in LPQ. Listing 1 demonstrates fragment and line annotations
for three features (DonateCoins, SendCoins, Fee) in BitcoinWallet.

3 FAXE OVERVIEW
The tool FAXE automatically extracts and processes embedded an-
notations specified in the proposed syntax from a given asset. It is
a lightweight tool which requires no installation by the developer.
FAXE is implemented as a Java library under the APACHE 2.0 li-
cense [2]. To facilitate integration with IDEs and other tools (e.g,
for visualization), we provide the implementation as a single jar file,
with all dependencies contained inside. At the core of the engine
is the annotation parser built with the ANTLR4 parser generator. It
relies on syntax of our annotation system specified as an ANTLR4
grammar. Given an asset (a project, folder or specific file), FAXE
extracts annotations from all sub-assets recursively, down to the
line annotations. It is language-independent; extracting annotations
from textual assets written in any language.

Presently, users can interact with FAXE in two ways; integrate
the library in the client project and use its API directly, or use its
command line interface. FAXE builds on an object model; for each
API request, FAXE extracts the location of features and returns an
object list. The returned data includes asset type, asset name, index
of begin and end, and the feature(s) referred to in the annotation.
Features from the annotations that do not exist in the feature model
are added to it dynamically by FAXE. Listing 2 shows an excerpt of
the command-line output from FAXE for BitcoinWallet.

3.1 FAXE Commands
FAXE offers a set of commands to interact with it. Two basic com-
mands -h and -v display help content and version, respectively. For

1 / / Type Asse t S t a r t End LPQ Re f e r en c e
2 {FRAGMENT wa l l e t \ u i \ Wa l l e tBa l anceF ragment . j a v a 220 226 DonateCoins } ,
3 { FRAGMENT wa l l e t \ u i \ Wa l l e tBa l anceF ragment . j a v a 222 224 SendCoins } ,
4 { LINE wa l l e t \ u i \ Wa l l e tBa l anceF ragment . j a v a 223 223 Fee } ,
5 { F ILE wa l l e t \ Con f i g u r a t i o n . j a v a − − B i t c o i nWa l l e t } ,
6 { FOLDER wa l l e t − − B lu e t oo th } ,
7 { FOLDER wa l l e t − − SendCoins } ,

Listing 2: FAXE example command-line output

extracting, refactoring, and checking annotations, there are four
commands. The first is getEmbeddedAnnotations, which returns
embedded annotations in a given asset path. The second is calcu-
lateMetric, which calculates a feature metric given an asset. FAXE
can calculate all metrics supported by FeatureDashboard [7]. The
third command is checkConsistency, which checks for syntactic is-
sues in embedded annotation specification. Examples of such issues
are different parenthesis for opening and closing an annotation,
having no end annotation for a begin annotation, having an annota-
tion without any mapped asset, and features missing in the feature
model but referred to in annotations. Lastly, rename renames the
feature referred to in the given lpq to a new given name. Table 1
shows brief descriptions of the commands.

3.2 Feature-Based Partial Commits
Developers often work on different parts of the same file and make
commits at a fine-grained level. They want to track changes at the
source-code level and quickly repair if the system fails. For com-
mits with many fine-grained changes, it is difficult to track changes
individually. Also, deciding which parts of code change together
is non-trivial. Git partial commits allow developers to commit only
parts of changes instead the whole change-set. At present, this
process is entirely manual and requires a high degree of developer
interaction, spanned over many steps. We propose feature-based
partial commits—an intuitive way of isolating development at the
granularity of features. Feature-based partial commits allow devel-
opers to align commits with features and work on more meaningful

Table 1: FAXE Commands
getEmbeddedAnnotations path lpq export

Extracts and returns embedded annotations from an asset’s
path for the feature in lpq. Exports the output to a file if the
flag export is set. If lpq is not specified, it extracts all
annotations from path.

calculateMetric path metric lpq export
Calculates and returns required metric (enum) for the
feature in lpq from the given path. It also exports the output
to a file if the flag export is set. If metric is not specified, all
metrics are calculated and exported.

checkConsistency path export
Identifies inconsistencies among annotations and feature
model (e.g., feature referenced, but not declared in the
model) in the given path scope. Exports the report into a file
if the flag export is set.

rename path lpq newname
Renames the feature in lpq to newname in the feature model
and all annotations within the path scope.

SPLC ’20, October 19–23,2020, MONTREAL, QC, Canada Tobias Schwarz, Wardah Mahmood, and Thorsten Berger

A.java B.java C.java

Blue = feature1
Red = feature2

A.java B.java C.java A.java B.java C.java

1

3

2

Develop and annotate
Fe

at
ur

e-
ba

se
d

pa
rt

ia
l c

om
m

it

pushpush

Figure 3: Workflow of feature-based partial commits
chunks of code. Since features are cross-cutting and fine-grained,
knowing their locations in source code enables developers to con-
tribute to features. The tool’s implementation is a combination of
a Bash script git-pfc and the FAXE engine. An overview and com-
parison of Git partial commits and feature-based partial commits
is illustrated below using a simple scenario.
Git Partial Commits. For making a partial commit, the developer
manually traverses all changes and uses "git add -p" to commit them.
Git splits all changes into "hunks," which are blocks consisting of
one or more lines of code. For each hunk, she has to choose from a
variety of options: y (stage this change), n (don’t stage this change),
q (quit), a (stage this hunk and all later hunks in the file), d (do
not stage this hunk or any of the later hunks in the file), g (select
a hunk to go to), / (search for a hunk matching the given regex),
j (leave this hunk undecided, see next undecided hunk), J (leave
this hunk undecided, see next hunk), k (leave this hunk undecided,
see previous undecided hunk), K (leave this hunk undecided, see
previous hunk), s (split this change further), e (manually edit the
current hunk), and ? (print help) before proceeding. After choos-
ing the appropriate option, she commits the changes with a fitting
commit message. When done, she pushes.
Feature-Based Partial Commits. Figure 3 illustrates the work-
flow for feature-based partial commits. Let us assume a developer
works on two features, ‘feature1’ and ‘feature2,’ scattered across
the files A.java, B.java and C.java. After extending and modifying
the code together with embedded annotations, she uses git–pfc to
see all features contained in the changeset, from which she can
select features and automatically commit changes belonging to
those features. As such, the benefit lies in omitting feature identifi-
cation and location, which can become laborious for commits with
large changesets and many, potentially scattered features. When
committing, she can extend the auto-generated commit message
by FAXE. She finally pushes the changes to the remote repository.
The steps with and without FAXE are illustrated below.

Traditionally using plain Git:
(1) Call “git add −−patch” to view changes.
(2) Git splits changes and displays hunks one by one.
(3) For every hunk in A.java, decide if it belongs to feature1

(feature identification and location). If yes, stage.
(4) Repeat step 4 for B.java and C.java
(5) Specify a commit message and commit changes to feature1.
(6) Repeat Step 1-5 for feature2.
(7) Push.
With FAXE:
(1) Call “git-pfc” to view features contained in the changeset.

(2) Select feature1, enter commit message (optional), commit.
(3) Call “git-pfc –f feature2” to commit changes to feature2.
(4) Push.

4 CONCLUSION
Features describe systems and distinguish them from one another.
Knowing their locations in assets is required to effectively reuse
and maintain systems. To alleviate feature location costs, we advo-
cate embedded annotations to record feature locations pro-actively
in software assets using a flexible and lightweight annotation sys-
tem. Our tool FAXE extracts features annotations specified in the
proposed syntax from software assets. It is language independent,
and can be conveniently integrated with IDEs. We also present
and automate an interesting use case of FAXE—feature-based par-
tial commits, which allows organizing commits along features. As
future work, we aim to use our implementation to drive the devel-
opment of open source systems. We also intend to conduct usability
studies of our tools with developers. Subsequent research can be di-
rected into development of large distributed teams and how to plan
feature-oriented software evolution using embedded annotations.
Acknowledgements. We thank Jan-Philipp Steghöfer for feed-
back, the Wallenberg Academy, and the Swedish Research Council.

REFERENCES
[1] 2020. Embedded Annotations Specification. https://bitbucket.org/easelab/faxe/

src/master/specification/embedded_annotation_specification.pdf.
[2] 2020. FAXE Project Repository. https://bitbucket.org/easelab/faxe/.
[3] Hadil Abukwaik, Andreas Burger, Berima Andam, and Thorsten Berger. 2018.

Semi-Automated Feature Traceability with Embedded Annotations. In ICSME.
[4] Berima Andam, Andreas Burger, Thorsten Berger, and Michel R. V. Chaudron.

2017. FLOrIDA: Feature LOcatIon DAshboard for Extracting and Visualizing
Feature Traces. In VAMOS.

[5] Kacper Bąk, Zinovy Diskin, Michał Antkiewicz, Krzysztof Czarnecki, and Andrzej
Wąsowski. 2016. Clafer: unifying class and feature modeling. Software & Systems
Modeling 15, 3 (2016), 811–845.

[6] Thorsten Berger, Daniela Lettner, Julia Rubin, Paul Grünbacher, Adeline Silva,
Martin Becker, Marsha Chechik, and Krzysztof Czarnecki. 2015. What is a feature?
a qualitative study of features in industrial software product lines. In SPLC.

[7] Sina Entekhabi, Anton Solback, Jan-Philipp Steghöfer, and Thorsten Berger. 2019.
Visualization of Feature Locations with the Tool FeatureDashboard. In SPLC.

[8] Wenbin Ji, Thorsten Berger, Michal Antkiewicz, and Krzysztof Czarnecki. 2015.
Maintaining Feature Traceability with Embedded Annotations. In SPLC.

[9] Jacob Krüger, Mukelabai Mukelabai, Wanzi Gu, Hui Shen, Regina Hebig, and
Thorsten Berger. 2019. Where is my feature and what is it about? A case study
on recovering feature facets. Journal of Systems & Software 152 (2019), 239–253.

[10] Jacob Krueger, Wanzi Gu, Hui Shen, Mukelabai Mukelabai, Regina Hebig, and
Thorsten Berger. 2018. Towards a Better Understanding of Software Features and
Their Characteristics: A Case Study of Marlin. In Twelfth International Workshop
on Variability Modelling of Software-intensive Systems (VaMoS).

[11] Jacob Krüger, Thorsten Berger, and Thomas Leich. 2018. Features and how to find
them: a survey of manual feature location. LLC/CRC Press.

[12] Leonardo Passos, Krzysztof Czarnecki, Sven Apel, Andrzej Wąsowski, Christian
Kästner, and Jianmei Guo. 2013. Feature-Oriented Software Evolution. In VaMoS.

[13] Leonardo Passos, Rodrigo Queiroz, Mukelabai Mukelabai, Thorsten Berger, Sven
Apel, Krzysztof Czarnecki, and Jesus Padilla. 2018. A Study of Feature Scattering
in the Linux Kernel. IEEE Transactions on Software Engineering (2018).

[14] Martin Robillard and Gail Murphy. 2007. Representing concerns in source code.
ACM Transactions on Software Engineering and Methodology 16, 1 (2007), 3–es.

[15] Julia Rubin and Marsha Chechik. 2013. A Survey of Feature Location Techniques.
In Domain Engineering. Springer, 29–58.

[16] Marcus Seiler and Barbara Paech. 2017. Using Tags to Support Feature Manage-
ment Across Issue Tracking Systems and Version Control Systems. In REFSQ.

[17] Marcus Seiler and Barbara Paech. 2019. Documenting and Exploiting Software
Feature Knowledge through Tags. In SEKE.

[18] Jinshui Wang, Xin Peng, Zhenchang Xing, and Wenyun Zhao. 2013. How Devel-
opers Perform Feature Location Tasks: A Human-Centric and Process-Oriented
Exploratory Study. Journal of Software: Evolution and Process 25, 11 (2013),
1193–1224.

https://bitbucket.org/easelab/faxe/src/master/specification/embedded_annotation_specification.pdf
https://bitbucket.org/easelab/faxe/src/master/specification/embedded_annotation_specification.pdf
https://bitbucket.org/easelab/faxe/

	Abstract
	1 Introduction
	2 Embedded Annotations
	2.1 Design Methodology
	2.2 Embedded Annotations Design Decisions
	2.3 The Notation and Its Practical Use

	3 FAXE Overview
	3.1 FAXE Commands
	3.2 Feature-Based Partial Commits

	4 Conclusion
	References

