
High-Level Mission Specification for Multiple Robots

Sergio García
Chalmers | University of Gothenburg

Gothenburg, Sweden
sergio.garcia@gu.se

Patrizio Pelliccione
Chalmers | University of Gothenburg

Gothenburg, Sweden
University of L’Aquila

L’Aquila, Italy
patrizio.pelliccione@gu.se

Claudio Menghi
University of Luxembourg
Luxembourg, Luxembourg
claudio.menghi@uni.lu

Thorsten Berger
Chalmers | University of Gothenburg

Gothenburg, Sweden
thorsten.berger@gu.se

Tomas Bures
Charles University

Prague, Czech Republic
bures@d3s.mff.cuni.cze

Abstract

Mobile robots are increasingly used in our everyday life to au-
tonomously realize missions. A variety of languages has been
proposed to support roboticists in the systematic develop-
ment of robotic applications, ranging from logical languages
with well-defined semantics to domain-specific languages
with user-friendly syntax. The characteristics of both of them
have distinct advantages, however, developing a language
that combines those advantages remains an elusive task. We
present PROMISE, a novel language that enables domain
experts to specify missions on a high level of abstraction for
teams of autonomous robots in a user-friendly way, while
having well-defined semantics. Our ambition is to permit
users to specify high-level goals instead of a series of specific
actions the robots should perform. The language contains a
set of atomic tasks that can be executed by robots and a set of
operators that allow the composition of these tasks in com-
plex missions. The language is supported by a standalone
tool that permits mission specification through a textual and
a graphical interface and that can be integrated within a vari-
ety of frameworks. We integrated PROMISE with a software
platform providing functionalities such as motion control
and planning. We conducted experiments to evaluate the cor-
rectness of the specification and execution of complex robotic
missions with both simulators and real robots. We also con-
ducted two user studies to assess the simplicity of PROMISE.
The results show that PROMISE effectively supports users
to specify missions for robots in a user-friendly manner.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

SLE ’19, October 20ś22, 2019, Athens, Greece

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6981-7/19/10. . . $15.00

https://doi.org/10.1145/3357766.3359535

CCS Concepts · Computer systems organization →
Robotics; · Software and its engineering → Domain

specific languages.

Keywords Multi-robot, domain-specific language, mission
specification

ACM Reference Format:

Sergio García, Patrizio Pelliccione, ClaudioMenghi, Thorsten Berger,

and Tomas Bures. 2019. High-Level Mission Specification for Multi-

ple Robots. In Proceedings of the 12th ACM SIGPLAN International

Conference on Software Language Engineering (SLE ’19), October

20ś22, 2019, Athens, Greece. ACM, New York, NY, USA, 14 pages.

https://doi.org/10.1145/3357766.3359535

1 Introduction

Future robotic applications will include general-purpose
mobile robots that may be configured by end-users to per-
form missions of everyday life, as analyzed by the H2020 Ro-
botics Multi-Annual Roadmap [48]. For example, a user may
want to assign the following mission to a robotic application:
łpatrol a set of locations l1, l2, l3, and l4 for security purposesž
and łraise an alarm whenever an unknown person is found
during night hours.ž This can be performed either program-
matically in a General-Purpose Language (GPL), via Domain-
Specific Languages (DSLs), or by using logical languages
that allow to precisely describe the mission the robotic ap-
plication should achieve [10, 19, 30, 46]. A declarative speci-
fication can be defined in many languages, including formal
temporal logics, as Linear Temporal Logic (LTL) or Compu-
tation Tree Logic (CTL). Those logics are increasingly used
in the research community and are becoming standard tools
for specifying robotic missions as they can be automatically
processed by planners [15, 16, 20, 21, 29, 32, 35, 37, 54, 60].
A planner is a software component that receives as input a
model of the mission specification and derives the sequences
of actions robots must execute. However, writing correct for-
mulae in temporal logic requires knowledge of their syntax
and semantics, which makes mission specification a cumber-
some and error-prone task, even for experts [3, 24].

127

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3357766.3359535
https://doi.org/10.1145/3357766.3359535

SLE ’19, October 20ś22, 2019, Athens, Greece Sergio García, Patrizio Pelliccione, Claudio Menghi, Thorsten Berger, and Tomas Bures

Existing solutions for mission specification do not com-
bine in a convincing way expressiveness, simplicity, and rig-

orousness. Mission specification must be expressive enough
to model a variety of behaviors in the robot’s mission to sup-
port, for instance, recovering after errors: łA robot r grasps
an object o, and if o falls during the action, r shall look for
it and try to grasp o again.ž Programmatic approaches with
GPLs as Python provide enough expressive power to the user,
but they often require specific knowledge from them. In this
light, we see the benefits of an intuitive language tailored to
the domain that aids users to easily define their concerns. Rig-
orous languages ensure that mission specification precisely
and unambiguously represents the mission to be executed.
Among them, those that can be integrated with existing
planners (e.g., temporal logics) often require mathematical
knowledge or are constrained to specific robotic platforms.
Rigorous and expressive solutions such as Petri Nets [56,

61] and Statecharts [4, 27, 52] have been proposed formission
specification, but often require a step-by-step description of
a robot’s mission instead of a high-level description, as we
intend to provide. Robotics companies have also worked on
providing support for mission specification, and almost every
robot model is released with an IDE or framework to sup-
port its software development [31, 38, 40]. However, those
instruments are often platform-dependent, their usage is con-
strained to a limited number of robotic models and therefore,
they provide a limited set of non-customizable features.
This paper presents PROMISE (simPle RObot MIssion

SpEcification), a DSL that 1) offers a middle-ground solu-
tion, supporting the user with a user-friendly syntax while
having well-defined (translational) semantics; 2) enables a
rigorous and precise specification required for the use of
planners, analysis tools, simulators or other modules; 3) al-
lows the specification of complex missions by providing
executable and combinable tasks and operators; and 4) is
platform-independent and highly customizable.

PROMISE builds upon a recently proposed catalog of mis-
sion specification LTL-based patterns [37], ensuring the cor-
rectness of the semantics while at the same time raising
the level of abstraction so as to support roboticists without
knowledge on temporal logics. PROMISE is developed as a
standalone application, but could be integrated with various
tools and platforms. The rigorousness of PROMISE is granted
by the use of LTL as the underlying language used by the
robot’s planner. We evaluate PROMISE in terms of expres-
siveness and simplicity. To validate its expressiveness, we
check how PROMISE effectively supports the specification
of complex missions; specifically, we conducted experiments
with PROMISE in simulation and real-world scenarios. To
validate our DSL’s simplicity and users’ satisfaction level, we
conducted two user studies. We target as (end) users roboti-
cists who may not have broad programming expertise nor
expertise in formal methods and temporal logics.

Organization. Sec. 2 discusses the background and the re-
latedwork. Sec. 3 introduces the researchmethodology. Sec. 4
presents PROMISE. Sec. 5 describes the DSL implementation
and Sec. 6 its evaluation. Sec. 7 concludes with final remarks.

2 Background and Related Work

Behavioral modeling. A wide range of languages and for-
malisms for modeling and reasoning about behaviors has
been developed. Many of these have also been used for de-
scribing the behavior of robots. Specifically, Statecharts [22]
have been successfully applied to describe roboticmissions [4,
27, 52]. Statecharts are an extension of state machines and
state diagrams, with a graphical syntax and formal seman-
tics. This type of diagrams requires a detailed definition of
the steps a robot (or a team of robots) must perform in or-
der to achieve a mission, which may become complicated in
practical cases.
Another formalism is Petri Nets [39], which in the past

have been successfully applied to develop robotic applica-
tions [56, 61]. In particular, Petri Net Plans (PNPs) [61] were
developed to allow developers to describe plans for teams of
robots. Despite their expressive power, PNPs require a pre-
cise definition of every action a robot is requested to perform.

Temporal Logic Languages. Temporal logics, and in par-
ticular LTL and CTL, are being increasingly used by robotics
experts for mission specification [15, 16, 20, 21, 29, 32, 35, 37,
54, 60]. LTL is also widely used due to the variety of existing
planners which take LTL-based models as input [15, 21, 35].
Furthermore, a temporal logic-based specification has other
benefits as allowing users to analyze mission satisfaction
through the use of model checkers. However, manually writ-
ing LTL specifications is complex and error-prone [3, 24]. To
aid users in this process, mission specification patterns [37]
have been recently proposed to automatically generate mis-
sion specification in temporal logics from recurrent mission
specification problems. In our language PROMISE, we re-
fer to those patterns as tasks, since they describe simple
recurrent mission specifications that can be composed to
obtain complex missions. In order to compose such com-
plex missions, we propose a set of operators. The operators
are inspired by Behaviour Trees [26], a mathematical model
of plan execution that allows composing tasks in a modu-
lar fashion through a set of nodes representing tasks and
connections among them.

In summary, both contemporary behavioral modeling and
temporal logic languages have the advantage of coming with
well-defined semantics but, on the other hand, they are rel-
atively low-level and mainly imperative. Still, LTL specifica-
tions are declarative descriptions of what a robot should do,
while Statecharts and PNPs specify the required behavior of
the robot to achieve a certain mission. Consequently, LTL
can be seen as an abstraction over Statecharts and PNPs and
suitable to be implemented as a layer between our DSL and
the low-level actions to be achieved by a robot.

128

High-Level Mission Specification for Multiple Robots SLE ’19, October 20ś22, 2019, Athens, Greece

Domain-Specific Languages. Model-Driven Engineering
(MDE) has been identified [48] as a core technology to sup-
port developers when designing robotic systems. Special
emphasis is given to DSLs, which are required to achieve a
separation of roles in the robotics domain while also improv-
ing composability and system integration, and addressing
non-functional properties [48]. The research community has
already worked in the last years on the use of languages for
the development of robotic software systems [6, 44, 45, 50].
Contemporary DSLs have the advantage of being more

user-friendly and being tailored to the robotics domain. On
the other hand, none of the existing DSLs sufficiently com-
bine expressiveness, simplicity, and rigorousness. For in-
stance, rigorousness is required for certification of robotic
systems, which in turn requires well-defined semantics. We
discuss the combination of expressiveness, simplicity, and
rigorousness in existing DSLs in the remainder of the section.

Mission Specification for Robots. Various DSLs [45] have
been proposed for modeling robotic systems and their mis-
sion. They have also been used to reason on the robot’s
behaviors through automated reasoning techniques such as
simulation, model checking, and theorem proving [38].
Specification of robotic missions using mission specifica-

tion patterns is supported by the PsALM tool [36]. This tool
allows composing mission specification patterns with łand"
and łor" logical operators. PROMISE and its tool support
drastically extend the expressiveness and support provided
by this tool, with complex compositional operators that pave
the usage of the proposed patterns in practical scenarios.

Götz et al. [19] propose NaoText, a rule-based Java-like lan-
guage for specifying collaborative robot applications. Campu-
sano et al. [7] present Live Robot Programming (LRP), which
enables łlive programmingž, i.e., maximizing the feedback
provided to the programmer of the program behavior. With
LRP programmers benefit of a much closer and immediate
connection to the program they are writing, minimizing the
time and effort required. Despite simplifying the specifica-
tion of collaborative tasks with respect to GPLs, the purpose
of both NaoText and LRP is to support programmers, while
we strive to support roboticists (who may not have the same
programming expertise) by promoting our DSL’s simplicity.
The DSL presented by Schwartz et al. [46] represents a

robotic mission as a set of routing elements for moving the
robot between locations; actions can be performed when
the robot reaches waypoints. Conditional branches are used
to add a certain level of flexibility to the modeled missions.
However, the proposed DSL lacks reactive responses to ex-
ternal events between waypoints and does not support other
options apart from if-branchesÐi.e., it lacks expressiveness.
FLYAQ provides a platform and DSLs [5, 10], which aim

at enabling non-technical operators to define and execute

missions for a team of multicopters. FLYAQ has been ex-
tended [13] by providing support for automatically gener-
ating property specification languages. An attempt to gen-
eralize FLYAQ to generic robots has been conducted [8].
These works present a user-friendly language, however, as
discussed for behavioral modeling, the mission specification
becomes more complicated, since the operator is required to
state precisely how the robots should behave (in a higher-
level). Contrarily, our DSL is declarative and the specifier
needs to state only what the goal of the mission is instead of
the steps needed to perform to satisfy the mission.

The MissionLab framework [51], which allows the specifi-
cation and execution of robotic missions, has been extended
by researchers [11, 30]. In the work of MacKenzie et al. [30],
the only task that does not require specific knowledge from
the user is the łassemblagež of robotic skills, whose seman-
tics must be previously defined programmatically by users
with knowledge of C++.

Doherty et al. [11] define a language that allows the gener-
ation of Temporal Action Logic (TAL), which is a high-level
language that supports the specification of actions as pre-
conditions and effects. Differently, in our approach, we used
LTL, which enhances the mission specification expressive-
ness and rigorousness, since it supports the specification of
missions based on the order in which actions occur. This is
different from TAL, in which the specification is reactive, it
uses pre- and post-conditions.

LTLvis [49, 57] uses a graphical specification environment
for LTL specifications. However, even though graphical, the
language is based on LTL operators augmented with loca-
tions that must and must not be visited by a robot. Therefore,
the specifier is requested to know the semantics of LTL. Dif-
ferently, our DSL simplifies the mission specification task
by working at a higher level of abstraction to support users
without this knowledge.

Silva et al. [47] propose an XML dialect that allows the
description of missions to be performed by a team of au-
tonomous vehicles. The missions are defined as high-level
concepts that can be triggered based on conditions of the
environment. The authors define a set of łtriggersž to exe-
cute such high-level concepts of the mission. However, the
mission expressiveness is reduced because trigger types are
limited (e.g., altitude, speed), as opposed to PROMISE, where
events are defined by the user.
Doherty et al. [12] define a task specification language

based on an abstract data structure called łtask specification
treež. This language allows the mission specification based
on a set of nodes that represent sequential and concurrent
action execution. Nevertheless, the language is not designed
for direct creation of LTL specification that can be used as
input by planners. The ambition of our work is to define a
DSL and to automatically generate specifications in LTL.

129

SLE ’19, October 20ś22, 2019, Athens, Greece Sergio García, Patrizio Pelliccione, Claudio Menghi, Thorsten Berger, and Tomas Bures

3 Research Methodology

We followed the Design Science research approach [23] with
the aim of iteratively designing, validating, and improving
the semantics of our language and its implementation. An
overview of our methodology is represented in Fig. 1.

Definition of the DSL. PROMISE stems from the neces-
sity of allowing roboticists to specify missions for a team
of (possibly) heterogeneous robots. It has been defined in
the context of a project [42] in collaboration with two com-
panies: PAL Robotics (PAL) [1] and the Bosch Center of AI
(BCAI) [2], both working in the robotics domain. In this con-
text, we elicited requirements for a mission specification tool
from practitioners and researchersÐe.g., user-friendliness.
We then investigated the current state-of-the-art to assess
the best approach to develop such a tool. This first stage of
our methodology corresponds to the łUnderstand the envi-
ronmentž phase of the framework conceived by Hevner et
al. [23]. Below, we describe how we explored the problem
space by retrieving applicable knowledge and business needs.
DSL and Tool Design. We conceived a prototype of PRO-
MISE and performed demonstrations for: 1) PAL, where two
product managers, and a robotics engineer (13, seven, and
two years of experience, respectively) were involved; and
2) BCAI, to which a senior manager (10 years of experience)
and a Ph.D. student participated. We collected their obser-
vations (e.g., enhance the feedback loop with the user by
generating a natural English file with their specification of
the mission) and applied according changes after experimen-
tation to reach a company-validated version of the DSL.
We then conducted two user studies to continue the it-

erative validation and improvement of PROMISEÐi.e., the
DSL was updated after each study based on the participants’
feedback. The design of both studies is similar: the partici-
pants received a set of tasks to be achieved within a given
time frame and were requested to use a simulator to check
their solutions. After the tasks’ completion, the participants
were asked to submit their results and to fill in a question-
naire. Participants chosen from the University of Gothenburg
(UGOT) are experts in Software Engineering (SE) and the
ones from the University of L’Aquila (UNIVAQ) in SE and
Algorithms. There is no overlapping between the two user
groups. Participants had no expertise in robotics.
Iterative Experimentation. We first conducted an explo-
ratory user study to assess whether our language and its im-
plementation are perceived as simple, user-friendly, and not
error-prone. The participants were nine Ph.D. students from

Understand
environment

Current state-
of-the-art study

Requirements
elicitation

Develop/Build

Prototype
development

Demonstrations

Justify/Evaluate

Real-world and
simulated

experimentation

User studies &
Questionnaires

Contribution to the
Knowledge Base

PROMISE

Current
version

Figure 1. Followed research methodology.

UNIVAQ. For the first study, we distributed an image of a vir-
tual machine (VM) containing Ubuntu 16.04, Eclipse Neon 3.1,
a set of plugins for installing PROMISE, ROS Lunar [41], the
framework implementation of PROMISE, Gazebo [28], and
a set of scripts to ease the user experience. VM’s setup and
usage guidelines were also distributed. Then, we provided a
training session consisting of a lecture of two hours, where
the semantics of LTL, robotic mission patterns, and PROMISE
were explained. The participants were tested right after the
training and we randomly divided the group of nine Ph.D.
students in two groups. Each group was requested to specify
one mission using both LTL and PROMISE, having one hour
for each task (the tasks’ order changed for each group). The
received feedback helped us to design the second user study.
Six participants (five Ph.D. students and one Post-doc)

from UGOT contributed to the second user study, to which
we applied some changes based on our previous experienceÐ
e.g., in the first study, the VM installation was too problem-
atic for many participants, so we decided to conduct the tests
using our computer. This study was focused on the usability
of PROMISE, on how clear was the semantics of each opera-
tor, and on the participants’ experience. We also strove to un-
derstand the differences between the perception of PROMISE
as a language and of its implementation. We provided a 45
minutes seminar for the whole group of participants. During
this seminar, we elaborated on the semantics of each operator
with a set of examples, showed the optimal workflow, and ex-
plained technical details such as setting the operators’ param-
eters. The material provided for this study was a laptop with
the (updated) software used for the first study, an updated
version of the DSL’s guidelines, and a notebook to sketch dur-
ing the test. Each test was conducted individually and was di-
vided into three blocks, having a limit of 30 minutes for each.

The first block consisted of the last stage of training, where
participants were requested to specify four missions with the
help of a trainer to get familiar with the DSL, its framework,
and the simulator. The two other blocks had to be achieved by
the participants without help and consisted of: B1, a set of 4
simple missions, each one focusing on the use of an operator
(i.e., sequence, fallback, eventHandler, and TaskCombination);
and B2, a complex mission that required the combination of
several operators and robots, based on the running example
introduced in Sec. 4. During the study, participants had the
freedom of using either editor (textual or graphical) or both
of them. However, we encouraged the participants to use the
graphical editor for being considered easier for beginners.

The questionnaires of both studies contain multiple Likert-
scale and open-ended questions about different features of
PROMISE and its implementation. The evaluation of both
studies is detailed in Sec. 6.

4 PROMISE

This paper’s contribution is PROMISE, a DSL that supports
roboticists in mission specification for teams of robots.

130

High-Level Mission Specification for Multiple Robots SLE ’19, October 20ś22, 2019, Athens, Greece

INTERMEDIATE

LANGUAGE

robot1[o1, o2]

eh_e1[o3]

eh_e2[o4]

…

PROMISE a

COMPILER b

C

INTERPRETER d

Figure 2. PROMISE and the software framework

PROMISE is integrated into a software framework that al-
lows executing the specifiedmissions on simulators and in ac-
tual robots. Figure 2 represents the software framework and
its components, which are identified with letters. PROMISE
(a) is composed of tasks and operators. Tasks allow the spec-
ification of high-level actions that can be performed by a sin-
gle robot and operators allow the composition of these tasks
into complex multi-robots missions. PROMISE provides both
a graphical and a textual syntax, each of which is supported
by a dedicated editor. Graphical and textual syntaxes are kept
synchronized to enable end-users to switch from one editor
to the other while specifying a mission. The graphical syntax
maps mission specification concerns to graphical elements
that can be understood by roboticists. The textual syntax
allows the specification of a mission on a textual basis.
Running example.We illustrate our work with an exam-

ple that involves two robots operating in a dynamic environ-
ment, (possibly) populated by humans where they have to
react to events. The example describes a mission that is spec-
ified using PROMISE’s graphical syntax in Fig. 3 and using
the textual syntax in Fig. 4. Figure 4 was graphically modified
to improve its readability by showing events, actions, and
locations. Both figures are annotated with circled numbers
depicting the nodes we refer to in the remaining of the paper.

A robot r1 should patrol locations l1, l2, and l3 (in this

specific order) within a building for security purposes. If

r1 finds an unknown person then it will raise an alarm.

During the patrolling, if r1 finds a recognizable object o
it must request help from robot r2. r2 waits in l4 until it
receives a request of help from r1. Then, r2 proceeds to l2,
grasps o, and tries to go to location office1. If r2 cannot
reach this location (e.g., there is an unavoidable obstacle

in its path), it tries to reach office2, and then releases o.

Moreover, both robots should recharge if their batteries

are running low.

PROMISE relies on a compiler and an interpreter. The

compiler b transforms the mission specified through the
DSL into an intermediate language c . The intermediate lan-
guage is platform-agnostic and, therefore, users only need
to write a new interpreter to support a new robot platform.

Then, the interpreter d takes as input a mission specified in
the intermediate language c to execute the mission on the
actual robots or on simulators. Summarizing, the framework
in Fig. 2, and more specifically the DSL and the intermediate

language are explicitly designed to enable: 1) the mission de-
composition among the robots, 2) the mission execution by
an appropriate interpreter, and 3) the mission execution by
teams of heterogeneous robots. The synchronization among
robots is currently performed by using events, as depicted
in Fig. 3. The adoption of a more flexible approach for syn-
chronization remains as future work.

4.1 Domain-Specific Language

Listing 1 represents an excerpt of the grammar of our lan-
guage (we do not include the syntax of each task). PROMISE
provides two concrete syntaxes, one graphical and one tex-
tual, as shown in Table 2. The semantics of our DSL is pro-
vided in pseudo-code and it is shown in the same table. In
this context, each operator is executed when its result is
retrieved, i.e., the operator’s result is assigned to a variable
(e.g., res=o1). The semantics of some operators require the
execution of several operators (i.e., their children) in one
instruction (e.g., the semantics of the operators Parallel and
TaskCombination in Table 2).

The DSL is based on tasks, which are executed through one
basic operator, called delegate in the remainder, and on a set
of composition operators, which allow composing tasks into
complex missions. Tasks represent simple activities whose
execution can be delegated to the robots. For example, a task
may require a robot to visit a set of locations.

Tasks. Tasks are the basic entities of the proposed DSL. They
represent elementary operations that can be performed by
robots. Tasks are the mission specification patterns proposed

Table 1. Tasks catalog

Name Description

C
or
e
m
ov
em

en
t
ta
sk
s

Visit Visit a set of locations. The order may be defined in a

sequenced, in a ordered, or in a strict ordered manner.

Areas can be also requested to be visited a fair amount

of times.

Patrolling Keep visiting a set of locations. The same rules for

Visit apply here.

A
vo
id
a
n
ce

ta
sk
s

Past

avoidance

Requires a condition to not occur until another con-

dition is satisfied.

Global

avoidance

An avoidance condition globally holds throughout

the mission.

Future

avoidance

After the occurrence of an event, avoidance has to be

fulfilled.

Restricted

avoidance

A restriction on the number of occurrences is desired.

It might apply to the maximum, the minimum, or an

exact number of times.

T
ri
g
g
er

ta
sk
s

Reaction The occurrence of a stimulus triggers a counterac-

tion. The triggered counteraction might be executed

instantaneously or some time later.

Wait Inaction is desired until a stimulus occurs.

Simple

action

A counteraction is performed in the next time instant

without requiring any kind of stimulus.

131

SLE ’19, October 20ś22, 2019, Athens, Greece Sergio García, Patrizio Pelliccione, Claudio Menghi, Thorsten Berger, and Tomas Bures

10

Events. intruder: "unknown person detected",

found_object: "object detected",

help_requested: "r1 requests help",

r1_low_battery: "r1 low battery",

r2_low_battery: "r2 low battery”,

finish: “stop requested by user”

Actions. raise_alarm: "raise the alarm!",

request_help: "request help from r2",

grasp_object: "grasp the object",

release_object: "release the object",

charge_battery: "charge the battery"

Locations. l1, l2, l3, l4: list of areas,

office1: office number 1,

office2: office number 2,

chargingdock: the

charging dock

2

3

4 5

6

7 8

9

11

12
13

14

15 16

19
20

18

17

1

Figure 3. Running example specified with the graphical syntax of the DSL.

3

1

5

4

6

7

8

9

10

11

13

12

14

15

16

17

18

2

19

20

Figure 4. Running example specified with the textual syntax
of the DSL.

to specify missions of mobile robots [37]. In Table 1, we show
an abstract description of the proposed catalog, splitting the
tasks into three groups: core movement tasks, avoidance tasks,
and trigger tasks. Each task maps a recurrent robotic speci-
fication problem identified in the literature to well-known
solutions with proved effectiveness expressed in temporal
logics (specifically, LTL and CTL). For example, visit has five
different variants. In particular, the task ordered visit forces
a robot to visit a set of locations following an ordering and it
forbids a successor to be visited before its predecessor. The
LTL formulation for the task is:

F (l1 ∧ F (l2 ∧ . . . F (ln)))

n−1∧

i=1

(¬li+1)U li

where the initial part of the formula specifies that the visit
of the different locations l1, . . . , ln should be done in order,
through the nested use of the eventually temporal operator
(F). The second part of the formula forbids the visit of li+1

1 Mission:
2 'mission' '{'
3 ('conditions''{'
4 ('events'events+=Event (","events+=Event)∗)?
5 ('actions'actions+=Action (","actions+=Action)∗)?'}')?
6 'robots' robots+=Robot ("," robots+=Robot)∗
7 ('locations'locations+=Location (','locations+=Location)∗)?
8 'operators''{'operator+=Operator (','operator+=Operator)∗'}''}';
9 Operator:
10 //List of operators from Table 2
11 Tasks:
12 //List of tasks from the provided catalog
13 Robot:
14 name=String;
15 Location:
16 name=String;
17 Event:
18 name=ID ':' description=String;
19 Action:
20 name=ID ':' description=String;
21 FallBackOp:
22 'fallback' '(' inputOperators+=Operator (',' inputOperators+=Operator)∗ ')';
23 SequenceOp:
24 'sequence' '(' inputOperators+=Operator (',' inputOperators+=Operator)∗')';
25 ParallelOp:
26 'parallel' '{'(inputRobots+=[Robot|String] '(' inputOperators+=Operator')'
27 ("," inputRobots+=[Robot|String] '('inputOperators+=Operator')')∗)?'}';
28 EventHandlerOp:
29 'eventHandler' '('
30 'default''('inputOperators+=Operator')'
31 ('except' inputEvents+=EventAssignment)+')';
32 ConditionOp:
33 'condition' '(' ('if' inputEvents+=EventAssignment)+')';
34 TaskCombinationOp:
35 'combination' '(' inputOperators+=Operator
36 (('&' | 'AND' | 'and') inputOperators+=Operator)+ ')';
37 DelegateOp:
38 'delegate' '(' task=Tasks
39 ('locations' inputLocations+=[Location|String]
40 (',' inputLocations+=[Location|String])∗)?
41 ('actions' inputAction+=[Action|String] (',' inputAction+=[Action|String])∗)?
42 ('stoppingEvents' stoppingEvent+=[Event|String]
43 (',' stoppingEvent+=[Event|EString])∗)?')';
44 EventAssignment:
45 inputEvent=[Event|String] '(' inputOperators=Operator')';

Listing 1. PROMISE’s grammar.

before visiting the location li for every 1 ≤ i ≤ n−1, through
the use of temporal operator until (U). The logic formulation

132

High-Level Mission Specification for Multiple Robots SLE ’19, October 20ś22, 2019, Athens, Greece

is hidden to the end-user that is instead asked to write the
task name instantiated with a set of parameters that are
task-dependent. For instance, the task ordered visit should be
instantiated with the specific locations that need to be visited.

Delegate operator. Let us consider a finite set of events E.
The basic operator delegate, represented as▷(t, E), allows the
task execution. The operator delegate receives a task t and a
set of events E. It specifies that a task t , instantiated through
amission specification task, must be executed and the task ex-
ecutionmust be suspended if an event e ∈ E occurs. For exam-
ple, in Fig. 3 the task▷(SequencePatrollinд(l1, l2, l3), { f inish})
delegates the task SequencePatrollinд(l1, l2, l3) to the robot
r1 and suspends the task execution if the event f inish is
received (3). Notice that the f inish event is needed since
a patrolling task is non-terminating. More precisely, tasks
can be classified into two categories depending on the mis-
sion specification pattern used within the task: terminating

and non-terminating tasks. The execution of terminating
tasks can be satisfied by performing finite plans, i.e., finite
execution of actions that allow the achievement of the de-
sired mission. Thus, the terminating task’s execution can
1) succeed if the corresponding plan is performed correctly,
2) fail if an exception occurs during the plan execution, or
3) suspend if an event e ∈ E occurs.

For example, if a robot has to visit a set of locations, a plan
corresponds to the trajectory that must be followed by the
robot to visit all the locations. If the robot is able to follow
the trajectory and visits all the locations, the task execution
succeeds. If an obstacle is detected and an alternative trajec-
tory cannot be computed, then the task execution fails. If
an event e ∈ E occurs while the task is executed, then the
plan is suspended. Non-terminating tasks are associated with
infinite plans. For example, if a robot has to patrol a set of
locations, it has to enter these locations an infinite number
of times. A non-terminating task’s execution can 1) fail if an
exception occurs during the plan execution, 2) suspend if the
event e occurs, or 3) never terminate if neither an exception
nor the event e occurs.

Composition operators. PROMISE allows the generation
of complex missions by combining basic operators through
a set of composition operators. Composition operators com-
bine operators and manage events that can occur within the
environment. The composition operators are presented in
Table 2, where {e1, e2, · · · , en} and {o1,o2, · · · ,on } indicate
ordered sets of events and operators, respectively. As shown
in Fig. 3, a mission is graphically represented as a graph
in which nodes represent operators, and edges specify how
operators are nested within each other. Syntactically, we
constrain operators to be composed in a way that the final
generated graph is a tree, called mission tree. The leaves of
the tree always contain a delegate operator, represented by
the symbol ▷. Then, each operator delegate is associated
with a task, represented by a colored circle (each type of

tasks shown in Table 1 is associated to a color) and labeled
with the task’s name. The other nodes of the tree represent
composition operators and are represented by symbols that
are associated with the different operators.
We conceptually decompose missions into globalÐone

general mission to be achieved by the whole team, e.g., the
mission in Fig. 3 and Fig. 4Ðand localÐspecific missions for
each robot, e.g., themission assigned to r1 in Fig. 3 and Fig. 4Ð
missions. To enable global mission decomposition into local
ones, the operator parallel can only be used as a root opera-
tor. This operator is always the root of global missions, even
for single-robot missions. The operator parallel aggregates
different operators, each assigned to one robot. The opera-
tors delegate that are descendants of an operator assigned
(i.e., delegated) to a robot, can only assign a task to that
robotÐsee the syntaxes of the operator parallel in Table 2.

Task combination operator. This operator has been added
after the first user study we conducted, since, thanks to the
feedback from the experiment, we realized that the DSL was
providing no way of combining or łmergingž different tasks,
like performing an action in the locations visited during
a visit pattern. The TaskCombination operator takes a set
of delegate operators as input (see Table 2 and Listing 1,
Lines 34ś36) and merges their associated tasks into one LTL
formula by adding the logical operator &&. The combination
possibilities are restricted to a core movement task combined
with a set of avoidance tasks and/or a set of trigger tasks.
We created this constraint to avoid semantically correct but
meaningless combined missionsÐe.g., r1 must wait in l1 and
avoid entering location l2. An example of usage of the oper-
ator TaskCombination is: łRobot r1 must patrol locations l1,
l2, and l4 while avoiding location l3, and once in location l1,
if it finds an unknown person, it should raise an alarmž.
Running example: mission defined using PROMISE.

The root of the mission specification, i.e., the operator paral-
lel, is identified by the node 1 and specifies that r1 and r2
must perform their missions in parallel. A robot is assigned
to each branch associated with this operator, as indicated
with labels in the edges between 1 and 2 and between 1
and 9 in Fig. 3, and with the name of the assigned robot
in Fig. 4. The operator marked with the symbol ↑ (2) is the
eventHandler. It has a default behavior; in our example, it
forces the robot to sequentially patrol locations l1, l2, and l3
(3). This behavior is paused when one of the events that are
assigned to the eventHandler is detected. Each event is as-
signed to a child of the eventHandler (as represented in Fig. 3)
as gray circles and invoked in Fig. 4 by the keyword except.
If the event łintruderž is detected, the first delegate opera-
tor instantiated with the simple action pattern is executed
(4). In this case, the robot must raise an alarm. If the event
łfound_objectž is detected, 5 is triggered, performing the
action łrequest_helpž. Otherwise, the event łr1_low_batteryž
triggers the operator sequence 6 , which makes the robot

133

SLE ’19, October 20ś22, 2019, Athens, Greece Sergio García, Patrizio Pelliccione, Claudio Menghi, Thorsten Berger, and Tomas Bures

go to its charging dock (7) and then perform the action
łcharge_batteryž (8). The default robot’s behavior (3) is re-
sumed whenever any of the behaviors triggered by an event
are finished (either succeeding or failing).
Meanwhile, r2 waits in l4 (9 and 10). The detection of

łhelp_requestedž triggers a sequence of executions (11),
starting from the visiting of l2 (12), followed by the action
łgrasp_objectž (13). The operator fallback 14 encodes that
r2 must try to reach office1 (15), and if it fails (e.g., the
office’s door is closed) it tries to reach office2 (16). r2 then
releases the object in the reached office (17). The child of
9 triggered by łr2_low_batteryž (18) is a replica of 6 .

4.2 The Intermediate Language

The intermediate language is an intermediate representation
of the global mission the robots should achieve. It allows
decoupling the mission specification from the robotic plat-
form and the development of interpreter tools. In this way,
PROMISE becomes robot-agnostic since only the interpreter
has to be adapted when using a new robot platform. Specifi-
cally, the interfaces of the interpreter with the underlying
components of the robot must be specified (if they are not
compliant with the ones already provided). Interpreters are
responsible for executing missions by sending commands to
the software controllers of the robots. We provide a grammar
for the intermediate language, whose vocabulary contains a
set of terminals denoted in orange in Listing 2.

The grammar’s production rules are presented in Listing 2,
being the starting symbol łMissionž (Line 1). A mission con-
sists of a set of indented lines, each line containing a header,
which specifies the name of the line, and a body (see Listing 3
for an example of a generated mission). The mission root is
always an operator parallel, so the header of the first line

1 Miss ion : (Robot ' [' Body '] ') + ;
2 Robot= S t r i n g ;
3 Body : Task (' , ' Task) ∗ ;
4 Task : De l ega t e | TaskComb | Sequence | F a l l b a c k |

Cond i t i on | EventHandler ;
5 De l ega t e : p a t t e r n =LTL_formula ;
6 TaskComb : p a t t e r n =LTL_formula ('&& ' p a t t e r n =LTL_formula) ∗ ;
7 Sequence : Task (' , ' Task) ∗ ;
8 F a l l b a c k :
9 ' f b ' F b _ l i n e ;
10 Cond i t i on :
11 ' cond ' Cond_ l ine ;
12 EventHand ler :
13 ' eh ' Eh_d e f a u l t ;
14 F b _ l i n e :
15 ' f b_ ' N ' [' Body '] '

16 Eh_d e f a u l t | Cond_ l ine | F b _ l i n e ;
17 Cond_ l ine :
18 ' cond_ ' Event ' [' Body '] '

19 Eh_d e f a u l t | Cond_ l ine | F b _ l i n e ;
20 Eh_d e f a u l t :
21 ' e h _ d e f a u l t ' ' [' Body '] '

22 Eh_d e f a u l t | Eh_event | Cond_ l ine | F b _ l i n e ;
23 Eh_event :
24 ' eh_ ' Event ' [' Body '] '

25 Eh_d e f a u l t | Eh_event | Cond_ l ine | F b _ l i n e ;
26 Event= S t r i n g ;
27 N= I n t e g e r ;

Listing 2. Grammar of the intermediate language.

of a mission is always the name of a robot, followed by its
body. For other operators, the line’s name is formed by two
parts: 1) a reference to the operator that executes the line’s
behavior; and 2) either a reference to the condition that trig-
gers the line’s behavior (in the cases of operators condition
and eventHandler, in Lines 18, 21, 24), or a counter (in the
case of operator fallback in Line 15). The body is represented
within square brackets and contains a set of indexed tasks
to be executed sequentially, separated by commas (Line 3).

The grammar specifies that operators of the DSL presented
in Section 4.1 are mapped on statements in the intermediate
language as tasks, as specified in Table 2 (Line 4 of Listing 2).
The operator delegate is substituted by an LTL formula corre-
sponding to its associated task (Line 5), and the taskCombina-

tion is substituted by a combination of several tasks (Line 6)
by means of the && logical operator. The operator sequence
is translated into a set of indexed tasks (Line 7). The remain-
ing operators are referenced by the prefixes łfb", łcond", and
łeh" for fallback, condition, and eventHandler, respectively
(Lines 9, 11, 13 of Listing 2).

Running example: intermediate language.An instan-
ce of the intermediate language compiled from the mission
described in Fig. 3 and Fig. 4 is presented in Listing 3, where
^, □,W, andX are the classical łFinallyž, łGloballyž, łWeak
Untilž, and łNextž LTL operators. Indentation is used to de-
note the relation of parent-child among operatorsÐi.e., a
child operator has a greater indentation than its parent (e.g.,
Lines 1 and 2 and Lines 8 and 9). The first line of each ro-
bot’s mission (Lines 1, 6) encode the operator parallel (1),
specifying the required robot in the line’s header (r1 and r2,
respectively). The body of Line 1 contains a reference to the
first child 2 , an eventHandler. Line 2 encodes the default
mission behavior of the eventHandler (2), i.e., the operator
delegate marked with 3 . Lines 3, 4, and 5 encode the behav-
iors triggered by 2 if łintruderž (4), or łfound_objectž (5),
or łr1_low_batteryž (6) occur, respectively. Line 5 encodes
a sequence of tasks executed by 6 (7 and 8).
The body of Line 6 references to the operator parallel’s

second child (9). The default mission (Line 7) of this child
encodes a variation of the pattern wait (10). Line 8 encodes
the behavior triggered by 9 if łhelp_requestedž occurs: a
sequence of tasks (11), being the third item a reference to
14 , an operator fallback. Lines 9 and 10 encode the possible
behaviors of this operator. Line 11 is a replica of Line 5.

1 r1 [eh]
2 e h _ d e f a u l t [□ (^ ((l1) && ^ ((l2) && ^ ((l3))))))]
3 e h _ i n t r u d e r [(X raise_alarm)]
4 eh_ f ound_ob j e c t [(X request_help)]
5 eh_ r 1_ l ow_ba t t e r y [^ (chargingdock) , (X charge_battery)]
6 r2 [eh]
7 e h _ d e f a u l t [((l4) W (FALSE)]
8 eh_he l p _ r eque s t e d [^ (l2) , (X grasp_object) , fb , (X

re l ea se_ob j e c t)]
9 f b_1 [^ (of f i c e1)]
10 f b_2 [^ (of f i c e2)]
11 eh_ r 2_ l ow_ba t t e r y [^ (chargingdock) , (X charge_battery)]

Listing 3. Intermediate languages for r1, r2 (Fig 3 mission).

134

High-Level Mission Specification for Multiple Robots SLE ’19, October 20ś22, 2019, Athens, Greece

Table 2. Robotic missions specification operators

Name Description Semantics Syntax Intermediate

language

P
ar
al
le
l

∥(
r 1
,.
.
.
r n

,o
1
,.
.
.
,o
n
) Always the root of the mission. The opera-

tors o1, o2, · · · , on are executed in paral-

lel, each by a different robotÐi.e., assigns

one branch to each robot. Returns success

when all operators return success, failure

otherwise.

{res1, res2, · · · , resn }={o1, o2, · · · , on }

if (res1 == ⊤ ∧ · · · ∧ resn==⊤) then

return ⊤

else return ⊥

parallel{r1(o1), . . . , rn(on)}

r1[o1]

r2[o2]

. . .

rn[on]

D
el
eg
at
e

▷
(E

,
t
)

Delegates execution of a task t to a spe-

cific robot (specified by the Parallel op-

erator). Tasks are specified using pat-

terns for robotic missions that take as in-

put parameters as locations (indicated as

l1, l2, . . . , ln) and actions (indicated as

a1, a2, . . . , an).

execute(E, t)

delegate(t locations l1, ..., ln)

delegate(t actions a1, ..., an)

LTL formula of

the pattern speci-

fied by the task t .

Fa
ll
b
ac
k

?(
{o

1
,
o
2
,
·
·
·
,
o
n
}) Executes the first operator; if it is executed

successfully, ends with success. If the ex-

ecution of the first operator fails, tries to

execute the second operator. This proce-

dure is repeated for all the other operators.

Returns failure if all operators fail.

if ({o1,o2,· · · ,on } , ∅) then

r es = o1;

if(r es == ⊥) then

?({o2, · · · , on })

else return ⊤

else return ⊥

o
1

o
2

o
n

…

fallback (o1, o2, . . . , on)

parent[fb]

fb_1[o1]

fb_2[o2]

. . .

fb_n[on]

Se
q
u
en
ce

→
({
o
1
,
o
2
,
·
·
·
,
o
n
}) Executes all the operators from the first

to the last. If an operator returns success

executes the subsequent operator. If an op-

erator returns a failure returns failure. Re-

turns success if and only if all the operators

return success.

if({o1, o2, · · · , on } , ∅) then

r es = o1;

if(r es == ⊤) then

→ ({o2, · · · , on })

else return ⊥

else return ⊥ sequence (o1, o2, . . . , on)

[o1,o2,. . . ,on]

E
v
en
tH

an
d
le
r

⇑
(e
1
,
.
.
.
,
e
n
,
o
,
o
1
,
.
.
.
,
o
n
)

Executes a by default operator o. Once an

event ei occurs, executes operator oi in re-

sponse. Once the execution of oi is finished,

resumes the operator o. Returns success if

the operator o succeeds and all the events

that occurred during the execution of o are

correctly handled.

r es = ⊥;

while(r es , ⊤)

r es = o;

if(r es == ⊤) then

return ⊤

if(ei == ⊤) then

r esint = oi ;

if(r esint == ⊥) then

return ⊥

r es = resume(o);

return r es

eventHandler(

default(o)

except e1 (o1)

except e2 (o2)...

except en (on))

parent[eh]

eh_default[o]

eh_e1[o1]

eh_e2[o2]

. . .

eh_en[on]

C
o
n
d
it
io
n

⊕
({
e
1
,
·
·
·
,
e
n
,

o
1
,
·
·
·
,
o
n
})

Evaluates the conditions from the first to

the last. If the evaluation of one or more

conditions is true, executes the correspond-

ing operators. Returns ⊥ if an operation is

not successful, i.e., either it fails or an event

occurs. Returns ⊤ when all the executed

operations return ⊤.

if(e1 == ⊤) then

r es = o1

if(r es == ⊥) then

return ⊥

· · ·

if(en == ⊤) then

r es = on

if(r es == ⊥) then

return ⊥

return ⊤

condition(

if e1 then (o1)

if e2 then (o2)...

if en then (on))

parent[cond]

cond_e1[o1]

cond_e2[o2]

. . .

cond_en[on]

T
as
k
C
o
m
b.

&
({
o
1
,
o
2
})

Allows the composition of a core movement

task with one or more avoidance tasks and

with one or more trigger tasks. The com-

position is performed by means of the and

logical operator.

r es = o1 && o2 && · · · on
if(r es == ⊤) then

return ⊤

else return ⊥
combination(o1 and o2 and ...

on)

[o1 && o2 && ...

on]

5 Implementation

Our DSL is developed as a stand-alone application that can be
integrated and used in various contexts [18]. Robotic mission
specification patterns [37] have been used together with

model checking tools, such as NuSMV [9], simulation tools,
such as Simbad [25], and design tools for robotic applications,
such as Spectra [33]. Since the DSL relies on the mission
specification patterns for mobile robots, all such tools can be

135

SLE ’19, October 20ś22, 2019, Athens, Greece Sergio García, Patrizio Pelliccione, Claudio Menghi, Thorsten Berger, and Tomas Bures

easily integrated with PROMISE. In the following, we explain
the components of the implementation by referring to Fig. 2.

Domain-specific language a . PROMISE is developed as
an Eclipse plugin implemented in Xtext [14], a framework
for the development of programming and domain-specific
languages; and Sirius [55] (a tool for graphical model manip-
ulation and management).

Compiler b . The compiler is implemented in Xtend [53],
a dialect of Java that we use for code generation. It 1) takes
as input the textual representation of the mission specifica-
tion, 2) decomposes the global mission, and 3) automatically
generates the encoding of missions of each robot in the inter-
mediate language (one file for each robot). It also generates
one readme file for each local mission, containing the trans-
lation of the mission into natural English. The goal is to
express the same content presented in the introduction in
terms of the conditions and locations defined with PROMISE.
The file is used to improve the users’ experience and help
them during mission definition by enhancing the feedback
loop. An example of this translation is:

Robot r1 does by default patrol in sequence location(s)

l1, l2, and l3, and if event intruder occurs, it will per-

form action raise_alarm, and if event f ound_object oc-

curs, it will perform action request_help, and if event

r1_low_battery occurs, it will visit (without any spe-

cific order) location(s) charдinдdock and perform action

charдe_battery.

Both a and b are allocated in a central station (e.g., a
laptop), which communicates to each robot when sending
the mission. The state of such mission (e.g., what operator
is being executed, whether the mission was successful) is

communicated to the user by the interpreter (d), which in
the current implementation of PROMISE relies on ROS. To
enhance the feedback loop to the user, we plan to embed a
display with runtime information about the mission to a .

Intermediate language c . It contains a rewriting of the
specified mission in terms of LTL formulae, one for each dele-
gate operator, which should be properly orchestrated accord-
ing to the used composition operators, as explained in Sec. 4.2.
The contents of each generated intermediate language file
are sent to the correspondent robots when requested.

Interpreter d . There is one instantiation of the interpreter
deployed in each robot. It parses the specification of the mis-
sion to be accomplished by the robot specified in c and trans-
forms it into concrete movements and actions. It reads the in-
structions and executes them by sendingmessages to the low-
level parts of the robot’s architecture depending on the re-
spective semantics of the operators in the specified mission.

6 Validation

To evaluate PROMISE with simulators and real robots, we
developed an interpreter for the DSL, which is integrated

Figure 5. Robots and scenarios used in our experiments

into the SERA platform [17]. This platform provides sev-
eral robotic functionalities, including motion control, self-
localization, and planning. The experiments we performed
included the specification of missions, the generation of the
specification in the intermediate language, and the plugging
into the interpreter of the robots shown in Fig. 5. From left
to right, the robots’ models are: 1) a TIAGo robot [43] in
simulation [28] (top); 2) two intelligent transport assistants
(ITA) in simulation (bottom); 3) a TurtleBot2 [58] in UGOT’s
facilities; and 4) a TIAGo robot in PAL’s facilities. To conduct
the validation, we formulated two research questions:

• RQ1: does PROMISE effectively support the specification
of complex missions?

• RQ2: how simple is it to specify missions with PROMISE?

6.1 Expressiveness of PROMISE (RQ1)

In order to answer this question, we defined complex mis-
sions that describe possible real-world scenarios. In particu-
lar, we specified three of the missions proposed for the 2018’s
edition of RoboCup@Home (Stage II)Ðrules available at [34]:
1) dishwasher challenge, a robot has to remove all dishes from
a table (presumably after dinner) and place them into the dish-
washer; 2) tour guide, a robot guides spectators to the audi-
ence area and answers certain predefined questions; 3) restau-
rant scenario, where robots shall serve food and beverages to
customers. The graphical and textual syntaxes and the output
intermediate language of each specified mission are available
in the provided repository [18]. During the experimentation,
complex actions (e.g., grasping an object) were simulated. All
the RoboCup missions were validated through simulation
in Gazebo using a TIAGo robot. Furthermore, the restaurant
scenario was evaluated using different platforms: 1) a TIAGo
in simulation, 2) a Turtlebot2 in UGOT’s facilities, 3) a TIAGo
robot in PAL’s facilities, and 4) two ITA robots in simula-
tion. We also formulated a homegrown mission consisting
of two robots performing parallel and collaborative tasks,
introduced as a running example in Sec. 4. This scenario was
validated through simulation with two ITA robots.

Discussion. We answer to RQ1 through experimentation:
with PROMISE a user is able to specify complex missions
(as the ones we selected from a well-known competition
as RoboCup or the one we conceived), which in turn can
be executed by using the provided framework in different
robotic platforms. We also make use of simulators and real

136

High-Level Mission Specification for Multiple Robots SLE ’19, October 20ś22, 2019, Athens, Greece

0%

0%

0%

0%

0%

0%

17%

100%

100%

100%

100%

83%

83%

67%

0%

0%

0%

0%

17%

17%

17%

Multiple Op.

Op. TaskComb

Op. eventHandler

Op. sequence

Op. fallback

Op. delegate

Op. parallel

100 50 0 50 100

Percentage

Response Strongly disagree Disagree Neutral Agree Strongly agree

Figure 6. Second study’s questionnaire: operators’ seman-
tics and multiple operator mission specification.

robots to ensure that the robots effectively perform a mission
that is consistent with the semantics of the specification. In
all the cases, PROMISE was able to describe the intended
missions showing that it is able to effectively support the
specification of complex missions.

6.2 Usability of PROMISE (RQ2)

To fulfill the goals of PROMISE, we evaluate the simplicity
of our DSL by conducting two different user studies, as ex-
plained in Sec. 3. The first studywas a preliminary evaluation
that triggered important refinement of the language and the
tool, so we only focus on the qualitative data provided as
feedback by the participants after the study. The obtained re-
sults from the second study and the collected feedback from
both studies are discussed in the remainder of this section.

To improve PROMISE and its implementation, we requested
feedback from the participants in the form of open-ended
questions in the first study. For instance, we: 1) reduced the
number of required Eclipse instances, 2) embedded frame-
work functionalities in scripts, 3) created a better grouping in
the drag and drop palette 4) extended the information related
to each operator in their labels, and 5) developed a wizard to
guide the user in the first steps of the mission specification.
We also learned from this study that the participants were
not confident in the correctness of their missions.
For the second study, we strove to understand what el-

ements of PROMISE could be perceived as error-prone or
make the participants less confident in their solutions. With
this in mind, we designed the study as explained in Sec. 3 and
asked the participants to fill in a questionnaire. The responses
to such questionnaire are represented in Fig. 6 and Fig. 7.

Figure 6 shows the answers of the participants to the state-
ments łDuring the experiment, after the clarifications from
the instructors, the semantics of the operator X was clear to
mežÐonly the operators that were part of the experiment are
present in the listÐand to łThe mission specification using
multiple operators was simplež (last item).

Discussion. From the answers, we conclude that after a thor-
ough training the semantics of all the operators were clear.
Also, although the mission of B2 was perceived as complex,

0%

17%

50%

67%

67%

100%

83%

33%

17%

17%

0%

0%

17%

17%

17%

Q3Impl

Q3DSL

Q2Impl

Q2DSL

Q1

100 50 0 50 100

Percentage

Response Strongly disagree Disagree Neutral Agree Strongly agree

Figure 7. Second study’s questionnaire: participants’ satis-
faction. Q1: I am confident that my solutions are correct. Q2:
Writing mission specifications with the [DSL/current tool
implementation] is error-prone. Q3: The user-friendliness of
the [DSL/current tool implementation] is satisfactory.

its specification resulted simple for the participantsÐfrom
an open-ended question of the questionnaire we learned that
the main challenge for the participants was to remember the
semantics of each operator and pattern.
Figure 7 shows the answers regarding the participants’

satisfaction with PROMISE after the experiment. All the par-
ticipants agreed and strongly agreed with Q1. To understand
the difference on the participant’s perception between the
DSL as a language and its current tool support we split Q2
and Q3 into two questions each. Q2 measures the users’ per-
ception of how error-prone the DSL and the tool support
were. Among all the participants, 17% found the language and
its implementation error-prone. With Q3 we assess whether
the participants perceived PROMISE and its implementation
as user-friendly. The user-friendliness of the DSL was consid-
ered satisfactory by 83% of the participants while 33% consid-
ered the user-friendliness of the implementation satisfactory.

Discussion. As said before, the users were able to validate
their solutions in two ways, which may explain the general
agreement for Q1. Most likely, due to the changes introduced
after the first study, most of the participants now perceived
both the DSL and its implementation not error-prone (Q2).
Q3 shows a discrepancy on the participants’ satisfaction
between PROMISE and its implementation: while the DSL
was in general considered user-friendly, its implementation
was not considered as equally satisfactory.

Four open-ended questions were included to collect quali-
tative data from the participants and be able to address the
problem denoted by Q3.
• łHow difficult was the mission specification using multiple oper-

ators? Please, elaborate.ž
• łWhat was your strategy for defining missions with PROMISE?ž
• łWhat were your main challenges?ž
• łSuggestions for improvement.ž

Discussion. According to the open-ended questionnaire’s
responses, the solutions for B1 were rather straightforward
with the use of the provided wizard. As expected, the strug-
gles began with B2 (e.g., analyzing the provided text, trying
to identify which operator to use). The most common strat-
egy among the participants was to identify all the elements

137

SLE ’19, October 20ś22, 2019, Athens, Greece Sergio García, Patrizio Pelliccione, Claudio Menghi, Thorsten Berger, and Tomas Bures

from the given text (i.e., locations, events, actions) and then
sketch a preliminary mission tree using either Eclipse or the
provided notebook. It is important to remark that for both
cases they used the PROMISE’s syntax. The last step was
to create the operator delegate’s instantiations and set their
properties up. Most of the participants used the generated file
that expresses the mission specification in natural English as
a preliminary validation of their mission before simulation.
The questionnaire’s responses indicate the following steps to
improve the DSL’s current implementation, as for example:

• łI found it a bit cumbersome to define a Delegate Operator for

each Action, and assign it to the action.ž
• łContext-dependent forms would make it easier to select/specify

the details [...] Only present the options necessary for a specific

operator.ž
• łThe biggest challenge was the lack of feedback on easy-to-

neglect errors in the modelsž

Since the comments did not affect the language but only
the implementation, the two first problems remain as future
work. The rest of the problems have been already addressed.

All the participants of the second study were able to com-
pletely solve the three proposed blocks and validate them
using the generated natural language file within the expected
time frame (30 minutes for each block). They were also able
to validate at least the first two blocks through simulation
within the time frame. Furthermore, half of the participants
could validate their solutions for B2 in simulation within
the time frame. The time the participants expended for spec-
ifying and validating B1 ranges from 22 to 28 minutes, that
is, between 5,5 and 7 minutes for each mission as an average.
The time for B2 ranges from 22 to 30 minutes.

Discussion. To the best of our knowledge, the time invested
for mission specification by the user is not usually discussed
in scientific papers. However, we consider it a good metric to
evaluate the simplicity and user-friendliness of our language
and supporting tool. We consider that the time invested in
mission specification and validation are remarkably low for
users without robotics expertise. The results resemble the
positive perception of the participants to the second user
study and corroborate our claim for RQ2.

6.3 Threats to Validity

We use the standard categorization by Wohlin et al. [59] to
discuss the threats to validity to our work.

Internal Validity. Selection bias may be a potential threat
since participants of the conducted user studies have or are
working on a Ph.D in computer science (as described in
Sec. 3), while we claim that our DSL should be usable by
users that might lack knowledge on formal methods and
temporal logic or programming languages. Yet, we worked
with two groups of participants from two different univer-
sities, who were not experts in robotics nor had previous
knowledge of how to use PROMISE. Continuing with the

Design Science research approach by performing additional
user studies, including people from different backgrounds,
is a valuable future work. Experimenter bias is a threat to
our study, and to mitigate it each study in each university
was conducted by a different trainer.

Construct Validity. A threat to construct validity is that
some specified missions are only executed in simulation.
However, part of the experimentation has been also per-
formed with real robots. Performing experiments with fur-
ther real robots is subject to our future work.

External Validity. A threat to external validity is that our
experiments include only groups of one or two robots, which
is not a sizable number for multi-robot coordination. More-
over, in the validated multi-robot missions we use the same
robotic model and we aim to support a heterogeneous group
of robots. On the other hand, the three different robotic
models we use for validation differ substantially in their
functionalities. Another possible threat to external validity
is replication. Conducting additional user studies, including
people from different backgrounds, is valuable future work.

Conclusion Validity. The number of participants of both
user studies might not be enough to be expressive. We mit-
igate this low statistical power by conducting two studies,
also conducting more studies is valuable future work.

7 Conclusion

In this paper, we introduced PROMISE, a DSL conceived to
support roboticists for the effective and user-friendly specifi-
cation of multi-robot missions. PROMISE is integrated into a
software framework that supports the specification, compila-
tion, and interpretation of missions. We developed our DSL
striving to maximize its simplicity while keeping its expres-
siveness and enabling a rigorous and precise specification.
We validated our research by performing experiments in
simulation and in real-world scenarios (including missions
existing in literature) and by conducting two user studies.

As future work, we plan: 1) refinements in the current im-
plementation of the DSL to solve some of the problems stated
by the participants of the conducted user studies; 2) refine-
ments of the DSL in order to mitigate its current limitation:
create support for run-time changes to a mission specifica-
tion; 3) to conduct further user studies with participants with
different expertise to asses the simplicity of PROMISE and
to collect users’ feedback; and 4) to investigate the optimal
ways for supporting the synchronization among robots. We
will also experiment and test our language with other robotic
models. As a starting point, we will conduct experiments
with a robotics manufacturer (PAL) and a multinational com-
pany (BCAI) doing research in the robotics domain.

Acknowledgements

Research partly supported by the EU H2020 Research and
Innovation Prog. under GA No. 731869 (Co4Robots).

138

High-Level Mission Specification for Multiple Robots SLE ’19, October 20ś22, 2019, Athens, Greece

References
[1] 2004. PAL Robotics. http://pal-robotics.com/.

[2] 2017. Bosch Center of AI. https://www.bosch-ai.com/.

[3] Marco Autili, Lars Grunske, Markus Lumpe, Patrizio Pelliccione, and

Antony Tang. 2015. Aligning qualitative, real-time, and probabilistic

property specification patterns using a structured english grammar.

Transactions on Software Engineering (2015).

[4] Jonathan Bohren and Steve Cousins. 2010. The SMACH high-level

executive [ROS news]. IEEE Robotics & Automation Magazine 17, 4

(2010), 18ś20.

[5] Darko Bozhinoski, Davide Di Ruscio, Ivano Malavolta, Patrizio Pellic-

cione, and Massimo Tivoli. 2015. FLYAQ: Enabling Non-expert Users

to Specify and Generate Missions of Autonomous Multicopters. In

International Conference on Automated Software Engineering (ASE).

IEEE Computer Society.

[6] Herman Bruyninckx, Markus Klotzbücher, Nico Hochgeschwender,

Gerhard Kraetzschmar, Luca Gherardi, and Davide Brugali. 2013. The

BRICS Component Model: A Model-based Development Paradigm for

Complex Robotics Software Systems. In Proceedings of the 28th Annual

ACM Symposium on Applied Computing (SAC ’13). ACM, New York,

NY, USA, 1758ś1764. https://doi.org/10.1145/2480362.2480693

[7] Miguel Campusano and Johan Fabry. 2017. Live robot programming:

The language, its implementation, and robot API independence. Science

of Computer Programming 133 (2017), 1ś19.

[8] Federico Ciccozzi, Davide Di Ruscio, Ivano Malavolta, and Patrizio

Pelliccione. 2016. AdoptingMDE for Specifying and Executing Civilian

Missions of Mobile Multi-Robot Systems. Journal of IEEE Access (2016).

[9] Alessandro Cimatti, Edmund Clarke, Fausto Giunchiglia, and Marco

Roveri. 1999. NuSMV: A new symbolic model verifier. In International

conference on Computer Aided Verification (CAV). Springer, 495ś499.

[10] Davide Di Ruscio, Ivano Malavolta, Patrizio Pelliccione, and Massimo

Tivoli. 2016. Automatic Generation of Detailed Flight Plans from High-

level Mission Descriptions. In International Conference on Model Driven

Engineering Languages and Systems (MODELS). ACM.

[11] Patrick Doherty, Fredrik Heintz, and Jonas Kvarnström. 2013. High-

level mission specification and planning for collaborative unmanned

aircraft systems using delegation. Unmanned Systems 1, 01 (2013),

75ś119.

[12] Patrick Doherty, Fredrik Heintz, and David Landén. 2012. A Dis-

tributed Task Specification Language for Mixed-Initiative Delegation.

In Principles and Practice of Multi-Agent Systems, Nirmit Desai, Alan

Liu, and Michael Winikoff (Eds.). Springer Berlin Heidelberg.

[13] Swaib Dragule, Bart Meyers, and Patrizio Pelliccione. 2017. A Gener-

ated Property Specification Language for ResilientMultirobotMissions.

In Software Engineering for Resilient Systems, Alexander Romanovsky

and Elena A. Troubitsyna (Eds.). Springer International Publishing,

Cham, 45ś61.

[14] Eclipse. 2006. Xtext. https://www.eclipse.org/Xtext/.

[15] Georgios E Fainekos, Antoine Girard, Hadas Kress-Gazit, and George J

Pappas. 2009. Temporal logic motion planning for dynamic robots.

Automatica 45, 2 (2009), 343ś352.

[16] Cameron Finucane, Gangyuan Jing, and Hadas Kress-Gazit. 2010. LTL-

MoP: Experimenting with language, temporal logic and robot control.

In International Conference on Intelligent Robots and Systems (IROS).

IEEE, 1988ś1993.

[17] Sergio García, Claudio Menghi, Patrizio Pelliccione, Thorsten Berger,

and Rebekka Wohlrab. 2018. An Architecture for Decentralized, Col-

laborative, and Autonomous Robots. In International Conference on

Software Architecture (ICSA).

[18] Sergio García, Patrizio Pelliccione, Claudio Menghi, Thorsten Berger,

and Tomas Bures. 2019. PROMISE Implementation. https://github.

com/SergioGarG/PROMISE_implementation.

[19] Sebastian Götz, Max Leuthäuser, Jan Reimann, Julia Schroeter, Chris-

tian Wende, Claas Wilke, and Uwe Aßmann. 2012. A Role-Based

Language for Collaborative Robot Applications. In Leveraging Appli-

cations of Formal Methods, Verification, and Validation. Springer Berlin

Heidelberg.

[20] Meng Guo and Dimos V. Dimarogonas. 2015. Multi-agent plan recon-

figuration under local LTL specifications. The International Journal of

Robotics Research 34, 2 (2015), 218ś235.

[21] Meng Guo, Karl H Johansson, and Dimos Dimarogonas. 2013. Re-

vising motion planning under linear temporal logic specifications in

partially known workspaces. In International Conference on Robotics

and Automation.

[22] David Harel and Michal Politi. 1998. Modeling reactive systems with

statecharts: the STATEMATE approach. McGraw-Hill, Inc.

[23] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. 2004.

Design Science in Information Systems Research. MIS Q. (2004).

[24] Gerard J. Holzmann. 2002. The Logic of Bugs. In Symposium on Foun-

dations of Software Engineering (SIGSOFT ’02/FSE-10).

[25] Louis Hugues and Nicolas Bredeche. 2006. Simbad: an autonomous

robot simulation package for education and research. In International

Conference on Simulation of Adaptive Behavior. Springer, 831ś842.

[26] D. Isla. 2005. Handling Complexity in the Halo 2 AI. In In Game

Developers Conference.

[27] Markus Klotzbücher and Herman Bruyninckx. 2012. Coordinating

robotic tasks and systems with rFSM statecharts. (2012).

[28] Nathan Koenig and Andrew Howard. 2004. Design and use paradigms

for gazebo, an open-source multi-robot simulator. In IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems (IROS)(IEEE Cat.

No. 04CH37566), Vol. 3. IEEE, 2149ś2154.

[29] Hadas Kress-Gazit. 2011. Robot challenges: Toward development of

verication and synthesis techniques. IEEE Robotics & Automation

Magazine 18, 4 (2011), 108ś109.

[30] Douglas C MacKenzie, Jonathan M Cameron, and Ronald C Arkin.

1995. Specification and execution of multiagent missions. In IEEE/RSJ

International Conference on Intelligent Robots and Systems.

[31] Stéphane Magnenat, Philippe Rétornaz, Michael Bonani, Valentin

Longchamp, and Francesco Mondada. 2011. ASEBA: A Modular Ar-

chitecture for Event-Based Control of Complex Robots. IEEE/ASME

Transactions on Mechatronics 16, 2 (April 2011), 321ś329. https:

//doi.org/10.1109/TMECH.2010.2042722

[32] Shahar Maoz and Jan Oliver Ringert. 2015. GR(1) Synthesis for LTL

Specification Patterns. In Foundations of Software Engineering (FSE).

ACM, 96ś106.

[33] Shahar Maoz and Jan Oliver Ringert. 2019. Spectra: A Specification

Language for Reactive Systems. arXiv preprint arXiv:1904.06668 (2019).

[34] Mauricio Matamoros, Caleb Rascon, Justin Hart, Dirk Holz, and Loy

van Beek. 2018. RoboCup@Home 2018: Rules and Regulations. http:

//www.robocupathome.org/rules/2018_rulebook.pdf.

[35] Claudio Menghi, Sergio García, Patrizio Pelliccione, and Jana Tumova.

2018. Multi-Robot LTL Planning Under Uncertainty. In International

Symposium on Formal Methods (FM).

[36] Claudio Menghi, Christos Tsigkanos, Thorsten Berger, and Patrizio Pel-

liccione. 2019. PsALM: Specification of Dependable Robotic Missions.

In International Conference on Software Engineering (ICSE): Companion

Proceeedings.

[37] Claudio Menghi, Christos Tsigkanos, Thorsten Berger, Patrizio Pel-

liccione, and Carlo Ghezzi. 2018. Property specification patterns for

robotic missions. In 2018 IEEE/ACM 40th International Conference on

Software Engineering: Companion (ICSE-Companion). IEEE, 434ś435.

[38] Arne Nordmann, Nico Hochgeschwender, and Sebastian Wrede. 2014.

A survey on domain-specific languages in robotics. In Simulation,

Modeling, and Programming for Autonomous Robots. Springer, 195ś

206.

[39] James L. Peterson. 1977. Petri Nets. ACM Comput. Surv. 9, 3 (Sept.

1977), 223ś252. https://doi.org/10.1145/356698.356702

139

http://pal-robotics.com/
https://www.bosch-ai.com/
https://doi.org/10.1145/2480362.2480693
https://www.eclipse.org/Xtext/
https://github.com/SergioGarG/PROMISE_implementation
https://github.com/SergioGarG/PROMISE_implementation
https://doi.org/10.1109/TMECH.2010.2042722
https://doi.org/10.1109/TMECH.2010.2042722
http://www.robocupathome.org/rules/2018_rulebook.pdf
http://www.robocupathome.org/rules/2018_rulebook.pdf
https://doi.org/10.1145/356698.356702

SLE ’19, October 20ś22, 2019, Athens, Greece Sergio García, Patrizio Pelliccione, Claudio Menghi, Thorsten Berger, and Tomas Bures

[40] Emmanuel Pot, Jérôme Monceaux, Rodolphe Gelin, and Bruno Maison-

nier. 2009. Choregraphe: a graphical tool for humanoid robot pro-

gramming. In RO-MAN 2009-The 18th IEEE International Symposium

on Robot and Human Interactive Communication. IEEE, 46ś51.

[41] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote,

Jeremy Leibs, Rob Wheeler, and Andrew Y Ng. 2009. ROS: an open-

source Robot Operating System. ICRAworkshop on open source software

3, 3.2 (2009), 5.

[42] European Union’s Horizon 2020 research and innovation programme.

2017. Co4Robots. http://www.co4robots.eu/.

[43] PAL Robotics. 2015. TIAGo. http://tiago.pal-robotics.com/.

[44] C. Schlegel, T. Hassler, A. Lotz, and A. Steck. 2009. Robotic software

systems: From code-driven to model-driven designs. In Advanced Ro-

botics, 2009. ICAR 2009. International Conference on.

[45] Douglas C. Schmidt. 2006. Guest Editor’s Introduction: Model-Driven

Engineering. Computer 39, 2 (Feb. 2006), 25ś31. https://doi.org/10.

1109/MC.2006.58

[46] Benjamin Schwartz, Ludwig Nägele, Andreas Angerer, and Bruce A.

MacDonald. 2014. Towards a graphical language for quadrotor mis-

sions. CoRR (2014).

[47] Daniel Castro Silva, Pedro Henriques Abreu, Luís Paulo Reis, and Eu-

génio Oliveira. 2014. Development of a Flexible Language for Mission

Description for Multi-robot Missions. Inf. Sci. (2014).

[48] SPARC. 2016. Robotics 2020 Multi-Annual Roadmap.

https://eu-robotics.net/sparc/upload/about/files/H2020-Robotics-

Multi-Annual-Roadmap-ICT-2016.pdf.

[49] S. Srinivas, R. Kermani, K. Kim, Y. Kobayashi, and G. Fainekos. 2013.

A graphical language for LTL motion and mission planning. In 2013

IEEE International Conference on Robotics and Biomimetics. https:

//doi.org/10.1109/ROBIO.2013.6739543

[50] Andreas Steck, Alex Lotz, and Christian Schlegel. 2011. Model-

driven Engineering and Run-time Model-usage in Service Robotics.

In Proceedings of the 10th ACM International Conference on Gener-

ative Programming and Component Engineering (GPCE ’11). 73ś82.

https://doi.org/10.1145/2047862.2047875

[51] Georgia Tech. 2006. MissionLab. https://www.cc.gatech.edu/ai/robot-

lab/research/MissionLab/.

[52] Ulrike Thomas, Gerd Hirzinger, Bernhard Rumpe, Christoph Schulze,

and Andreas Wortmann. 2013. A new skill based robot programming

language using UML/P Statecharts. In 2013 IEEE International Confer-

ence on Robotics and Automation. IEEE, 461ś466.

[53] TypeFox. 2011. Xtend. https://www.eclipse.org/xtend/.

[54] Alphan Ulusoy, Stephen L Smith, Xu Chu Ding, Calin Belta, and

Daniela Rus. 2011. Optimal multi-robot path planning with temporal

logic constraints. In International Conference on Intelligent Robots and

Systems.

[55] Vladimir Viyović, MirjamMaksimović, and Branko Perisić. 2014. Sirius:

A rapid development of DSM graphical editor. In IEEE 18th Interna-

tional Conference on Intelligent Engineering Systems INES 2014. IEEE,

233ś238.

[56] Fei-Yue Wang, Konstantinos J Kyriakopoulos, Athanasios Tsolkas,

and George N Saridis. 1991. A Petri-net coordination model for an

intelligent mobile robot. IEEE Transactions on Systems, Man, and

Cybernetics 21, 4 (1991), 777ś789.

[57] W. Wei, K. Kim, and G. Fainekos. 2016. Extended LTLvis motion

planning interface. In 2016 IEEE International Conference on Systems,

Man, and Cybernetics (SMC). 004194ś004199. https://doi.org/10.1109/

SMC.2016.7844890

[58] Melonee Wise and Tully Foote. 2010. Turtlebot 2. https://www.

turtlebot.com/turtlebot2/.

[59] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn

Regnell, and Anders Wesslén. 2012. Experimentation in software engi-

neering. Springer Science & Business Media.
[60] Eric M Wolff, Ufuk Topcu, and Richard M Murray. 2013. Automaton-

guided controller synthesis for nonlinear systems with temporal logic.

In International Conference on Intelligent Robots and Systems (IROS).

IEEE, 4332ś4339.

[61] Vittorio A Ziparo, Luca Iocchi, Daniele Nardi, Pier Francesco Palamara,

and Hugo Costelha. 2008. Petri net plans: a formal model for repre-

sentation and execution of multi-robot plans. In Proceedings of the 7th

international joint conference on Autonomous agents and multiagent

systems-Volume 1. International Foundation for Autonomous Agents

and Multiagent Systems, 79ś86.

140

http://www.co4robots.eu/
http://tiago.pal-robotics.com/
https://doi.org/10.1109/MC.2006.58
https://doi.org/10.1109/MC.2006.58
https://eu-robotics.net/sparc/upload/about/files/H2020-Robotics-Multi-Annual-Roadmap-ICT-2016.pdf
https://eu-robotics.net/sparc/upload/about/files/H2020-Robotics-Multi-Annual-Roadmap-ICT-2016.pdf
https://doi.org/10.1109/ROBIO.2013.6739543
https://doi.org/10.1109/ROBIO.2013.6739543
https://doi.org/10.1145/2047862.2047875
https://www.cc.gatech.edu/ai/robot-lab/research/MissionLab/
https://www.cc.gatech.edu/ai/robot-lab/research/MissionLab/
https://www.eclipse.org/xtend/
https://doi.org/10.1109/SMC.2016.7844890
https://doi.org/10.1109/SMC.2016.7844890
https://www.turtlebot.com/turtlebot2/
https://www.turtlebot.com/turtlebot2/

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Research Methodology
	4 PROMISE
	4.1 Domain-Specific Language
	4.2 The Intermediate Language

	5 Implementation
	6 Validation
	6.1 Expressiveness of PROMISE (RQ1)
	6.2 Usability of PROMISE (RQ2)
	6.3 Threats to Validity

	7 Conclusion
	References

