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Abstract—Mobile and general-purpose robots increasingly sup-
port our everyday life, requiring dependable robotics control soft-
ware. Creating such software mainly amounts to implementing
their complex behaviors known as missions. Recognizing the need,
a large number of domain-specific specification languages has
been proposed. These, in addition to traditional logical languages,
allow the use of formally specified missions for synthesis, verifi-
cation, simulation, or guiding the implementation. For instance,
the logical language LTL is commonly used by experts to specify
missions, as an input for planners, which synthesize the behavior
a robot should have. Unfortunately, domain-specific languages
are usually tied to specific robot models, while logical languages
such as LTL are difficult to use by non-experts.

We present a catalog of 22 mission specification patterns for
mobile robots, together with tooling for instantiating, composing,
and compiling the patterns to create mission specifications. The
patterns provide solutions for recurrent specification problems,
each of which detailing the usage intent, known uses, relationships
to other patterns, and—most importantly—a template mission
specification in temporal logic. Our tooling produces specifica-
tions expressed in the LTL and CTL temporal logics to be used by
planners, simulators, or model checkers. The patterns originate
from 245 realistic textual mission requirements extracted from
the robotics literature, and they are evaluated upon a total of 441
real-world mission requirements and 1251 mission specifications.
Five of these reflect scenarios we defined with two well-known
industrial partners developing human-size robots. We validated
our patterns’ correctness with simulators and two real robots.

I. INTRODUCTION

Mobile robots are increasingly used in complex environments
aiming at autonomously realizing missions [1]. The rapid pace
of development in robotics hardware and technology demands
software that can sustain this growth [2]–[5]. Increasingly,
robots will be used for accomplishing tasks of everyday life
by end-users with no expertise and knowledge in computer
science, robotics, mathematics or logics. Providing techniques
that support robotic software development is a major software-
engineering challenge [2], [6]–[10].

The mission describes the high-level tasks the robotic
software must accomplish [11]. Among the different ways of
describing missions that were proposed in the literature [12]–
[18], in this work, we consider declarative specifications [19].
These describe the final outcome the software should achieve—
rather than describing how to achieve it—and are prominently
used in the robotics domain [10], [17], [20]–[28]. Precisely
specifying missions and transforming them into a form useful
for automatic processing are among the main challenges in

engineering robotics software [9], [29]–[32]. On the one hand,
missions should be defined with a notation that is high-level
and user-friendly [11], [33], [34]. On the other hand, to enable
automatic processing, the notation should be unambiguous and
provide a formal and precise description of what robots should
do in terms of movements and actions [35]–[37].

Typically, when engineering robotics software, the missions
are first expressed using natural-language requirements. These
are then specified using domain-specific languages, many of
which have been proposed over the last decades [12]–[14],
[38]. These languages are often integrated with development
environments that are used to generate code that can be executed
within simulators or real robots [15]–[17]. However, these
languages are typically bound to specific types of robots
and support a limited number and type of missions. Other
works, especially coming from the robotics domain, advocate
to formally specify missions in temporal logics [20], [26],
[28], [39]. Unfortunately, defining temporal logic formulae is
complicated. As such, the definition of mission specifications is
laborious and error-prone, as widely recognized in the software-
engineering and robotics communities (e.g., [9], [40]–[42]).

Conceptually, defining a robotic mission entails two prob-
lems. First, ambiguities in mission requirements that prevent
precise and unambiguous specifications must be resolved [38],
[42], [43]. Consider the very simple mission requirement “the
robot shall visit the kitchen and the office.” This can be
interpreted as “visit the kitchen” and also that at some point
the robot should “visit the office” or visit “the kitchen and
the office in order.” This highlights the ambiguity in natural
language requirements formulation, and common mistakes may
be introduced when diverse interpretations are given [37], [44]–
[46]. Second, creating specifications that correctly capture
requirements is hard and error prone [9], [40]–[42]. Assume
that the correct intended behavior requires that “the kitchen
and the office are visited in order,” which is a common
mission specification problem [47], [48]. When transforming
this requirement into a precise mission specification, an expert
might come up with the following formula in temporal logic:

φ1 = F
(
(r in l1) ∧ F(r in l2)

)
,

where r in l1 and r in l2 signify that robot r is in the kitchen
and office, respectively, and F denotes finally. Now, recall that
the actual requirement is that the robot reaches the kitchen
before the office. Unfortunately, the logical formula still admits
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that the robot reaches the office before entering the kitchen,
which may be an unintended behavior. Mitigating this problem
requires defining additional behavioral constraints. A correct
formula, among others, is the following:

φ2 = φ1 ∧
((
¬(r in l2)

)
U (r in l1)

)
,

where U stands for until. The additional constraint requires
the office to not be visited before the kitchen, recalling
a specification pattern for temporal logics known as the
absence pattern [49]. Rather than conceiving such specifications
recurrently in an ad hoc way with the risk of introducing
mistakes, engineers could re-use validated solutions to existing
mission requirements.

Specification patterns are a popular solution to the specifica-
tion problem. While precise behavioral specifications in logical
languages enable reasoning about behavioral properties [50],
[51], specification is hard and error prone [52], [53]. The
problem is exacerbated, since practitioners are often unfamiliar
with the intricate syntax and semantics of logical languages [49].
For instance, Dwyer et al. [49] introduced patterns for safety
properties, later extended by Grunske [54] and Konrad et
al. [55] to address real-time and probabilistic quality properties.
Autili et al. [56] consolidated and organized these patterns
into a comprehensive catalog. Bianculli et al. [57] applied
specification patterns to the domain of Web services. All
these patterns provide template solutions that can be used
to specify the respective properties. However, none of these
pattern catalogs focuses on the robotic software domain to
solve the mission specification problem.

We propose a pattern catalog and supporting tooling that
facilitates engineering missions for mobile robots, which
implements the original, high level idea that we had recently
presented [58]. We focus on robot movement as one of the
major aspects considered in the robotics domain [59]–[61], as
well as on how robots perform actions as they move within their
environment. For each pattern we provide usage intent, known
uses, relationships to other patterns, and—most importantly—a
template mission specification in temporal logic. The latter
relies on LTL and CTL as the most widely used formal
specification languages in robotics [10], [17], [20]–[28]. The
catalog has been produced by analyzing 245 natural-language
mission requirements systematically retrieved from the robotics
literature. From these requirements we identified recurrent
mission specification problems and conceived solutions were
organized as patterns in a catalog. Our patterns provide a
formally defined vocabulary that supports robotics developers
in defining mission requirements. Relying on the usage of
the pattern catalog as a common vocabulary allows mitigating
ambiguous natural language formulations [41]. Our patterns
also provide validated mission specifications for recurrent
mission requirements, facilitating the creation of correct mission
specifications [27].

We implemented the tool PsAlM (Pattern bAsed Mission
specifier) [62] to further support developers in rigorous mission
design. PsAlM allows (i) specifying a mission requirement
through a structured English grammar, which uses patterns

as basic building blocks and operators that allow composing
these patterns into complex missions, and (ii) automatically
generating specifications from mission requirements. PsAlM
is robot-agnostic and integrated with: Spectra [63] (a robot
development environment), a planner [26], NuSMV [64] (a
model checker), and Simbad [65] (a simulator for education
and research). The pattern catalog and the PsAlM tool are
available in an online appendix [66].

We evaluated the benefits obtained by the usage of our
pattern support in rigorous and systematic mission design.
We collected 441 mission requirements in natural language:
436 obtained from robotic development environments used by
practitioners (i.e., Spectra [63] and LTLMoP [39], [42]), and
five defined in collaboration with two well-known robotics
companies developing commercial, human-size service robots
(BOSCH and PAL Robotics). We show that most of the mission
requirements were ambiguous, expressible using the proposed
patterns, and that the usage of the patterns reduces ambiguities.
We then evaluated the coverage of mission specifications. We
collected 1229 LTL and 22 CTL mission specifications, from
robotic development environments used by practitioners (i.e.,
Spectra [63] and LTLMoP [39], [42]) and research publications
(i.e., [67]) and show that almost all the specifications can be
obtained using the proposed patterns (1154 over 1251). We also
generated the specifications for the five mission requirements
defined in collaboration with the two robotic companies and
fed them into an existing planner. The produced plans were
correctly executed by real robots, showing the benefits of the
pattern support in real scenarios.

To ensure the correctness of the proposed patterns we
manually inspected their template mission specifications. We
additionally tested patterns correctness on a set of 12 randomly
generated models representing buildings where the robot is
deployed. We considered ten mission requirements (each
obtained by combining three patterns), converted the mission
requirements into LTL mission specifications and used those to
generate robots’ plans. We used the Simbad [65] simulator, to
verify that the plans satisfied the intended mission requirement.
We subsequently generated both LTL and CTL specifications
from the considered mission requirements. We verified that
the same results are obtained when they are checked on the
randomly generated models, confirming the correspondence
among the CTL and LTL specifications.

II. BACKGROUND

In this section, we present the terminology used in the
remainder and introduce the temporal logics LTL and CTL we
used for defining the patterns’ template solutions.

Recall that for communication and further refinement, the
requirements of a software system are typically expressed
in natural language or informal models. Refining these re-
quirements into more formal representations avoids ambiguity,
allowing automated processing and analysis. Such practices
also emerged in the robotics engineering domain.
• Mission Requirement: a description in a natural language
or in a domain-specific language of the mission (also called
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“task”) the robots must perform [20], [38], [43], [68].
• Mission Specification: a formulation of the mission in a
logical language with a precise semantics [21]–[23], [26]–
[28].
• Mission Specification Problem: the problem of generating a
mission specification from a mission requirement.
• Mission Specification Pattern: a mapping between a recurrent
mission-specification problem to a template solution and a
description of the usage intent, known uses, and relationships
to other patterns.
• Mission Specification Pattern Catalog: a collection of
mission specification patterns organized in a hierarchy aiding
at browsing and selecting patterns, in order to support decision
making during mission specification.

We consider LTL (Linear Temporal Logic) [69] and CTL
(Computation Tree Logic) [70], since they are commonly used
to express mission specifications in the robotic domain and are
utilized extensively by the community (e.g., [10], [17], [20]–
[28]). A temporal logic specification can be used for several
purposes, such as (i) for producing plans through the use of
planners, (ii) for analysing the mission satisfaction though the
use of model checkers, and (iii) to design a robotic application.

We now briefly recall the LTL and CTL syntax and semantics.
Let π be a set of atomic propositions, LTL’s syntax is the
following:

(LTL) φ ::= τ | ¬φ | φ ∨ φ | X φ | φ U φ where τ ∈ π.

The semantics of LTL is defined over an infinite sequence
of truth assignments to the propositions π. The formula X φ
expresses that φ is true in the next position in a sequence, and
the formula φ1 U φ2 expresses the property that φ1 is true
until φ2 holds.
CTL’s syntax is the following:

(CTL) φ := τ | ¬φ | φ ∨ φ | ∃Φ | ∀Φ, where
Φ := X φ | φU φ and τ ∈ π.

CTL allows the specification of properties that predicate on
a branching sequence of assignments. Specifically, when a
position of a sequence has several successors, CTL enables the
specification of a property that must hold for all or one of the
paths that start from that position. For this reason, CTL includes
two types of formulae: state formulae that must hold in one
position of the sequence and path formulae that predicate on
paths that start from a position. The operator ∀ (resp. ∃) asserts
that φ must hold on all paths (resp. on one path) starting from
the current position, while X and U are defined as for LTL.

III. METHODOLOGY

We derived our pattern catalog in three main steps.
Collection of Mission Requirements. We collected mission

requirements from scientific papers in the field of robotics.
We additionally considered the software engineering literature,
but noted a general absence of robotic mission specifications.
We chose major venues based on consultation with domain
experts and by considering their impact factor. Specifically, we
analyzed mission specifications published in the four major [71]

Table I
PAPERS AND (REQUIREMENTS) ANALYZED PER VENUE AND YEAR

Robotics Venue 20
17

20
16

20
15

20
14

20
13

To
ta

l

Intl. Conf. Robotics & Autom. 9(14) 16 (11) 17 (18) 27 (22) 16 (15) 85 (80)
Intl. J. of Robotics Research 4(8) 13 (12) 12 (11) 13 (8) 17 (12) 59 (51)
Trans. on Robotics 2(6) 12 (9) 5 (1) 8 (2) 4 (2) 31 (20)
Intl. Conf. on Int. Robots & Sys. 10(23) 55 (26) 13 (8) 20 (16) 33 (21) 131 (94)

robotics venues over the last five years, in line with similar
studies for pattern identification [49], [54], [55]. We analyzed
all papers published within a venue with two inclusion criteria
(considered in order): (i) the paper title implies some notion
of robotic movement-related concept, (ii) the paper contains
at least one formulation of a mission requirement involving a
robot that concerns movement. When the paper contained more
than one mission requirement, each was considered separately.

Altogether we obtained 306 papers, through which, matching
our inclusion criteria, we obtained 245 mission requirements.
Table I shows the venues included in our analysis, together with
the number of scientific publications and mission requirements
obtained per year. The considered software engineering venues
(ICSE, FSE, and ASE) are not present, since they did not
contain any paper matching the inclusion criteria.

Identification of Mission Specification Problems. We
identified these problems as follows.

(STEP.1) We divided the collected mission requirements
among two of the authors, who labeled them with keywords
that describe the mission specification problems they describe.
For example, the mission requirement “The robot has to
autonomously patrol the site and measure the state of valve
levers and dial gauges at four checkpoints in order to decide if
some machines need to be shut down” (occuring in Schillinger
et al. [72]) was associated with the keywords “patrol,” since
the robot has to patrol the site, and “instantaneous reaction,”
since when a valve is reached its level must be checked.

(STEP.2) We created a graph structure representing semantic
relations between keywords. Each keyword is associated with a
node of the graph structure. Two nodes were connected if their
keywords identify two similar mission specification problems.
For example, the keywords “visit” and “reach” are related since
in both cases the robot has to visit/reach a location.

(STEP.3) Since our interest was not a mere classification
of actions and movements that are executed by a robots, but
rather detecting mission specification problems that concern
how actions and movements are executed by a robot behavior
over time, nodes that contain keywords that only refer to actions
are removed (e.g., balance).

(STEP.4) Nodes that were connected through edges and con-
tained keywords that identify to the same mission specification
problem, e.g., visit and reach, were merged.

(STEP.5) We organized the mission specification problems
into a catalog represented through a tree structure that facilitates
browsing among mission specification problems.

The material produced in these steps can be found in our
online appendix [66].
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Robotic Missions Specification Patterns Avoidance/
Invariant

Conditional/Limited
Past

avoidance

Global
avoidanceFuture

avoidance

Restricted

Lower
Restricted
Avoidance

Exact
Restricted
Avoidance

Upper
Restricted
Avoidance

Trigger

WaitReaction

Instant.
Reaction

Delayed
Reaction

Fast
Reaction

Bind

Bound
Reaction

Bound
Delay

Core Movement Patterns

Coverage

Visit Sequenced
Visit

Ordered
Visit

Strict
Ordered

Visit

Fair
Visit

Surveillance

Patrolling Sequenced
Patrolling

Ordered
Patrolling

Strict
Ordered

Patrolling

Fair
Patrolling

Figure 1. Mission specification pattern catalog. Filled nodes: patterns, non-filled nodes: categories.

Pattern Formulation. We formulated patterns by following
established practices in the literature [49], [54], [56]. A pattern
is characterized by (i) a name; (ii) a statement that captures the
pattern intent (i.e., the mission requirement); (iii) a template
instance of the mission specification in LTL and CTL; (iv)
variations describing possible minor changes that can be applied
to the pattern; (v) examples of known uses; (vi) relationships
of the pattern to others and; (vii) occurrences of the pattern
in literature. For each LTL pattern we also designed a Büchi
Automaton (BA) that unambiguously describes the behaviors
of the system allowed by the mission specification. The
mission specification was designed by consulting specifications
encoding requirements already present in the papers surveyed,
by crosschecking them, and consulting specification patterns
already proposed in the software-engineering literature [56]. If
the proposed specification was related (or corresponded) with
one of an already existing pattern, we indicated this in the
relationships of the pattern to others, meaning that the pattern
presented in literature is useful also to solve the identified
mission specification problem.

IV. MISSION SPECIFICATION PATTERNS

In this section, we present our catalog of mission specification
patterns and briefly present one of them (Section IV-A). We also
present PsAlM, a tool that supports developers in systematic
mission design. PsAlM supports the description of mission
requirements through the proposed patterns and the automatic
generation of mission specifications (Section IV-B).

A. Mission Specification Pattern Catalog

Our catalog of robotic mission specification patterns comprises
22 patterns organized into a pattern tree as illustrated in Fig. 1.
Leaves of the tree represent mission specification patterns.
Intermediate nodes facilitate browsing within the hierarchy and
aid pattern selection and decision making. Patterns identified
by following the procedure described in Sec. III are graphically
indicated with a solid border.

Due to space limits, we provide a high-level description
of all patterns identified, examples of application, and the
corresponding LTL mission specifications. The interested reader
may refer to our online appendix [66], which contains additional

examples, occurrences of patterns in the literature, relations
among the patterns and additional CTL mission specifications.

Preliminaries. To aid comprehension of behavior and
facilitate precise pattern definitions, we introduce the following
notation. Given a finite set of locations L = {l1, l2, . . . , ln}
and robots R = {r1, r2, . . . , rn}, PL = {rx in ly |
rx ∈ R and ly ∈ L} is a set of location propositions, each
indicating that a robot rx is in a specific location ly of the
environment. Given a finite set of conditions of the environment
C = {c1, c2, . . . , cm}, we indicate as PE = {s1, s2, . . . , sm}
a set of propositions such that si ∈ PE is true if and only if
condition ci holds. Given a finite set of actions that the robots
can perform A = {a1, a2, . . . , am}, we indicate as PA =
{rx exec ay | rx ∈ R and ay ∈ A} a set of propositions such
that rx exec ay is true if and only if action ay is performed
by robot rx. We define the set of propositions M of a robotic
application as PL∪PE ∪PA. A trace is an infinite sequence
Mx → My → Mz . . . where Mx,My,Mz ⊆ M indicate a
trace in which Mz holds after My , and My holds after Mx. For
example, {r1 in l1} → {r1 in l2, c1} → {c2, r2 exec a1} . . .
is a trace where the element in position 1 of the trace indicates
that the robot r1 is in location l1, then the element in position
2 indicates that the robot r1 is in location l2 and condition c1
holds (indicating, for example, that an obstacle is detected), and
then the element in position 3 indicates that condition c2 holds
and robot r2 is executing action a1. In the following, with a
slight abuse of notation, when a set is a singleton we will omit
brackets. We use the notation (Mx → . . . → My)ω, where
Mx, . . . ,My ⊆ M , to indicate a sequence Mx → . . . → My

that occurs infinitely. We use the notation l# to indicate any
location, e.g., r1 in l1 → r1 in l# → r1 in l2 indicates
that a robot r1 visits location l1, afterwards any location,
and then location l2. We use the notation l#\K , where
K ⊂ M , to indicate any possible location not in K, e.g.,
r1 in l1 → r1 in l#\{l3} → r1 in l2 indicates that r1 visits
l1, then any location except l3 is visited, and finally l2.

Patterns. Patterns are organized in three main groups –
core movement (Table II), triggers (Table III), and avoidance
(Table III), explained in the following. For simplicity, in
Tables II and III, we assume that a single robot is considered
during the mission specification and we use the notation lx as
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Table II
CORE MOVEMENT PATTERNS

Description Example Formula (l1, l2, . . . are location propositions)

Vi
si

t Visit a set of locations in an unspecified
order.

Locations l1, l2, and l3 must be visited. l1 → l4 → l3 → l1 → l4 →
l2 → (l#)ω is an example trace that satisfies the mission requirement.

n∧
i=1
F(li)

Se
qu

en
ce

d
Vi

si
t

Visit a set of locations in sequence, one
after the other.

Locations l1, l2, l3 must be covered following this sequence. The trace l1 →
l4 → l3 → l1 → l4 → l2 → (l#\3)

ω violates the mission since l3 does
not follow l2. The trace l1 → l3 → l1 → l2 → l4 → l3 → (l#)ω satisfies
the mission requirement.

F(l1 ∧ F(l2 ∧ . . .F(ln)))

O
rd

er
ed

Vi
si

t

Sequence visit does not forbid to visit
a successor location before its predeces-
sor, but only that after the predecessor
is visited the successor is also visited.
Ordered visit forbids a successor to be
visited before its predecessor.

Locations l1, l2, l3 must covered following this order. The trace l1 → l3 →
l1 → l2 → l3 → (l#)ω does not satisfy the mission requirement since l3
preceeds l2. The trace l1 → l4 → l1 → l2 → l4 → l3 → (l#)ω satisfies
the mission requirement.

F(l1 ∧ F(l2 ∧ . . .F(ln)))
n−1∧
i=1

(¬li+1)U li

St
ri

ct
O

rd
er

ed
Vi

si
t

Ordered visit pattern does not avoid a
predecessor location to be visited mul-
tiple times before its successor. Strict
ordered visit forbids this behavior.

Locations l1, l2, l3 must be covered following the strict order l1, l2, l3. The
trace l1 → l4 → l1 → l2 → l4 → l3 → (l#)ω does not satisfy the
mission requirement since l1 occurs twice before l2. The trace l1 → l4 →
l2 → l4 → l3 → (l#)ω satisfies the mission requirement.

F(l1 ∧ F(l2 ∧ . . .F(ln)))
n−1∧
i=1

(¬li+1)U li

n−1∧
i=1

(¬li)U(li ∧ X (¬li U(li+1)))

Fa
ir

Vi
si

t

The difference among the number of
times locations within a set are visited
is at most one.

Locations l1, l2, l3 must be covered in a fair way. The trace l1 → l4 →
l1 → l3 → l1 → l4 → l2 → (l#−{1,2,3})

ω does not perform a fair
visit since it visits l1 three times while l2 and l3 are visited once. The trace
l1 → l4 → l3 → l1 → l4 → l2 → l2 → l4 → (l#\{1,2,3})

ω performs
a fair visit since it visits locations l1, l2, and l3 twice.

n∧
i=1
F(li)

n∧
i=1
G(li → X ((¬li)W l(i+1)%n))

Pa
tr

ol
lin

g Keep visiting a set of locations, but not
in a particular order.

Locations l1, l2, l3 must be surveilled. The trace l1 → l4 → l3 → l1 →
l4 → l2 → (l2 → l3 → l1)

ω ensures that the mission requirement is
satisfied. The trace l1 → l2 → l3 → (l1 → l3)

ω represents a violation,
since l2 is not surveilled.

n∧
i=1
G F(li)

Se
qu

en
ce

d
Pa

tr
ol

lin
g Keep visiting a set of locations in se-

quence, one after the other.
Locations l1, l2, l3 must be patrolled in sequence. The trace l1 → l4 →
l3 → l1 → l4 → l2 → (l1 → l2 → l3)

ω satisfies the mission requirement
since globally any l1 will be followed by l2 and l2 by l3. The trace l1 →
l4 → l3 → l1 → l4 → l2 → (l1 → l3)

ω violates the mission requirement
since after visiting l1, the robot does not visit l2.

G(F(l1 ∧ F(l2 ∧ . . .F(ln))))

O
rd

er
ed

Pa
tr

ol
lin

g Sequence patrolling does not forbid to
visit a successor location before its pre-
decessor. Ordered patrolling ensures that
(after a successor is visited) the suc-
cessor is not visited (again) before its
predecessor.

Locations l1, l2, and l3 must be patrolled following the order l1, l2, and l3.
The trace l1 → l4 → l3 → l1 → l4 → l2 → (l1 → l2 → l3)

ω violates
the mission requirement since l3 precedes l2. The trace l1 → l1 → l2 →
l4 → l4 → l3 → (l1 → l2 → l3)

ω satisfies the mission requirement

G(F(l1 ∧ F(l2 ∧ . . .F(ln))))
n−1∧
i=1

(¬li+1)U li

n∧
i=1
G(l(i+1)%n → X ((¬l(i+1)%n)U li))

St
ri

ct
O

rd
er

ed
Pa

tr
ol

lin
g

Ordered patrolling pattern does not
avoid a predecessor location to be vis-
ited multiple times before its successor.
Strict Ordered Patrolling ensures that,
after a predecessor is visited, it is not
visited again before its successor.

Locations l1, l2, l3 must be patrolled following the strict order l1, l2, and
l3. The trace l1 → l4 → l1 → l2 → l4 → l3 → (l1 → l2 → l3)

ω

violates the mission requirement since l1 is visited twice before l2. The trace
l1 → l4 → l2 → l4 → l3 → (l1 → l2 → l3)

ω satisfies the mission
requirement.

G(F(l1 ∧ F(l2 ∧ . . .F(ln))))
n−1∧
i=1

(¬li+1)U li

n∧
i=1
G(l(i+1)%n → X ((¬l(i+1)%n)U li))

n−1∧
i=1
G((li)→ X (¬li U(l(i+1)%n)))

Fa
ir

Pa
tr

ol
lin

g Keep visiting a set of locations and
ensure that the difference among the
number of times locations within a set
are visited is at most one.

Locations l1, l2, and l3 must be fair patrolled. The trace l1 → l4 → l3 →
l1 → l4 → l2 → (l1 → l2 → l1 → l3)

ω violates the mission requirements
since the robot patrols l1 more than l2 and l3. The trace l1 → l4 → l3 →
l4 → l2 → l4 → (l1 → l2 → l3)

ω satisfies the mission requirement since
locations l1, l2, and l3 are patrolled fairly.

n∧
i=1
G(F(li))

n∧
i=1
G(li → X ((¬li)W l(i+1)%n))

shortcut for r1 in lx. The examples assume that the environment
is made by four locations, namely l1, l2, l3, and l4.

Core movement patterns. How robots should move within
an environment can be divided in two major categories
representing locations’ coverage and locations’ surveillance.
Coverage patterns require a robot to reach a set of locations of
the environment. Surveillance patterns require a robot to keep
reaching a set of locations of the environment.

Avoidance patterns. Robot movements may be constrained
in order to avoid occurrence of some behavior (Table III).
Avoidance may reflect a condition or be a bound to the

occurrence of some event. Conditional avoidance generally
holds globally (i.e., for the entire behavior) and applies when
avoidance of locations or obstacles is sought that depends on
some condition. For example, a cleaning robot may avoid
visiting locations that have been already cleaned. In the
restricted avoidance case, avoidance does not hold globally
but accounts for a number of occurrences of an avoidance case.
Depending on the number of occurrences being a maximum,
minimum or exact number, upper, exact or lower restricted
avoidance is yielded. For example, a cleaning robot may avoid
cleaning a room more than three times.
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Table III
AVOIDANCE AND TRIGGER PATTERNS.

Description Example Formula

Past
avoidance

A condition has been ful-
filled in the past.

If the robot enters location l1, then it should have not visited location l2 before.
The trace l3 → l4 → l1 → l2 → l4 → l3 → (l2 → l3)

ω satisfies the
mission requirement since location l2 is not entered before location l1.

(¬(l1))U p, where l1 ∈ L and p ∈M

Global
avoidance

An avoidance condition
globally holds through-
out the mission.

The robot should avoid entering location l1. Trace l3 → l4 → l3 → l2 →
l4 → l3 → (l3 → l2 → l3)

ω , satisfies the mission requirement since the
robot never enters l1.

G(¬(l1)), where l1 ∈ L

Future
avoidance

After the occurrence of
an event, avoidance has
to be fulfilled.

If the robot enters l1, then it should avoid entering l2 in the future. The trace
l3 → l4 → l3 → l1 → l4 → l3 → (l3 → l2 → l3)

ω does not satisfy
the mission requirement since l2 is entered after l1.

G((c)→ (G(¬(l1)))), where c ∈M and l1 ∈ PL

Upper
Rest.
Avoidance

A restriction on the max-
imum number of occur-
rences is desired.

A robot has to visit l1 at most 3 times. The trace l1 → l4 → l1 → l3 →
l1 → l4 → l1 → (l3)

ω violates the mission requirement since l1 is visited
four times. The trace l4 → l3 → l1 → l2 → l4 → (l3)

ω satisfies the
mission requirement.

¬F(l1 ∧ X (F(l1 ∧ . . .X (F(l1)︸ ︷︷ ︸
n

)))), where l1 ∈ L

Lower
Rest.
Avoidance

A restriction on the min-
imum number of occur-
rences is desired.

A robot to enter location l1 at least 3 times. The trace l4 → l3 → l2 →
l2 → l4 → (l3)

ω violates the mission requirement since location 1 is never
entered. The trace l1 → l4 → l3 → l1 → l4 → l1 → (l3)

ω satisfies the
mission requirement.

F(l1 ∧ X (F(l1 ∧ . . .X (F(l1)︸ ︷︷ ︸
n

)))), where l1 ∈ L

Exact
Rest.
Avoidance

The number of occur-
rences desired is an exact
number.

A robot must enter location l1 exactly 3 times. The trace l4 → l3 → l2 →
l2 → l4 → (l3)

ω violates the mission requirement. The trace l1 → l4 →
l3 → l1 → l4 → l1 → (l3)

ω satisfies the mission requirement since
location l1 is entered exactly 3 times.

(¬(l1))U(l1 ∧ (X ((¬l1)U(l1 . . . ∧ (X ((¬l1)U(l1︸ ︷︷ ︸
n

∧(X (G(¬l1)))))))))), where l1 ∈ L

Inst.
Reaction

The occurrence of a stim-
ulus instantaneously trig-
gers a counteraction.

When location l2 is reached action a must be executed. The trace l1 → l3 →
{l2, a} → {l2, a} → l4 → (l3)

ω satisfies the mission requirement since
when location l2 is entered condition a is performed. The trace l1 → l3 →
l2 → {l1, a} → l4 → (l3)

ω does not satisfy the mission requirement
since when l2 is reached a is not executed.

G(p1 → p2), where p1 ∈M and p2 ∈ PL ∪ PA

Delayed
Reaction

The occurrence of a stim-
ulus triggers a counterac-
tion some time later

When c occurs the robot must start moving toward location l1, and l1 is
subsequently finally reached. The trace l1 → l3 → {l2, c} → l1 → l4 →
(l3)

ω satisfies the mission requirement, since after c occurs the robot starts
moving toward location l1, and location l1 is finally reached. The trace l1 →
l1 → {l2, c} → l3 → (l3)

ω does not satisfy the mission requirement
since c occurs when the robot is in l2, and l1 is not finally reached.

G(p1 → F(p2)), where p1 ∈M and p2 ∈ PL∪PA

Prompt
Reaction

The occurrence of a stim-
ulus triggers a counterac-
tion promptly, i.e. in the
next time instant.

If c occurs l1 is reached in the next time instant. The trace l1 → l3 →
{l2, c} → l1 → l4 → (l3)

ω satisfies the mission requirement, since after
c occurs l1 is reached within the next time instant. The trace l1 → l3 →
{l2, c} → l4 → l1 → (l3)

ω does not satisfy the mission requirement.

G(p1 → X (p2)), where p1 ∈M and p2 ∈ PL∪PA

Bound
Reaction

A counteraction must be
performed every time
and only when a specific
location is entered.

Action a1 is bound though a delay to location l1. The trace l1 → l3 →
{l2, c} → {l1, a1} → l4 → {l1, a1} → (l3)

ω satisfies the mission
requirement. The trace l1 → l3 → {l2, c} → {l1, a1} → {l4, a1} →
{l1, a1} → (l3)

ω does not satisfy the mission requirement since a1 is
executed in location l4.

G(p1 ↔ p2), where p1 ∈M and p2 ∈ PL ∪ PA

Bound
Delay

A counteraction must be
performed, in the next
time instant, every time
and only when a specific
location is entered

Action a1 is bound to location l1. The trace l1 → l3 → {l2, c} → {l1} →
{l4, 11} → {l1} → {l4, a1} → (l3)

ω satisfies the mission requirement.
The trace l1 → l3 → {l2, c} → {l1} → {l4, 11} → {l1, a1} →
{l4} → (l3)

ω does not satisfy the mission requirement.

G(p1 ↔ X (p2)), where p1 ∈M and p2 ∈ PL∪PA

Wait Inaction is desired till a
stimulus occurs.

The robot remains in location l1 until condition c is satisfied. The trace l1 →
l3 → {l2, c} → l1 → l4 → (l3)

ω violates the mission requirement since
the robot left l1 before condition c is satisfied. The trace l1 → {l1, c} →
l2 → l1 → l4 → (l3)

ω satisfies the mission requirement.

(l1)U(p), where l1 ∈ L and p ∈ PE ∪ PA

Trigger patterns. Robot’s reactive behaviour based on stimuli,
or robot’s inaction until a stimulus occurs are expressed as
trigger patterns in Table III.

As an example, the definition of the Strict Ordered Patrolling
mission specification pattern is presented in Fig. 2. The patterns
in detail are available in our online appendix [66].

B. Specification Pattern Tool Support

We used the proposed pattern catalog to express robotic
missions requirements and to automatically generate their
mission specifications. To support developers in mission design
we implemented the tool PsAlM [62], which allows creating
complex mission requirements by composing patterns with

simple operators. PsAlM transforms mission requirements (i.e.,
composed patterns) into mission specifications in LTL or CTL.
Figure 3 illustrates the components of PsAlM.

PsAlM provides a GUI 1 that allows the definition of
robotic missions requirements through a structured English
grammar, which uses patterns as basic building blocks and
AND and OR logic operators to compose these patterns. The
structured English grammar and the PsAlM tool are provided in
our online appendix [66]. The SE2PT component extracts from
a mission requirement the set of patterns that are composed
through the AND and OR operators 2 . The PT2LTL 3 and
PT2CTL 4 components automatically generate LTL and CTL
specifications from these patterns.
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Name: Strict Ordered Patrolling
Intent: A robot must patrol a set of locations following a strict sequence ordering. Such locations can be, e.g., areas in a building to be surveyed.
Template: The following formula encodes the mission in LTL for n locations and a robot r (% is the modulo arithmetic operator):

n∧
i=1

G(F(l1 ∧ F(l2 ∧ ...F(ln))))
n−1∧
i=1

((¬li+1) U li)
n∧

i=1
G(l(i+1)%n → X ((¬l(i+1)%n) U li))

Example with two locations.

G(F(l1 ∧ F(l2))) ∧ ((¬l2) U l1) ∧ G(l2 → X ((¬l2) U l1)) ∧ G(l1 → X ((¬l1) U l2))

where l1 and l2 are expressions that indicate that a robot r is in locations l1 and l2, respectively.
Variations: A developer may want to allow traces in which sequences of consecutive l1 (l2) are allowed, that is strict ordering is applied on
sequences of non consecutive l1 (l2). In this case, traces in the form l1 → (→ l1 → l1 → l3 → l2)ω are admitted, while traces in the form
l1 → (→ l1 → l3 → l1 → l2)ω are not admitted. This variation can be encoded using the following specification:

G(F(l1 ∧ F(l2))) ∧ ((¬l2) U l1) ∧ G((l2 ∧ X (¬l2)) → X ((¬l2) U l1)) ∧ G((l1 ∧ X (¬l1)) → X ((¬l1) U l2))

This specification allows for sequences of consecutive l1 (l2) since the left side of the implication l1 ∧X (¬l1) (l2 ∧X (¬l2)) is only triggered when l1
(l2) is exited.
Examples and Known Uses: A common usage example of the Strict Ordered Patrolling pattern is a scenario where a robot is performing surveillance
in a building during night hours. Strict Sequence Patrolling and Avoidance often go together. Avoidance patterns are used to force robots to avoid
obstacles as they guard a location. Triggers can also be used in combination with the Strict Sequence Patrolling pattern to specify conditions upon which
Patrolling should start or stop.
Relationships: The Strict Ordered Patrolling pattern is a specialisation of the Ordered Patrolling pattern, forcing the strict ordering.
Occurrences: Smith et. al. [73] proposed a mission specification forcing a robot to not visit a location twice in a row before a target location is reached.

Figure 2. The Strict Ordered Patrolling pattern
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Figure 3. Main components of the PsAlM tool

The produced LTL specifications can be used in different
ways – three possible usages are presented in Fig. 3. The
LTL formulae are (i) fed into an existing planner and used to
generate plans that satisfy the mission specification 5 ; (ii)
converted into Deterministic Büchi automata used as input to
the widely used Spectra [63] robotic application modeling
tool 6 ; and (iii) converted into the NuSMV [64] input
language to be used as input for model checking 7 . The
plans produced using the planner are (i) used as inputs by the
Simbad [65] simulation package 10 , which is an autonomous
robot simulation package for education and research; and
(ii) performed by actual real robots 9 , as also illustrated
in the following section. Produced CTL specifications are also
converted into the NuSMV [64] input language to be used as

input for model checking 7 .

V. EVALUATION

Our evaluation addressed the following two questions. RQ1:
How effective is the pattern catalog in capturing mission
requirements and producing mission specifications? RQ2: Are
the proposed mission specifications correct?

Coverage of Real-World Missions (RQ1). We investigated
(i) how the pattern catalog supports the specification of
mission requirements and (ii) how the pattern catalog reduces
ambiguities in mission requirements.

Exp1. We checked how the pattern catalog supports the
formulation of mission requirements (and the generation of
mission specifications) in real-world robotic scenarios. To this
end, we defined five scenarios (Table IV) in collaboration with
our industrial partners (BOSCH and PAL Robotics).

The pattern catalog supported the creation of mission
requirements using the patterns listed in Table IV for the
different scenarios. In all the scenarios, PsAlM allowed the
automatic creation of LTL mission specifications from the
mission requirements without any human intervention. The
mission specifications were then executed by the robots by
relying on existing planners (see Fig. 3). Videos of the robots
performing the described missions are available in our dedicated
website [66]. The pattern catalog effectively supports the
creation of mission requirements and specifications in realistic,
industry-sourced scenarios.

Exp2. We collected mission requirements in natural language
from available requirements produced from Spectra [63] and
LTLMoP [39], [42]. Spectra is a tool that supports the design
of the robotic applications. LTLMoP is a software package
designed to assist in the development, implementation, and
testing of high-level robot controllers. We checked how the
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Table IV
MISSION SPECIFICATION PATTERNS FOR Exp1. LABELS SC1, SC2, . . . SC5 IDENTIFY THE CONSIDERED SCENARIOS.

SC Description Patterns

SC1 A robot is deployed within a supermarket and reports about the absence of sold items within a set of locations (i.e. l1, l2, l3, and l4).
Furthermore, if in location l4 (where water supplies are present) a human is detected, it has to perform a collaborative grasping action and
help the human in placing new water supplies.

Ordered Patrolling,
Instantaneous Reaction

SC2 Three robots are deployed within an hospital environment: a mobile platform (Summit [74]), a manipulator (PA10 [75]) and a mobile
manipulator (Tiago [76]), identified in the following as MP, M and MM, respectively. The robot M is deployed in hospital storage; when
items (e.g., towels) are needed by a nurse or doctors, M has to load them on the MP. MP should reach the location where the nurse is
located. If the item is heavy (e.g., heavy medical equipment), MM should reach the location where the nurse is to help unloading the
equipment. When MP and MM are not required for shipping items they are patrolling a set of locations to avoid unauthorized people
entering restricted areas of the hospital (e.g., radiotherapy rooms).

Patrolling,
Instantaneous Reaction,
Ordered Visit,
Wait

SC3 A robot is developed within a university building to deliver coffee to employees. The robot reaches the coffee machine, uses the coffee
machine to prepare the coffee and delivers it to the employee.

Strict Ordered Visit,
Instantaneous Reaction

SC4 A robot is deployed within a shop to check the presence of intruders during night time. It has to iteratively check for intruders and report
on their presence

Patrolling,
Instantaneous Reaction

SC5 A robot is deployed within a company to notify employees in presence of a fire alarm. If a fire is detected, the robot is send to different
areas of the company to ask employees to leave the building.

Visit,
Instantaneous Reaction

Table V
RESULTS OF EXPERIMENT EXP2. LINES CONTAIN THE TOTAL NUMBER OF
MISSION REQUIREMENTS (MR), THE NUMBER OF NOT EXPRESSIBLE (NE)

AND AMBIGUOUS (A) MISSION REQUIREMENTS AND THE NUMBER OF
CASES THAT LEAD TO A CONSENSUS (C) AND NO CONSENSUS (NC).

Spectra Robotic Application

1 2 3 4 5 6 7 8 9 10 11 MP Total

MR 29 2 22 5 1 159 4 32 47 53 74 8 436
NE 3 0 0 0 0 47 0 0 7 1 8 0 66
A 3 0 2 1 0 35 0 10 12 32 7 0 102
C 13 0 11 2 1 29 4 8 11 8 20 5 112
NC 10 2 9 2 0 48 0 14 17 12 39 3 156

Table VI
RESULTS OF EXPERIMENT EXP2. NUMBER OF OCCURRENCES OF EACH

PATTERN IN THE CONSIDERED MISSION REQUIREMENTS.

Pattern Occ Pattern Occ Pattern Occ Pattern Occ Pattern Occ

Visit 25 SeqVisit 1 OrdVisit 1 InstReact 127 GlobAvoid 25
PastAvoid 60 DelReact 50 Wait 3 FutAvoid 48 SeqVisit 1
StrictOrdPat 1 OrdVisit 1 ExactRest 1

pattern catalog may have supported developers in the definition
of the mission requirements.

In the case of Spectra, we used the Spectra files to extract
mission requirements for robotic systems. In total, 11 robotic ap-
plications were considered. Note that mission requirements are
realistic since they were finally executed with real robots [77].
We automatically extracted 428 mission requirements from
the Spectra file. The number of mission requirements (MR)
per robotic application is reported in Table V. In the case of
LTLMoP, 8 requirements were extracted from the corresponding
research papers [39], [42] (Table V MP column).

Each mission requirement was independently analyzed by
two of the authors. The authors checked whether it is possible to
express the mission requirement using the mission specification
patterns. If one the authors stated that the requirement is
not expressible the requirement is marked as not expressible
(NE). The number of not expressible mission requirements

is presented in Table VI under the column with header NE.
If at least one of the authors found the mission requirement
is ambiguous she marked it with the flag A. Otherwise, the
mission requirement is labeled with the mission specification
patterns needed to express the mission requirement. Then, the
mission specification patterns used to express the mission re-
quirement are considered. If the authors used the same mission
specification patterns to express the mission requirement, a
consensus is reached. The number of mission requirements
that leads to consensus (resp. no consensus) is indicated in the
row labeled C (resp. NC). The number of occurrences of each
pattern is indicated in Table VI.

The results show that most of the mission requirements
(370 over 436) were expressible using the pattern catalog,
which is a reasonable coverage for pattern catalog usage. The
66 mission requirements that are not covered suggested the
introduction of new patterns identified in Fig. 1 with a dashed
border. It also shows that the pattern catalog is effective in
real case scenarios. In 102 cases the mission requirements
were ambiguous, meaning that different interpretations can
be given to the proposed mission requirement. In these cases,
alternative combinations of patterns have been proposed by
the authors to express the mission requirement. Each of these
alternatives represents a possible way of expressing it in a non-
ambiguous manner. In 156 cases, while the authors judged
that the requirement was not ambiguous, different pattern
combinations were proposed. The combinations of patterns
encode possible ways of expressing the mission requirement
in a non-ambiguous manner.

Exp3. We analyzed the mission specifications contained in
the Spectra examples collected in Exp2. We collected 1216
distinct LTL mission specifications and we analyzed each of
these specifications1. We verified whether it is possible to
obtain the mission specifications starting from the proposed
patterns, by performing the following steps.

1This number differs from the one of Exp2, since some specifications were
not related with a mission requirement in the form of natural language.
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Table VII
RESULTS OF EXPERIMENT EXP3. PATTERN OCCURRENCE IN THE

CONSIDERED MISSION SPECIFICATIONS.

LTL CTL

Pattern Spectra [67] [67]

St
ep

1

Instantaneous reaction 318 0 0
Visit 52 0 0

Patrolling 0 1 0
Strict Ordered Visit 0 9 18

Wait 0 1 2
Avoidance/Invariant 21 0 0

Visit and Instantaneous reaction 18 0 0
Strict Ordered Visit and Global Avoidance 0 0 1

Reaction chain (chain of instantaneous reactions) 15 0 0
Non matching 792 1 1

St
ep

2

Init 127 - -
Fast reaction 379 - -

Binded reaction 36 - -
Binded delay 27 - -

Non matching for past 155 - -
Actual non matching 69 - -

St
ep

3 Fast reaction 103 - -
Binded delay 26 - -

Actual non matching 26 - -

(STEP.1) For each property we automatically checked
whether it was an instance of a mission specification pattern or
a simple combination of mission specification patterns. Results
are shown in Table VII. Among 1216 mission specifications
424 were obtainable from the proposed patterns.

(STEP.2) We considered the properties that did not match any
of the proposed patterns. 127 of these properties are simple
statements on the initial state of the system (no temporal
operator is used), and thus did not match any of the proposed
patterns. 442 formulae concern properties that refer to variation
of the trigger patterns that we have added to the pattern
catalogue. 224 formulae still did not match any of the proposed
patterns. After analysis, 155 among them were expressed using
past temporal operators, which are not used in the mission
specifications proposed in this work. In step 3 we checked
whether these specifications might be reformulated without
the past operators. 69 of these properties, while they can
be rewritten using the proposed patterns, they are written as
complex LTL formulae and thus they do not match any of our
patterns or combination of them.

(STEP.3) We considered the 155 properties expressed using
past temporal operators and we designed mission specifications
for them. We found that 129 of the proposed LTL formulae
match one of the proposed pattern, while 26 are complex LTL
formulae that did not match any of the patterns. Thus, the final
coverage of the proposed pattern catalog is 92%.

We then analyzed 13 mission specifications expressed in
the form of LTL properties considered in [67] and 22 PCTL
properties considered in [67], transformed in CTL by replacing
the probabilistic operator (P) with the universal quantifier (∀).
Given the small number of mission specifications we manually
checked the presence of patterns in the formulae (Step 1 in
Table VII). The results show that the pattern system was able
to generate almost all mission specifications (1154 over 1251).

Table VIII
RESULTS OF EXPERIMENTS Exp4, Exp5 AND Exp6. FOR Exp4 COLUMNS

CONTAIN THE NUMBER OF TIMES A PLAN IS FOUND (>) AND NOT FOUND
(⊥). FOR Exp5 AND Exp6 COLUMNS CONTAIN THE NUMBER OF TIMES THE

MISSION REQUIREMENT IS SATISFIED (>) AND VIOLATED (⊥).

Exp4 Exp5 Exp6

Mission Requirement > ⊥ > ⊥ > ⊥

OrdPatrol,UpperRestAvoid,Wait 2 10 1 11 1 11
FairVisit,ExactRestAvoid∗,DelReact 5 7 0 12 4 8
StrOrdVisit,GlobalAvoid,InstReact 3 9 1 11 1 11

SeqVisit,FutAvoid,BindDel∗ 1 11 0 12 2 10
OrdVisit,PastAvoid,InstReact 3 9 1 11 1 11

Visit,LowRestAvoid,BindReact 3 9 1 11 1 11
StrictOrdPatrol,FutAvoid,Wait 1 11 1 11 1 11
Patrol,LowRestAvoid,InstReact 3 9 1 11 1 11

FairPatrol,ExactRestAvoid∗,DelReact 3 9 0 12 4 8
SeqPatrol,UpperRestAvoid,FastReact∗ 1 11 0 12 2 10

Summary. The pattern catalog is effective in supporting
developers in defining mission requirements and in generating
mission specifications. Exp1 and Exp2 show that the pattern cat-
alog effectively supports the definition of mission requirements.
and that helps in reducing ambiguities in available mission
requirements. Exp1 and Exp3 show that the pattern catalog
effectively supports the generation of mission specifications.
Exp1 shows how the pattern catalog can be used to generate
precise, unambiguous, and formal mission specifications in
industry sourced scenarios.

Correctness of the Patterns (RQ2). To verify the mission
specifications (LTL and CTL formulas) we manually reviewed
them and performed a random testing to confirm that the
specifications do not permit undesired system behaviors that
were not detected during the manual check.

Manual check. We manually inspected instances of the
patterns obtained by fixing the number of locations to be
visited, conditions to be considered etc. For LTL formulae we
used SPOT [78] to generate Büchi automata (BA) encoding the
traces of the system allowed and forbidden by the specification.
We manually inspected the BA of all the proposed patterns.

Random testing. We performed some testing by exploiting a
set of randomly generated models: a widespread technique to
evaluate artifacts in the software engineering community [79]–
[85], also used in the robotic community [20], [86]–[89]. We
generated 12 scenarios representing the structure of buildings
containing 16 locations, where a robot is deployed. The building
has been generated by allocating 12 traversable locations and 4
locations that cannot be crossed, on a 4× 4 matrix. Identifiers
l0, l1, . . . , l11 are randomly assigned to the traversable locations.
In 6 of the 12 scenarios the robot can move among adjacent
cells that are traversable, while it cannot move within not
crossable locations. In the other 6 scenarios the robot can
cross the adjacent cells by respecting the following rules: (i)
it can move from a traversable cell with coordinate [i, j] to a
traversable cell with coordinate [i, j+1] and [i+1, j]; (ii) it can
move from a traversable cell with coordinate [i, j] to another
with coordinate [h, k], where i (resp. h) is the maximum (resp.
minimum) row index of a cell that corresponds to a traversable
location and h (resp. k) is the maximum (resp. minimum)
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column index of the traversalble locations at row i (resp. h).
Conditions and actions are treated by considering whether
a box is present in a location (cond in the following), and
the capability of the robot in changing its color (act in the
following). We randomly select 4 traversable locations in which
cond is true and 4 locations in which act can be performed.

For each scenario we considered different mission require-
ments; each obtained by randomly combining a core movement,
a trigger and an avoidance pattern, and by ensuring that
each pattern is used in at least one mission requirement.
In total we generated 10 mission requirements (Table VIII).
Core movement patterns are parametrized with locations l1, l2.
The upper, exact and lower restricted avoidance patterns are
parametrized by forcing the robot to visit location l3, at most,
exactly, and at least 2 times, respectively. The global avoidance
pattern forces the robot to not visit l3, while the future and
past avoidance force the robot to not visit l3 after and before
condition cond is satisfied, i.e., a room that contains a box is
visited. The wait pattern forces the robot to wait in location
l4 if a box is not present. The other trigger patterns are
parametrized with the action act that must be executed by
the robot in relation with the occurrence of condition cond.
We subsequently performed the following experiments.

Exp4. We generated the LTL specifications of the considered
mission requirements. We (i) negated the LTL specification;
(ii) encoded the specification and the model of the scenario in
NuSMV [64]; (iii) used NuSMV to check whether the models
contained a path that satisfied the mission specification (violates
its negation). If a plan was present we used Simbad [65] to
simulate the robot executing the plan. We verified whether the
results were correct: when we expected a plan to not be present
in the given model, NuSMV was not able to compute it, and,
when a plan was expected to be present it was computed by
NuSMV. We also checked the correctness of the generated plans
using the Simbad simulator. Results confirm the correctness
of the LTL mission specifications. The column labeled with
the > (resp. ⊥) symbol of Table VIII contains the number of
cases in which a plan was (resp. was not) present.

Exp5. We generated LTL and CTL specifications for the
considered mission requirements. We (i) encoded the LTL
and CTL specifications and the model of the scenario in
NuSMV [64]; (iii) we used NuSMV to check whether the
verification of the specifications returned the same results.
Table VIII contains the number of cases in which the mission
requirement was satisfied (>) and not satisfied (⊥). Mission
requirements were generally not satisfied, since for being
satisfied they have to hold on all the paths of the models.
NuSMV always returned the same results for LTL and CTL
specifications confirming the correctness of CTL specifications.

Exp6. We investigated why in several cases the mission
requirement was always not satisfied. In these cases we relaxed
the mission requirements, by removing the patterns marked
with the ∗ symbol in Table VIII. We executed the same steps
of Exp4. Table VIII confirmed that by relaxing the mission
requirements there were cases in which the mission requirement
was actually satisfied. This is a further confirmation that the

mission specifications are correct.

VI. DISCUSSION AND RELATED WORK

We discuss the proposed patterns and present related work.
Methodology. The number of mission requirements analyzed

is in line with other approaches in the field [49], [54]–[57].
These requirements usually come from exemplar scenarios used
to provide evaluation about effectiveness of research-intensive
works. As such, we believe that the scope of the pattern system
is quite wide. Our study is certainly not exhaustive, as (i) formal
specification in robotic application spreads, and (ii) the types
of mission specifications change over time. As shown in the
evaluation, patterns will grow over time as specifications that
do not belong to the catalog are provided.

Patterns. While the presented patterns are mainly conceived
to address needs of robotic mission specification, they are
more generic and can be applied when the need is to specify
some “ordering” among events or action execution. Rather
than predicate on robots reaching a set of actions, coverage
and surveillance patterns may also include propositions that
refer to generic events. In this sense, the proposed patterns
can be considered as an extension of the property specification
patterns [49], [90] that explicitly address different ordering
among the occurrence of a set of events. While in this paper
we proposed a direct encoding in LTL and CTL, they may
also be expressed in terms of standard property specification
patterns. The instantaneous reaction pattern may be obtained
from the response pattern scoped with the global operator.
The precedence chain and the response chains [49], [90] (that
illustrate the 2 cause-1 effect and 1 cause-2 effects chain), can
be composed with the precedence and response patterns to
specify different ordering among a set of events.

Evaluation. The Spectra tool only supports specifications
captured by the GR(1) LTL fragment used to describe three
types of guarantees: initial, safety, and liveness. Initial guar-
antees constraint the initial states of the environment. Safety
guarantees start with the temporal operator G and constraints
the current and next state. Liveness guarantees start with the
temporal operators G F and may not include the X operator.
These constraints justify the prevalence of patterns presented in
Tables VI, VII, and VIII. While the proposed patterns can be
expressed using deterministic Büchi automata (DBA), which
can be translated in GR(1) formulae [28], a manual encoding
of the proposed patterns in GR(1) is complex and error prone.
This is confirmed by the fact that analysis on the standard
property specification patterns that can be expressed in GR(1),
and an automatic procedure to map these patterns on formulae
that are in the GR(1) fragment has been recently conducted [28].
All of the patterns proposed in this work are expressible using
GR(1) formulae, and the automatic procedure presented in [28]
can be integrated in PsAlM to generate Spectra formulae.

Related work. Temporal logic specification patterns are
a well-known solution to support developers in requirement
specification [49], [54]–[56], [91]–[93]. Property specification
patterns use in specific domains have been investigated in
literature, including service-based applications [57], safety [94]
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and security [95]. However, at the best of our knowledge, no
work has considered mission patterns for robotic applications.

Domain Specific Languages (DSLs) [18], [33], [96]–[98]
have been proposed for various purposed including production
and analysis of behaviour descriptions, property verification
and planning. However, features incorporated within DSLs are
usually arbitrarily chosen by relying on the domain-specific
experience of robotic engineers. Instead, specification patterns
presented in this paper are collected from missions encountered
in scientific literature, evaluated in industrial uses, and aim
at supporting a wide range of robotic needs. We believe that
the presented patterns consist of basic building blocks that can
be reused within existing and new robotic DSLs. Moreover,
support for developers on solving the mission specification
problem is also provided in literature by graphical tools that
simplify the specification of LTL formulae [35]–[37]. Our
work is complementary with those; graphical logic mission
specifications can also be integrated within PsAlM.

VII. CONCLUSION

We proposed a pattern catalog for mission specification of
mobile robots. We identified patterns by analyzing mission
requirements that have been systematically collected from
scientific publications. We presented PsAlM, a tool that uses the
proposed patterns to support developers in designing complex
missions. We evaluated (ii) the support provided by the catalog
in the definition of real-world missions; (ii) the correctness of
the mission specifications contained in our pattern catalog.

Future extensions of our mission specification pattern catalog
will consider also time, space, and probability. We will also
investigate the use of spatial logics [99]–[103] to express more
complex spatial robotic behaviours and perform user studies.
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