Concepts of Variation Control Systems

Lukas Linsbauer?®, Felix Schwiigerl®, Thorsten Berger®, Paul Griinbacher?

¢ISF, Technische Universitit Braunschweig, Germany
E-Mail: l.linsbauer@tu-braunschweig.de
b Applied Computer Science I, University of Bayreuth, Germany
E-Mail: feliz.schwaegerl@Quni-bayreuth.de
¢Chalmers | University of Gothenburg, Sweden
E-Mail: thorsten.bergerQ@cse.gu.se
dInstitute for Software Systems Engineering, Johannes Kepler University Linz, Austria

E-Mail: paul.gruenbacher@jku.at

Abstract

Version control systems are an integral part of today’s software engineering. They
facilitate the collaborative management of revisions (sequential versions) and
variants (concurrent versions) of software systems under development. Typical
version control systems maintain revisions of files and variants of whole software
systems. Variants are supported via branching or forking mechanisms that
conceptually clone whole systems in a coarse-grained way. Unfortunately, such
cloning leads to high maintenance efforts. To avoid these disadvantages and
support fine-grained variation, developers need to employ custom configuration
mechanisms, which leads to a misappropriation of tools and undesired context
switches. Addressing this trade-off, a number of wvariation control systems
has been conceived, providing a richer set of capabilities for handling variants.
Variation control systems decompose a software system into finer-grained variable
entities and offer high-level metaphors to automatically manage this variability.
In this paper, we classify and compare variation control systems and illustrate
their core concepts and characteristics. All investigated variation control systems
offer an iterative (checkout-modify-commit) workflow, but there are essential
differences affecting developers. We highlight challenges and discuss research
perspectives for developing the next generation of version and variation control
systems.

Keywords: variability management, software product lines, configuration
management, version control, software repositories

1. Introduction

Managing revisions (sequential versions) and variants (concurrent versions) of
software artifacts of different types is a constant challenge in software engineering.
Version control systems, such as Subversion or Git, are widely used for this
purpose. They support handling sequential revisions at the file or system level.

Preprint submitted to Journal of Systems and Software September 1, 2020

Concurrent variants are supported by cloning entire systems or creating branches.
However, variants are currently not handled at the levels of files or features. This
impedes flexibility, since only a fixed set of variants may exist. Consequently,
developers need to use mechanisms and tools[1] in addition to version control
systems. For instance, they use preprocessors, build systems such as Make, or
even custom configuration solutions as for example in the Linux kernel [2, 3].
Such configurable systems (a.k.a., software product lines [4]) manage variants in
terms of features—configuration options that are mapped to variation points (e.g.,
preprocessor directives), which allows deriving individual variants by selecting
the desired features. It has been pointed out, however, that managing variation
points manually is cumbersome and error-prone [5, 6, 7].

The problems and challenges of current practices in variant management can
be described as follows:

e Existing mechanisms for dealing with variability require developers to
manually edit variation points and to manually integrate changes (e.g.,
made in feature branches), which increases the complexity of managing
variant-rich systems.

e Most existing mechanisms have a strong impact on the way software needs
to be developed. This can range from adding annotations to code in the
simplest case to employing new paradigms such as feature-oriented or
aspect-oriented programming, in each case placing a burden on developers.

e Most mechanisms realize variability at the level of source code. This hinders
developers to focus on the problem at hand, since variability increasingly
tends to govern the structure and contents of source code just as much as
the actual functionality. It further complicates the build process, as new
build steps need to be added.

e The widely used variability mechanisms usually do not support revision
management, which is usually taken care of by version control systems.
This means that the two closely related concepts of variants and revisions
as specializations of versions cannot be handled uniformly by developers.

e While the underlying concepts of variability mechanisms are often generic
(e.g., aspect-oriented programming), their concrete realization is usually
specific for a certain type of artifact (e.g., AspectJ for Java). For het-
erogeneous systems consisting of many different types of implementation
artifacts this further complicates the build process, and requires developers
to learn even more tools. Furthermore, keeping variability information
consistent across different types of artifacts and tools is a manual and
error-prone task.

We consider variation control systems (VarCS) that aim at overcoming
these limitations. A VarCS supports creating and editing views of development
artifacts for specific system variants based on features. As such, it reduces the

complexity of changing variants and frees developers from manually maintaining
variation points. We define a VarCS as follows:

Definition. A Variation Control System (VarCS) supports managing vari-
ant-rich systems in terms of features. It supports editing variant subsets, which
are represented by a selection of features, and it automatically integrates the
edited variant subsets back into the variant-rich system in a transactional way.

This definition emphasizes the variation of software systems using features,
as opposed to variation per system (e.g., per customer) through cloning (or
branching) of software systems. The definition also emphasizes automation,
since VarCS alleviate developers from editing variation points manually and
from integrating the changes manually. As such, a VarCS aims at reducing the
complexity of editing feature-based variant-rich systems.

We found that different research communities have been developing a wide
range of VarCS solutions with capabilities for handling long-term and fine-grained
system variants. Often, these systems are not widely known and there is only
little evidence demonstrating their success in real-world scenarios. Obviously,
the terminology used to describe these systems is often not consistent across
the different research communities, which further challenges their comparison.
Furthermore, while all VarCS take away the responsibility from the developer to
manually specify variation points (according to our definition of VarCS), there
are major differences in how this is achieved. Finally, while VarCS have the
potential to solve all the above mentioned problems of current practice, most
of them only tackle a subset of them. For example, not all of them support
revisions in addition to variations, or more than one type of implementation
artifact.

In summary, the motivation and goals of this work are thus to

e contribute to harmonizing research from different research communities
related to long-term and fine-grained variant management,

e identify and compare ancient and recent VarCS,

e identify and understand key concepts and characteristics of VarCS and
provide a unified terminology, and to

e identify remaining challenges and suggest opportunities for further research.

We present a classification of VarCS to obtain an understanding of their
concepts and characteristics. Our comparison reveals the key commonalities and
differences between six selected subject systems. Our paper is intended for both
researchers and practitioners interested in building, improving, and using VarCS.

An earlier version of this work appeared as a conference publication [8], which
focused on identifying the core characteristics of VarCS. We have significantly
extended this earlier paper in several directions: in particular, we extended and
refined our classification of VarCS. We now also provide a running example from
the open source Marlin firmware that is used throughout the paper to explain
the basic VarCS concepts and the differences of the subject systems. We provide

a completely new part that identifies essential differences between the VarCS
regarding concepts, usage, and behavior based on a formal concept analysis and
a scenario-based comparative analysis applying the three most recent subject
VarCS to our running example.

In summary, the contributions of this work are:

e an integrated and unified view on research from the software configuration
management and software product line engineering communities,

e a definition of variation control systems including their characteristics and
concepts,

e an illustration of all characteristics and concepts based on a running
example,

e a classification and comparison of existing variation control systems based
on their characteristics and concepts, and a

o discussion of challenges of existing variation control systems.

We proceed by presenting background information and our running example
in Sec. 2. We describe our research methodology in Sec. 3, then provide an
overview of our six selected variation control systems in Sec. 4. We provide our
classification and its instantiation for our subjects in Sec. 5, illustrated by the
running example. In Sec. 6 we present results of the analyses we conducted
to reveal essential differences between the VarCS: a formal concept analysis
and a scenario-based behavioral analysis. We discuss research challenges and
perspectives in Sec. 7, threats to validity in Sec. 8, and conclude in Sec. 9.

2. Background and Related Work

Software evolves over time and often needs to exist in multiple variants to ad-
dress varying stakeholder requirements, such as different hardware, functionality
or energy consumption. Versions represent states of evolving software artifacts
that are put under version control. Versions are created with different intents: a
version intended to supersede its predecessor is commonly called revision, while
versions intended to coexist are called variants [9]. Two research communities
have developed a wide range of approaches to handle revisions and variants.

2.1. Software Configuration Management

The research community of software configuration management distinguishes
between extensional and intensional versioning [9]. Extensional versioning means
that only previously constructed versions can be retrieved, typically identified by
a unique number (e.g., revision). That is, all versions are explicit and have been
checked in once before. Intensional versioning is used when consistent versions of
large spaces are created automatically in a flexible manner, so new combinations
may be constructed on demand. Research on software configuration management

has mainly focused on managing the evolution of software artifacts by tracking
revisions, largely sidestepping variant support [10, 11]. Some researchers recog-
nized the need for variant management, including the handling of variants at
the level of user-facing, high-level properties (i.e., features [12] in product-line
terminology). For instance, Gulla et al. [13] emphasize that “selection based
on property” is beneficial for non-developers (e.g., testers, customers, and sales
experts). In fact, some systems addressing variant management have been de-
veloped by researchers in software configuration management. Although the
community recognizes the need [14], actual variant-management support is still
limited in contemporary software configuration management tools. Variants are
supported per system (i.e., per customer) via branching or forking mechanisms
that conceptually clone the whole system. However, while such ad hoc manage-
ment of variants using clone-and-own [15, 16, 17] is simple and cheap, it does not
scale with the number of variants, leading to costly variant re-engineering and
integration efforts [18, 19, 20]. Existing tools lack support for handling variants
at the level of files (or below) based on features, which limits their flexibility,
since only a fixed set of manually created variants can exist.

2.2. Software Variability Management

The need for managing variants has been recognized a long time ago in
research on program families [21], later leading to the field of software product
line engineering [22, 23], which provides methods and tools to effectively manage
portfolios of system variants. Variants are no longer managed at the level of
customers, but at the level of features [24, 12, 4], with integrated and configurable
platforms. These platforms rely on variability mechanisms, such as conditional
compilation and configurable build systems, and allow deriving new variants by
selecting the desired features. This flexibility is achieved by mapping features
to variation points, which are commonly realized using annotations, such as
conditional-compilation directives (e.g., #ifdef). However, in complex systems,
such annotations significantly clutter source code, which challenges program
comprehension when many variants need to be edited at the same time [5].
Listing 1 shows a code excerpt of the 3D-printer firmware Marlin, which exists
in many variants. Editing the code becomes difficult for developers who are
only interested in one feature. Dedicated product line engineering tools such as
C-CLR [25], CIDE [26], PEoPL [27], conditional SDGs[28] or GUPRO [29] can
filter out irrelevant code, but do not consider the reintegration of variants into
the platform, leaving it to the developers to manually edit variation points [30].

There are many techniques and mechanisms for implementing variable sys-
tems [4]. Some techniques employ common mechanisms and tools that are widely
known and not specific to variability (e.g., preprocessors as shown in Listing 1).
We briefly review some other tools and mechanisms specifically designed for the
development of variable systems:

Feature Toggles and Runtime Variability. Feature toggles [31, 32] are programming-
language-specific conditional statements placed into source code to realize vari-
ability. The code is compiled as usual, packaged in a binary, and its toggles are

uint8_t sort_order [SDSORT_LIMIT];

// Cache filenames to speed up SD menus.
#if SDSORT_USES_RAM

// If using dynamic ram for mnames, allocate on the heap.
#if SDSORT_CACHE_NAMES

char sortshort [SDSORT_LIMIT][FILENAME_LENGTH];

char sortnames [SDSORT_LIMIT][FILENAME_LENGTH];
#elif !SDSORT_USES_STACK

char sortnames [SDSORT_LIMIT][FILENAME_LENGTH];

el e e el
CONQUREWNHFOOOTO U WN -

#endif
// Folder sorting uses an tsDir array when caching items.
#if HAS_FOLDER_SORTING && (SDSORT_CACHE_NAMES || !SDSORT_USES_STACK
uint8_t isDir [(SDSORT_LIMIT+7)>>3];
#endif
#endif

Listing 1: Marlin code excerpt (slightly adapted from its original).

evaluated at runtime (a.k.a., runtime variability). No additional tooling and
no special training for developers is required, which explains the popularity of
feature toggles in practice. However, source code easily becomes cluttered with
feature toggles, challenging its comprehension and sometimes leading to dead
(i.e., unused) feature code. Furthermore, the code related to features cannot
easily be distinguished from other code. The binaries contain the code for all
possible feature configurations, unnecessarily increasing the binary size, which
can be problematic on devices with limited memory, such as microcontrollers
and IoT devices. The presence of all features in binaries can also lead to security
problems, unwanted feature interactions or intellectual property leaks.

Version Control Systems and Build Systems. Using mechanisms provided by
version control systems (e.g., Git) and build systems (e.g., Make) is another
common practice to realize variability. Current version control systems provide
support for branches, which are essentially clones. On the one hand, branches
can be used to maintain variants of a system explicitly as clones. However,
this can hardly be considered a variability mechanism as it operates on the
system as a whole and does not offer fine-granular variation of individual files or
folders based on features or a similar concept. Rather, it should be considered
as tool support for clone-and-own. On the other hand, a common practice in
many popular branching models is the use of temporary feature branches. A
feature branch is created when the development of a new feature starts. The
new feature is then developed on this branch in isolation until it is finished.
Ultimately, the feature branch is merged into its parent branch and the feature
is integrated into the system. However, this is also not an actual variability
mechanism, as the feature is no longer variable after the merge. Some build
systems allow the customization of the build process to a degree where it can be
used to control what files and folders shall be included during compilation based
on a feature selection. However, this customization needs to be done manually
by the developers as there is no native feature concept.

Annotative Mechanisms. Annotative mechanisms are specific to the type of
artifact (e.g., text files or UML diagrams) and require the developer to manually

place annotations (usually feature conditions) on the fragments of the artifacts
(e.g., lines of text or diagram elements). In the case of textual artifacts, existing
tools such as preprocessors or template engines are commonly used. For C and
C++, for instance, their built-in preprocessor is the most common variability
mechanism used (see Listing 1).

Compositional Mechanisms and Modularization. Compositional mechanisms
are based on modularization principles. They allow developers to modularize
their system (e.g., based on features) and then compose the individual modules
into a whole system. However, variation points need to be placed manually
without providing operations for doing so. Examples of mechanisms in this
category are Feature-Oriented Programming with tools such as AHEAD! [33, 34]
or FeatureHouse? [35, 36]), Aspect-Oriented Programming [37] (which works
especially well for crosscutting features) with tools such as AspectJ,® Delta-
Oriented Programming [38] or Context-Oriented Programming [39].

2.8. Variation Control Systems

While the above mechanisms allow creating variable systems (e.g., making
a system configurable based on features), the added complexity of using these
mechanisms weighs fully on the developers (e.g., the placement and specification
of feature conditions). Developers still need to edit the variable system directly
and manually in whatever way the used mechanism requires. This is the major
difference to VarCS as we defined them and also explains why we did not
consider the presented mechanisms and techniques as within the scope of our
study. While some VarCS make use of existing variability mechanisms internally,
they usually hide them (at least partially) from the developer and provide higher-
level operations for automatically modifying them without showing them to the
developer. However, such VarCS have not received much attention yet, not in
research, and certainly not in practice.

We study VarCS, which manage features, variants, and variation points in a
fine-granular, integrated, and uniform manner. VarCS ease or even eliminate
the need to directly edit variation points, such as C preprocessor directives.
VarCS allow working on one or multiple variants by providing views that filter
irrelevant details of variable artifacts to facilitate their comprehension and to
lower the cognitive complexity of editing them. Without tool support, developers
are presented with all the code and variation points at once (see Listing 1),
including those irrelevant to a given task. Developers also need to manually
add or edit the variation points in the code. With a VarCS, developers can
specify their intention [20], for example, to add a feature to a new variant. The
VarCS then hides all irrelevant code for that intention and automatically updates
the variation points according to the intention. As such, VarCS support the

Thttp://wuw.cs.utexas.edu/users/schwartz/ATS.html
2https://www.infosun.fim.uni-passau.de/spl/apel/fh/
Shttps://www.eclipse.org/aspectj/

http://www.cs.utexas.edu/users/schwartz/ATS.html
https://www.infosun.fim.uni-passau.de/spl/apel/fh/
https://www.eclipse.org/aspectj/

evolution and maintenance of systems with many variants, including software
product lines and highly configurable systems.

2.4. Running Example

As an illustrative example throughout this paper we discuss the evolution of
the code excerpt shown in Listing 1, which was taken from the 3D-printer firmware
Marlin (slightly adapted from its original).* The excerpt is related to file and
folder sorting on secure digital (SD) cards. The developer wanted to add support
for dynamic memory allocation (feature SDSORT_-DYNAMIC_RAM) when sorting
files and folders on memory cards. The final result is shown in Listing 2. The
developers added the new feature manually by adding new code, adding additional
preprocessor directives, and changing the conditions of existing directives. VarCS
can support this task by providing special operations for such scenarios.

1 // By default the sort index is static
2 |#if SDSORT_DYNAMIC_RAM
3 uint8_t *sort_order;
4 |#else
5 uint8_t sort_order [SDSORT_LIMIT];
6 | #endif
7
8 | // Cache filenames to speed up SD menus.
9 | #if SDSORT_USES_RAM
10
11 // If using dynamic ram for mnames, allocate on the heap.
12 #if SDSORT_CACHE_NAMES
13 #if SDSORT_DYNAMIC_RAM
14 char **sortshort, **sortnames;
15 #else
16 char sortshort[SDSORT_LIMIT][FILENAME_LENGTH];
17 char sortnames [SDSORT_LIMIT][FILENAME_LENGTH];
18 #endif
19 #elif !SDSORT_USES_STACK
20 char sortnames [SDSORT_LIMIT][FILENAME_LENGTH];
21 #endif
22
23 // Folder sorting uses an tsDir array when caching items.
24 #if HAS_FOLDER_SORTING
25 #if SDSORT_DYNAMIC_RAM
26 uint8_t *isDir;
27 #elif SDSORT_CACHE_NAMES || !SDSORT_USES_STACK
28 uint8_t isDir [(SDSORT_LIMIT+7)>>3];
29 #endif
30 #endif
31
32 | #endif
Listing 2: Marlin code excerpt after implementation of the new feature SD-

SORT_DYNAMIC_RAM.

Figure 1 shows an iteration of the general workflow of VarCS. The internal
representation stores the versioned artifacts and is usually not visible to the user.
The externalization operation takes an externalization expression to generate
an external representation the user can interact with and modify. Afterwards,
the internalization operation modifies the internal representation according to a
provided internalization expression. Every such editing cycle implies a derived
modification that creates a new state of the internal representation. As obvious

4https://github.com/MarlinFirmware/Marlin/commit/47f9883

https://github.com/MarlinFirmware/Marlin/commit/47f9883

from the figure, the derived modification affects both variability annotations and
contents.

Internal Representation BEFORE Internal Representation AFTER
#if USES RAM #if USES RAM
#if _CACHE_NAMES — Derived |} #if CACHE NAMES
char sortshort[LIMIT][_LENGTH]; Modifi- #if DYNAMIC RAM
char sortnames[_ LIMIT][_ LENGTH] ;| cation char **sortshort, **sortnames;
#elif | USES STACK #else
char sortnames[LIMIT][LENGTH]; char sortshort[LIMIT][LENGTH]
#endif char sortnames[LIMIT][LENGTH]
#endif #endif
#elif ! USES STACK
char sortnames[_ LIMIT][_ LENGTH];
#endif
#endif
- Externalization A
- - nternalization |
Actual Internalization [Expression
Modifi-
l External Representation BEFORE }7 cation 4” External Representation AFTER ‘

Figure 1: VarCS workflow shared by all subject systems. After the internalization (top right),
the green text denotes modification through insertion.

The specific subject systems studied in this article differ with respect to the
details of the workflow sketched in Fig. 1, which is why no concrete example
of external and internal representations are shown. More precisely, we study
the mechanisms provided for internalization and externalization, the properties
of the expressions used for both operations, and the properties of the external
representation the developer is exposed to during modification.

3. Methodology
Our research methodology comprised five main steps.

(1) Snowballing. Our aim was to study selected and relevant VarCS in depth.
However, we intentionally did not conduct a full systematic literature review (e.g.,
following Kitchenham et al.’s method [40]). Based on our experience in software
product lines and software configuration management, we sought existing survey
papers [9, 41, 11, 42] and then used snowballing [43] to identify further relevant
papers. We investigated the reference lists of the papers to identify possibly yet
undiscovered papers we considered as relevant for our context. This was needed
as some of the subject systems are only published in papers (some older than
30 years) and not accessible via digital libraries, making a systematic literature
review or mapping study infeasible. A purely keyword-based search as done
in systematic literature reviews would have been insufficient, since our target
papers span many decades and are published in venues of very different quality,
including technical reports, workshops, conferences, and journals. Nevertheless,
we performed a retrospective search to exclude that we overlooked relevant
literature (see step 3).

(2) Selection of Subject Systems. We inspected the publications about the
collected subject systems and selected six for our comparison. Following our
definition of VarCS, for a system to be in scope, it has to offer a workflow that can
be mapped to the sequence of visible operations (externalization, modification,
and internalization) in a transactional way, as shown in Fig. 1. When more than
one generation of a VarCS existed, we chose the most mature version.

We excluded systems just providing visualizations for variation points (e.g.,
#ifdefs) or better editor support (e.g., quick fixes, intentions, refactorings) for
manipulating variation points in software product lines. Obviously, contradicting
our definition, we excluded typical version control systems (e.g., Concurrent
Versions System, Subversion or Git). We also excluded subject systems for which
the publications were no longer accessible or their description was too superficial
for the purpose of our comparison.

(8) Thematic Synthesis of Characteristics for Comparison. To identify the
concepts and characteristics that distinguish our subjects, we applied thematic
synthesis [44], an approach that aims at identifying, interpreting, and explaining
recurring themes from multiple studies. In particular we performed the following
steps:

i. Eztract data. We first annotated excerpts in the literature about VarCS that
explain their internal and external data structures, concepts, and operations.
For example, for VTS we recorded: “The operation get is used to checkout
a particular working copy from the repository, and put is used to commit
any changes back to the repository.” [45]

ii. Code data. We then identified repeatedly occurring terms as well as terms
highlighted in the literature as codes. For instance, from the above ex-
cerpt, we noted get, checkout, working copy, repository, put, commit,
changes. We also consulted existing surveys [9, 41] and iteratively refined
our set of codes.

iii. Translate codes into characteristics. Next, we compared the codes extracted
for all subject systems and grouped them into characteristics based on their
semantic properties. An example of a characteristics is externalization
operation, which subsumes the codes get, check[-]out, start trans-
action, and read. This also included harmonizing the terminology, which
was necessary as our subjects are from different research communities. Where
adequate, we introduced a set of concrete values that a characteristic can take.
For instance, the externalization expression is partial in P-EDIT and
VTS, whereas it is total in the other subjects.

iv. Group characteristics into categories. Subsequently, we grouped characteris-
tics into categories. An example is externalization, which groups, among
others, the characteristics externalization operation and externali-
zation expression.

v. Assess the trustworthiness of the synthesis. Finally, we ensured that the
editing models explained in the literature for the different subject systems can
be completely and unambiguously mapped to our catalog of characteristics.

10

Furthermore, we performed a retrospective Google Scholar search based on
the codes collected in step (2) to ensure that the literature we included so
far is accessible from these search terms, and to ensure we did not overlook
any literature.

(4) Classification of Subject Systems. All authors then individually and indepen-
dently assessed the subject systems using the characteristics and their possible
values as a guideline. The individual classifications were then aligned and consol-
idated in a common classification with a common set of characteristics and their
possible values, sufficient for characterizing systems in the domain of VarCS.
The authors carefully discussed all cases of disagreement to reach consensus.

(5) Comparative Analyses. Finally, we performed detailed analyses to reveal
essential differences between the VarCS in terms of the editing models and
workflows of using the systems. First, we conducted a formal concept analysis [46,
47, 48] for deriving a concept hierarchy from the collection of subject systems
and their properties to make clear their differences. Then we performed an
in-depth scenario-based behavioural analysis to illustrate three subject systems
from the perspective of the user of a VarCS.

4. Subject Systems

We now briefly introduce our subject systems before discussing their concepts
and characteristics, and further illustrating them using our running example.

4.1. P-EDIT Editor

P-EDIT was presented in 1984 as a line-based editor for the VM /370 operating
system [49] to facilitate the development of multi-version programs by supporting
both ’sequences of versions’ and ’concurrent versions.” It allows working with one
or multiple lines using commands such as LOCATE, CHANGE, NEXT, UP, and
INSERT. It incorporates a Boolean formula simplifier for convenience. Line edi-
tors were originally developed for systems only providing a keyboard and a printer,
but continued to exist for early screen-based systems due to their low memory
footprint. P-EDIT used the screen to show the lines surrounding the currently
edited line. The prime motivation for developing P-EDIT was the cluttering of
source code with preprocessor directives (e.g., #if, #ifdef, #ifndef)[50]. The
author also motivates the approach by arguing that representing variants (called
concurrent versions) as deltas [51], i.e., instructions on how to modify a previous
version, is not sufficient, as each variant would need to be represented by a tree
of deltas, leading to substantial redundancy between variants. The tool is not
available anymore. Apparently, an evaluation in a larger development project
was planned, but we did not find any report about it. The author later described
the concepts of P-EDIT at a workshop on virtual separation of concerns [50].

11

4.2. EPOS Version Control System

Expert System for Program “og” System Development (EPOS) supports
change-oriented versioning, which aims at managing ’logical changes’ of assets
instead of managing whole versions of assets or systems[13, 52, 53]. It follows
the typical checkout-commit workflow of version control systems, but instead
of checking out revisions of the system (or individual files), the user specifies
a configuration to checkout, internally handled by a configurator, similar to
configuration-based product derivation in software product lines. The approach
thus supports the intensional versioning paradigm (cf. Sec. 2.1), unlike most of
today’s version control systems. According to Munch [53], who provided the first
implementation, the concept of change-oriented versioning was first described
by Holager [54] in 1988 in a technical report, followed by Lie et al.[55, 56],
who extended the concept and implemented change-oriented versioning using a
database, which became the basis for Munch’s prototype. The EPOS prototype
was later extended and evaluated on the GNU C compiler, which uses conditional-
compilation directives to represent its many variants. It later became part of the
EPOS Configuration Management framework [57], where it was again extended
(e.g., with cooperation support [58]) and combined with process modeling and
process execution techniques.

4.83. Leviathan File System

Software development tools are typically not variability-aware and cannot
deal with variability mechanisms. Leviathan[59] addresses this problem by
providing VarCS support at the file-system level. The Leviathan file system
can be mounted by specifying a feature configuration (or a partial configuration
where features are set as undecided), and thereby provides variant views for
developers working on specific variants of a codebase. Leviathan allows using
arbitrary tools without support for specific variability mechanisms, e.g., when
debugging or maintaining different program variants. A typical development
workflow is to specify a desired variant, to mount the Leviathan file system
representing the variant, to modify the variant code, and to save the changes in
the editor. The approach also supports automatically writing back changes to
the configurable code base after editing variant views if certain assumptions are
satisfied. Otherwise developers need to double check if Leviathan applied the
changes correctly. The approach has further limitations: for instance, it does not
allow to change the inclusion condition of a conditional block in a mounted view.
Further, Leviathan’s internally used preprocessor only supports constructs for
conditional compilation, and cannot deal with expressions containing macros.

4.4. VTS Command-Line Tool

The variation tracking system (VTS) was developed as a prototype for
evaluating various concepts of existing VarCS [45]. Specifically, it extends
an approach called projectional editing of variational software [60] (not to be
confused with the projectional-editing paradigm [61] for direct AST editing, a.k.a.,
structured editing or syntax-directed editing). Like its conceptual predecessor [60],

12

VTS is formalized using the choice calculus [62], a formal representation of
variation points, similar to conditional-compilation directives.

VTS is realized as a command-line tool and realizes a workflow known from
version control systems with a checkout-commit cycle similar to change-oriented
versioning. The prototype® can handle individual text files that use C conditional-
compilation directives. It allows creating views based on an expression (similar
to the choice expression of change-oriented versioning), which are then edited
and committed back to the original file based on another expression (similar to
the ambition expression of change-oriented versioning). The prototype has been
evaluated by replaying parts of the history of the Marlin 3D-printer firmware,
showing that the tool’s capabilities are sufficient to handle a complex real-world
evolution process. At the same time the evaluation revealed certain evolution
scenarios that require multiple checkout-commit cycles in VTS.

4.5. ECCO Version Control System

ECCOS realizes a feature-oriented, distributed version control system. It
started out as an approach to re-engineering variability from sets of cloned system
variants [63, 64] by identifying traces from features to implementation artifacts in
these variants, and then consolidating them into a product line platform. Later,
the same approach was used for incremental construction of product lines by
supporting clone-and-own development with systematic and automated reuse
[65, 66]. ECCO aims at combining the simplicity and flexibility of clone-and-own
with the efficiency and scalability of structured product-line development. The
original ECCO approach supported feature-based variation management. Later
it was extended with revision support for individual features, and now evolved
into a feature-oriented version and variation control system [67, 68].

ECCO now provides checkout and commit functionality for retrieving and
updating the contents of its repository. Additionally, it has recently received
experimental support for distributed development via fork, push and pull func-
tionality for transferring features between different repositories. Developers
can use a command-line tool and a graphical tool (both implemented based on
ECCO’s Java API) for accessing and modifying its repository.

Checking out a configuration provides the respective code and other artifacts
in the file system. Developers can then work with arbitrary tools when adding new
features or changing existing ones. Committing a new configuration updates the
contents of the repository by automatically computing or updating the presence
conditions of the affected artifacts. Internally, ECCO stores implementation
artifacts as a generic tree structure where sub-trees are labeled with presence
conditions. ECCO supports variability in any type of file for which a plugin is
available (e.g., text files or Java source code) that can translate it into ECCO’s
internal tree structure. In case of file types for which no specific plugin is

Shttps://bitbucket.org/modelsteam/2016-vcs-marlin/src/master/prototype/
Shttps://github.com/jku-isse/ecco/

13

https://bitbucket.org/modelsteam/2016-vcs-marlin/src/master/prototype/
https://github.com/jku-isse/ecco/

available, variability is only supported at the level of entire files (e.g., in case of
binary files).

4.6. SuperMod Version Control System

SuperMod (Superimposition of Models)” [69, 70] aims at the integration of
revisions and variants (called ’variability in time’ and ’variability in space’ by
the authors) by integrating temporal and logical versioning approaches. The
approach allows developers to better manage the complexity of handling logical
variants for different revisions of a software system. The authors pursue a
model-driven approach and use feature models to define logical variants and
constraints in addition to a revision graph covering the evolution over time.
SuperMod uses the well-known checkout-commit paradigm: software variants
can be specified and checked out using feature configurations, which resolve the
variability defined in the models. Developers can then make changes in tools of
their choice. When committing changes developers need to define an ambition,
a partial feature configuration defining the logical scope of the change. The
approach is implemented using the Eclipse Modeling Framework and available as
a plugin to the Eclipse IDE. SuperMod and EPOS share conceptual properties
due to their common ancestry, the change-oriented versioning paradigm [52],
which in turn was specialized by the uniform version model [14]. There existed a
preliminary implementation of the uniform version model based on EPOS, which
is no longer available. SuperMod in turn is based on retrospective considerations
of applying change-oriented versioning and the uniform version model approach
to software product lines [71].

4.7. Excluded Subjects

We excluded several subject systems for which we could not find the publi-
cations anymore or the description lacked the necessary details. For instance,
Conradi and Westfechtel [9] and Munch [53] refer to the editor MVPE [72]. How-
ever, since both authors report MVPE as an extension of P-EDIT, we believe
that conceptually it does not differ too much from the P-EDIT system included
in our comparison. Conradi and Westfechtel [9] also discuss PIE and DaSC.
PIE [73] is probably the oldest system supporting fine-grained variability and
was developed in the late 1970s[9]. DaSC|[74, 11] is similar, relying on the
concept of “selectors” that compose variants based on concurrent versions of
assets. Developed for version and variation control of small teams, it supports the
typical functionality of modern version control systems, including collaboration
and consolidation, the latter referring to merge support. However, we could not
find a detailed description and the tool is no longer available. Nevertheless, it
would be very valuable to understand whether and how the consolidation support
also covers integrating variants. Aide-de-Camp is reported to be similar, but
we also could not find the papers [75, 76] anymore. Atkins et al. [77] evaluate
Labs’ VE (version editor) [78, 79], which reportedly has similar functionality as

"http://www.ail.uni-bayreuth.de/de/projects/SuperMod

14

http://www.ai1.uni-bayreuth.de/de/projects/SuperMod

P-EDIT. Specifically, it also creates variation points automatically. VE has its
roots in the so-called Delta System [80], which was also not accessible.

5. Concepts of Variation Control Systems

‘We now describe the concepts and characteristics of VarCS and illustrate them
with concrete realizations and examples of the selected subject systems. We first
discuss the general representation of variability in the systems: which abstractions
are used to represent functionality belonging to different variants (commonly
called features in SPLE)? What artifacts can be variable by extending them
with variation points? What are the general characteristics of these variation
points? We then discuss how variable artifacts are presented to its users (external
representation) and how the systems store all the variants and potentially their
history (internal representation). Table 1 summarizes these characteristics.

We then explain how the selected VarCS create the external from the internal
representation, and how changes made by the users in the external representation
are integrated into the internal representation. This includes the alignment of
changes in the external representation with the contents of the internal represen-
tation and the editing of constraints over features along with the implementation
artifacts. Table 2 summarizes these characteristics.

We then proceed with describing the support offered for collaboration among
developers. Finally, we discuss how each subject system was implemented and
to what extent it was evaluated. Table 5 summarizes these characteristics.

5.1. Variability Entities

The subject systems use different types of entities to abstractly describe and
express variants. These entities can take values of different data types (e.g.,
Boolean, integer, enumeration). They are user-visible and mapped to variation
points in variable artifacts via a mapping.

For instance, P-EDIT uses options that can take Boolean, numeric, or
enumerated values. EPOS also uses options, but only allows Boolean values.
Leviathan, SuperMod, VTS, and ECCO use the notion of features, which are
restricted to Boolean values. Despite the different names we did not find any
conceptual differences between these entities, as they are all labels representing
variable functionality.

When referring back to the example introduced in Sec. 2.4, the configuration
options processed by the preprocessor are Boolean entities as shown in Fig. 2a,
which can be toggled on or off during conditional compilation. Fig. 2b and
Fig. 2c show examples of what integer and enumeration entities respectively
could look like.

5.2. Constraints over Variability Entities

This characteristic covers the different ways for declaring constraints over
the variability entities, a.k.a. configuration constraints, composition constraints,

15

Table 1: Characteristics Part 1: Concepts and Internal and External Representation.

=} o
H o < [}
=38 £z 8 =
25 SV > Q o]
1E ;78 2
— N
% | Boolean e 6 o o o o
‘:é Integer [} o
M | Enumeration [}
H None [} e o o
%) Set of Constraints °
© | Variability Model °
£ | Files and Folders ‘ o o o o
3
£
5 o | Text (Lines) e o o o o o
o | & | Code (AST Nodes))
.—‘E ;% Models (Ecore) °
é Any (Plugins) °
é) None o o
:g Whole System e o)
x| Per Feature)
)
_ | ¥ | File System [} e o o o
< —
£ | 2 | Database))
[} wn
g
= & Annotative e o o o [}
* | Modular []
é Virtual)
Tg & | Materialized e o o o o
g o .
i = Fixed e o6 o o o o
£a|
&% | Variable [} o o
SDSORT_USES_STACK & {true,false}
SDSORT_CACHE_NAMES & {true,false} SD_MAXSIZE_MB & {1287 o, 8192}
HAS_FOLDER_SORTING € {true, false} USB_STANDARD € {1,2,3,4}
(a) Boolean (b) Integer

SDSORT_RAM € { NONE, STATIC, DYNAMIC}
SD_VENDOR € {INTEL, AMD}

(¢) Enumeration
Figure 2: Different types of variability entities by example. Boolean entities were introduced

in the running example, whereas integer and enumeration entities shown here do not appear in
the original version history.

16

SDSORT_USES_RAM

|| SDSORT_USES_STACK o)
Folder Sorting
! SDSORT_DYNAMIC_RAM |
Il SDSORT_USES_RAM Cache Names] l Uses RAM] l Uses Stack] }
N I
} O I
! (SDSORT_CACHE _NAMES I !
! excludes |

&& HAS_FOLDER_SORTING) e e
(a) Sets of constraints (b) Variability model

Figure 3: Sets of constraints and variability model, referring to the running example. The
dashed arrow in the feature model indicates a mutual exclusion between the adjacent features.

or feature constraints. The difference between two of the categories described
below, namely sets of constraints and variability model, is sketched in Fig. 3.

None. Without constraints, every combination of options is allowed. This
can be accounted for in smaller projects by using experts for configuring the
system, or by making the mapping between features and artifacts more complex.

Set of Constraints. A second option that systems might realize is logical
constraints that must evaluate to true for a combination of options to be valid.

Variability Model. Feature models [24, 81, 82] and decision models [83] have
been proposed for defining and managing the commonalities and variabilities
in software product lines [84]. Feature models allow organizing features and
constraints graphically using elements such as feature groups, hierarchy con-
straints, mandatory and optional features. This helps developers to keep a better
overview of the system and to more easily evolve it.

Four of our six subject systems do not support declaring constraints. EPOS
allows specifying sets of constraints (Fig. 3a) among options, called rules (validi-
ties, constraints, preferences, defaults) [13]. Interestingly, these rules can also
be used to define access rights in order to control which users have permission
to access (i.e., read or externalize) or modify (i.e., write or internalize) which
choices (i.e., variants). SuperMod uses feature models (Fig. 3b) to define logical
variants and constraints.

5.8. Variable Artifacts

This characteristic addresses the types and granularity of artifacts that can
be managed by each VarCS. Specifically, this involves the artifact types that can
be made variable by introducing variation points and the granularity of these
variation points. Another distinguishing property is whether the VarCS also sup-
ports non-variable artifacts and variability at the level of folders and files. While
variability at file-level is independent of the file type, we observe different file-
format limitations and variation granularities for variability within files. Recall
that we exclude the system level granularity according to our definition of VarCS.

File-Level Granularity. Except for P-EDIT and VTS, all systems support
file-level granularity for all kinds of files (including binary). P-EDIT and VTS
only handle variability within text files and do not use a repository with folders
and files.

17

Tk W N

char **sortshort, **xsortnames;
| SDSORT_CACHE_NAMES && SDSORT_DYNAMIC_RAM

char sortshort[SDSORT_LIMIT][FILENAME_LENGTH]; | SDSORT_CACHE_NAMES && !SDSORT_DYNAMIC_RAM
char sortnames [SDSORT_LIMIT][FILENAME_LENGTH]; | SDSORT_CACHE_NAMES && !SDSORT_DYNAMIC_RAM
char sortnames [SDSORT_LIMIT][FILENAME_LENGTH]; | SDSORT_CACHE_NAMES && SDSORT_USES_STACK

uint8_t isDir [(SDSORT_LIMIT+7)>>3];
| !SDSORT_CACHE_NAMES && HAS_FOLDER_SORTING

(a) Text (line by line)
FILE
Cardreader.h
CLASS
Cardreader
PROPERTIES
\

[/ 1SDSORT_DYNAMIC_RAM %

¢ ¢ \ |1 SDSORT_USES_STACK /
N "
‘ char*>* ‘ ‘char[_][.] S -
‘ SDSORT_LIMIT ‘ ‘ FILENAME_LENGTH

(b) Abstract syntax tree

SDSort
sortshort: char [0..SDSORT_LIMIT][O..FILENAME_LENGTH]
sortnames: char [0..SDSORT_LIMIT][O..FILENAME_LENGTH]
isDir: char [0..((SDSORT_LIMIT+7)>>3)]

/ 1SDSORT_DYNAMIC_RAM Y
\ | | SDSORT_USES_STACK ,
N /

(c) Models (Ecore)

Figure 4: Sub-file artifact granularity by example. For both AST and model, we assume that

annotated presence conditions are applied hierarchically to all sub-elements.

18

Sub-File-Level Granularity. All our VarCS support sub-file-level granularity,
albeit at different levels of detail (see Fig. 4 for a side-by-side comparison).
P-EDIT, Leviathan, VTS, and EPOS support variability in arbitrary text files,
regardless of the actual text format (e.g., code in various programming lan-
guages, documentation, or help pages). The granularity is at the level of distinct
text lines for VI'S, EPOS, and P-EDIT. For EPOS, it could potentially be at
character-level, but we could not find detailed information about the granularity
of artifact fragments, beyond some speculation from the main EPOS developer:
“There may be good arguments for trying smaller syntactical units (words, state-
ments, language tokens)” [53]. The evaluation, however, is based on importing
an #ifdef-based system, indicating that at least text lines are the finest level
of granularity. SuperMod supports variation points within Ecore models by
annotating model elements with presence conditions. It also supports line-based
variability in text files by internally transforming text files into models as well.
ECCO can be extended with plugins to support variability for different types of
files. The granularity of variations is determined by each respective plugin. Cur-
rently, plugins exist for whole files (a fallback for unknown file types for which no
specific plugin exists), line-based text files (a fallback for textual files like source
code for which no specific plugin exists), and Java (based on the AST nodes
rather than lines of code). Other plugins for IEC languages [85, 86], C/C—++
code, Ecore models or STEP files (3D CAD drawings) are under development.

5.4. Revisions

This characteristic addresses the support of the VarCS for revisions, i.e.,
versions intended to represent the sequential evolution, at different levels of
granularity. The latter classifies into system level (to track evolution of the
whole system), feature level (to track evolution of individual features), or no
revisions at all (see Fig. 5).

All systems except Leviathan and ECCO support revisions of the whole
system. For instance, P-EDIT allows revisions of the whole system via artificial
integer options (VERSION, TIME, RELEASE) that store the revision number.
A similar approach would also work for VTS, although the system lacks dedicated
support. ECCO supports revisions at the level of individual features.

5.5. Internal Representation

This characteristic describes the internal representation our subjects use for
storing artifacts, variation points, and the mapping to variability entities.

5.5.1. Artifact Storage

Our VarCS use different ways to store the artifacts and their variants: EPOS
uses a database, while Leviathan, VTS, P-EDIT, and SuperMod rely on the
file system for loading and saving artifacts. ECCO’s plugin architecture allows
adding custom storage mechanisms that can choose freely whether to use a
database or simple files for persistence.

19

Cache
Names

Uses
Stack

(a) whole system

SDSort Folder Sorting

[2}{4]

Cache Names Dynamic Uses RAM Uses Stack

(b) per feature

Figure 5: System vs. feature level revision graphs by example. The notation used in the
per-feature example is inspired by hyper feature models [87].

5.5.2. Variation Points

All systems use presence conditions to represent variation points. Specifically,
a presence condition is a Boolean expression over variability entities declared
for artifacts (or parts of these). It specifies to which variant an artifact belongs,
thus, controlling if it should be included when obtaining an external representa-
tion. Concerning the manifestation of variation points, we can distinguish two
approaches: The annotative way assumes that the internal storage superimposes
all variants and attaches presence conditions to conditionally visible elements,
whereas modular approaches assume a core variant, to which specific elements
are conditionally added by composition.

P-EDIT uses custom annotations inside text files that contain variability. In
a variable text file the presence conditions are appended at the end of each line,
delimited by special characters (double blank), to determine in which variants
the line is to be included. VTS relies on standard C-preprocessor® directives
for conditional compilation (e.g., #ifdef or #if inside the text files) to directly
annotate textual artifacts with presence conditions. Leviathan can use both
C-preprocessor directives and M4° macros. SuperMod uses custom annotations
within Ecore model files.

EPOS does not annotate variable artifacts directly in their files. Instead,
it decomposes files into fragments (e.g., consecutive text lines) that are then
stored in a database. These fragments are mapped to presence conditions (called

8https://gcc.gnu.org/onlinedocs/cpp/
Imttps://www.gnu.org/software/m4/m4 . html

20

https://gcc.gnu.org/onlinedocs/cpp/
https://www.gnu.org/software/m4/m4.html

BASE

SDSORT_USES_RAM

&&
SDSORT_CACHE_NAMES

SDSORT_USES_RAM
SDSORT_CACHE_NAMES
&

SDSORT_DYNAMIC_RAM

SDSORT_USES_RAM
SDSORT_CACHE_NAMES
&

ISDSORT_DYNAMIC_RAM

SDSORT_USES_RAM
(SDSORT_CACHE_NAMES
Il

ISDSORT_USES_STACK)

FILE FILE ! \ FLE ' FLE ! | FILE
cardreader.h ! cardreaderh ! 1 cardreader.h | 1 cardreader.h | : cardreader.h |
CLASS CLASS i CLASS ! CLASS ! CLASS
CardReader CardReader CardReader | CardReader |
PROPERTIES | PROPERTIES | PROPERTIES ! | PROPERTIES
o .
i\ NAME ! NAME

NAME
sortshort

Figure 6: Modular internal representation of the source code (AST nodes) from the running
example (as opposed to annotated internal representation shown in Fig. 4) as used by ECCO.
Solid nodes are part of the respective module. Dashed nodes are not part of the module but
necessary to preserve the location of solid child nodes.

visibility conditions [52]), i.e., propositional logic expressions over options that
are also stored in the database. This could be seen as a kind of custom annotation,
but since fragments with the same presence condition are arranged close to each
other in the database, it could also be seen as a kind of modularized storage.

ECCO has a custom data model resembling modules known from the paradigm
of Feature-Oriented Software Development [88]. The model uses a generic tree
structure for representing artifacts. Sub-trees of the implementation of a system
under development are labeled with presence conditions (Boolean expressions
over features).

The running example in Fig. 1 uses standard C preprocessor directives to
annotate the source code with presence conditions. Fig. 4 shows different internal
representations (text, AST, model) annotated with custom presence conditions.
For example, Fig. 4a shows text annotated with custom annotations to the right
as P-EDIT does it. Fig. 6 depicts a decomposition of parts of the source code of
the running example into modules as internally used by ECCO. It depicts the
same AST as is shown with annotations in Fig. 4b decomposed into modules.

5.6. External Representation

This characteristic describes the interface the VarCS offers to the user—in
other words, how artifacts of a software system are presented. For instance, a
VarCS might resolve all variability in the software system and only show full
variants (with all artifacts being non-optional) or allow unresolved variability,
meaning that multiple system variants will be shown to the user with variation
points exposed.

21

5.6.1. Type
A core characteristic is whether the external representation is materialized
(that is, copied to a file system where it can be edited like ordinary files) or
virtual (that is, only shown in a custom editor via which it must be edited).
Leviathan, EPOS, VTS, ECCO, and SuperMod produce a materialized
external representation, while P-EDIT’s external representation is virtual.

5.6.2. State

The state of the external representation can either be fized or variable. It is
fized if it represents a single, concrete variant without any remaining variability
(i.e., every feature is either included or excluded). A fized external representation
does not require a variability mechanism. It is variable if it contains remaining
variability and thus represents a set of variants. This is the case when not
every feature has a value assigned (i.e., some features are undecided). This
requires a variability mechanism (e.g., preprocessor annotations) in the external
representation that the user can edit directly.

All systems support fized external representations. P-EDIT, Leviathan, and
VTS also support variable external representations. P-EDIT uses its custom
annotations and color highlighting to mark fixed and variable parts of the code
for the user. Leviathan and VTS simply leave ordinary preprocessor annotations
(which they use anyway in their internal representation) in the code to mark
variable parts. These annotations can be edited directly by the user.

5.7. Editing of Constraints

This property reflects if and how the subject systems support editing of
constraints over the variability entities. Fig. 7 summarizes the viable strategies
as state charts. Constraints editing may either be applicable to the internal
representation (internalized constraints editing) or embedded into the external-
ization/internalization cycle (externalized constraints editing).

P-EDIT, Leviathan, VTS, and ECCO do not support version constraints;
therefore, their editing is not applicable. In EPOS, both the set of options
(Boolean entities) and the set of constraints is available for modification in
between externalization/internalization cycles, when no view is active, such that
they are considered for the subsequent cycle. SuperMod offers externalized
editing of the variability model, allowing to define and realize a feature in one
and the same cycle. This introduces new consistency problems referring to the
relationship between, e.g., the variability model and the IE themselves [89].

5.8. Externalization

The externalization operation retrieves an external representation from the
internal one.

22

Table 2: Characteristics Part 2: Mapping between Internal and External Representation.

= g g
19}
58T e 3
45 5 - 8 g
A 8 M5
n
5% | N/A ° e o o
2= Internalized []
S 3
OH Externalized ([]
£ Arbitrary [J °
o % Conjunction e 6 o o o o
Q =
= a. .
= X Partial [) e o
N =
Té Full e 6 o o o [J
-
> o Manual e o o o o o
= i Assisted [] ([]
e Automatic ()
Artifacts Consistency e o
£ Arbitrary [J °
~ % Conjunction e 6 o o o o
o —-
-2 a. .
< X Partial e o o o o
g &
= Full e o o o o o
g =
g kS E Weaker) °
= | 2= | Same e o o o °
T E
A E | Stronger)
Representativity Check e o o
=
g Not Necessary))
go Textual e o °
i Structural e o
modify

constraints

Internal

Internal

Internal

inter-

externalize externalize nalize

externalize

inter-
nalize

modify modify

modify modify v it
view view view, constraints
External External External T
(a) None (b) Internalized (c) Externalized

Figure 7: Viable strategies for integrating the editing of constraints into the VarCS workflow.

23

Marlin

defined (SDSORT_USES_STACK) && FolderSorting
!defined (SDSORT_-CACHE_NAMES) SDSort

(a) Projection expression (VTS) o CacheNames
A on

VERSION > 4 && SD_MAXSIZEMB > 1024 && UsesRAM

| SDSORT_USES_STACK
(b) Mask (P-EDIT)

o DynamicRAM
UsesStack

(c) Feature configuration (SuperMod)

Figure 8: Running example: specification of different variants as offered by different subject
systems. In the screenshot in Fig. 8c, filled circles represent mandatory, empty circles optional
features; cyan denotes positive, and magenta negative selection.

Table 3: Examples of externalization expressions with different characteristics represented in
preprocessor-like syntax.

All variables SDSORT_CACHE NAMES, SDSORT_DYNAMIC_RAM, SDSORT_USES_STACK

Partial SDSORT_CACHE_NAMES || !SDSORT_USES_STACK

Arbitrar
Y Full (SDSORT_CACHE_NAMES || SDSORT_USES_STACK) && !SDSORT_DYNAMIC_RAM

Partial !SDSORT_CACHE_NAMES && SDSORT_DYNAMIC_RAM

Conjunction
Full SDSORT_CACHE NAMES && SDSORT_DYNAMIC RAM && !SDSORT_USES_STACK

5.8.1. Euzternalization Expression (EE)

The EF refers to version entities and determines which variable artifacts, or
which parts thereof, are presented externally to the user. We identified two dis-
tinguishing characteristics, indicating whether partial expressions are supported,
and whether the expression is necessarily a conjunction of version entities.

The EE is defined over the variability entities. It is fully specified if all
entities are decided. It is partially specified if variability is still left undecided
in the external representation. Figure 8 accompanies the textual descriptions
given in the following. Different terms are used to denote the EE in the VarCS
and the syntactic rules slightly differ. Leviathan calls it variant, EPOS and
SuperMod call it choice, VTS calls it projection expression (cf. example in
Fig. 8a), ECCO uses the term configuration. P-EDIT refers to the EE as mask
and allows arithmetic comparison operators which can be used for selecting
versions (Fig. 8b).

Table 3 provides four concrete examples of EEs covering all combinations of
cases: arbitrary expressions or conjunctions (i.e., configurations) each as partial
or full expressions.

Arbitrary Expression. In the most general case, the EE is instance of ordinary
propositional logic over the version entities; the user may freely define this ex-
pression, e.g., based on text input. When creating the external representation, all
elements whose presence conditions imply the expression are externalized. VTS
accepts an arbitrary logical expression. P-EDIT allows for arbitrary expressions

24

over the Boolean, integer, or enumeration entities.

Conjunction. EPOS, Leviathan, ECCO, and SuperMod are more restrictive
and require the EE to be a conjunction of entities. In the case of Boolean-valued
entities, such a conjunction can be straightforwardly derived from a configuration
provided by the user. A configuration is an assignment of the values true or
false to every entity, which is essentially a conjunction of positive or negative
references to the entities.

Partial. Leviathan, VTS and P-EDIT support partial expressions, leav-
ing variation points in the external representation. Variation points are then
represented using conditional compilation directives, as in VTS, or using text
highlighting, as in P-EDIT. P-EDIT checks for every artifact with a variation
point in the internal representation if its presence condition is incompatible
with the mask (i.e., the conjunction of both is false). In this case, the asset is
completely invisible (“as though its code did not exist” [49]). If the presence
condition is implied by the mask (i.e., their conjunction evaluates to true), it is
shown as ordinary text (called “fixed” by the author [49]). If the conjunction
of the mask and the presence condition evaluates to neither true nor false, the
artifacts are “displayed bright” (called “unfixed” by the author [49]). VTS has a
similar approach. An artifact becomes invisible if the projection expression is
incompatible with the artifact’s presence condition. If the presence condition is
not determined, then the conditional-compilation directives (e.g., #if) remain
visible; yet, they are simplified by removing the part of the projection expression.
If the presence condition is implied by the projection expression, then the artifact
is shown as ordinary text not wrapped by conditional compilation directives.

Full. The internal complexity of many subject VarCS is significantly reduced
by requiring the EE to be a full configuration where every entity needs a
value assigned. EPOS, ECCO, and SuperMod require a full configuration
with all variability entities (e.g., features) decided. In this case, the external
representation does not contain any remaining variation points and represents a
single, concrete variant.

5.8.2. Specification

Some of the subjects assist the user in specification of the EE. In EPOS,
preferences and defaults may contain derivation rules for undecided configuration
options. SuperMod, on the one hand, provides graphical support by allowing to
manually create a configuration expression by selecting features in the graphical
feature model (Fig. 8¢). On the other hand, feature selection is propagated in cer-
tain situations, e.g., negative selections are applied hierarchically to child features.

Interestingly, P-EDIT is the only subject system that does not require the
users to specify the expression manually. Instead, users can point to text lines
and use them as a reference to automatically use their mask, thus obtaining the
external representation “through the text” [50]. P-EDIT in this way specifies
the EE automatically by generating it from the users’ artifact selections.

25

5.8.8. Artifacts Consistency

Even for subject systems that support constraints over version entities,
their successful validation is not a necessary precondition for the syntactical
(nor semantical) consistency of concrete variants (external representations).
For instance, the optional feature dilemma [90] may occur when conflictingly
combining two features/options that have been realized in isolation, or problems
between declarations and applications of artifacts can appear.

A VarCS could check the consistency upon obtaining the external represen-
tation. However, most VarCS aim at being oblivious to the underlying artifact
formats and do not perform such consistency checks. Exceptions are ECCO,
which can use the knowledge available in file-type-specific plugins for simple
checks, and SuperMod which can validate its models against their respective
meta-models (without taking context-sensitive rules, e.g., OCL constraints, into
account).

5.9. Internalization

The internalization operation refines an internal representation based on an
external representation.

5.9.1. Internalization Expression (IE)

All subject VarCS provide an IE for delineating the variant(s) to which the
change performed in the external view shall be made effective internally. We here
discuss the same properties as for the EE (arbitrary expression or conjunction
and partial or full), before we discuss the relationship between IE and EE.

EPOS, VTS, and SuperMod call the IE “ambition,” obviously inspired by
the change-oriented versioning paradigm.

Congunction. Although there is no dependency in theory, here, subjects
requiring the EE to be a conjunction (EPOS, Leviathan, ECCO, and SuperMod)
require the same property to hold for the IE. The motivation to apply this
restriction is analogous: a conjunction can be derived easily from a (partial)
configuration of version entities.

Partial. Five of the six subject systems (P-EDIT, EPOS, Leviathan, VTS,
and SuperMod) allow that the IE be partial, i.e., it may contain unresolved
configuration decisions and therefore refer to a set of variants rather than to
a single variant. Based on this selection, the presence conditions of elements
modified in the external view are updated internally.

Full. ECCO represents an exception here as the IE is required to be a full
configuration. This means that only concrete variants can be internalized. The
IE (the variant’s configuration) is used together with the artifacts in the external
representation (the variant’s implementation) to automatically refine presence
conditions for artifacts in the internal representation. Every variant that is
internalized allows ECCO to incrementally refine presence conditions of artifacts
that can also affect other variants. Therefore, although no partial configuration
is allowed, a single internalization operation can affect multiple variants. The
major difference to the other subject systems is, that the developer does not

26

Table 4: Relationship between externalization expression and internalization expression by
example.

Externalization Expression Viable Internalization Expressions

Weaker SDSORT_CACHE_NAMES && !SDSORT_DYNAMIC_RAM SDSORT_CACHE.NAMES

! SDSORT_DYNAMIC_RAM

SDSORT_CACHE_NAMES && !'SDSORT_DYNAMIC_RAM SDSORT_CACHE_NAMES && !SDSORT_DYNAMIC_RAM
SDSORT_USES_STACK SDSORT_USES_STACK

Same

SDSORT_USES_STACK && SDSORT_CACHE_NAMES
Stronger SDSORT_USES_STACK

SDSORT_USES_STACK && !SDSORT_DYNAMIC_RAM

directly specify which variants are to be affected in what way. Instead, ECCO
decides what artifacts need to be affected in what way in order to reflect the
new information learned from the new variant.

5.9.2. Relationship with Externalization Fxpression

The most important and distinguishing characteristic is how changes made by
modifying the external representation are applied to the internal representation.
All VarCS follow a typical workflow (see Figure 1): externalization (i.e., creating
a view representing one or multiple variants), modification (changing the artifacts
belonging to the view), and internalization (applying changes back consistently).
While all VarCS represent the application of changes as an expression (full or
partial configuration), they mainly differ in the formal relation to the EE. Table 4
provides examples for the viable strategies same, stronger, and weaker, presented
subsequently.

Same. In P-EDIT and Leviathan, the IE, which represents the scope of
changes, cannot be set by the user. It is the same as the EE and therefore
determined during externalization. Changing it requires a new cycle in the VarCS
workflow. Please notice that this strategy can only be applied in a meaningful
way as long as partial IEs/EEs are allowed.

Stronger. For VTS the IE can only be stronger or the same as the EE, which
is a limitation. Stronger means that the configuration decisions made in the IE
must include all corresponding decisions previously fixed in the EE (IF = EE
in the propositional logical sense).

Weaker. For EPOS and SuperMod the IE can be weaker or the same as the EE,
where weaker denotes a subset of the configuration decision (FE = IE). Being
able to specify a weaker expression, which makes it possible to apply changes
to variants that are not visible in the view, can cause, e.g., representativity or
alignment issues (see below).

No relation. ECCO allows arbitrary IEs regardless of the previously used
EE, both need to be full configurations though.

Figure 9 illustrates the consequences of an IE that is weaker than the EE.
The changes affect more variants than were visible while applying them as shown
in Figure 9a. In other words, the changes made to the external representation
affect parts of the internal representation that were not visible when the changes
were made. This can cause problems when merging the external representation

27

Internal Internal’

8 variants AB,C AB,C 8 variants
4 variants affected
AAB [weaker] a4l A ABAC

AANBA-C
AAN-BAC
AN-BA-C

2 variants . 2 variants

AABAC Extirnal change Extecrnal ANBAC

AANBA-C AANBA-C

(a) abstract example

uint8_t sort_order [SDSORT_LIMIT];

#if !SDSORT_USES_STACK
<NEW CODE HERE> ?2?2?
#endif

#if SDSORT_USES_RAM

uint8_t sort_order [SDSORT_LIMIT];
#if SDSORT_USES_RAM

#if SDSORT_CACHE NAMES

char sortshort[SDSORT_LIMIT] [FILENAME_LENGTH]; #if SDSORT_CACHE_NAMES
char sortnames[SDSORT LIMIT] [FILENAME LENGTH] char sortshort [SDSORT_LIMIT] [FILENAME_LENGTH] ;
#elif !'SDSORT USES STACK - char sortnames[SDSORT_LIMIT] [FILENAME_LENGTH] ;
char sortnames [SDSORT_LIMIT] [FILENAME_LENGTH] ; #elif !SDSORT_USES_STACK
#endif - - char sortnames[SDSORT_LIMIT] [FILENAME_LENGTH] ;

#endif
#if HAS_FOLDER SORTING && (SDSORT_CACHE NAMES ||
' SDSORT_USES_STACK)
uint8_t isDir[(SDSORT_LIMIT+7)>>3];
#endif

#if HAS_FOLDER_SORTING && (SDSORT_CACHE NAMES ||
! SDSORT_USES_STACK)
uint8_t isDir[(SDSORT_LIMIT+7)>>3];
#endif

#endif

#endif

#if !|SDSORT_USES_STACK
<NEW CODE HERE> 2?2?

! SDSORT_USES_RAM #endif

1 SDSORT_USES_STACK
T ! SDSORT_USES_STACK

4 uint8_t sort_order [SDSORT_LIMIT];

- <NEW CODE>
uint8_t sort_order [SDSORT_LIMIT]; F————————————D

<NEW CODE>

(b) concrete example also illustrating alignment problem

Figure 9: Illustration of consequences of internalization expression that is weaker than exter-
nalization expression.

28

into the internal representation as multiple alignments may be possible as shown
in Figure 9b.

5.9.3. Representativity Check

VarCS let the user representatively modify a variant or a set of variants,
while the changes are made effective for a set of variants that may be larger (see
weaker in the item above) or smaller (stronger). Here, the term representativity
tacitly implies that the change performed in a specific view could have been
equally applied in all other views that are affected by the change. Changes that
do not meet this condition may create different kinds of inconsistencies. The
subject systems differ in how this condition is checked and/or enforced.

This characteristic is not relevant for P-EDIT and Leviathan, since the IE
and the EE are equal for those.

VTS has been designed around the edit isolation principle and therefore
applies representativity checks by construction. When updating the presence
condition of modified artifacts, “the only variants that change in the source
are those that can be reached from the view” [60], where “source” denotes the
internal representation.

SuperMod checks, but does not ultimately enforce, representativity. If, during
internalization (commit) a change is detected which affects elements that are not
available in all variants represented by the IE (ambition), a corresponding warning
is shown to the user, who may either accept the risk of creating inconsistencies,
or select a stronger ambition that satisfies the condition.

ECCO deals with the issue of representativity differently. The IE is not used
directly as presence condition but merely represents the configuration of the cur-
rent variant. The presence conditions are automatically derived based on a com-
parison between the current internal representation and the current external repre-
sentation and the provided configuration. ECCO makes no assumptions and only
guarantees that the exact variant represented by the provided configuration works
as intended (extensional versioning). Any new variant (e.g., containing new fea-
tures or new combinations of existing features) that has never been internalized be-
fore is constructed on a best effort basis (e.g., existing feature and feature interac-
tion implementations known from previous variants are reused) and accompanied
by warnings that point out that some of the individual artifacts that are relevant
for the new variant might not (yet) work in combination (intensional versioning).

5.10. Alignment Strategy

This characteristic describes the strategies the VarCS employ for aligning
changes in the external representation with the existing artifacts in the internal
representation (which potentially belong to different variants) upon internaliza-
tion as is illustrated in Figure 9b.

If a developer adds new code, this code could affect variants that are currently
not visible. A consequence of this could for example be that surrounding code
which is active in other variants might be hidden in the developer’s view, making
the position of the new code ambiguous in those variants. In this case, manual or

29

automated alignment needs to be performed. If the alignment is done incorrectly
syntax or semantics could be violated (e.g., statements could be put in the wrong
order). Such alignment problems can occur when the externalization is hiding
artifacts that are not contradicted by the IE used to insert artifacts at the same
location where the hidden artifacts would be. This can happen in any VarCS
that does not enforce IEs that are at least as strong as the EE that was used to
produce the current view.

Leviathan performs such alignment based on heuristics and, if specified,
on manual annotations that can be created by users to instruct Leviathan on
aligning changes. ECCO performs structured merging during internalization
based on its internal tree structure in combination with partial-order-relations
for merging ordered nodes on the same tree level. SuperMod is based on Ecore
and uses, similarly to ECCO, tree-based merging and for ordered sequences a
directed graph. Albeit, the tools differ in the matching of source code artifacts:
SuperMod performs a line-oriented alignment, whereas ECCO relies on the
abstract syntax tree for fine-grained alignment. For EPOS we could not identify
any alignment strategy.

P-EDIT and VTS do not need dedicated alignment support, given their
externalization strategy. Specifically, only artifacts that contradict the EE are
hidden. Because both systems enforce that the internalization cannot be weaker
than the externalization the hidden artifacts can never appear together with the
current changes. Artifacts that are still variable are just highlighted (P-EDIT)
or still appear within conditional-compilation directives (VTS).

5.11. Collaboration

A subset of the systems investigated explicitly supports multi-user editing.
We classify collaboration along two dimensions.

Paradigm. This characteristic describes how the subject systems support
collaboration: not at all (local), centralized or decentralized/distributed.

P-EDIT supports no collaboration and works only locally. Leviathan does
not support collaboration either, however, it is implemented as a file system and
could in principle support centralized collaboration if implemented similar to
a network file system. EPOS behaves similarly to a database system and thus
supports centralized collaboration. VTS does not support any collaboration.
ECCO and SuperMod allow for decentralized (i.e., distributed) collaboration.

Synchronization. Traditional version control systems support multi-user
collaboration based on two distinct paradigms: optimistic (i.e., modify-merge)
or pessimistic (i.e., lock-modify-unlock).

When transferred to the here considered VarCS, the distinction becomes
relevant only for those subjects that support collaboration; therefore, neither P-
EDIT nor Leviathan nor VTS require synchronization. Apart from these, EPOS
mandatorily requires locks, either at product-level or at ambition-level granularity,
which ensure that the same artifacts are not modified concurrently by different
transactions. SuperMod follows a two-step optimistic synchronization process.
First, overlapping changes are merged non-interactively. In a second, interactive

30

Table 5: Characteristics Part 3: Tool Support and Validation.
=i g}
H o < o [}
a0 % & o =
5 E T - 8 &
o & B3
— n
a None/Local ° e o
o R
9 2 Centralized °
s g -
= a Distributed L
e
< I
z| 4 5 N/A ° o o
© | €% | Pessimistic °
& E Optimistic e o
Z Editor)
= Version Control ([] e o o
<}
g = File System ° [)
= é o Textual e o []
£ 25
g =R Graphical e o
2 1
g g ,% % Internal o o e o
= g @ = External °
'-Té Binary e o o
>
< Source e o
£ Exemplary (] [} [}
% Qualitative [] []
El
T'; Quantitative [)
M | Formal

31

step, the user may revert merge decisions based on a single-version view. ECCO
requires no synchronization as it defers merging to the time of externalization.
As ECCO persists revisions per feature it simply stores concurrent changes to
the same feature as two parallel revisions of that feature and only requires that
they are merged once the EE explicitly expresses that.

5.12. Implementation and Tool Support

We also investigated if the subject systems currently have—or at some point
had—an implementation or tool support for their theoretical concepts. This is
important as many of the other characteristics require a concrete implementation
of a concept to be answered. However, many papers provide no or only limited
information to what extent they have been implemented and if tools supporting
the approach are (publicly) available. As some of the VarCS were first published
long time ago, most of the tools and frameworks discussed in the papers are
not available to the public. In several cases tools existed at some point in time,
which are no longer available or maintained.

We also compared the tools regarding their nature, kind of user interface,
and integration in the development environment.

Modality. We distinguish different modalities of the tools, for example editor,
version control system, or file system. For instance, P-EDIT was implemented
as an editor. Leviathan has been realized as a virtual file system. EPOS, VTS,
ECCO, and SuperMod use the checkout and commit metaphor from current
version control systems. Yet, although less explicit for the latter three, all follow
the same workflow (cf. Sec. 5.9 and Figure 1).

User Interface. We distinguish textual and graphical user interfaces. All
subject systems except SuperMod have a textual interface in form of a command-
line interface or query language. In addition, ECCO also provides a graphical
interface to navigate in the version control space. SuperMod is available as an
Eclipse plugin with a focus on rich and interactive feature modeling.

Intrusiveness. This characteristic describes to which extent the subject
systems integrate into the development process and enviroment. Highly intrusive
tools force their users to use customized (but also optimized) operations and
user interfaces most operations. Non-intrusive tools integrate better with foreign
editing tools and make less assumptions about the development environment.
The characateristic is applicable to the internal (e.g., constraints editing) and
external (e.g., editing of artifacts) perspective. P-EDIT is intrusive on both
internal and external representation. It assumes using its specific editor and
does not allow any other editor or tool to modify the system artifacts (which
would need to be exported first). Leviathan and VTS are both non-intrusive
as they use common annotations (C preprocessor or M4 macros) in both their
internal and external representations. They do not require any specific tools
for editing their internal or external representations. EPOS stores the source
code in its database and full variants can only be checked out using the tool.
However, once a variant has been checked out it can be edited using existing
tools. ECCO is non-intrusive on the external representation as the retrieved files
can be edited with existing tools. The internal representation is not intended

32

to be edited directly, however, depending on the used storage plugin, it could
use an annotative, file-based representation compatible with the C preprocessor,
for instance. SuperMod requires its Eclipse based feature model editor to be
used when performing its versioning operations. It is thus intrusive regarding
the internal representation. However, arbitrary tools can be used for editing the
files in the retrieved external representation.

Availability. We checked if and in what form the implementation is available.
ECCQ’s source code and binaries are publicly available on GitHub. SuperMod
is available as a binary plugin to the Eclipse IDE; the server-side application
is provided as Tomcat web application. The source code of both components
of SuperMod is hosted on GitHub. The VTS prototype is available as a binary.
For all other subject systems the implementation was not available.

5.13. Evaluation

This characteristic assesses the degree and rigor of the scientific evaluation of
the subject systems. This assessment is important for identifying shortcomings of
VarCS and understanding the reasons for their limited impact on practice. The
investigated VarCS are research-oriented prototypes and thus their validation
must be framed in this context. Different kinds of evaluations are reported in
the survey literature including exemplary, qualitative, quantitative, and formal
methods, which we adopt for our classification. Many approaches have only
been assessed through simple examples or through “friendly-enough” systems.
Only in a few cases the evaluations were conducted on realistic open source
systems. Specifically, VT'S was evaluated by replaying the evolution of the open-
source project Marlin (cf. Sec. 2), showing the applicability of the approach,
although multiple checkout/commit cycles were required to realize certain kinds
of variability. This was the case, for example, when at the same time adding two
variants, which are represented by a conditional-compilation directive with an else
branch. The correctness of ECCO was evaluated by replaying the development
and evolution of open source product lines and measuring the correctness and
usefulness of the results. It was also evaluated using an industrial system [91, 92].
EPOS was evaluated by importing the sources of the GNU C compiler into the
EPOS database, and processing the conditional-compilation directives defining
its many variants. SuperMod’s qualitative evaluation based on three academic
case studies is presented in [93].

6. Essential Differences Between the Subject Systems

Based on our classification and illustration of VarCS discussed above, we
present essential differences between the subject systems. First, we provide
results of a formal concept analysis [46, 47, 48] to improve the clarity of the differ-
ences related to the editing models and workflows of using the systems. Second,
we perform a scenario-based behaviour analysis to illustrate three subject systems
from the perspective of a software engineer, i.e., the primary user of a VarCS.

33

6.1. Formal Concept Analysis of Editing Models

The properties discussed in Sec. 5 are connected to design decisions made by
the originators of the respective tools. Many of these properties reflect optional
building blocks that can be transferred to the other systems with reasonable effort.
For instance, the usage of a variability model for the higher-level representation
of constraints and entities provides an advantage for the end user, but does not
significantly affect the theoretic capabilities of the models.

The other properties, however, constitute mutually exclusive subject-level
variation points that must be carefully discussed in terms of advantages and
disadvantages to the end user. In this regard, we extracted an essential set of
attributes that are functionally relevant to the editing model of the respective
systems, i.e., decisive characteristics that substantially affect the workflow pre-
sented in Fig. 1. These characteristics are concerned with the internalization
expression (IE) and externalization expression (EE) and their relation:

IE/EE Conjunction. The IEs and EEs are conjunctions as opposed to arbi-
trary Boolean expressions. On the one hand, requiring version specifications
to be stated as conjunctive Boolean terms seems to constrain version con-
struction. On the other hand, such expressions are much easier to handle
for the user, e.g., when being derived from sets of configuration options or
from feature configurations.

EE Partial. The EE can be partial. This property is decisive because it dictates
whether the external view contains variation points (e.g, #ifdef directives
in textual approaches) or whether it presents a single variant that is
edited in a representative way (which is indispensable in model-driven
approaches like SuperMod because there exists no generic multi-variant
syntax resembling the #ifdef approach).

IE Partial. The IE can be partial. When this attribute is active, the modified
contents to be internalized are in general associated with a set of variants
rather than with a single variant specification. In the case of a total IE
(EPOS), the presence conditions of modified elements are not updated
based on the IE itself, but based on the differences between EE and IE.

IE < EE. The IE can be weaker than the EE.
IE = EE. The IE and the EE can be the same.
IE > EE. The IE can be stronger than the EE.

The last three properties are decisive inasmuch as they impose additional con-
straints onto the relationship between EE and IE. Depending on the allowed
relationships, editing cycles must be structured in a significantly different way
when comparing the different subject systems with each other (see illustration
in Sec. 6.2). In some scenarios, e.g., the minimum number of editing cycles
necessary to realize a specific change may vary.

34

IE/EE Conjunction

EPOS, SuperMod

Figure 10: Concept lattice for VarCS properties that immediately reflect the editing model,
obtained by formal concept analysis.

With a formal concept analysis (FCA) [46, 47, 48] we aligned these six Boolean
attributes with the subject systems. FCA is an algebraic theory for binary rela-
tions which identifies all maximal rectangles in the table. We defined a cross table
containing the attributes and the subject systems (object in FCA terminology)
that imply them. The rectangles form a hierarchy that can be displayed as a
so-called concept lattice, which we display in Fig. 10 for the FCA performed here.

From the lattice, we can learn two things, namely how closely the subject sys-
tems are related and by which decisive properties they are distinguished. Second,
we can deduce implication relationships between attributes. For instance, EPOS
and SuperMod have exactly the same valuation for the considered attributes,
which is presumably due to their common ancestry (change-oriented versioning
and unified version model). All subject systems allow to work with the same IE
and EE, but only P-EDIT and Leviathan strictly require to do so. VTS differs
from the other systems as it is the only system that allows the IE to be stronger
than the EE; and ECCO is also unique as it allows for an arbitrary relationship
between IE and EE as well as by requiring both the IE and the EE to be total
(i.e., full configurations). The attribute EE Partial implies IE Partial.

To sum up, although the considered subject systems share a common work-
flow pattern (see Fig. 1), there are fundamental semantic differences in the
interpretation of IE and EE. It is hard to select among the subject systems
one editing model that “rules them all”; rather, they all imply their individual
properties that emerge from specific design decisions and drastically affect how
the user works with the respective tools.

6.2. Scenario-Based Behavioral Analysis

We performed a scenario-based evaluation using the running example from
Sec. 2.4. Our analysis covers the three most recent and according to Sec. 6.1
also most diverse subject systems for which a running implementation could be
obtained: ECCO, SuperMod and VTS. We show differences of the editing model
and workflow from the perspective of the software engineering working with the
different systems.

35

6.2.1. ECCO

ECCO requires a full configuration as an IE or EE. Consequently, develop-
ers always work on concrete, fully configured variants without any remaining
variability. Developers can focus solely on the concrete variant they decided
to work on and do not need to worry about other variants or exact presence
conditions of every line of code they add, modify or delete. ECCO automatically
computes the presence conditions from the provided IE (full configurations) and
automatically adds or refines them where necessary.

1 | uint8 t sort order[LIMIT]; true 1
2 | char sortshort[LIMIT][FILENAME LENGTH]; | USES RAM && CACHE NAMES
3 | char sortnames[LIMIT][FILENAME LENGTH]; | USES RAM && CACHE NAMES || USES RAM && ! USES STACK
4 | uint8 t isDir[(LIMIT+7)>>3]; "USES_RAM && HAS FOLDER SORTING & CACHE NAMES ||
_USES_RAM & HAS_FOLDER SORTING & ! USES STACK
[
checkout USES RAM CACHE NAMES HAS FOLDER SORTING DYNAMIC RAMl
X 3
1 uint8 t sort_order[LIMIT]; A 1 uint8 t *sort order;
2 | char sortshort[LIMIT][FILENAME LENGTH]; 2 | char **sortshort, **sortnames;
3 | char sortnames[LIMIT][FILENAME LENGTH]; 3 | uint8 t *isDir;
4 uint8_t isDir[(_LIMIT+7)>>3]; — ‘
unknown feature(s): DYNAMIC RAM
| commit USES RAM CACHE NAMES HAS FOLDER SORTING DYNAMIC RAM
1 uint8 t *sort order; DYNAMIC RAM || DYNAMIC RAM && USES RAM | DYNAMIC RAM && ...
2 uint8 t sort_order[LIMIT]; ! DYNAMIC RAM
B char **sortshort, **sortnames; DYNAMIC RAM || _DYNAMIC RAM && _USES RAM | DYNAMIC RAM && ...
4 | char sortshort[LIMIT][FILENAME LENGTH]; | ! DYNAMIC RAM && _USES RAM && _CACHE NAMES
5] char sortnames[LIMIT][FILENAME LENGTH]; ! DYNAMIC RAM && USES RAM && CACHE NAMES ||
6 _USES_RAM && ! CACHE NAMES && ! USES STACK || ...
7 uint8 t *isDir; DYNAMIC RAM || _DYNAMIC RAM && USES RAM | DYNAMIC RAM &&
8 | uint8 t isDir[(LIMIT+7)>>3]; I DYNAMIC RAM & USES RAM && HAS FOLDER SORTING && CACHE NAMES ||
9 ! _DYNAMIC RAM && _USES RAM && HAS FOLDER SORTING && ! USES STACK || ...
N 5 X 6
1 uint8_t *sort_order; modify 1 ‘ uint8_t *sort_order;
2 | char **sortshort, **sortnames;
3 uint8_t *isDir;
unknown feature interactions: DYNAMIC RAM without USES RAM, ... -
surplus feature interactions: DYNAMIC RAM with _USES_RAM, ... ‘
1 uint8 t *sort order; DYNAMIC RAM || DYNAMIC RAM && ! USES STACK
2 uint8 t sort_order[LIMIT]; ! _DYNAMIC RAM
3 | char **sortshort, **sortnames; DYNAMIC RAM && USES RAM || DYNAMIC RAM & CACHE NAMES || ...
4 | char sortshort[LIMIT][FILENAME LENGTH]; | ! DYNAMIC RAM && USES RAM && CACHE NAMES
5 | char sortnames[LIMIT][FILENAME LENGTH]; | ! DYNAMIC RAM && USES RAM && _CACHE NAMES ||
6 USES RAM && ! CACHE NAMES && ! USES STACK || ...
7 | uint8 t *isDir; DYNAMIC RAM && _USES RAM || DYNAMIC RAM && HAS FOLDER SORTING || ...
8 | uint8 t isDir[(LIMIT+7)>>3]; I DYNAMIC RAM & USES RAM && HAS FOLDER SORTING && CACHE NAMES ||
9 ! DYNAMIC RAM && USES RAM && HAS FOLDER SORTING && ! USES STACK || ...

Figure 11: The running example of Sec. 2.4 performed with ECCO. The internal representations
(i.e., repository contents) are depicted with grey background and in a simplified form (textually
with presence conditions annotated on the right) instead of the actual, more complex form
(modular trees, cf. Fig. 6). The external representations (i.e., workspace contents) have a
white background. User actions are placed along arrows and represented with a bold border.
Configurations are given as a comma separated list of selected (4) or deselected (-) features.
For brevity, the prefix SDSORT- is replaced by a simple _.

Figure 11 shows the running example of Sec. 2.4 performed with ECCO:

1. The internal representation depicted with code on the left and presence
condition for each line to the right. Recall that the actual internal represen-
tation is a modular tree structure (cf. Fig. 6). Also notice that ECCO does
not duplicate artifacts (as was done by the Marlin developers in Lines 9
and 11 of Listing 1) and instead assigns a presence condition with a logical
OR to the artifact in such cases.

36

2. The external representation (a concrete variant) obtained by externalization
with an EE (configuration) that is equivalent to the formula -USES_RAM A
_CACHE_NAMESA-_USES_STACKAHAS_FOLDER_SORTINGA_DYNAMIC_RAM,
including a warning that the new feature DYNAMIC RAM is unknown.

3. The external representation after having addressed the warnings (i.e., in
this case, after having added the new feature in the context of the concrete
variant).

4. The resulting internal representation after internalization with the same
IE that was used for externalization. Note that the new feature is added
negatively (in red) to presence conditions of lines that were removed and
positively (in green) to lines that were added. For added lines, all possible
feature interactions are added as extra clauses (even if redundant at this
time, which is why higher order feature interactions are grayed out if lower
order ones are present) as they may be needed in the future for refining
the presence conditions and also for providing warnings.

5. The following steps are optional and only necessary when additional
variants are needed. Assume that another variant is externalized by
providing the EE —_USES_RAM A -_CACHE_NAMES A —_USES_STACK A
—HAS_FOLDER_SORTINGA_DYNAMIC_RAM. The external representation
of the desired variant may be incomplete as explained by the provided
warnings. One warning explains that feature DYNAMIC_RAM has never
existed without feature USED RAM and corresponding code (if any) does
not exist in the repository yet (in this case no such code is required and
the warning can be ignored). Another warning says that there may be
surplus code that belongs to the interaction of the features DYNAMIC _RAM
and _USED_RAM that may need to be removed (in this case the last two lines
of code).

6. The external representation after having addressed the warnings (i.e., in
this case, after the developer removed the surplus code as suggested by the
warning).

7. The resulting internal representation after internalization with the same
IE as was used for externalization. Note that since no new features were
added the existing presence conditions were refined and made more precise
by removing unnecessary clauses, i.e., clauses that were redundant are no
longer redundant.

6.2.2. SuperMod

SuperMod assumes, like ECCO, that the developer works on a single variant,
represented by a full configuration, without seeing variability annotations. A key
difference, however, is that the IE specified during commit is partial and shall
refer only to those features for which the change is relevant. Also, SuperMod
does not rely on a preprocessor-based representation for variability annotations
like VTS, but utilizes a custom storage format (optimized for Ecore models, but
also capable of text).

Figure 12 depicts how the running example can be replayed using Super-
Mod. The figure reveals that the user may perform the necessary changes

37

1 | uint8_ t sort _order[LIMIT]; true @
2 | char sortshort[LIMIT][FILENAME_ LENGTH];| _USES_RAM && _CACHE_NAMES
3 | char sortnames[LIMIT][FILENAME LENGTH];| _USES RAM && _CACHE_NAMES
4 | char sortnames[LIMIT][FILENAME LENGTH];| USES RAM && ! CACHE NAMES && ! USES STACK
5 | uint8_t isDir[(_LIMIT+7)>>3]; _USES_RAM && _SORTING && _CACHE NAMES
6 | uint8_ t isDir[(_LIMIT+7)>>3]; _USES_RAM && _SORTING && ! _CACHE_NAMES && !_USES_STACK
Marlin
checkout }
FolderSorting
SDSort
1| uint8 t sort order[LIMIT]; 2 cachenanes
2 | char sortshort[_ LIMIT][FILENAME_LENGTH]; A R
3 | char sortnames[_ LIMIT][FILENAME_ LENGTH]; UsesRAM
4 | uint8 t isDir[(LIMIT+7)>>3]; O usesstack
3
tortin i 1 | uint8_t *sort_order;
Fotdersortig 2dd Teature i cRan |/ 2 | char sortshort[LIMIT][FILENAME_LENGTH];
Cachetianes 3 | char sortnames[LIMIT][FILENAME LENGTH];
) T O —— commit 4 | uint8_t isDir[(_LIMIT+7)>>3];
UseskaM - 3
Dynami cRAM H
FolderSorting H
Usesstack H
sbSort H
1 | uint8_t *sort_order; 4 CacheNames H
2 | char **sortshort, **sortnames; A or H
3 | uint8_ t isDir[(_LIMIT+7)>>3]; UsesRAM H
oynanichan
vartin UsesStack H
Foldersorting &+ I ModLilY Ko]
spsort
CacheNanes N 1 | uint8 t *sort order; 5
A or 2 | char **sortshort, **sortnames;
UsesRAM 3 | uint8 t *isDir;
DynamicRA -
Usesstack
1 [uint8_t sort_order[LIMIT]; I_DYNAMIC RAM @
2 | uint8_t *sort_order; _DYNAMIC_RAM
3 | char sortshort[LIMIT][FILENAME_LENGTH];| _USES RAM && _CACHE_NAMES && ! DYNAMIC RAM
4 | char sortnames[_LIMIT][FILENAME_LENGTH];| _USES RAM && _CACHE_NAMES && ! DYNAMIC RAM
5 | char **sortshort, **sortnames; USES RAM && CACHE NAMES && _DYNAMIC RAM
6 | char sortnames[LIMIT][FILENAME_LENGTH];| _USES RAM && ! CACHE NAMES && ! USES STACK
7 | uint8_t isDir[(_LIMIT+7)>>3]; "USES_RAM && _SORTING && _CACHE NAMES && ! DYNAMIC RAM
8 | uint8 t isDir[(LIMIT+7)>>3]; “USES RAM & _SORTING & | CACHE NAMES & ! USES STACK
9 | uint8_t *isDir; _USES RAM && SORTING && DYNAMIC RAM

Figure 12: The running example of Sec. 2.4 performed with SuperMod. The internal repre-
sentations (i.e., repository contents) are shown in a simplified form (textually with variability
annotations on the right) with a grey background color, where the presence condition of every
line of text is presented as conjunction in the right box; for reasons of compactness, the prefixes
SDSORT. and HAS_FOLDER_ have been replaced by a simple _. Different states of the external
representation are shown in white. User actions are represented with a bold border. Choices
and ambitions are depicted as trees representing complete and partial feature configurations,
respectively; cyan denotes selection, orange deselection, and yellow is for an undefined state
(ambitions only).

in a single view (i.e., external representation), but also that three subsequent
commits, which are connected to three different feature ambitions, are neces-
sary. The reason is that the modifications are supposed to be connected to
different change scopes. While all changes are connected to the new feature
SDSORT_DYNAMIC_RAM, the second change is relevant only when this feature inter-
acts with both SDSORT_CACHE _NAMES and SDSORT_USES_RAM, and the third change
assumes HAS_FOLDER_SORTING and SDSORT_USES_RAM in addition. The figure also
illustrates to which extent the user is supported in specifying internalization /EEs
by means of a feature model.

1. The initial internal representation depicted with code on the left and
presence condition for each line on the right. Note, that the actual internal
representation used by SuperMod is an Ecore model where each line is
represented by model elements.

2. The external representation created by using the EE (full configuration)

38

HAS_FOLDER_SORTING A _CACHE_NAMES A _USES_RAM A —_USES_STACK.

3. The external representation after being modified (first line changed) for
the first internalization with expression DYNAMIC RAM. In addition, it is
specified, that the newly added feature DYNAMIC_RAM is to be placed under
the existing feature _USES_RAM in the feature model.

4. The external representation after having been modified further (without
another externalization operation) by replacing lines two and three. The sec-
ond internalization operation is performed with expression _.CACHE_NAMES A
_USES RAM A _DYNAMIC RAM.

5. The external representation after its final modification (last line changed)
for the final internalization with expression HAS_FOLDER_SORTINGA_USES_RAMA
—_DYNAMIC_RAM

6. The final internal representation after the three performed internalization
operations. Lines that were removed had their presence condition extended
via conjunction with negated IE (red). Lines that were added received the
positive IE and presence condition (green).

6.2.3. VTS

VTS allows both EEs and IEs to be partial. This makes it possible to leave
variability in the external representation. Therefore, internal as well as external
representation consist of text files containing C preprocessor annotations. This
makes VTS the system that puts the user closest to the actual variation points
as it allows to modify them directly in the external representation if desired.
Presence conditions for added lines are computed as the conjunction of the EE
and the IE (EE A IE), and for removed lines as the conjunction of the EE and the
negation of the IE (EE A —IE). This can make it quite difficult to perform the
desired changes using the internalization and externalization operations as both
expressions need to be chosen correctly, which can sometimes make it the better
choice to edit variation points directly. This is in contrast to SuperMod where
only the (also partial) IE is used to compute presence conditions for changes.

Figure 13 shows the running example of Sec. 2.4 performed with VTS. It was
simplified slightly by removing the last code block that implements the feature
HAS_FOLDER_SORTING as it would otherwise have required several more editing
cycles. Also, it was performed by applying the concepts and editing model of
VTS theoretically, without using the actual implementation. While there is an
implementation of VTS publicly available, in its current rudimentary state it
was unfortunately not possible to apply it to the posed scenario.

1. The initial state of the internal representation. VTS uses plain text files
annotated with C preprocessor directives.

2. The external representation after obtained with EE TRUE. This leaves all
variability in the external representation which is necessary in this case as
we want the following change to only get the new feature DYNAMIC_RAM as
presence condition and therefore the EE must be empty.

3. The external representation after having replaced the first line of code that
shall only belong to feature _-DYNAMIC_RAM.

39

INTERNAL REPRESENTATION ‘ EXTERNAL REPRESENTATION ‘

uint8_t sort order[LIMIT]; @
#if _USES_RAM uint8_t sort order[LIMIT]; @
#if _CACHE NAMES #if 7£!SE57RAM
char sortshort[LIMIT][_ LENGTHI; #1f _CACHE_NAMES
char sortnames[LIMIT][LENGTH]; char sortshort[LIMIT][LENGTH];
#elif ! USES STACK - char sortnames[_LIMIT][_ LENGTH];
char sortnames[LIMIT][LENGTHI; #elif | USES _STACK
#endif char sortnames[_ LIMIT][_LENGTH];
#endif #endif
#endif
get TRUE -
modify
#if DYNAMIC RAM @
uint8 t *sort order;
#else uint8_t *sort_order;
uint8 t sort order[LIMIT]; #if USES RAM
#endif %

#if _CACHE NAMES
char sortshort[_ LIMIT][_ LENGTH];
char sortnames[LIMIT][_LENGTH];
#elif ! USES_STACK
char sortnames[_LIMIT][_LENGTH];

#if USES RAM
#if CACHE NAMES
char sortshort[_ LIMIT][_LENGTHI;
char sortnames[LIMIT][LENGTH];

#elif ! USES STACK ;
char sortnames[LIMIT] [_LENGTH]; #endif
: = = #endif
#endif —
#endif ———— put DynamIc Raw
get USES RAM & _CACHE NAMES |——————J»] #if DYNAMIC RAM @
uint8 t *sort order;
#if DYNAMIC RAM @ #else
uint8 t *sort_order; uint8 t sort_order[LIMIT]
#else - #endif
uint8 t sort order[LIMIT]; char sortshort[_ LIMIT][_LENGTH];
#endif char sortnames[LIMIT][LENGTH];

#1f _USES_RAM

#if _CACHE _NAMES modify
#if _DYNAMIC RAM
char **sortshort, **sortnames;

#else -
char sortshort[LIMIT][LENGTHI; #1f _DYNAMIC_RAM @
char sortnames[LIMIT][LENGTH]; #Elsglnt&t sort_order;
#endif .
18 t t LIMIT];
#elif | _USES STACK sendipe-t sort_order[_LINIT;
char sortnames[LIMIT][LENGTH]; char **sortshort, **sortnames;
#endif

#endif —— put DyNAMIC RAM

Figure 13: The (slightly simplified) running example of Sec. 2.4 performed by applying the VTS
editing model. The internal representations (i.e., repository contents) are depicted with grey
background. The external representations (i.e., workspace contents) have a white background.
User actions are placed along arrows and represented with a bold border. Expressions are
given as Boolean formulas over features. For brevity, the prefix SDSORT- is replaced by a simple

4. The updated internal representation with IE _DYNAMIC RAM. The new
line (green) gets the condition FE A IE = TRUE A DYNAMICRAM =
_DYNAMIC_RAM. The removed line (red) gets the condition EE A —~IE =
TRUE A —_DYNAMIC RAM = — DYNAMIC RAM (which is achieved by putting it
in the #else part).

5. The external representation with some variability removed (features _USES-
_RAM and _CACHE_NAMES have been decided) and some remaining (feature
_DYNAMIC_RAM remains variable). Again, we have to keep in mind that this
EE will be used in the presence condition for following changes.

6. The external representation with two lines replaced by a new one.

7. The updated internal representation with IE DYNAMIC RAM. This gives
the new line (green) the presence condition -USES_RAM A _CACHE_NAMES A
_DYNAMIC RAM and the removed lines (red) the presence condition USES_RAMA
_CACHE_NAMES A —_DYNAMIC_ RAM (again achieved by putting it in the #else
part).

40

6.2.4. Analysis and Discussion

We now analyze and discuss the illustrated modification scenario in detail.

The scenario illustration for VTS was shortened for space reasons (the last
view lines of code were ignored), which is why it appears to be easier to use. How-
ever, in fact, performing the full scenario (as was done for ECCO and SuperMod)
would have required several more get (externalization) and put (internalization)
cycles. This is due to the fact that VTS only allows internalization with an
expression that is at least as strong as the externalization. This forces the
user to change the projection (via the get operation) to another variant many
times in order to achieve the desired conditions for the performed changes. VTS
supports partial EEs and therefore variable external representations that expose
preprocessor annotations directly to the user. This could be leveraged to reduce
the number of necessary operations by instead directly editing the variation
points (i.e., annotations). However, in the extreme case, VT'S would then provide
no benefit over simply working with preprocessor annotated code directly. In
summary, VTS is more tedious to use because it only allows internalization that
is at least as strong as the externalization. However, this has the advantage of
avoiding inconsistencies and side effects.

In contrast, SuperMod only supports internalization that is at most as strong
as the externalization. This drastically reduces the number of times the user
needs to change variants (via the checkout operation) to achieve the desired
conditions for the performed changes. Additionally, specifying the IE is easier
than in VTS, as it is applied directly as a presence condition to the performed
changes and not concatenated with the EE (as done by VTS to guarantee that
the resulting presence condition is at least as strong as the one used for the
externalization).

Both VTS and SuperMod require the user to specify an IE that ends up more
or less directly as the presence condition of changes in the internal representation
normally not shown to the user. In other words, while users do not see or directly
modify the internal representation, they still need to provide an expression that
is very close to it.

ECCO, on the other hand, is fully variant-centric and aims at freeing users
from worrying about the internal representation and the presence conditions of
changes. ECCO thus hides the internal representation (as done by other VarCS)
but also the presence conditions from the user. The specified expressions are
simple configurations (i.e., lists of features) and never presence conditions, and in
almost all cases the IE will be the same as the EE. The user only needs to specify
the desired variant (externalization), potentially even including new features
that have not existed until that point. ECCO then issues a list of warnings
that tell the user what work still might need to be done on the variant (if
any) to complete its implementation (e.g., implementing yet unknown features).
While technically not required, in almost all cases the user can use the same
expression for internalization as was used for externalization after completing
the implementation of the variant. ECCO then analyzes the observed variants
and incrementally refines the internal representation automatically. This means

41

that the internal presence conditions might initially contain uncertainty and be
less specific than they could be. However, in practice, it might not be necessary
to have such specific presence conditions attached. The assumption is that only
a small fraction of all supported variants will ever be used in practice and that
the presence conditions only need to be specific enough to support the actually
needed variants. If ever a new variant is needed, the presence conditions will be
refined accordingly as needed.

7. Challenges and Research Perspectives

A key motivation of our work is to raise awareness of the potential of VarCS
and what would be needed to be able to fully leverage it. Based on the results of
our study we discuss open problems, identify remaining challenges and suggest
research perspectives related to VarCS.

Cognitive complezity. VarCS use logical expressions to handle variants of a
system with different variability entities (e.g., features). Due to the high number
of revisions and variants, this task becomes cognitively extremely demanding as
pointed out in the Cognitive Dimensions of Notations framework [94] where this
is referred to as hard mental operations. For instance, creating EEs is difficult
for developers who think in terms of code and not in terms of variation points.
A key for success is to improve developer support for working with complex
logical expressions. Partial configurations may help. On the other hand, for
developers that are used to the clone-and-own practice it might be easier to think
in variants (i.e., full configurations). Likewise, generating the EE by letting users
point to artifacts that should be in the variant likely also helps, as the example
of P-EDIT shows. This allows developers to avoid going via the abstraction (i.e.,
thinking in terms of options instead of code), which can be demanding even for
small changes only affecting one or few artifacts.

Useful abstractions seem essential to facilitate the use of VarCS. For instance,
feature models may help to significantly reduce the cognitive load by providing
a higher-level and hierarchically-organized graphical perspective on a system.
There even exist feature modeling approaches that incorporate a concept of
evolution such as Hyper Feature Models [95] or Temporal Feature Models [96] that
could be used for representing revisions in the context of VarCS. Developers can
be supported by creating EEs based on feature models, as the SuperMod system
shows. Perhaps even more intuitive and expressive, DSL-based abstractions
can be crafted. An example is the use of intentions [20] for integrating variants,
which can replace IEs (internalization expressions) and which form a small DSL.

In summary, besides the technical challenges of creating more intentional
and feature-based front-ends, user studies are needed to better understand how
developers can cope with the cognitive complexity.

Higher number of operations needed to perform a task. No matter which VarCS
is used, the number of operations needed to achieve the same goal that can be
achieved with a single manual change is always higher (see running example

42

performed manually in Sec. 2.4). This is well illustrated in Sec. 6.2. Every
individual operation in itself might be fairly simple, but decomposing the overall
goal into the right sequence of such operations is challenging (see above) and
requires additional effort. However, one can argue that with current version
control systems (such as Git) many tasks that should also be performed in
multiple steps simply are not, due to lack of discipline and also lack of immediate
negative consequences in many cases. For example, consider a developer working
with Git on a certain feature in the respective feature branch, noticing a typo
in another feature’s code. The developer should stash (or commit) the current
changes, switch branch, make the change, commit on that branch, and switch
back to the original feature’s branch. What actually happens in most cases is,
that the developer simply fixes the typo immediately and the change gets mixed
up with the wrong feature’s changes. With traditional version control systems
the negative effect of this undisciplined behavior is usually limited as the feature
branch will be merged back into its parent branch at some point anyway.

Unclear criteria for using VarCS. It may not be obvious in what situations a
VarCS would be the right tool to use and actually provide tangible benefits.
Studies on what characteristics a variable system should have to benefit from
the use of a VarCS would give necessary insights. Such characteristics could be
the types of artifacts that need to be variable (textual, graphical, etc.), whether
the implementation consists of only a single or multiple types of artifacts, or
whether the complexity of artifacts is dominated by variability or the actual
payload. If variations are fairly comprehensible (i.e., fairly simple expressions),
but the artifacts themselves are very complex (e.g., because they solve a complex
problem), then VarCS could be useful as they make it easier to focus on the
complex problem by removing the unneeded variability from the (already com-
plex) artifacts. Also, VarCS provide a benefit if variations (and, consequently,
EE and IE) are simple, but the variation points are scattered [97] all over the
place. In this case, the expressions the user needs to provide are fairly simple
and the placement of all the conditions is done automatically. For instance,
when considering the context of preprocessor annotations this essentially comes
down to the relation of the number of lines of code responsible for variability
(i.e., annotations) compared to the number of lines of code responsible for the
actual implementation. A possible insight could be that VarCS are useful when
more lines of code contain annotations than actual implementation. All this
needs to be investigated in more detail, for example by performing user studies.

Change impact of updating variants. VarCS support developers by filtering
details of configurable artifacts that are not part of the variant a developer
is working on. Such views (or projections) ease the comprehension of these
artifacts. At the same time it is very challenging to understand the scope of
changes made in such views on other variants not shown in the view. Our study
shows that while the investigated systems offer different solutions for this issue,
the workflow is still rather complex from a developer’s point of view. Although
for VTS the evaluation confirmed that the capabilities are sufficient to handle

43

a complex real-world evolution, the updating of variants was still complicated
and sometimes required multiple checkout/commit cycles in the tool. In case
of Leviathan changes to variants can be written back to the configurable code
base automatically only if certain assumptions are met, meaning that developers
need to manually double check if Leviathan applied the changes correctly. These
findings suggest the integration of existing research on variability-aware change
impact analysis that exists for instance in the area of program analysis [98]. Such
techniques allow the development of tools visualizing the variants affected by a
change to understand and assess its impact. In the context of VarCS this could
be used to determine the effect of changes that are applied with a weaker IE
than EE on the variants that are not visible in the current view. If the change
affects these not visible variants but the change has no additional impact beyond
the one it has in the visible variants then there is no risk in using a weaker IE.

Locked-in syndrome. Developers are usually reluctant to commit to a propri-
etary repository technology for managing their software artifacts. Existing
implementations of VarCS use diverse model-based approaches, various database
technologies, and a wide range of mechanisms for representing variation points to
manage the complex version space and artifacts. Overall, this increases the risk
of becoming locked-in with no easy way to escape if technologies evolve. This
problem may explain why the annotation-based preprocessors are still the most
popular variability mechanism. A basic requirement for every VarCS should
thus be the ability to import and export its repository contents from and to a
universal exchange format. However, it is not trivial to agree on such a format.
For instance, a format based on textual preprocessor annotations would work
well for systems such as VT'S and Leviathan, which already use such formats
as their internal representation. On the other hand, this format can only be
used on textual artifacts but not on models, diagrams or other non-textual
artifacts which is an important limitation. A more advanced approach would
be to use transformations to and from artifact-specific representations, possi-
bly requiring no additional variability mechanism at all. An example is the
variability-encoding approach by Rhein et al., which transforms compile-time
variability into load-time variability [99]. For every type of artifact a VarCS
supports it would be required to have transformations from and to at least one
artifact-specific format that can be used without the VarCS.

Adoption and migration barrier. In practice, systems are rarely planned with
a high degree of variability from the beginning. In ad hoc reuse developers
use available variability mechanisms (e.g., C-preprocessor when writing C code)
or clone-and-own practices, usually leading to many independently maintained
variants. By the time a VarCS system would pay off, migrating a system may
already be difficult. VarCS systems should thus offer a mechanism to populate a
repository from a set of clone-and-own variants to ease adoption and to enable
migration from systems like Subversion or Git, where variants are maintained
in separate branches. The same mechanism could be used to migrate between
different VarCS by first creating all variants from one VarCS (assuming they are

44

not too many) and then importing them into another, thereby also reducing the
locked-in syndrome. Similarly, as already mentioned for the locked-in syndrome,
artifact-specific options for migrating from common variability mechanisms would
be beneficial, such as importing from preprocessor annotated text files.

Lack of collaboration support. The studied VarCS significantly improve the
variation aspects regular version control systems are lacking. However, at the
same time, many of the subject systems seem to neglect equally important
aspects existing version control systems already support very well. In particular,
an important aspect of version control systems is their support for collaboration
among developers. Distributed development has become very popular in modern
version control systems, especially in the development of open source software.
This could be a great opportunity for variation control systems to shine, as the
independent development of individual functionality (i.e., features) is well suited
for distributed development. This becomes evident when looking at popular
Git branching models that already facilitate so-called feature branches,'C i.e.,
temporary branches that live as long as it takes to develop a new feature until
they are eventually merged back into their parent branches. VarCS need to
evolve towards distributed platforms for development and evolution support as
also pointed out by Hinterreiter et al. [85, 86]. Current version control systems
support cloning of entire repositories, but lack support for handling variants at
the level of features. We envision clone operations that will be based on specific
feature selections and include only the features needed for a specific development
task. Further, it should be possible to push, pull, or transfer features between
platforms. For instance, a push feature operation may allow transferring a
feature back to its original platform to make it generally available.

Low tool maturity, availability, and rigor of evaluations. Finally, our study
showed that a lot needs to be done regarding the availability and maturity of
the VarCS tools. ECCO, VTS, and SuperMod are the only implementations
currently available. Another issue is the low maturity of the reported evaluations.
Although replaying existing version histories of open source systems is a promising
first step to demonstrate the feasibility of VarCS there is a strong need for case
studies with industrial partners, which also need to elicit relevant usage scenarios
of VarCS to measure their benefits.

8. Threats to Validity

A threat to the external validity of our study is that we might have missed
important VarCS. Our focus was to study selected existing VarCS in depth, which
would not be possible with a pure literature review. Some of our subjects are
older than 30 years and often the publications are no longer available in digital
libraries. This would make a keyword-based search strategy highly unreliable.

ttp://nvie.com/posts/a-successful-git-branching-mode
Onttp://nvi /p / ful-git-branching-model/

45

http://nvie.com/posts/a-successful-git-branching-model/

However, our research method included several measures to ensure completeness:
as explained in Section 3 (Step 1) our literature search already builds on existing
survey papers. We used snowballing to identify further relevant papers and
systems. We performed a retrospective search as part of the thematic synthesis.
We presented the list of subject systems to the participants of Dagstuhl-Seminar
19191 (Software Evolution in Time and Space: Unifying Version and Variability
Management) [100]. Participants included senior researchers (some involved in
earlier survey papers) and junior researchers actively pursing research in this
field. Overall, we are confident that our study covers the most relevant subject
systems for the purpose of this article.

Another threat to the external validity is that the systems unavailable for
our classification encompass important concepts and technologies. To mitigate
this issue, we consulted secondary literature describing these systems to get a
coarse overview and to understand their key ideas. We did not find any hints
to concepts not supported by the other investigated systems. As such, we are
confident that our studied systems are characteristic examples of VarCS.

A threat to the internal validity is that we might have misclassified the
systems, especially those that have been developed by SCM researchers. Given
that some papers were almost 40 years old, it was not always easy to understand
the terminology used by the community at that time [73]. We therefore started
with individual classification and worked to achieve consensus on the degree of
support of features, often in several rounds. Finally, our classification might not
be complete, i.e., we might have missed concepts that are needed to realize new
and better systems. However, since we have been involved in the development of
some of the systems we are confident that we identified the relevant concepts
and characteristics. Still, contrasting it with systems that will be developed in
the future is valuable further work. Finally, we were ourselves involved in the
development of VTS and ECCO, which could potentially bias our classification.
However, one author started surveying existing VarCS before either of both
systems was developed, thus mitigating this potential bias.

9. Conclusion

We presented a classification of VarCS, which aim to integrate the manage-
ment of revisions of software artifacts and the handling of software variants at
different levels of granularity. Our study provides a classification of six VarCS
and shows that they use concepts and approaches developed in the areas of both
software configuration management and software product line engineering. The
results show that the investigated VarCS share a common core of capabilities
even though they were developed in different research communities, for different
purposes, and in a time span covering several decades. The results also reveal
particular strengths of individual VarCS.

Based on these findings our work aims to raise awareness about VarCS
and remaining research challenges such as the cognitive complexity of handling
logical variants for different revisions of features, the complex workflows needed to
consistently write back changes made to variants to the shared artifact repository,

46

the risk of becoming locked-in to a particular style of artifact repository, the lack
of support for collaborative and distributed development, and the maturity of
the current evaluations. Based on these challenges our article suggests research
perspectives related to VarCS.

Acknowledgments

This work has been supported by the Austrian Federal Ministry for Digital
and Economic Affairs, the National Foundation for Research, Technology and
Development, KEBA AG Austria, the Swedish Research Council, Vinnova
Sweden, and the Wallenberg Academy.

We thank the participants of Dagstuhl-Seminar 19191 (Software Evolution
in Time and Space: Unifying Version and Variability Management) [100] for all
the interesting and fruitful discussions on this topic.

References

[1] T. Berger, J.-P. Steghofer, T. Ziadi, J. Robin, J. Martinez, The state
of adoption and the challenges of systematic variability management in
industry, Empirical Software Engineering 25 (2020) 1755-1797.

[2] T. Berger, S. She, R. Lotufo, A. Wasowski, K. Czarnecki, A study of
variability models and languages in the systems software domain, IEEE
Transactions on Software Engineering 39 (2013) 1611-1640.

[3] T. Berger, S. She, R. Lotufo, K. Czarnecki, A. Wasowski, Feature-to-
code mapping in two large product lines, in: 14th International Software
Product Line Conference (SPLC), 2010.

[4] S. Apel, D. S. Batory, C. Késtner, G. Saake, Feature-Oriented Software
Product Lines — Concepts and Implementation, Springer, 2013.

[5] J. Melo, C. Brabrand, A. Wasowski, How does the degree of variability
affect bug finding?, in: Proceedings of the 38th International Conference
on Software Engineering (ICSE), ACM, 2016, pp. 679-690.

[6] J. Favre, Preprocessors from an abstract point of view, in: 3rd Working
Conference on Reverse Engineering (WCRE), IEEE Computer Society,
1996, pp. 287-296.

[7] H. Spencer, C. Geoff, #ifdef Considered Harmful, or Portability Experience
With C News, in: USENIX Summer Technical Conference, 1992, pp. 185—
198.

[8] L. Linsbauer, T. Berger, P. Griinbacher, A classification of variation control
systems, in: Proceedings of the 16th ACM SIGPLAN International Con-
ference on Generative Programming: Concepts and Experiences (GPCE),
ACM, 2017, pp. 49-62.

47

[9]

[13]

[14]

[16]

[17]

[18]

[19]

[20]

R. Conradi, B. Westfechtel, Version models for software configuration
management, ACM Computing Surveys 30 (1998) 232-282.

A. Mahler, Configuration management, John Wiley & Sons, Inc., New
York, NY, USA, 1995, pp. 73-97.

S. A. MacKay, The state of the art in concurrent, distributed configuration
management, in: Selected Papers from the ICSE SCM-4 and SCM-5
Workshops on Software Configuration Management, 1995.

T. Berger, D. Lettner, J. Rubin, P. Griinbacher, A. Silva, M. Becker,
M. Chechik, K. Czarnecki, What is a feature? a qualitative study of features
in industrial software product lines, in: Proceedings 19th International
Software Product Line Conference, SPLC’15, ACM, 2015, pp. 16-25.

B. Gulla, E.-A. Karlsson, D. Yeh, Change-oriented version descriptions in
EPOS, Software Engineering Journal 6 (1991) 378-386.

B. Westfechtel, B. P. Munch, R. Conradi, A layered architecture for
uniform version management, IEEE Transactions on Software Engineering
27 (2001) 1111-1133.

Y. Dubinsky, J. Rubin, T. Berger, S. Duszynski, M. Becker, K. Czarnecki,
An exploratory study of cloning in industrial software product lines, in:
Proceedings 17th European Conference on Software Maintenance and
Reengineering, 2013, pp. 25-34.

J. Businge, M. Openja, S. Nadi, E. Bainomugisha, T. Berger, Clone-based
variability management in the Android ecosystem, in: IEEE International
Conference on Software Maintenance and Evolution, (ICSME), IEEE
Computer Society, 2018, pp. 625-634.

M. Antkiewicz, W. Ji, T. Berger, K. Czarnecki, T. Schmorleiz, R. Lammel,
S. Stanciulescu, A. Wasowski, I. Schaefer, Flexible product line engineering
with a virtual platform, in: P. Jalote, L. C. Briand, A. van der Hoek
(Eds.), Proceedings 36th International Conference on Software Engineering,
(ICSE), ACM, 2014, pp. 532-535.

W. K. G. Assuncao, R. E. Lopez-Herrejon, L. Linsbauer, S. R. Vergilio,
A. Egyed, Reengineering legacy applications into software product lines: a
systematic mapping, Empirical Software Engineering 22 (2017) 2972-3016.

J. Krueger, T. Berger, An empirical analysis of the costs of clone- and
platform-oriented software reuse, in: 28th ACM SIGSOFT International
Symposium on the Foundations of Software Engineering (FSE), 2020.

M. Lillack, S. Stanciulescu, W. Hedman, T. Berger, A. Wasowski, Intention-
based integration of software variants, in: Proceedings of the 41st Interna-
tional Conference on Software Engineering (ICSE), IEEE/ACM, 2019, pp.
831-842.

48

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

D. L. Parnas, On the design and development of program families, IEEE
Transactions on Software Engineering 2 (1976) 1-9.

P. Clements, L. Northrop, Software Product Lines: Practices and Patterns,
Addison-Wesley, Boston, MA, 2001.

K. Czarnecki, U. W. Eisenecker, Generative Programming: Methods, Tools,
and Applications, Addison-Wesley, Boston, MA, 2000.

K. Kang, S. Cohen, J. Hess, W. Nowak, S. Peterson, Feature-Oriented
Domain Analysis (FODA) Feasibility Study, Technical Report SEI-90-TR-
21, CMU, 1990.

N. Singh, C. Gibbs, Y. Coady, C-clr: A tool for navigating highly config-
urable system software, in: Proceedings of the 6th Workshop on Aspects,
Components, and Patterns for Infrastructure Software (ACP4IS), 2007.

C. Késtner, S. Apel, M. Kuhlemann, Granularity in software product
lines, in: Proceedings of the 30th International Conference on Software
Engineering, ICSE 08, ACM, New York, NY, USA, 2008, pp. 311-320.

B. Behringer, J. Palz, T. Berger, PEoPL: projectional editing of product
lines, in: Proceedings of the 39th International Conference on Software
Engineering (ICSE), IEEE/ACM, 2017, pp. 563-574.

F. Angerer, H. Prahofer, D. Lettner, A. Grimmer, P. Griinbacher, Iden-
tifying inactive code in product lines with configuration-aware system
dependence graphs, in: Proceedings 18th International Software Product
Line Conference (SPLC 2014), ACM, New York, NY, USA, Florence, Italy,
2014, pp. 52-61.

B. Kullbach, V. Riediger, Folding: An approach to enable program un-
derstanding of preprocessed languages, in: E. Burd, P. Aiken, R. Koschke
(Eds.), Proceedings of the Eighth Working Conference on Reverse Engi-
neering, (WCRE), IEEE Computer Society, 2001, pp. 3-12.

J. Krueger, T. Berger, Activities and costs of re-engineering cloned variants
into an integrated platform, in: 14th International Working Conference
on Variability Modelling of Software-intensive Systems (VaMoS), 2020.

M. T. Rahman, L. Querel, P. C. Rigby, B. Adams, Feature toggles:
practitioner practices and a case study, in: Proceedings 13th International
Conference on Mining Software Repositories (MSR), ACM, 2016, pp. 201
211.

J. Meinicke, C.-P. Wong, B. Vasilescu, C. Kastner, Exploring differences
and commonalities between feature flags and configuration options, in:
Proc. Int’l Conf. Software Engineering—Software Engineering in Practice
(ICSE-SEIP). ACM, 2020.

49

[33]

[38]

D. S. Batory, Feature-oriented programming and the AHEAD tool suite,
in: A. Finkelstein, J. Estublier, D. S. Rosenblum (Eds.), Proceedings 26th
International Conference on Software Engineering (ICSE), IEEE Computer
Society, 2004, pp. 702-703.

D. S. Batory, J. N. Sarvela, A. Rauschmayer, Scaling step-wise refinement,
IEEE Trans. Software Eng. 30 (2004) 355-371.

S. Apel, C. Kaéstner, C. Lengauer, FEATUREHOUSE: language-
independent, automated software composition, in: Proceedings 31st In-
ternational Conference on Software Engineering, ICSE, May 16-24, 2009,
Vancouver, Canada, IEEE, 2009, pp. 221-231.

S. Apel, C. Kastner, C. Lengauer, Language-independent and automated
software composition: The FeatureHouse experience, IEEE Transactions
on Software Engineering 39 (2013) 63-79.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J. Lo-
ingtier, J. Irwin, Aspect-oriented programming, in: Proceedings 11th
European Conference on Object-Oriented Programming (ECOOP), Lecture
Notes in Computer Science 1241, Springer, 1997, pp. 220-242.

I. Schaefer, L. Bettini, V. Bono, F. Damiani, N. Tanzarella, Delta-oriented
programming of software product lines, in: J. Bosch, J. Lee (Eds.),
Proceedings 14th International Conference on Software Product Lines:
Going Beyond (SPLC), Lecture Notes in Computer Science 6287, Springer,
2010, pp. 77-91.

R. Hirschfeld, P. Costanza, O. Nierstrasz, Context-oriented programming,
Journal of Object Technology 7 (2008) 125-151.

B. Kitchenham, Guidelines for performing systematic literature reviews
in software engineering, Technical Report Version 2.3, EBSE Technical
Report, 2007.

W. Tichy, Software Configuration Management Overview, Technical Re-
port, 1988.

C. W. Fraser, E. W. Myers, An editor for revision control, ACM Transac-
tions on Programming Languages and Systems 9 (1987) 277-295.

D. Budgen, M. Turner, P. Brereton, B. Kitchenham, Using mapping
studies in software engineering, in: Proc. of PPIG, volume 8, Lancaster
University, 2008, pp. 195-204.

D. S. Cruzes, T. Dyba, Recommended steps for thematic synthesis in
software engineering, in: Proceedings of the 2011 International Symposium
on Empirical Software Engineering and Measurement (ESEM), IEEE
Computer Society, Washington, DC, USA, 2011, pp. 275-284.

50

[45]

S. Stanciulescu, T. Berger, E. Walkingshaw, A. Wasowski, Concepts,
operations, and feasibility of a projection-based variation control system,
in: Proceedings IEEE International Conference on Software Maintenance
and Evolution (ICSME), IEEE Computer Society, 2016, pp. 323-333.

B. Ganter, G. Stumme, R. Wille (Eds.), Formal Concept Analysis, Founda-
tions and Applications, Lecture Notes in Computer Science 3626, Springer,
2005.

B. Ganter, R. Wille, Formal Concept Analysis — Mathematical Foundations,
Springer, 1999.

B. Ganter, R. Wille, D. Borchmann, J. Prochaska, Implications and
dependencies between attributes, in: Proceedings of the 14th International
Conference on Formal Concept Analysis (ICFCA), 2017, pp. 23-35.

V. J. Kruskal, Managing multi-version programs with an editor, IBM
Journal of Research and Development 28 (1984) 74-81.

V. Kruskal, A blast from the past: Using p-edit for multidimensional
editing, in: Workshop on Multi-Dimensional Separation of Concerns in
Software Engineering, 2000.

M. J. Rochkind, The source code control system, IEEE Transactions on
Software Engineering 1 (1975) 364-370.

B. P. Munch, J.-O. Larsen, B. Gulla, R. Conradi, E.-A. Karlsson, Uniform
versioning: The change-oriented model, in: Proceedings Fourth Interna-
tional Workshop on Software Configuration Management (SCM), 1993, p.
188-196.

B. P. Munch, Versioning in a Software Engineering Database — The Change
Oriented Way, Ph.D. thesis, The Norwegian Institute of Technology, 1993.

P. Holager, Elements of the design of a change oriented configuration
management tool, Technical Report STF44-A88023, ELAB, SINTEF,
Trondheim, Norway, 1988.

A. Lie, Versioning in Software Engineering Databases, Ph.D. thesis, The
Norwegian Institute of Technology, 1990.

A. Lie, R. Conradi, T. Didriksen, E. Karlsson, Change oriented versioning
in a software engineering database, in: Proceedings 2nd International
Workshop on Software Configuration Management (SCM), 1989, pp. 56-65.

B. P. Munch, R. Conradi, J.-O. Larsen, M. N. Nguyen, P. H. Westby, Inte-
grated product and process management in EPOS, Integrated Computer-
Aided Engineering 3 (1996) 5-19.

o1

[58]

[68]

A. 1. Wang, J.-O. Larsen, R. Conradi, B. P. Munch, Improving cooperation
support in the EPOS CM system, in: Proceedings 6th European Workshop
on Software Process Technology (EWSPT), Lecture Notes in Computer
Science 1487, Springer, 1998, pp. 75-91.

W. Hofer, C. Elsner, F. Blendinger, W. Schréder-Preikschat, D. Lohmann,
Toolchain-independent variant management with the Leviathan filesystem,
in: Proceedings of the 2nd International Workshop on Feature-Oriented
Software Development (FOSD), ACM, 2010, pp. 18-24.

E. Walkingshaw, K. Ostermann, Projectional editing of variational software,
in: Generative Programming: Concepts and Experiences (GPCE), 2014,
pp- 29-38.

T. Berger, M. Volter, H. P. Jensen, T. Dangprasert, J. Siegmund, Efficiency
of projectional editing: A controlled experiment, in: Proceedings of the
24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE), 2016, pp. 763-774.

M. Erwig, E. Walkingshaw, The Choice Calculus: A Representation for
Software Variation, ACM Trans. on Software Engineering and Methodology
(TOSEM) 21 (2011) 6:1-6:27.

L. Linsbauer, E. R. Lopez-Herrejon, A. Egyed, Recovering traceability
between features and code in product variants, in: Proceedings of the 17th
International Software Product Line Conference (SPLC), ACM, 2013, pp.
131-140.

L. Linsbauer, R. E. Lopez-Herrejon, A. Egyed, Variability extraction and
modeling for product variants, Software and Systems Modeling 16 (2017)
1179-1199.

S. Fischer, L. Linsbauer, R. E. Lopez-Herrejon, A. Egyed, Enhancing
clone-and-own with systematic reuse for developing software variants, in:
Proceedings 30th IEEE International Conference on Software Maintenance
and Evolution (ICSME), 2014, pp. 391-400.

L. Linsbauer, S. Fischer, R. E. Lopez-Herrejon, A. Egyed, Using traceability
for incremental construction and evolution of software product portfolios,
in: Proceedings IEEE/ACM 8th International Symposium on Software
and Systems Traceability (SST), IEEE Computer Society, 2015, pp. 57-60.

L. Linsbauer, A. Egyed, R. E. Lopez-Herrejon, A variability aware config-
uration management and revision control platform, in: Proceedings of the
38th International Conference on Software Engineering (ICSE), 2016, pp.
803-806.

L. Linsbauer, Managing and Engineering Variability Intensive Systems,
Ph.D. thesis, Johannes Kepler University Linz, 2016.

92

[69]

[71]

[79]

F. Schwégerl, B. Westfechtel, Supermod: tool support for collaborative fil-
tered model-driven software product line engineering, in: Proceedings 31st
IEEE/ACM International Conference on Automated Software Engineering
(ASE), 2016, pp. 822-827.

F. Schwagerl, B. Westfechtel, Collaborative and distributed management
of versioned model-driven software product lines, in: Proceedings of the
11th International Joint Conference on Software Technologies (ICSOFT
2016) — Volume 2: ICSOFT-PT, Lisbon, Portugal, July 24-26, 2016, pp.
83-94.

B. Westfechtel, R. Conradi, Multi-variant modeling - concepts, issues and
challenges, in: Proceedings of the 1st International Workshop on Model-
Driven Product Line Engineering (MDPLE 2009), CTIT Proceedings, 2009,
pp. 7-67.

N. Sarnak, R. Bernstein, V. Kruskal, Creation and maintenance of multiple
versions, in: Workshop on Software Version and Configuration Control,
1988.

I. P. Goldstein, D. G. Bobrow, A layered approach to software design,
Technical Report CSL-80-5, Xerox. Palo Alto Research Center, 1980.

W. M. Gentleman, A. MacKay, D. A. Stewart, Commercial realtime
software needs different configuation management, in: Proceedings 2nd
International Workshop on Software Configuration Management (SCM),
ACM, 1989, pp. 152-161.

R. D. Cronk, Tributaries and deltas, BYTE 17 (1992) 177-186.

Software Maintenance & Development Systems, Inc, Aide de camp product
overview, Concord, Massachusetts, 1990.

D. L. Atkins, T. Ball, T. L. Graves, A. Mockus, Using Version Control
Data to Evaluate the Impact of Software Tools: A Case Study of the
Version Editor, IEEE Transactions on Software Engineering 28 (2002)
625-637.

D. L. Atkins, Version sensitive editing: Change history as a programming
tool, in: Proceedings of the SCM-8 Symposium on System Configuration
Management, ECOOP 98, Springer Verlag, London, UK, 1998, pp. 146—
157.

A. A. Pal, M. B. Thompson, An advanced interface to a switching software
version management system, in: Proceedings of the 7Tth International
Conference on Software Engineering for Telecommunication Switching
Systems, SETSS, 1989.

93

[80]

[81]

[84]

J. O. Coplien, D. L. DeBruler, M. B. Thompson, The Delta system:
A nontraditional approach to software version management, in: AT&T
Technical Papers, International Switching Symposium, 1987.

T. Berger, D. Nair, R. Rublack, J. M. Atlee, K. Czarnecki, A. Wasowski,
Three cases of feature-based variability modeling in industry, in: Proceed-
ings 17th International Conference Model-Driven Engineering Languages
and Systems (MODELS), Springer International Publishing, 2014, pp.
302-319.

D. Nesic, J. Krueger, S. Stanciulescu, T. Berger, Principles of feature
modeling, in: 27th ACM SIGSOFT International Symposium on the
Foundations of Software Engineering (FSE), 2019.

K. Schmid, R. Rabiser, P. Griinbacher, A comparison of decision modeling
approaches in product lines, in: Proceedings of the 5th Workshop on
Variability Modeling of Software-Intensive Systems (VaMoS), ACM, 2011,
pp. 119-126.

K. Czarnecki, P. Griinbacher, R. Rabiser, K. Schmid, A. Wasowski, Cool
features and tough decisions: A comparison of variability modeling ap-
proaches, in: Proceedings of the Sixth International Workshop on Vari-
ability Modeling of Software-Intensive Systems (VaMoS), ACM, 2012, pp.
173-182.

D. Hinterreiter, H. Prahofer, L. Linsbauer, P. Griinbacher, F. Reisinger,
A. Egyed, Feature-oriented evolution of automation software systems in
industrial software ecosystems, in: 23rd IEEE International Conference
on Emerging Technologies and Factory Automation (ETFA), 2018, pp.
107-114.

D. Hinterreiter, K. Feichtinger, L. Linsbauer, H. Préahofer, P. Griinbacher,
Supporting feature model evolution by lifting code-level dependencies:
A research preview, in: E. Knauss, M. Goedicke (Eds.), Proceedings
25th International Working Conference on Requirements Engineering:
Foundation for Software Quality (REFSQ), Lecture Notes in Computer
Science 11412, Springer, 2019, pp. 169-175.

C. Seidl, I. Schaefer, U. ABmann, Capturing variability in space and time
with hyper feature models, in: 8th International Workshop on Variability
Modelling of Software-intensive Systems (VaMoS), ACM, 2014, pp. 6:1-6:8.

S. Apel, C. Késtner, An Overview of Feature-Oriented Software Develop-
ment, Journal of Object Technology 8 (2009) 49-84.

F. Schwigerl, B. Westfechtel, Maintaining workspace consistency in filtered
editing of dynamically evolving model-driven software product lines, in:
Proceedings of the 5th International Conference on Model-Driven Engi-
neering and Software Development (MODELSWARD), 2017, pp. 15-28.

o4

[90]

[91]

[96]

C. Késtner, S. Apel, S. S. ur Rahman, M. Rosenmiiller, D. S. Batory,
G. Saake, On the impact of the optional feature problem: analysis and
case studies, in: Proceedings 13th International Conference on Software
Product Lines (SPLC), ACM, 2009, pp. 181-190.

L. Linsbauer, F. Angerer, P. Griinbacher, D. Lettner, H. Préhofer, R. Lopez-
Herrejon, A. Egyed, Recovering feature-to-code mappings in mixed-
variability software systems, in: Proceedings 30th International Conference
on Software Maintenance and Evolution (ICSME), 2014, pp. 426-430.

D. Hinterreiter, L. Linsbauer, K. Feichtinger, H. Préahofer, P. Griinbacher,
Supporting feature-oriented evolution in industrial automation product
lines, Concurrent Engineering: Research and Applications (2020).

F. Schwégerl, B. Westfechtel, Integrated revision and variation control

for evolving model-driven software product lines, Software and Systems
Modeling 18 (2019) 3373-3420.

A. Blackwell, T. Green, Notational Systems — the Cognitive Dimensions
of Notations framework, in: J. Carroll (Ed.), HCI Models, Theories, and
Frameworks: Toward a Multidisciplinary Science, Morgan Kaufmann, San
Francisco, 2003, pp. 103—134.

C. Seidl, I. Schaefer, U. Afimann, Capturing Variability in Space and Time
with Hyper Feature Models, in: Proceedings of the Eighth International
Workshop on Variability Modelling of Software-Intensive Systems, VaMoS
14, ACM, New York, NY, USA, 2013, pp. 6:1-6:8.

D. Hinterreiter, M. Nieke, L. Linsbauer, C. Seidl, H. Prahofer,
P. Griinbacher, Harmonized temporal feature modeling to uniformly
perform, track, analyze, and replay software product line evolution, in: Pro-
ceedings of the 18th International Conference on Generative Programming:
Concepts & Experiences (GPCE), Athens, Greece, 2019, pp. 115-128.

L. Passos, R. Queiroz, M. Mukelabai, T. Berger, S. Apel, K. Czarnecki,
J. Padilla, A study of feature scattering in the linux kernel, IEEE
Transactions on Software Engineering (2018). Preprint.

F. Angerer, A. Grimmer, H. Prahofer, P. Griinbacher, Configuration-
aware change impact analysis, in: Proceedings of the 30th IEEE/ACM
International Conference on Automated Software Engineering, ASE 15,
2015, pp. 385-395.

A. von Rhein, T. Thiim, I. Schaefer, J. Liebig, S. Apel, Variability encod-
ing: From compile-time to load-time variability, Journal of Logical and
Algebraic Methods in Programming 85 (2016) 125-145. Formal Methods
for Software Product Line Engineering.

99

[100] T. Berger, M. Chechik, T. Kehrer, M. Wimmer, Software evolution in time
and space: Unifying version and variability management (dagstuhl seminar
19191), in: Dagstuhl Reports, Schloss Dagstuhl — Leibniz-Zentrum fuer
Informatik, 2019.

96

	Introduction
	Background and Related Work
	Software Configuration Management
	Software Variability Management
	Variation Control Systems
	Running Example

	Methodology
	Subject Systems
	P-EDIT Editor
	EPOS Version Control System
	Leviathan File System
	VTS Command-Line Tool
	ECCO Version Control System
	SuperMod Version Control System
	Excluded Subjects

	Concepts of Variation Control Systems
	Variability Entities
	Constraints over Variability Entities
	Variable Artifacts
	Revisions
	Internal Representation
	Artifact Storage
	Variation Points

	External Representation
	Type
	State

	Editing of Constraints
	Externalization
	Externalization Expression (EE)
	Specification
	Artifacts Consistency

	Internalization
	Internalization Expression (IE)
	Relationship with Externalization Expression
	Representativity Check

	Alignment Strategy
	Collaboration
	Implementation and Tool Support
	Evaluation

	Essential Differences Between the Subject Systems
	Formal Concept Analysis of Editing Models
	Scenario-Based Behavioral Analysis
	ECCO
	SuperMod
	VTS
	Analysis and Discussion

	Challenges and Research Perspectives
	Threats to Validity
	Conclusion

