
Where is my Feature and What is it About?
A Case Study on Recovering Feature Facets

Jacob Krügera,b,∗, Mukelabai Mukelabaid, Wanzi Guc, Hui Shenc, Regina Hebigd, Thorsten Bergerd

aOtto-von-Guericke University Magdeburg, Germany
bHarz University of Applied Sciences Wernigerode, Germany

cChalmers University of Technology, Sweden
dChalmers | University of Gothenburg, Sweden

Abstract

Developers commonly use features to define, manage, and communicate functionalities of a system. Unfortunately, the
locations of features in code and other characteristics (feature facets), relevant for evolution and maintenance, are often
poorly documented. Since developers change and knowledge fades with time, such information often needs to be recovered.
Modern projects boast a richness of information sources, such as pull requests, release logs, and otherwise specified domain
knowledge. However, it is largely unknown from what sources features, their locations, and their facets can be recovered.
We present an exploratory study on identifying such information in two popular, variant-rich, and long-living systems:
The 3D-printer firmware Marlin and the Android application Bitcoin-wallet. Besides the available information sources,
we also investigated the projects’ communities, communications, and development cultures. Our results show that a
multitude of information sources (e.g., commit messages and pull requests) is helpful to recover features, locations, and
facets to different extents. Pull requests were the most valuable source to recover facets, followed by commit messages,
and the issue tracker. As many of the studied information sources are, so far, rarely exploited in techniques for recovering
features and their facets, we hope to inspire researchers and tool builders with our results.
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1. Introduction

Features are commonly used to specify, manage, and com-
municate the functional and non-functional properties of a
software system. Features support developers in compre-
hending, reusing, and adapting these systems [Apel et al.
2013; Kang et al. 1990]. As such, features are useful entities
to support software development, maintenance, and evolu-
tion [Berger et al. 2015; Passos et al. 2013]. Yet, features
are often poorly documented, including their locations in
the source code, but also many other facets [Berger et al.
2015] that are relevant for evolving and maintaining them,
such as the responsible developer, binding time, rationale
(i.e., why a feature is introduced) or architectural respon-
sibility of the feature. When a system evolves over time,
the knowledge about features, their facets, and their loca-
tions often fades and has to be recovered [Ji et al. 2015;
Krüger et al. 2018b]—an activity known as feature location.
In fact, feature location [Assunção and Vergilio 2014; As-
sunção et al. 2017; Dit et al. 2013; Lozano 2011; Rubin and
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Chechik 2013] is one of the most common and expensive
activities in software engineering [Biggerstaff et al. 1993;
Ji et al. 2015; Poshyvanyk et al. 2007; Wang et al. 2013].

Several automated techniques have been proposed to
recover features and their locations [Dit et al. 2013; Olszak
and Jorgensen 2011; Razzaq et al. 2018; Rubin and Chechik
2013]. Unfortunately, these techniques generally exhibit a
low accuracy, need substantial effort (e.g., calibration and
adaptation for specific projects), and often only exploit a
single source of information, such as execution traces or
code comments. Other feature facets, such as the rationale
or architectural responsibility, are even more difficult to
extract, as corresponding information sources are largely
unknown and developers may have varying understandings
of these facets.
To improve techniques for feature location and for re-

covering feature facets, we need to improve our empirical
understanding of features. This includes knowledge about
information sources we can utilize for these purposes, about
strategies to exploit these information sources, and about
the facets of features. Particularly interesting are modern
open-source projects that are developed on software-hosting
platforms, such as GitHub and BitBucket, which provide
additional capabilities for maintaining and documenting a
project. Such platforms boast a richness of different infor-
mation sources (e.g., pull requests, change logs, release logs,
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commits, Wikis, issue trackers) from which such informa-
tion can be recovered—and that can be present in similar
form in industrial settings. Furthermore, realistic datasets
of feature locations and feature facets are necessary to test,
evaluate, and compare corresponding techniques.
We present an exploratory study of identifying and lo-

cating features and their facets in two open-source sys-
tems: The 3D-printer firmware Marlin and the Android
app Bitcoin-wallet. Both systems exhibit characteristics
of software product lines, relying on established variability
mechanisms (C preprocessor and runtime parameters, re-
spectively) [Apel et al. 2013; Gacek and Anastasopoules
2001] to allow customization. As Marlin and Bitcoin-wallet
are hosted on GitHub, they exhibit a richness of different
and varying information sources that we can explore. Mo-
reover, the specific cultures, processes, and communication
styles are important to understand and can be exploited
for recovering features and their facets. By analyzing each
project’s culture, development process, and communica-
tion, we identified potential information sources. Then, we
performed manual feature identification and location using
each identified information source. We investigated various
feature facets that help to comprehend features and that
are relevant for maintaining and evolving features.

Overall, our contributions comprise:

• an analysis of the development process of the open-
source systems Marlin and Bitcoin-wallet;

• a set of consolidated search patterns to identify and
locate features;

• empirical data on the facets of the identified features
in both systems; and

• an online appendix1 containing the feature fact sheets,
feature models, and annotated code bases.

We provide insights into the development of open-source
software that comprises several levels of variability, ranging
from cloning over preprocessor directives to runtime para-
meters. Our results show that different information sources
can be exploited to varying extents to locate features and
to identify their facets. Specifically, we find that pull reque-
sts are the source that helped us most to recover different
feature facets, followed by commit messages, and the issue
tracker. Only few sources had a rather narrow usefulness
to obtain information, but these often documented specific
facets well. For example, due to the development process
applied for Marlin, we could use the contributor list and
commit author information only to identify developers that
are responsible for a specific feature, but this facet can
easily be extracted from these sources. We did not find
any information source that was not useful, but the ex-
traction effort differed depending on its usage in a project,
and whether it is updated regularly. For instance, it was
challenging to extract facets from a contributor’s GitHub
page. Furthermore, we usually needed to include different

1https://bitbucket.org/rhebig/jss2018/

information sources into our analysis to recover all facets of
a feature. For instance, we found that some mandatory and
optional features that are bound during implementation
and build time, respectively, may comprise further run time
variability that is not explicitly documented on the same
level as other features, but is discussed in commit messages.
Consequently, solely analyzing preprocessor directives may
neglect not only mandatory features, but also dynamic
variability, potentially biasing the results. After investiga-
ting Bitcoin-wallet, we also identified the reverse pattern:
Features seem to be dynamically bound and configurable
at run time, while the checked parameter is a constant that
is set at compile time. Finally, our results illustrate the
importance of considering different feature facets.

An earlier version of this article appeared as a workshop
paper [Krüger et al. 2018a]. There, we reported a case study
on manually locating 43 features in Marlin. We (i) explo-
red what information sources help identifying and locating
features, and (ii) compared characteristics of optional and
mandatory features. For instance, we found that optional
and mandatory features exhibit different characteristics,
which challenges the validity of studies that derive conclu-
sions for mandatory features based on analyzing optional
ones. In this article, we focus on information sources for
feature location and investigate to what extent we can use
these sources to recover different feature facets. We applied
our methodology not only to Marlin, but also to a se-
cond system, namely Bitcoin-wallet. In contrast to Marlin,
Bitcoin-wallet follows a less structured development process
and comprises more dynamic variability—challenging the
identification of feature locations and facets—but we can
rely on similar information sources. Finally, we also present
more details on Marlin, specifically its feature development
process, and report in detail what search strategies we
applied while recovering feature locations.

2. Feature Facets

A software feature is a relatively abstract and vague concept.
Consequently, it is not surprising that several notions of
features exist [Apel et al. 2013; Classen et al. 2008]. Berger
et al. [2015] provide a list of different feature facets, relevant
for describing features in their full richness. They also
describe rationales and example values for these facets that
are derived from interviews with industrial practitioners.
In the following, we briefly describe those facets that

comprise information connected to developing features.
Foremost, we focus on the nature (i.e., optional or man-
datory) and on the binding time and mode, which define
what features are included in what way into a variant. The
other facets are important to scope features and to manage
development tasks.

2.1. Facet: Nature of a Feature
This facet describes whether a feature primarily represents
a unit of variability (optional) or a unit of functionality
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(mandatory). In particular, distinguishing between these
notions is important in the context of software-product-line
engineering: While optional features allow to customize a
variant, the intended benefits of reuse are heavily driven
by mandatory features that are part of every variant. As
software-product-line engineering is often focused on the
notion of variability, this seems to neglect important parts
of such systems.
Features as Units of Variability. In software-product-
line engineering, features are primarily seen as units of
variability, due to the widespread use of annotation-based
variability mechanisms—usually conditional compilation
(e.g., #ifdef) [Apel et al. 2013; Medeiros et al. 2015]. We
display a code snippet from Marlin in Listing 1, in which
the preprocessor macro NOOZLE_PARK_FEATURE represents
a variation point for an optional feature that is excluded
if this macro (configuration parameter) is disabled. To
represent code-level dependencies and to foster automated
configuration, optional features are often declared in a va-
riability model [Berger et al. 2013; Czarnecki et al. 2012;
Nadi et al. 2015], which is usually the input for a configura-
tion tool (in contrast, Marlin relies on configuration files).
Given the availability of many open-source systems that
comprise such optional features, several studies on these
features’ code-level characteristics have been conducted,
resulting in extensive knowledge about some of their fa-
cets [Apel et al. 2013; Berger and Guo 2014; Liebig et al.
2010; Lillack et al. 2019; Passos et al. 2015].

In this notion of variability, the annotated feature loca-
tions only represent variable parts, while any mandatory
code that also belongs to a feature is not annotated. Conse-
quently, locating variable code is simple, but recovering and
distinguishing the locations of mandatory parts is difficult
and costly. Likewise, completely mandatory features may
not be represented in the variability model. Overall, this
notion is useful if features are only used as configuration
parameters, but not if features shall also be used to plan
the development, to communicate, to maintain the system,
to fix bugs, or to re-engineer the system, among others.
For example, consider the re-engineering of cloned pro-

ducts into a software product line [Dubinsky et al. 2013;
Krüger et al. 2017; Stănciulescu et al. 2015], specifically,
consider a single feature that is cloned among two variants,
and slightly modified in one variant. If the feature is inte-
grated into a common platform, only the differences will be
annotated (likely, a new feature representing this variability
is introduced). The actual location of the whole feature
is not annotated and needs to be recovered to facilitate
maintenance and evolution.
Features as Units of Functionality. A broader notion
of features is to consider them as units of functionality. In
this notion, a feature represents a functionality (or con-
cern) in a system, regardless of whether it is an optional or
mandatory functionality of a software product line. This
notion of features is more common in industrial software
engineering [Berger et al. 2015] and in research on con-

Listing 1: Preprocessor code in Marlin_Main.cpp.
1 #i f ENABLED(NOZZLE_PARK_FEATURE)
2 /∗∗
3 ∗ G27 : Park the n o z z l e
4 ∗/
5 inline void gcode_G27 ( ) {
6 // Don ’ t a l low n o z z l e parking without homing f i r s t
7 i f ( a x i s _ u n h o m e d _ e r r o r ( ) ) r e t u r n ;
8 Nozzle : : park ( parser . ushortval ( ’P ’ ) ) ;
9 }

10 #e n d i f // NOZZLE_PARK_FEATURE

cern location [Eaddy et al. 2008; Figueiredo et al. 2009;
Robillard and Murphy 2007]. Mandatory features and
their locations are rarely documented, for example, with
feature-traceability databases [Robillard and Murphy 2003]
or embedded feature annotations [Ji et al. 2015; Krieter
et al. 2018], which is why recovering their locations is costly
and error-prone [Krüger et al. 2019; Wang et al. 2013]. Even
automated or semi-automated feature-location techniques
require substantial manual effort (e.g., to calibrate them
to a system or for providing so-called seeds from which
they start exploring) and fall short in accuracy [Abukwaik
et al. 2018; Rubin and Chechik 2013]. Furthermore, they
often consider only a single information source (e.g., code
comments), while it is unclear which other information
sources can be utilized for systems rich in meta-data, such
as projects developed on project-hosting platforms, such
as GitHub, with potentially relevant information in issue
trackers, pull requests, or Wiki pages.

2.2. Facets: Binding Time and Mode
The binding time of a feature refers to the point in time
a feature is included into the system [Berger et al. 2015],
such as at implementation, compile, build, load or run
time [Kang et al. 1990; Lee and Muthig 2006; Rosenmüller
2011]. Binding mode refers to the ability to re-bind featu-
res, where we distinguish between static (a bound feature
cannot be re-bound) and dynamic binding (a feature can
be re-bound). Considering the natures of features, the
question arises whether a dominating variability mecha-
nism (i.e., preprocessor directives) may comprise dynamic
variability that is not obvious—thus, impacting analysis
results for optional (e.g., not all variability is annotated)
as well as mandatory (e.g., unawareness of dynamic va-
riability) features. This is especially interesting, as the
software-product-line community performs analyses based
on static preprocessor annotations, which may not cap-
ture the whole scope of variability. For example, some
features in Marlin comprise these types (not annotated
and unaware) of dynamic variability based on run time
parameters to react to different input values that depend
on the printer’s hardware and context. In contrast, most
features in the Bitcoin-wallet seem to be mandatory, but
can be rebound at run time by the user. However, some
of these features only appear to be dynamic because an
if statement checks a parameter: Instead, these parame-
ters are constants that developers define before compiling

3



the application and, consequently, the features cannot be
changed and are, in fact, optional and static.
Static Binding. By using static binding, the features of
a software product line are bound before run time. So, the
variability is resolved and the variant is customized before
it is deployed. In practice, especially the C preprocessor
(cf. Listing 1) is used to implement static binding. The C
preprocessor relies on annotations to mark features and
removes them during a preprocessing step, binding each
feature before compilation. Afterwards, an instantiated
variant can only be changed by re-building it.
Dynamic Binding. In contrast to static binding, dynamic
binding binds feature only when a program is started or
during its execution. This allows the developers to react to
changing demands while the program is running. Usually,
this is implemented by using run-time parameters that can
be set by the program’s user and are checked in the control
flow. However, there are also more advanced techniques for
dynamic binding, which led to the introduction of dynamic
software product lines that are focused on reacting to
changes in the program context [Capilla et al. 2014].
Static and Dynamic Binding. Static as well as dynamic
bindings have pros and cons, which makes either one more
suitable for different application scenarios. Consequently,
several techniques aim to combine them at different points
in time. Such techniques include [Rosenmüller 2011]:

• Early (static) and late (dynamic) binding in object-
oriented programming;

• Combined usage of different variability mechanisms
(e.g., preprocessors and run-time parameters); and

• Integrations of both binding times into one variabi-
lity mechanism (e.g., for feature-oriented program-
ming [Prehofer 1997]).

In particular interesting for our work is the second example.
We investigated to what extent static and dynamic binding
are present in parallel within Marlin and Bitcoin-wallet,
each of which appears to have a predominant binding mode:
Static and dynamic, respectively.

2.3. Other Facets
Besides the facets nature, binding time, and binding
mode, we also investigated what information sources in
Marlin and Bitcoin-wallet can help to identify the following
facets that are relevant for developing features [Berger et al.
2015]: First, the rationale describes why a feature has
been developed, for example, due to customer requests or
platform adaptations. Consequently, this facet defines the
purpose and requirements connected to a feature. Second,
a feature’s architectural responsibility describes how a
feature is connected to the system’s architecture, for exam-
ple, to the application logic or user interface. Thus, this
facet provides a clue about the architectural parts affected
by a feature. Third, the definition and approval facet
captures how the feature has been defined and approved to
be included into the system, for example, during workshops

or comparisons to existing products. This is particularly
interesting to understand the development processes (e.g.,
quality assurance) of features. Fourth, responsibility is
concerned with the developers that manage a specific fe-
ature. Based on such information, tasks may be assigned
or experts identified. Fifth, the evolution of features is
important to see their changes over time. In particular,
this can help to identify features that are regularly changed
or may require an update, due to a longer cycle without
updates. Finally, in the facet quality and performance,
non-functional characteristics of a feature are captured.
Thus, it can be ensured that requirements—other than
functional ones—are fulfilled and tested appropriately. We
focused on these facets, as they define the development
processes that are applied to a system, for example, which
developer updates or tests a feature.

3. Study Design

To efficiently engineer features for long-living, variant-rich
systems developed by a larger community or team, it is
necessary to record different information about the features.
Such information allows to evolve and maintain a feature
in a consistent and documented way. In addition, the in-
formation can clarify communications, identify responsible
developers, and describe a feature’s origin, reasoning, and
evolution, allowing developers to coordinate their tasks.
Despite its importance, such information is often not recor-
ded and needs to be recovered. Consequently, the question
arises: What information sources are available and suitable
for this task? To address this question, we conducted an
exploratory study on Marlin, a variability-rich 3D printer
firmware, and on Bitcoin-wallet, an Android application
for bitcoins, both of which comprise several information
sources and variability mechanisms. We report our analysis
of the corresponding communities, our feature location pro-
cess, our search patterns, and the used information sources
for feature facets.

3.1. Research Questions

We defined the following four research questions:

RQ1 How are features developed in Marlin and Bitcoin-
wallet?
We studied the feature-development processes as exe-
rcised by the Marlin and Bitcoin-wallet developers.
Both systems are developed on GitHub, which docu-
ments and tracks information on the development of
the software and captures discussions, documentati-
ons or bugs. Marlin is particularly interesting, due to
its large contributing community, which can provide
insights into the usage and communication of features
and their facets. In contrast, Bitcoin-wallet is driven
by a single developer, who is sparsely supported by
other developers.
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RQ2 What information sources help locating features, and
to what extent?
We systematically analyzed which of these sources can
facilitate the task of recovering feature locations. To
this end, we focused on the differences between optio-
nal and mandatory features, as especially mandatory
features are challenging to locate (cf. Section 2.1),
and identify variations in the dominating binding
mode of each system (cf. Section 2.2).

RQ3 What search strategies help recovering features?
We manually analyzed the Marlin and Bitcoin-wallet
communities and systems. As we adapted similar
search strategies for each information source, we con-
solidated these into common patterns. Such patterns
help to scope further automation for recovering fe-
atures and their locations. Furthermore, they can
be used by researchers and practitioners to analyze
other systems.

RQ4 What information sources help identifying feature
facets, and to what extent?
We systematically analyzed the identified information
sources to recover feature facets. For this purpose,
we read the content of all sources, connecting the
provided information to features and their facets.
Then, we compared the contents to agree on the
values of each feature’s facets.

Answering these research questions provides insights into
Marlin, Bitcoin-wallet, and similar systems.

3.2. Subject Systems
Marlin. Our first subject is Marlin, which reflects three
common representations of variability that are used for
software product lines.

First, Marlin relies on the C preprocessor to implement
variation points in its platform. Optional features are
defined as preprocessor macros in the code and can be
selected in the two configuration files Configuration.h
and Configuration_adv.h. Marlin’s build system is ba-
sed on plain Makefiles, which contain conditionals (e.g.,
ifeq) that define which files to select and build based on
a configuration.
Second, Marlin exists in over 4,600 forks developed by

different users that extend and adapt it to their own needs
(a.k.a. clone-and-own [Dubinsky et al. 2013; Ray and Kim
2012]). An existing analysis by Stănciulescu et al. [2015]
and our investigations show that, while such forks often
only comprise changed configuration files, they are used to
implement new features that are later merged back. Our
analysis is based on the mainline of Marlin, specifically
Release Candidate 8, and ranges from November 2011 until
December 2016.

Third, not all variable parts of Marlin are annotated in
preprocessor annotations. Instead, the system also com-
prises run-time parameters to make dynamic changes, de-
pending on the context. For this reason, we investigated
the features we identified in more detail to analyze if they

Domain Analysis

Analyzing the Ecosystem

Manual Feature Location

Analyzing Feature Facets

Data Extraction and Documentation

Identified
19 Features in Marlin
47 Features in Bitcoin-wallet

Identified and Located
44 Features in Marlin
72 Features in Bitcoin-wallet

Analyzed
36 Features in Marlin
62 Features in Bitcoin-wallet

Figure 1: Overview of the applied methodology.

comprise such dynamic variability—arguing that this could
hide other features.
Bitcoin-wallet. Our second subject is Bitcoin-wallet,
which is an Android application that relies on run-time pa-
rameters to implement variability and that has been forked
more than 1,200 times. As this system relies on run-time
parameters, many of its features can be customized by the
users. This comprises the selection of features as well as
setting a parameter to change the application’s behavior,
for instance, to customize the displayed accuracy of bit-
coins (denomination). We annotated version 6.3, which
was committed on October 1st 2018 and the history ranges
back to March 2011.
Our analysis revealed that not all features rely on the

same binding mode, despite using the same variability me-
chanism. Several features are only active if a constant is
set already before compiling the application. Thus, such
features actually represent static variability and the Bitcoin-
wallet developers refer to the corresponding configuration
options as compile-time flags. Again, we investigated the
features in more detail to analyze differences between dyn-
amic and static variability.

3.3. Methodology
For both subjects, we applied the same methodology with
slight adaptations, given their different domains: Embed-
ded printer software that is connected to hardware, and
an Android application. We display an overview of our
method and the analyzed features in Figure 1.
Domain Analysis. First, we performed a domain analysis
of our subjects to identify an initial set of features. To this
end, for each subject, two of the authors built and used it
in different settings.
For Marlin, we constructed two 3D printers: A Delta

printer—which moves arms up and down to position the
printing-nozzle based on trigonometric functions—and a
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Cartesian printer—which uses a rail on each axis to move
the printing-nozzle based on Cartesian coordinates. During
this phase, we learned about the hardware components by
following the instructions described in the manual. We
then installed the Marlin firmware onto the printers’ mot-
herboards and tested different configurations, obtaining an
understanding of the functionality of hardware components
and how they are connected to the firmware. In particular,
we learned which optional features that are defined as pre-
processor macros are represented by which hardware in our
two printers. We also identified hardware commonalities
between both printers, which are the once fundamentally
necessary for 3D-printing, such as temperature sensors. At
the end of this construction phase, we created a first version
of a feature model comprising six optional and 13 manda-
tory features based on our understanding of the hardware
components.

For Bitcoin-wallet, we installed the application on diffe-
rent devices and emulators to test its functionalities. In
particular, we explored the options we could set on the
user interface and differences between devices. Based on
this, we were able to understand the functionalities that
are provided by Bitcoin-wallet. We discussed the different
features we explored to provide a ground-truth we could
agree on. During this phase, we identified a total of 47 fea-
tures, of which we found 17 by customizing the application,
indicating optional and alternative features. We created a
feature model, in which we used nine abstract features to
structure the commonalities and variabilities we identified.
Analyzing the Ecosystems. In the second phase, we
familiarized ourselves with the development processes, com-
munity, and evolution of our subject systems. We aimed
to find additional information sources that help us to lo-
cate and identify further features as well as their facets,
for example, pull request reviews and the contributor list.
For this purpose, we tried to understand the communities’
cultures, processes, and main contributors that implement
new features.
For Marlin, we identified 18 developers that are most

actively extending and maintaining the firmware. To un-
derstand how the community works, communicates, and
implements new features, we investigated their develop-
ment processes. For this purpose, we analyzed the release
log that is maintained on the GitHub website and tracked it
to pull requests and commits. We investigated the life-cycle
of the corresponding features to understand how they are
implemented and integrated into the firmware.
For Bitcoin-wallet, we found that the development is

heavily driven by a single developer. Other developers sup-
port the implementation with small contributions, opening
issues, and discussions. However, it did not seem like there
was a thorough process for development and communica-
tion, as in Marlin. While most issues and pull requests
for Marlin are linked and tagged, we found this rarely for
Bitcoin-wallet. The system seems to be less driven by a
community and more dependent on a single developer.

Manual Feature Location. The previous steps impro-
ved our understanding on both of our subject systems
and their ecosystems, allowing us to identify some man-
datory and optional features as well as additional infor-
mation sources. Next, we annotated the identified feature
locations—if these were not yet in preprocessor directi-
ves (in the case of optional features in Marlin)—by using
an embedded feature-annotation approach [Ji et al. 2015],
for which we can utilize a tool to visualize these features
and their annotations [Andam et al. 2017]. These anno-
tations are lightweight: //&begin[<feature name>] and
//&end[<feature name>] associate the lines between these
comments to the feature specified with its name. In con-
trast, //&line[<feature name>] annotates a single line of
source code that is separated from the rest of its feature.
As these annotations are based on comments, they do not
interfere with the code or preprocessor, but are solely for
documentation purpose. We refined the feature models to
include newly identified features and dependencies.
For Marlin, we especially identified domain knowledge

and the release log, with corresponding pull-requests and
commits, as our initial information sources. We then com-
pletely manually located features by performing a syste-
matic code review, relying on the information sources we
discuss in Section 4.3. To this end, we started with Marlin’s
main file, continued to read comments, G-Code documen-
tation, and aimed to understand the code. Altogether, we
identified 44 features. Out of these features, we decided
to ignore one in our later analysis: A feature to cancel
the heat-up phase was not implemented, only some empty
methods existed. During our study, discussions between
developers on how to implement this feature were ongoing.
As we could only guess that this feature may be optional—
the printers work without it and the same behavior can
be achieved with workarounds—we excluded it from our
analysis.

For Bitcoin-wallet, we identified the change log and Wiki
pages as additional information sources. However, these
information sources are not linked to the source code and
we did not find a release log or similar system that linked
features to code, as we found for Marlin. So, these infor-
mation sources did not provide entry points for feature
location, but only for identifying features and their facets.
For this reason, we relied on another code review, starting
from the configuration file to locate features. Overall, we
identified 72 implemented features for Bitcoin-wallet.
Analyzing Feature Facets. After the feature location
phase, we analyzed the features’ facets. For each feature,
we tracked down the artifacts belonging to it in each in-
formation source. We did this based on keywords that are
consistently used by the community. By manually analy-
zing the identified artifacts, we consolidated the existing
knowledge of feature facets in the version control system.
For Marlin, we investigated 36 of the identified featu-

res. We excluded eight features that (i) are repetitions
(e.g., different unit transformations), (ii) are rather feature
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interactions and glue-code (e.g., movement specifics that
require adaptations to the printer hardware), or (iii) are
small parts encapsulated by other features (e.g., changing
the units for movement from coordinates to radius). For
the remaining 36 features, we used the release log and web-
site as starting points for our analysis of feature facets. We
identified further information sources that were not helpful
for feature location, but solely to recover their facets, such
as contributor lists, the contributors’ websites, or pull re-
quest reviews and discussions. Overall, we identified ten
sources that are partly more fine-grained than those for
feature location.

For Bitcoin-wallet, we applied the same methodology, but
deviated from it based on the availability of information
sources. In this case, we included 62 features into our
facet analysis. The excluded features are interchangeable
options, namely for denomination of the displayed amount
of bitcoins and codings that can be used to transfer data.
Overall, we relied on the same information sources as for
Marlin, but they were less connected to each other.
Data Extraction and Documentation. For each iden-
tified feature, we created a feature fact sheet to document
the following extracted information, depending on the avai-
lability in each system:

• Name of the feature
• The feature’s name in preprocessor directives and an-
notations

• Description of the feature’s intent
• Used information sources to identify and locate the
feature

• Applied search strategies for feature location
• Release version
• Feature characteristics (lines of code, scattering degree,
tangling degree)

• Pull request comprising commit links, numbers, names,
and code changes

• Identified facets
• Value of each facet
• Used information source for each facet

All feature fact sheets, the corresponding data, the con-
structed feature models, and the feature facets are publicly
available in our repository.1
Example: Homing. In the following, we describe our
analysis process on one concrete example feature. The
Marlin feature Homing is responsible for positioning the
extruder of a printer into a stop position when it is not
printing. For feature location, we relied on our domain
knowledge from observing this behavior, connecting it to
G-Codes, comments in the code, and our systematic code
review (i.e., using the keyword home). During this phase,
we already found that this feature is mandatory. To iden-
tify the facets, we relied on different information sources.
As rationale, we see Homing as a necessary feature derived
from the technical environment, which we derived from our
domain knowledge and Marlin’s G-Code documentation.
This G-Code documentation helped us to identify that the

architectural responsibility of the feature is in the appli-
cation logic. Considering the definition and approval, we
had to dig into the commit messages, in which the deve-
lopers indicated that this feature is essentially necessary
for any 3D-printer to be usable—connecting this facet to a
market analysis. To identify the binding time and mode of
Homing, we could use the source code we identified during
feature location, but also looked into source code changes
in commits. We found that, despite being bound at imple-
mentation time, the feature comprises dynamic variability,
reacting to the decision why homing is necessary (e.g., for
cleaning) and allowing to home a specific axis. For the
responsibility, we only identified who committed changes
and found that these were platform developers. Finally, the
release log indicated that evolution-wise, the feature was
rolled out with release 1.1.2.

4. Results

We first report general insights we obtained about our sub-
jects’ development cultures and communities, then answer
our research questions.

4.1. Development Cultures
Marlin. We found that the primary means of communi-
cation are issue trackers and pull requests. Moreover, pull
requests are linked to the release log, in which developers
track development, quality improvements, and bug fixes
of each release. Interestingly, pull requests are labeled
and categorized by Marlin’s developers, for example, as
PR:Bugfix, PR:Coding Standard, and PR:New Feature.
By analyzing the commits that are linked to a pull request,
we found that feature names are derived from the prepro-
cessor directives, for example, PRINTCOUNTER in Listing 1,
and are used consistently through all discussions and do-
cumentations. So, we identified the release log with the
corresponding pull requests and commits as information
source to identify and locate features as well as their facets.
Marlin’s developers rely on the notion of optional fe-

atures and structure their communication around them,
similar to the software-product-line engineering commu-
nity. A unified terminology seems to be in use from the
source code up to the tracking systems and release log to
communicate about these features. In contrast, we found
no explicit use of mandatory features in the release log
or pull requests. We also learned that Marlin’s main file
Marlin_Main.cpp contains the core logic for 3D-printing,
with the code analysis of this file contributing as an impor-
tant information source. The file handles input commands
and interprets them into electrical functions. As a result,
the file is the largest in Marlin with over 10,000 lines of
code. During our analysis, we also experienced that Marlin
reacts dynamically to its environment (e.g., temperature)
within few of its features. Thus, because of the missing
notion of mandatory features, there seems to be run-time
variability hidden within Marlin that the developers do not
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consider as separate features. We discuss this issue further
in Section 4.5.

We also found an additional, domain-specific information
source: G-Code instructions [EIA RS-274-D]. G-Code is a
numerical control programming language that is used in
computer-aided manufacturing to operate machine tools—
specifying the system’s behavior to the machine controller,
for example, the direction and speed of a movement. These
instructions are directed into corresponding implementati-
ons that command electrical units of the 3D printers, as we
illustrate in Listing 1. Because G-Code instructions and
their domain functions are well-documented, we were able
to utilize them as information source for locating features
and identifying their facets.
Bitcoin-wallet. In contrast to Marlin, the development
of Bitcoin-wallet relies heavily on a single developer. Other
developers communicate and make contributions through
the issue tracker and with pull requests. However, both
are less structured and not tagged, which makes it more
challenging to link these information to each other, the
code, and features. This also seems not necessary, as the
contributions of other developers are sparse and small.
Thus, most of the development, integration, and issue
solving effort depends on the main developer, who interacts
in issue discussions and merges pull requests.

Compared to Marlin, we were also able to utilize the ap-
plication’s description in the Google Play Store to identify
features.2 In contrast, we could not rely on preprocessor
directives or G-codes. Moreover, we found that Bitcoin-
wallet is implemented with runtime variability, but actually
comprises static binding times. Thus, while the source code
initially indicates that the system is highly configurable by
the user, several of its options are defined by constants and
have to be customized before deployment. Consequently,
Bitcoin-wallet also comprises a configuration file, but the
options are actually defined in the file Constants.

4.2. Feature Development Process (RQ1)
To understand how Marlin is developed and maintained,
we investigated the interactions of developers with the
software-hosting platform and each other in detail. The
whole development is strongly connected and structured
around the issue tracker and forking capabilities of GitHub.
Overall, we found that Marlin has 283 contributors, of
which 18 were regularly active, five to seven seemed to be
core developers, and especially one of them has arguably
driven the development forwards. Moreover, there were
two main branches: First, the release candidate branch
(RC) in which the core system is stored and driven towards
releases. Based on this branch, several pre-releases and the
stable release have been published. Second, the bug fixing
release candidate branch (RCBugFix) is used to fix bugs
and merge new features.

2https://play.google.com/store/apps/details?id=de.
schildbach.wallet

We display a typical development process for a new fea-
ture in Figure 2. At first, anyone can raise an issue within
Marlin’s issue tracker to propose ideas for new features,
bug fixes, or quality improvements. If this issue is unclear,
the community will discuss about the technical solutions,
coding standards or relevant pull requests. After the issue
is clarified and scoped, developers usually assign an issue
to themselves—taking the responsibility for it—and fork
Marlin into a private fork (which is a requirement of the
community) to implement the issue. Interestingly, as the
issue assignment is decentralized, it can happen that multi-
ple developers implement the same issue separately. This is
resolved by comparing the final solutions and selecting the
best one during the review phase. Before any solution is
merged back into the main fork, the developer has to create
a pull request. Then, one of the core developers reviews
the code to point out bugs and assure the quality. Only if
a solution is finally accepted, it is pulled and merged into
the branch RCBugFix. In this branch, the code is again
tested, partly automatized, but mainly by developers that
review the updated version and install it on their printers.
If the branch RCBugFix comprises enough new content of a
certain quality, it is merged into the main branch RC, which
is driven towards a release. Thus, new features undergo
several quality assurance cycles before they are finally rele-
ased. Moreover, during all these phases data, discussions,
and documentations are created, which present information
sources that are usually not considered for locating featu-
res and identifying their facets. For example, we already
emphasized that developers who assign themselves to a
feature take the responsibility for it, clearly indicating the
corresponding feature facet.

In contrast to Marlin, we found no community-driven
development process in Bitcoin-wallet. This system com-
prises 26 contributors, but only one of them is regularly
working on the code and owns around 99% of the reposi-
tory’s content. As there is also less of a structure around
features or involvement of a release log, the main source of
input is the issue tracker. In this tracker, developers and
users can raise issues and, identical to Marlin, they can
also implement solutions and open pull requests. While
the main developer is heavily involved in discussions and
reviews others’ solutions, we found no hints at a struc-
tured process. Thus, considering the process we depict
in Figure 2, it seems to be rarely applied to that extent.
Instead, raised issues are often directly addressed on the
main branch.

Discussion. Marlin has a well-defined and structured de-
velopment process for features and bug fixes. Several steps
are concerned with quality assurance and, while everyone
can contribute an issue or implement it, a subset of contri-
butors is responsible for accepting them. Besides ensuring
quality, this process also serves as a detailed documentation
and allows tracking changes and decision-making processes.
This illustrates the potential for improving automation for
feature location and for recovering feature facets based on
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Figure 2: Typical development process of a new feature in Marlin.

such modern information sources. Still, while we found
a common notion of features for the Marlin community
around which the communication is structured, this may
not be the case for other systems. It seems interesting
to test techniques based on natural language processing
to connect artifacts, such as source code, commits, and
discussions—aiming to identify and locate features as well
as their facets. If a common terminology is established in
projects, this may allow to considerably improve automated
analyses of legacy systems.
The development process is also interesting, due to the

way the variability mechanism of cloning is used: Usually,
it is assumed that clones are forked out and then develo-
ped completely separated to customize them to customers’
needs. However, in Marlin most forks only adapt configura-
tion files, which can hardly be considered clones. Instead,
the clones serve only as a starting point for developing new
features or for fixing bugs. As soon as possible, the updates
are merged back into the base system, meaning that the
branch RC will comprise all approved features. Still, up
to this point, no bugs can be introduced into the stable
system, which limits the risks of developing faulty code.

As a result, the question arises whether the defined pro-
cess may be a best practice for developers. Marlin has been
developed for more than seven years (excluding its prede-
cessors) and comprises more than 4,600 forks. Thus, this
development process seems to be established and ensures
constant, qualitative implementation of new features, while
allowing the integration of third-party developers.
Our analysis of Bitcoin-wallet indicates that the same

process is not applied on all open-source projects. However,
Bitcoin-wallet has far fewer contributors, forks, and issues,
indicating less popularity compared to Marlin. Thus, the
differences in the development processes may not be due to
a strict hierarchy or a developer keeping all responsibility,
but simply due to the different scales.

4.3. Entry Points for Feature Location (RQ2)
Overall, we identified and located 43 features in Marlin, of
which 31 are optional and 12 are mandatory. We display
the information sources we used to find entry points in Fi-
gure 3.3 Mainly, we have been able to utilize the release

3This figure has a minor correction to our previous work, as we ve-
rified the location of a mandatory feature in preprocessor compilation
and reconsidered it to be optional.

log (with its connected pull requests and commits), #ifdef
annotations, G-Code instructions [EIA RS-274-D], domain
knowledge, and analysis of all other code parts. Code ana-
lysis, #ifdef annotations, and domain knowledge (obtained
by building and testing two printers) are well-known entry-
points. A more unique entry point are G-Codes, which are
a domain-specific information source and operate the har-
dware, for example, to park a printer’s nozzle in Listing 1.
Still, most interesting in the context of modern software
development are the release logs, pull requests, commits,
and information sources that are automatically created and
managed in software-hosting platforms. Other mechanisms
of software-hosting platforms connect communities even
further by providing, for example, issue trackers, Wiki pa-
ges, or discussion forums that are used for communication
and documentation. However, during our analysis of Mar-
lin as well as Bitcoin-wallet, we found these information
sources rarely useful for feature location, as we usually
identified the locations by following the links from release
logs and commits or by analyzing the code. Thus, these
information sources appeared rather late and also compri-
sed few information on locations except for such links. In
contrast, such sources have been helpful to identify other
feature facets.

Besides domain knowledge and the release log, our main
entry points are different source-code elements. In Marlin,
we considered #ifdef directives that, unsurprisingly, are
present for all optional features we identified. Another help-
ful means were G-Code commands that are present in four
mandatory and one optional feature. Due to the G-Code
documentation and the G-Codes’ strong connection to a
printer’s hardware they control, it is fairly easy to under-
stand the behavior that is implemented in these features.
Finally, we investigated the remaining source code based
on comments and keywords, which helped us to identify
and locate 12 mandatory and six optional features.
During our code analysis, we found that some features,

for instance Endstop, are easy to locate with keyword
searches, as all locations contain this term. However, in
other cases we needed additional domain knowledge to
refine the used keywords. For example, we identified the
term feedrate multiple times in the code and in comments.
Only our domain knowledge from building the printers
helped us to connect this term to the speed of the motor
that feeds material to the extruder. This suggests that
syntax-based feature location techniques highly rely on a
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Figure 3: Entry points used to locate features in Marlin.

good understanding of the domain.
Analyzing Bitcoin-wallet was more challenging, as the

code provided fewer entry points and helpful code con-
structs. More precisely, we could only rely on our domain
knowledge and a detailed code analysis, as we had neither
code constructs to rely on nor a linked release log. Conse-
quently, we started our code review by identifying keywords
defined in the file Constants, which indicates compile-time
features. Again, we applied syntax-based feature location
to locate features, searching for identified keywords as well
as inspecting calls to classes, variables, and methods.
Discussion. Due to the existing notion of features being
optional, Marlin’s developers do not provide much infor-
mation about mandatory features on the software-hosting
platform or the release log. Consequently, these information
sources are not suitable for locating this type of features.
Besides the actual source code and its elements, mainly
domain knowledge helped to identify mandatory features of
Marlin—in our case heavily based on constructing the ac-
tual hardware. As a result, we argue that feature-location
techniques can be improved by considering different types of
documentation while analyzing the source code. Especially
comments seem interesting, as they are directly connected
to the corresponding source code in most cases. However,
several questions arise, for example, how to ensure that
the used documentation is maintained simultaneously to
the code [Fluri et al. 2007; Nielebock et al. 2018]. Other
domain-specific information sources may be helpful, such as
the G-Code commands in our study, but also require dom-
ain knowledge to identify them. Ultimately, we found five
complementary information sources that were helpful to
identify and locate features in projects that are maintained

on software-hosting platforms, which we show in Figure 3:

• Domain knowledge (e.g., building two printers)
• Release log (i.e., pull requests, commits)
• Code analysis (i.e., comments, dependencies)
• #ifdef annotations
• G-Code commands

Using these information sources and a combination with ot-
her artifacts, such as models or requirements, can facilitate
identifying and locating both types of features. In particu-
lar, we experienced that domain knowledge is necessary to
identify features and to find their locations.
Unfortunately, Bitcoin-wallet does not provide such a

rich set of entry points for feature location. Especially
the missing linkage between the release log and code, the
limited variability representation, and missing notion of
features made it challenging to analyze the code. Unsurpri-
singly, we found it more challenging to track information
for most features in Bitcoin-wallet compared to Marlin. In
particular, as we did not implement the application, we
were only trying to obtain domain knowledge. Thus, we
cannot be sure about the actual intent of the developer,
which hampers feature location.

4.4. Search Strategies for Features (RQ3)
Our search strategies for feature locations can be abstracted
into two categories: Either analyzing the release log or
the source code and its elements. In the following, we
report both strategies in more detail, describing the applied
processes and helpful structures in each of them. We remark
that domain knowledge is an important information source
to support and facilitate these strategies.
Search Through Release Log. Searching in Marlin’s
release log was considerably different compared to searching
in source code. First, it had the advantage that optional
features are directly listed and also linked to other artifacts.
The main effort was to browse through all these artifacts
and track down feature locations in the code. While, in
the end, we also had to read code, the links facilitated the
identification of seeds considerably. Still, new problems
with this information source arose, for instance:

• Analyzing pull requests and commits involved reading
natural language.

• The release log only contains new features from the
latest releases, while older features are not documented.
So, we had to consider other sources as well to locate
such older features.

• In the case of Marlin, mostly (only a single mandatory)
optional features are listed in the release log, making
this particular information source hardly usable for
mandatory ones.

Despite such problems, the release log is a well-
documented source for a number of features, which allowed
us to identify those pull requests and commits in which a
new feature has been introduced. As these pull requests
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are linked to commits, we obtained excellent entry points
for several features. Considering that each feature in the
release log is connected to a maximum of six pull requests
out of around 4,000, this tremendously reduced the analysis
effort. In total, we analyzed 38 pull requests, their 100
connected commits, and the tracked code changes to locate
24 optional and one mandatory feature.
Search Through Source Code. To overcome the limi-
tations of the release log in Marlin and its missing links
in Bitcoin-wallet, we performed systematic code reviews.
For Marlin, this process required around 25 hours in total,
starting from the most important file Marlin_Main.cpp.
It turns out that most mandatory features in Marlin are,
partially or completely, located in that file. We systemati-
cally studied the whole file to locate features based on our
previously obtained domain knowledge. From there, we
continued to analyze all other files and located 18 (six opti-
onal, 12 mandatory) additional features. Note that we did
not just locate already know features, but also identified
some features in this step we were unaware of before.
During our code review, we relied on different search

patterns, mainly based on the two code-specific entry points
we show in Figure 3:

• If present, #ifdef annotations in the code served as a
fast to identify entry point to locate code belonging
to optional features.

• G-Codes indicated feature locations that are associated
with hardware components and were a fast entry point
for such features.

Based on these entry points and when we could not use one
of these anymore, we had to systematically go through the
remaining source code. To this end, we heavily relied on
keywords that we identified in the source code, in comments,
or derived from our domain knowledge. In some cases, it
was sufficient to use a feature’s name to locate all code
that belongs to it. For instance, Endstop controls the
corresponding hardware component, which finds reference
points for motor movements and searching for this term
already located most of the feature’s code. In contrast, for
other features we needed to refine keywords, for example,
the term feedrate appears several times in the code and
comments. However, there is no corresponding feature
and, initially, we could not connect it to any hardware
component. Finally, we identified that it refers to the speed
of the motor that feeds printing material to the extruder.
Thus, source code that is connected with this term belongs
to one of two features that are concerned with extruders.
For each identified location, we also investigated method
calls and other dependencies to identify further potential
feature locations. Overall, our code analysis resembles an
extended—due to the additional entry points of #ifdef
annotations and G-Codes—combination of the information-
retrieval- and exploration-based search patterns described
by Wang et al. [2013].

For Bitcoin-wallet, we relied on the same analysis process,
but had fewer information sources: Preprocessor directi-

ves, G-Codes, and a linked release log were unavailable.
Instead, we were able to link variables and keywords in
Constants.java and Configuration.java to features. We
extended these feature locations by following the variables
and analyzing their surrounding context, which took us
approximately 20 hours. During our analysis, we only in-
vestigated the Java code of the application and focused on
the features we identified before. We did not locate code
for six features:

• There were three options for the BlockExplorer
feature, namely blockchain, blocktrail, and
blockcypher. In the code, we identified a single pa-
rameter that just takes one of these options as input
from the user interface, which is defined in XML.

• Similarly, the Localization feature to change the
language is defined with a separate configuration file
that is automatically processed by Android. Thus,
there are no locations in the actual code of Bitcoin-
wallet, even though the feature is statically bound and
can be dynamically changed.

• We did not find any specific locations for three trading
methods for bitcoins: Email, Cloud Storage, and
Webpage file download. However, these methods
represent corner cases and the Bitcoin-wallet Wiki
states that they are by-products of other methods.
Consequently, there seems to be no implementation
that specifically belongs to them.

Overall, we experienced that design decisions, the targeted
platform, and the used variability mechanism can facilitate,
but also heavily hamper feature location.
Discussion. Our analysis indicates that different informa-
tion sources require adapted search strategies, but can then
facilitate the analysis. Consequently, we also have to adapt
automated techniques accordingly. Regarding the artifacts
we considered, this is rather unsurprising: Source code
is differently structured and provides additional sources
compared to the release log and its connected artifacts,
except for the code differences stored in each commit. Still,
the release log proved to be an effective and cheap way to
identify and locate optional features in Marlin.

4.5. Information Sources for Feature Facets (RQ4)
In Tables 1 and 2, we summarize the identified feature
facets for Marlin and Bitcoin-wallet, including the number
of features that correspond to these values. We can see that
in both systems most facets comprise multiple values. For
example, in Marlin, the rationale for features originates
from customer requirements, the technical environment
(hardware) of the printers, as well as the users’ context and
needs. An exception is the facet evolution, for which we
found only one value, rolled out, in both systems. This
is reasonable, as we only analyzed features in the main
branches of the two systems. In both systems, features
that are not rolled out are only present in other forks.
Bitcoin wallet includes 18 dynamic features. This number
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Table 1: Number of features corresponding to a specific value in a
feature facet for the Marlin case.

Feature Facet Value #Features

Rationale
Business reasons - Customer requests 18
Aspects of the technical environment 12
Social aspects - Usage context 7

Nature Unit of variability 31
Unit of functionality 12

Architectural Responsibility Application logic 28
User interface 14

Definition and Approval
Customer requests 25
Market analysis 19
Competitors 5

Binding Time
Compile time 35
Implementation 7
Link time 3

Binding Mode Static 34
Dynamic 3

Responsibility Application developer 7
Platform developer 30

Evolution Rolled out 35

Quality and Performance

Code optimization 7
Reliability 4
Memory consumption 3
Safety 3
Clone avoidance 2
Response time 2
Usability 1
Power consumption 1
Resource consumption 1
Recoverability 1

is lower for Marlin, which relies on preprocessor annotations.
However, we nonetheless found three dynamic features in
Marlin that are bound at link time.
In Figures 4 and 5, we display the information sources

that we used to identify the feature facets. Compared to the
sources for feature location (cf. Figure 3), we can see that
we used far more sources to identify facets. An explanation
for this is the diversity of information associated to facets,
which often includes information that cannot be found in
the code itself. In contrast, feature location can in doubt
be done using the code as single information source and
additional sources are mostly used to facilitate the task.
Comparing the used information sources for both sys-

tems, we find similarities and differences. In both cases, we
used commit messages for multiple facets (i.e., architectu-
ral responsibility, definition and approval, rational, quality
and performance) and source code changes from commits
as main sources to identify binding time and binding mode.
Some information sources are rather specifically aligned to
one feature facet, for instance, a commit’s author and the
contributor list only help to identify responsibilities.
Similarly, we found information on the evolution facet

only based on pull requests (Marlin) or release logs (Bitcoin-
wallet). This depends on how the projects are using these
sources: Marlin only provides a list of features, but links
them to the code, while Bitcoin-wallet misses the links,
but shows version numbers and corresponding features. As
such, in Marlin, pull requests were a valuable source to
identify feature facets for most features, exceptions being
quality and performance or binding time. In contrast, we

Table 2: Number of features corresponding to a specific value in a
feature facet for the Bitcoin-wallet case.

Feature Facet Value #Features

Rationale

Business reasons - Customer requests 15
Business reasons - Market demand 6
Aspects of the technical environment 3
Social aspects - Usage context 27
Social aspects - User needs 9

Nature
Unit of variability 7
Unit of functionality 34
Configuration/calibration parameter 20

Architectural Responsibility
Application logic 39
User interface 19
Infrastructure level task 3

Definition and Approval Customer requests 16
Market analysis 9

Binding Time

Compile time 2
Configuration time 2
Design time 39
Runtime 18

Binding Mode Static 43
Dynamic 18

Responsibility Application developer 0
Platform developer 60

Evolution Rolled out 61

Quality and Performance

Accessibility/visibility 1
Accuracy (or precision) 1
Availability 1
Cost 2
Performance 1
Precision 1
Privacy 1
Reliability 1
Response time 4
Security 9
Size 1

could barely use them for Bitcoin-wallet. Instead, dom-
ain documentation (e.g., Wiki pages, change log, readme
files) turned out to be a richer source for facets in the
Bitcoin-wallet case compared to Marlin. Consequently,
some sources differ strongly in how they can be used for
both systems. In the following, we discuss the results for
each of our facets.
Rationale. The facet rationale describes why a feature is
introduced. Considering the values for this facet, we can
see that most features in Marlin are driven by customer
requests (i.e., users/developers raising an issue or need)
and the technical environment (e.g., hardware). Usage
contexts, such as being able to react to emergency situa-
tions, play a minor role for Marlin features. In contrast,
many Bitcoin-wallet features are motivated by the usage
context. Again, customer requests play an important role.
However, the technical environment is not that important.
This difference can be explained, as Marlin is much more
dependent on the hardware than Bitcoin-wallet.
For both systems, we found no centralized place where

we could identify this facet. This may be a characteristic of
many open-source systems, as they often do not work with
professional requirement management tools, which could
centralize such information. Consequently, we relied on
commit messages, domain documentation, G-Code docu-
mentation, the issue tracker, and pull requests—with none
of these sources standing out in particular.
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Figure 4: Distribution of identified feature facets for each information source for the Marlin case.

Architectural Responsibility. Architectural responsibi-
lity describes to what part of the system a feature belongs.
In Marlin, we only identified two values: Features either
belong to the application logic or the user interface. An
explanation for this is that the 3D-printer firmware does
not contain other architectural units, such as a database.
Interestingly, we found a similar picture for Bitcoin-wallet.
Most features belong to the application logic and some to
the user interface. Also, Bitcoin-wallet includes only few
other features, which are concerned with the infrastructure
of the system. Again, we found no information source speci-
fically useful to identify this facet. Instead, it was necessary
to recover the information from commit messages, domain
documentation, G-Code documentation, the issue tracker,
pull requests, and sometimes even the source code.

Definition and Approval. In both systems, features are
usually defined and approved for consideration by customer
requests and market analysis (e.g., analyzing the hardware,
domain, and use case)—especially based on discussions
during Marlin’s development process. Competing firmwares
or systems play only a minor role. The main information
sources in both systems were commit messages and the
issue tracker (and the linked pull requests for Marlin). This
reflects very well the development process that we found
for Marlin and partly resembles the one for Bitcoin-wallet
(cf. Section 4.2). For features not originating from these
sources, we had to dig deeper into commit authors’ GitHub
pages, domain documentation or G-Code documentation.

Binding Time and Mode. As already mentioned, Mar-
lin is mainly implemented with static binding based on the
C preprocessor, meaning that the binding time is either at
implementation time (mandatory features) or build time
(optional features). However, we also found few features
that comprise dynamic variability and are changed at link
time (e.g., Homing). Bitcoin-wallet is very different, as
features are either bound at design time or dynamically at

run time (with few exceptions).
To identify the binding time and mode of a feature,

we mainly relied on code analysis, directly investigating
the implementation of the variability mechanisms. This
was particularly necessary, as the variability mechanisms
are barely documented and connected to features or may
even be misleading (e.g., Bitcoin-wallet using constants
for run-time checks). Consequently, pull requests, domain
documentation, domain analysis, and commit messages
were supportive means, but to a rather limited extent.

In the case of Marlin, the identified dynamic variability
is interesting, as it is part of mandatory as well as optional
features, but is not explicitly considered to correspond to
features by the community. Such variability is used to react
to different usage scenarios (cf. Homing) or changing inputs
of the motherboard’s pins. For example, these pins transfer
different temperature values that may require a specific
reaction or they transfer mechanical controls. To this end,
different pins are used, which must be checked individually
at run time, and which represent an essential functiona-
lity of Marlin. As a result, we found many interactions
with static variability, for example, for debugging purpo-
ses. For us, such interactions of statically and dynamically
bound features seem rather interesting. The existing run
time parameters can hardly be replaced with another vari-
ability mechanism, as they have to react to changes in a
printer’s context at run time. This dependency between
hardware and environmental variability in software may
be impossible, or at least impractical, to implement with
static variability, or even dangerous if it allows to exclude
features needed to run the software in specific situations.

Similarly, while we used Bitcoin-wallet on different devi-
ces, some features appeared to be mandatory, for instance,
Exchange Rates and its sub-features. Still, Bitcoin-wallet
comprises more dynamic optionality than Marlin: Android
applications are less dependent on the underlying hardware
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Figure 5: Distribution of identified feature facets for each information source for the Bitcoin wallet case.

and require dynamic options to allow users to change the
system’s behavior, as only one version can be provided in
the official store.
Arguably, similar situations of mixed and hidden inter-

changes between static and dynamic binding times occur in
many other systems, too, for example, to react to contextual
information, changing inputs, or different communication
channels. Thus, the question arises whether other com-
munities are aware of such issues and communicate them.
This awareness seems essential to uncover, understand, and
manage feature interactions by the means of dynamic soft-
ware product lines. In Marlin, such issues do not seem to
be considered or communicated separately.
Responsibility. Identifying the developer who is respon-
sible for a feature is helpful to ask questions or to assign
tasks. As values for this facet, we distinguished between
the roles of developers that implemented a feature, namely
whether they are platform developers, who work on core
features, or application developers, who work on features
for their own usage. Unfortunately, the contributor list
provided by GitHub was not always suitable to identify
this facet. This list does not define roles, but only shows to
what extent a developer is involved, which may indicate a
certain role. Instead, we relied on the contributors’ GitHub
pages, commit authors, issue tracker, and pull requests for
both systems.
Evolution. While we could utilize different informa-
tion sources for most facets, evolution is again an excep-
tion. Above, we already discussed that evolution in the
main branch of Marlin is only characterized by features
that are rolled out and the applied development process
(cf. Section 4.2). The main information sources for the
two systems were the release log and pull requests. This is
due to the fact that the release log tracks the integration
of new features for Bitcoin-wallet, while it links to the
corresponding (required) pull requests for Marlin. Still, it

is interesting that these information were not reported in
any other source, except for domain documentation resem-
bling the release log in the case of Bitcoin-wallet. However,
it is possible that this is due to our focus on the main
branch. For features that are in other stages of their deve-
lopment, the evolution facet may be identifiable based on
other sources.
Quality and Performance. We described in Section 4.2
that Marlin has a rather strict quality assurance. In Table 1,
we can see that several non-functional requirements are
important for the community. Most commonly are code
optimizations, reliability, memory consumption, and safety.
It was not surprising to find that Bitcoin-wallet has a very
different focus when it comes to quality, mainly considering
security, regarding that it implements an application to
improve the security of money transactions.
As we captured non-functional requirements, we could

identify these properties only for a subset of all features.
To this end, we utilized commit messages, domain docu-
mentation, issue tracker, pull request reviews, and source
code changes. Apparently, non-functional requirements are
rarely made explicit and mainly discussed in reviews of
features that shall be integrated into the system.
Discussion. Overall, we found that different information
sources can be helpful for each feature facet. Most of
these information sources are only available in modern
software-hosting platforms, but provide good opportunities
to improve automated techniques to recover feature facets.
Still, as comparing Marlin and Bitcoin-wallet illustrates,
the usability of each information source for a facet depends
heavily on its usage, the development process, community,
and domain of the system.

5. Threats to Validity

In the following, we report threats to the internal, external
and conclusion validity [Wohlin et al. 2012].
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Internal Validity. The main threat to the internal vali-
dity is that we, and not the original developers, identified
features, their locations, and their facets. Thus, our results
may be biased. However, we mitigated this threat with
two authors becoming domain experts for each system, for
example, by assembling two different kinds of 3D printers
(i.e., Delta, Cartesian) for Marlin, which differ in their me-
chanics and algorithms. We also performed domain, system,
and community analyses, during which different authors
extensively read documentations (e.g., about G-Code com-
mands) and meta-data (e.g., issue tracker) available in the
GitHub repositories. The source code was also analyzed in
pairs, which includes cross-checking of the code understan-
ding and of the locations. We plan to validate the data set
with the original systems’ developers.
External Validity. A threat to the external validity
is that we only consider two systems, which may differ
from others. Yet, Marlin is a substantial case, and as
an embedded system, it shares characteristics with many
other embedded systems. In fact, preprocessors are used
similarly in almost all open-source and industrial C/C++
systems [Hunsen et al. 2016]. Similarly, Bitcoin-wallet is
an Android application that shares common characteristics
with others and, thus, should also be representative.

Another factor influencing the external validity is the
software-hosting platform used for Marlin and Bitcoin-
wallet. Other platforms may utilize other version control
systems and additional components that comprise different
information sources, store data in another way, or apply
other mechanics. However, both systems are hosted on
GitHub, which is one of the largest open-source software-
hosting platforms. Moreover, the available data is usually
similar, as such systems are based on the same ideas. So,
we argue that our results are transferable to other projects.
Conclusion Validity. To enhance the repeatability and
reliability of our study, we provide the data set with feature
locations and all other data in an online appendix.1 We
argue that other researchers can replicate our study, but
may derive other results. For example, due to Marlin’s evo-
lution, they may categorize features differently, or include
additional information sources (e.g., developers). Nonethe-
less, we argue that this is not a threat to the reliability of
our study.

6. Related Work

In the following, we discuss other feature-location datasets,
experiments on manual feature location, and related case
studies. There is also another analysis of the forking techni-
ques of Marlin by Stănciulescu et al. [2015]. The authors
aim to understand the pros and cons of cloning based on
this analysis. Thus, our goal is different.
Feature-Location Datasets. We are aware of only few
datasets on feature location: Olszak and Jorgensen [2011]
developed a tool for feature location, which they apply
on multiple systems. The corresponding source code and
data is partly available. Ji et al. [2015] annotated feature

locations in the source code of the freely available Clafer
Web Tools [Antkiewicz et al. 2013]. The authors provide
a set of four systems with annotated feature locations in
the source code. Martinez et al. [2017] maintain an on-
line catalog of case studies connected to the extractive
approach [Krueger 2002] towards software-product-line en-
gineering. The catalog currently includes five academic and
open-source systems on which reproducible feature-location
studies with available source code have been performed.
Such data sets complement ours and we can use them to
investigate feature locations and facets in other systems.
Experiments on Manual Feature Location. There
have been few experiments and case studies on manual fea-
ture location [Krüger et al. 2019]. Wang et al. [2011, 2013]
report three exploratory experiments conducted on four
open-source Java systems. Their goal is to understand how
developers perform feature location tasks. Overall, they
describe distinct phases, patterns, and elementary actions.
For evaluating the effectiveness of patterns and actions,
the authors rely on junior developers. Similarly, Damevski
et al. [2016] conduct a field study on developers’ behavior
when performing feature location tasks. They report the
frequency and type of code search tools used, queries, re-
trieval strategies employed, as well as patterns of developer
behavior during feature location.

While these works involve manual feature location, they
do not distinct between the nature of a feature and do
not aim to recover other facets. Furthermore, they do not
include an investigation of information sources for features.
Both experiments focus on feature location in GUI-based
systems and observe participants’ interactions with the
GUI, but do not consider preprocessor-based code. Still,
as we described, we used similar patterns for our source
code analysis as reported by Wang et al. [2013].
Case Studies. Wilde et al. [2003] report experiences of
a feature location case study on unstructured FORTRAN
code. The authors use two semi-automatic techniques and
compare them to manual feature location. Their study re-
veals that both techniques are effective in locating features,
but require considerable adaptation.

Jordan et al. [2015] conduct an industrial in-vivo observa-
tion on two experienced software engineers modernizing a
COBOL system. They aim to understand manual searches
for feature locations and identify helpful tools. Their re-
sults suggest that domain knowledge improves effectiveness
and that search tools do not yield relevant results.

Ji et al. [2015] conduct a simulation study using a clone-
based software product line, on which they applied an
embedded feature annotation approach. They locate featu-
res based on the following sources: Project Wikis, commit
messages, commit diffs, code, issue trackers, and the origi-
nal developers. Still, their focus is to show the benefits of
embedding feature traces rather than investigating infor-
mation sources or feature facets.

Krüger et al. [2017] identify and manually map features
in five cloned Android systems. As information source,
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they use a code-clone detection tool to identify initial seeds
from which they extended their search. The authors’ focus
is to locate features and compare their results to a fully
automated refactoring.
While all these works are related to ours, the goal of

our study is complementary. Mainly, we investigated other
research questions than most works, or considered other in-
formation sources, for example, compared to Ji et al. [2015].
Furthermore, our subject systems differ in their develop-
ment processes and we did not use any feature location
technique. While there are some consistent experiences
(i.e., domain knowledge improves feature location), some
others are quite different among all works (i.e., the useful-
ness of keyword searches). Investigating those discrepancies
would constitute valuable future work.

7. Conclusion

We presented an exploratory study of manually identi-
fying and locating features and their facets in Marlin and
Bitcoin-wallet. To this end, we explored and described
the development processes of both systems as well as in-
formation sources that were useful to locate features, and
compared to what extent they can be used to identify fea-
tures facets. We contribute a data set of feature locations,
usable by other researchers to evaluate feature-location
techniques or study feature facets, and all our analysis data
in an online repository.1 Among others, locating features
in code required substantial domain knowledge. The same
accounts for the corresponding feature facets. We also
found substantial differences in the usability of different
information sources, considering what sources can be used
for which facets and to what extent.
There are more information sources for locating featu-

res and identifying their facets in modern systems than
are exploited for most corresponding techniques. While a
technique based on such different sources seems promising,
we are still lacking knowledge to make such a technique
usable. Foremost, we need to better understand the rela-
tionships between information sources, their integration
into development processes, and derive appropriate search
strategies that connect the available information. Impro-
ving the support for such artifacts in feature location and
information recovery techniques seems essential to facilitate
analysis and re-engineering (cf. Section 2) activities.

In future work, we aim to complement our results by furt-
her case studies on other systems (and forks of our subject
systems) to consolidate our insights into different informa-
tion sources and development cultures. We plan to do the
same for feature facets and the corresponding information
sources, also supporting developers to potentially improve
their information management. Particularly interesting
are comparisons of development processes among various
projects to unveil why they are applied and what characte-
ristics may lead to changes. An interview study with the
Marlin community and industrial developers may provide
further insights into such issues. In the same way, we argue

that analyzing how and why such communities combine
static and dynamic variability is interesting. Furthermore,
we aim to evaluate the features, facets, and locations, for
instance, by performing feature-based maintenance and
evolution tasks—measuring the benefit of the obtained in-
formation and the accuracy of our feature locations. This
way, we aim to identify best practices to guide developers in
their projects and researchers to scope their work. Finally,
our results provide a starting point not only to develop
new techniques to recover information about features, but
may also extend the scope of existing techniques that we
want to match against our results.
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