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Abstract— Automated Driving Systems (ADS) require exten-
sive evaluation to assure acceptable levels of safety before
they can operate in real-world traffic. Although many tools
are available to perform such tests in simulation, the lack of
a language to formally design test scenarios that cover the
complexity of road traffic situations hinders the reproducibility
of tests and impairs the exchangeability between tools. We
propose GeoScenario as a Domain-Specific Language (DSL) for
scenario representation to substantiate test cases in simulation.
By adopting GeoScenario on the simulation infrastructure of a
self-driving car project, we use the language in practice to test
an autonomy stack in simulation. The language was built on
top of the well-known Open Street Map standard, and designed
to be simple and extensible.

I. INTRODUCTION
Developing automated driving systems (ADS) with increas-

ing levels of automation requires extensively and rigorously
evaluating them before releasing them to customers. As the
level of automation increases [24], more driving tasks are
transferred from the human driver to the ADS, which has
to deal with real-world traffic and all of its disturbances,
interacting with human-controlled vehicles, pedestrians, and
other traffic agents. Hence, testing ADS should consider their
interactions with other agents in realistic traffic conditions
to ensure safety and conformity to the applicable traffic
legislation.

ADS testing in real-world traffic is extremely expensive
and risky. Before deploying the system to a real car, engineers
typically rely on simulation tools to test it under many
different traffic situations until it reaches acceptable levels
of safety. Researchers and engineers can manually design
test scenarios based on expert knowledge and on common
traffic situations the ADS must be able to cope with. Another
approach is to reproduce or augment situations collected
from traffic data [30], [22] and crash databases [20]. Figure 1
shows a typical pre-crash scenario based on National Highway
Traffic Safety Administration (NHTSA) traffic crash data
[20], [21]. This scenario is ranked as the most frequent crash
scenario (20%) and is typically characterized by front-to-rear
impacts between vehicles. As the trailing vehicle, Ego must
stop in time to avoid the imminent collision.

Testing ADS capabilities, such as rear crash avoidance,
requires simulation tools to execute the relevant scenarios, but
also a language to formally represent them. Many simulators
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Fig. 1. Testing scenario based on typical rear end pre-crash scenario from
NHTSA studies [20], [21]. At t(0), both vehicles are following the same
lane while Ego is keeping a safe Range and TTC (Time to Collision). At
t(1), the Leading vehicle changes its behavior, starting to decelerate until a
complete stop. At (t2), Ego (the following vehicle) needs to stop in order
to avoid a collision.

focus on sensors and vehicle dynamics (e.g., VREP [23] or
Microsoft’s AirSim [28]), but do not provide tools to simulate
scenarios with traffic environment. Other tools, such as Carla
[13], include scenarios based on free-roaming (traffic agents
randomly following roads) and need to be programmed to
allow controlled traffic scenarios. When tools provide features
to simulate controlled scenarios, such as Virtual Test Drive
(VTD) [6], they are typically based on a language exclusive to
their own simulation environment. In summary, to design and
run test scenarios for self-driving cars, engineers need to learn
tool-specific languages or program simulated traffic from
scratch. Migrating scenarios between different simulation
tools requires extra effort and impairs comparisons between
different driving systems.

Since typical scenarios for testing self-driving cars aim
at reproducing realistic traffic situations, they are similar by
definition and must be able to offer the same set of core
features. A well-designed, tool-independent domain-specific
language (DSL) that is expressive enough to cover these
features has the potential to help researchers and engineers
to engineer tool-independent test cases, migrate scenarios
between different tools, and to evaluate their systems under
alternative testing environments.



In this paper, we propose GeoScenario as a DSL for
scenario representation and evaluation. We identify relevant
elements that compose typical test cases and need to be for-
mally defined and executed in simulation testing. Additionally,
we provide a tool-set to easily design and validate scenarios
using our DSL. We hope that our language is adopted by the
community, and that we can create a shared database of tool-
independent test scenarios for self-driving vehicles. We apply
the DSL on the simulation infrastructure of the Autonomoose
Project, demonstrating its applicability in practice.

II. BACKGROUND AND RELATED WORK

The term scenario is not used consistently in the literature [17],
[14], [29], [15]. Although its usage varies depending on
the discipline, the main components are similar: actors,
background information on actors and assumptions about the
environment, goals, actions and events [15]. In the remainder,
we rely on Ulbrich et al. [29] who analyzed the term scenario
(and other related terms) across multiple disciplines and
propose a consistent definition based on requirements for
testing automated vehicles:

“A scenario describes the temporal development between
several scenes in a sequence of scenes. Every scenario starts
with an initial scene. Actions & events as well as goals
& values may be specified to characterize this temporal
development in a scenario. Other than a scene, a scenario
spans a certain amount of time.” [29]

Figure 2 illustrates this temporal development from the
Initial Scene. From a single initial scene, a scenario can
evolve through alternative paths leading to different scenes.
Each path is by definition a single individual scenario. A
scene can be interpreted as a snapshot of the environment, and
is composed by the scenery (stationary elements), dynamic
elements (elements that have the ability to move, or whose
state changes withing the scene), actors, and observer self-
representation (attributes and states).

Fig. 2. A Scenario (solid line) as a temporal sequence of actions&events
(edges), and scenes (nodes). Adapted from [29]

The main component of the scenery is the road network.
It contains all topological information about the roads and
their semantics, including lanes, road markings, traffic signs,
traffic lights, crosswalks, intersections, and all relevant details
that could affect the traffic.

A. Tool-Specific Languages

Many tools and studies create their own language to define
scenarios. Although they do not attempt to propose an open
and tool-independent language, they can potentially be used
as a reference to an open format.

CommonRoad [9] proposes a composable benchmarks
structure for motion planning based on three main compo-
nents: vehicle model, cost functions, and scenario. Although
this work does not attempt to propose a DSL for scenario
description, it creates its own file format for this task. It also
provides a collection of scenarios partially recorded from
real traffic (from NGSIM [22]) and partially hand-crafted.
Similar to GeoScenario, this work also relies on Lanelets
[11] for representing the road network. The planning problem
is formulated with the Ego vehicle having an initial state
and several goal regions (point, shape or a specific lanelet),
and all other vehicles having detailed trajectory data. Apart
from trajectories, there are no advanced tools to orchestrate
a scenario based on key locations or metric conditions. The
format fits the benchmark goals, but is currently not expressive
enough to be applicable to other simulation applications and
benchmarks aiming to cover more complex traffic situations.

Simulation tools often include a language to describe
scenarios. However, these languages are limited to their
simulation environments, making it hard or impossible to be
translated or interpreted across environments. Examples in-
clude SUMO (Simulation of Urban Mobility) [10], and Carla
[13] with the recent inclusion of the optional module Scenario
Runner (scenarios are controlled by scripts using API calls).

B. Open Languages

In the context of scenario representation, a map format can be
used to express the features of the Road Network. Open Street
Map (OSM) [2] is a well-known collaborative project to create
and publish free maps using an open XML format. However,
OSM and other general map standards do not contain
detailed information about the road topology at the lane
level. Therefore, they are not suitable to be used in a scenario
language as is. Lanelets [11] is an open extension of the OSM
format specifically to support Road Network representation for
automated vehicles. By definition, lanelets are “atomic, inter-
connected, drivable road segments geometrically represented
by their left and right bounds” [11]. The bounds are encoded
by an array of OSM nodes forming a polyline. Together,
they compose the lanelet map. With lanes represented by
road-segments with precise boundaries, Lanelets can be used
to compose the Road Network of a scenario.

OpenScenario [4] is an emerging open file format for the
description of dynamic contents in driving simulation appli-
cations. The project is managed by the Association for Stan-
dardization of Automation and Measuring Systems (ASAM)
and is currently in its early stages. The project plans to cover
dynamic content of simulators, such as driver behavior, traffic,
weather, environmental events and other features. The static
content is supported by another format, OpenDRIVE [3].

While OpenScenario and our language, GeoScenario, have
similar goals, they differ in their structure, and level of abstrac-



tion. OpenScenario can be closer to a logical level [19]. For ex-
ample, a scenario can be expressed with high-level maneuvers
(e.g., a lane change or overtaking), even if the specific trajec-
tories and locations are not explicit. This brings the challenge
of running a scenario as a concrete executable test without ad-
ditional specification. OpenScenario also describes maneuvers
that should be performed by the ADS during the scenario (Ego
vehicle), making it hard to be reproduced and even applicable
to different systems. Both specifications, OpenScenario and
OpenDRIVE, are open, but there are no freely available
libraries or tools to interpret and process the data.

III. DESIGNING A DRIVING SCENARIO LANGUAGE

In this section we discuss essential requirements for a well-
designed driving scenario language for testing automated
vehicles, and how we address them in GeoScenario. We
identify key elements that compose a scenario, discuss the
main scenario design approaches they must support, and the
basic principles we follow to make the language practical.

A. Supporting Test Case Development

The ISO 26262 standard for functional safety [16] provides
a framework based on the V-model as a reference to guide
all development phases of safety-critical electric/electronic
vehicle systems. According to the standard, scenarios are
used to support the development process, from requirements
to the test phase by supporting test cases.

When supporting test cases, scenarios such as car-following,
lane-changing, and overtaking maneuver, can be created
using different approaches. One approach is for experts to
manually design scenarios based on functional requirements
and designs and hazard analysis. A complementary approach
is to reproduce or augment situations collected from traffic
data. In the recent years, a huge progress has been made
in collecting and publishing naturalistic driving data, which
can be used for scenario development. Examples of publicly
available datasets include IVBSS [26], SPMD [30], and
NGSIM [22]. For instance, scenarios in CommonRoad
[9] were extracted from NGSIM data. A combination of
the two mentioned methods is also used, by designing
manual scenarios and extracting primitives from naturalistic
databases. Instead of reproducing strict trajectory data,
behavioral characteristics of maneuvers are extracted, such as
the distribution of time to collision, range, and speed while
performing lane-change maneuvers from all scenarios in the
database. These primitives can be sampled and combined to
generate new scenarios [32]. Finally, a scenario can also be
systematically generated. Apart from the sampling method on
naturalistic or manually defined distributions, scenarios can
be created to achieve specific goals (e.g., lead the system to
explore a certain behavior such as an emergency maneuver,
or find a critical situation leading to a crash). For example,
Abdessalem et al. [7] use evolutionary optimization methods
combined with neural networks to find critical scenarios (e.g.,
a crash scenario). The generation starts from designing the
input space, and new generations are created based on how
the system performs under simulation. Similar approaches

are also used to test autonomous parking system [12], and
to guide the search-based generation of tests faster towards
critical test scenarios [8]. A scenario language should
be able to support all mentioned approaches. It must be
simple and human readable, yet be able to represent precise
trajectories collected from traffic data, support input space
exploration from methods generating scenarios, and also
support unknown stochastic behaviour for sampling methods.
We built GeoScenario to support all these approaches.

B. Levels of Abstraction

Scenarios can be described at several levels of detail and ex-
pressed using formal, informal or semi-formal notations [15].
Menzel et al. [19] propose three levels of abstraction for
scenarios along the development process of the ISO 26262
standard [16]: (i) scenarios described as a high-level abstrac-
tion in the concept phase (functional scenarios), (ii) scenarios
with parameter ranges of the state space in the development
phase (logical scenarios), and (iii) scenarios with concrete
parameter values in the test execution phase (concrete sce-
narios). We decided to tackle the concrete level by designing
a language to express scenarios as a base for the test phase,
using concrete state values, and assuring reproducibility.

C. Scenario Orchestration

When dynamic elements in a scenario follow pre-defined
paths, we assume a deterministic evolution from the initial
scene. However, when the ADS is responsible for the
Ego’s driving mission, a scenario can evolve to alternative
scenes, and its execution becomes nondeterministic. Scenarios
described in CommonRoad [9] are clear examples of this
challenge. Dynamic elements are defined as time-discrete
states of a trajectory containing position and orientation over
time. After slicing NGSIM data in different scenarios, one
vehicle is selected to represent the Ego while the remaining
vehicles are selected as dynamic elements with their original
trajectories. The challenge arises the moment Ego starts to
perform differently from the original vehicle (by different
route, velocity or maneuver). The scenario then evolves to a
different situation. This is a natural limitation of any scenario
directly reproduced from traffic data. Consequently, a model
for scenarios must be able to orchestrate the evolution between
scenes with a flexible language for Actions & Events.

A different approach is to describe intelligent dynamic
agents making decisions, behaving like human drivers
and pedestrians, and reacting to every other traffic agent
(including the Ego). However, this brings the challenge of
modeling complete and realistic behavior of traffic agents
and makes reproducible scenarios hard to achieve. We
designed GeoScenario to provide ways of reproducing
trajectory data, but also created mechanisms to orchestrate
its evolution under different conditions (time and space),
allowing engineers to carefully craft scenarios that explore
controlled situations. Focused dynamic models of agent
maneuvers can be integrated as a future extension.



D. Basic principles

We designed GeoScenario using the following basic principles.
(i) Reuse: Leverage existing open formats to build a new
language on top of well-known and used structures. With this
approach, existing tools can be reused to support our new
language with only minor adjustments. (ii) Simplicity: The
language is simple enough to be human readable when simple
scenarios are modeled. Tools are encouraged to support com-
plex scenarios. (iii) Coverage: It is able to express the main
components of a scenario. (iv) Extensibility: It can be easily
extended with new features and specializations of its standard
components. (v) System independence: It supports test cases
for different ADS designs, operating on different levels of
automation. (vi) Tool independence: It can be interpreted and
executed by alternative simulation and test environments. (vii)
Executability: It can express concrete scenarios that can run
in simulation without an additional language.

IV. GEOSCENARIO ARCHITECTURE

GeoScenario was developed to express a scenario in a formal
language, following the requirements discussed on Section
III. The format is XML-based and built on top of the OSM
standard. The main components include: Ego start position
and goals, a road network, agents (vehicles and pedestrians),
paths, and triggers & actions. Additional elements are
omitted for simplicity, but they are available in our full
specification. Figure 3 illustrates a sample scenario with
the main components in place. Figure 4 shows a meta-model
(a.k.a., syntax model) of our components. In the next section
we will describe how all those elements work and interact.

Fig. 3. Overview of the main GeoScenario components in a 4-way
intersection scenario.

A. GeoScenario Basics

All GeoScenario elements are based on two OSM primitive
types: node and way. Nodes are the core elements of
GeoScenario, representing a specific point on earth’s surface.
Each node comprises an ID number and a pair of coordinates
(latitude and longitude). Nodes are used to define standalone
point features (e.g., a vehicle or a pedestrian), but also to
compose the shape of other elements (e.g., a path). Way is a
ordered list of nodes defining a polyline. Ways are used to
define linear features such as paths and boundaries of areas

Fig. 4. GeoScenario meta-model (class diagram notation from UML).

(solid polygons that represent an obstacle on the road, or a
named area for dynamic element placement). To define areas,
the way’s first and last node must be the same (closed way).

All elements (nodes and ways) can have tags describing
attributes of an element with the pair of text fields k (key) and
v (value). We use a tag gs to define an element’s role in the
scenario, that is, the element’s function in the GeoScenario
model (e.g., gs = vehicle). Elements without a gs tag do
not have a specific role in the scenario, but can be used to
compose other elements. For example, nodes composing a
path do not have a gs tag. An element cannot have two tags
with the same key, and they must be unique.

All elements with a role must also contain the tag ’name’
(with a few exceptions). The name is a unique string that
identifies one element in a scenario. This tag is used to derive
relations between elements. Nodes have coordinates in the
WGS84 coordinate frame (as part of the OSM standard).
There is a fixed dictionary of tags documented in our
GeoScenario specification, but we will highlight the main
properties per element in this paper. Listing 1 shows an
example showcasing a vehicle node and its basic components.

Listing 1. GeoScenario element example
<node id=’1’ lat=’43.5094’ lon=’-80.5367’>

<tag k=’gs’ v=’vehicle’/>
<tag k=’name’ v=’leading_vehicle’/>

</node>

B. Ego and the Driving Mission

In a Scenario, Ego is the entity representing the ADS. In our
language we decided not to define actions or maneuvers for
the Ego. Instead, GeoScenario only specifies initial conditions
and goals. During a test case execution time, the ADS is a
black box system responsible for deciding the best route and
maneuvers based on the traffic conditions (road network, static
objects, dynamic agents on the path, etc.). We decided for this
approach to allow the language to be system independent and
to reflect a real world driving scenario. In practice, a driving
mission is given to the driver or ADS as a global location to
be reached as a long-term task. The initial condition is defined
as a node representing Ego’s starting position and orientation.
We assume Ego always starts a scenario in a parked position.



The goal is defined as an egogoal node. A scenario can
have multiple ordered goal locations. They represent the
intermediate and final driving mission the ADS should achieve.
The final goal for the driving mission task is the one with
highest order number and must finish the scenario with a
success state. The nodes can be used to compose a global path
for the system, or create a goal point on the system’s internal
map. However, this is particular to the ADS configuration
and is out of the scope of our model.

C. Scenery and Road Network

We use Lanelets [11] to represent the scenario road network.
We decided to use Lanelets because of their compact and
lightweight structure; the GeoScenario format follows a
similar spirit itself. The road network is stored in a separate
XML file to make replacements easy. However, a scenario
can only be interpreted within the context of the road network.
Consequently, a GeoScenario must always be distributed with
its associated road network file.

To represent stationary obstacles that are not part of the road
network, but block or limit the drivable surface, we introduce
static object. Static objects can be defined as a single node,
a way, or a closed-way. A closed-way can assume arbitrary
shapes, but in order to be valid, it must have the first and last
node reference pointing to the same node ID. A reference to
a model can be used to give the object a more defined form.
We chose to keep the GeoScenario simple and flexible, and
the model must be defined elsewhere.

D. Dynamic Elements

We define as dynamic elements all GeoScenario elements
that are able to move (having kinetic energy) or are able
to change their state. This is different from Geyer’s [14]
definition of dynamic elements, which are based on the
temporal extent of the scene. In GeoScenario, a parked
vehicle is also defined as a dynamic element. Dynamic
elements that are able to move are called agents, and are
separated in two types: vehicles and pedestrians. Both are
represented as nodes and share similar attributes. Vehicle is
defined with the tag gs = vehicle, and pedestrian with tag
gs = pedestrian. The orientation tag is used do define an
agent’s initial orientation (for example, a vehicle yaw). In
our model the orientation is given in degrees, with origin
on East and clockwise direction. Different types of vehicles
(e.g., car, truck, bus) are represented with the same type,
with an optional attribute model specifying a vehicle model.
We do not specify details of the vehicle model dynamics or
3D meshes. Therefore, testing results must take into account
additional details of the simulation infrastructure running
the scenario. A speed attribute (in km/h) is used to define a
standard velocity.

In order to move, vehicles and pedestrians need to be
assigned to a path. A path is defined as a Way element, and
can be used for both vehicles and pedestrians. Paths should
be interpreted as splines composed by ordered connected
nodes. When a dynamic agent is assigned to a path, it will
travel along the path with its standard speed.

To support more realistic kinetics with variable velocity
and acceleration, or to reproduce scenarios from recorded
traffic data, an agent can be assigned to a speed profile. When
a path has a speed profile, it must contain nodes with the
tag agentspeed to indicate the target speed in km/h for the
agent once it reaches that node. The agent must always try to
match the speed of the next node in its path with a constant
acceleration.

With high density paths (i.e., more nodes) and a speed
profile, a GeoScenario model can represent a diverse range
of traffic situations, manually designed by experts, extracted
from real traffic by sensors, or imported from naturalistic
driving databases. As examples, Listing 2 shows a typical
dynamic agent as a vehicle, and Listing 3 shows its path
defined as a way. Note how the ID references to the nodes
composing a path are given by the tag nd and must be
interpreted as an ordered list.

Listing 2. Dynamic agent
<node id=’1’ lat=’43.5094’ lon=’-80.5367’>

<tag k=’gs’ v=’vehicle’ />
<tag k=’name’ v=’leading_vehicle’ />
<tag k=’speed’ v=’30’ />
<tag k=’orientation’ v=’45’ />
<tag k=’path’ v=’northpath’ />
<tag k=’usespeedprofile’ v=’yes’ />

</node>

By default, all paths are grounded to fixed node coordinates.
We introduce the tag abstract to define flexible paths. Abstract
paths are designed on fixed coordinates, but during execution
must be shifted to a new origin point based on the agent’s
current location. Abstract paths can be used to design dynamic
maneuvers. For example, a lane change that can occur at
different locations of the road network.

Listing 3. Path
<way id=’39’>

<tag k=’gs’ v=’path’ />
<tag k=’name’ v=’vwest_path’ />
<tag k=’abstract’ v=’no’ />
<nd ref=’3’ />
<nd ref=’4’ />
<nd ref=’5’ />
<nd ref=’6’ />

</way>

Some properties can be described by a fixed value or by
value ranges. As an example, a dynamic agent’s speed can
be defined by a fixed value (e.g., 30 km/h) or by a range
(e.g., from 20 to 40 km/h) using the notation [20:40] for
continuous values, and [20,25,30,40] for a list of arbitrary
discrete values. The variable attribute notation is used for
scenarios that rely on sampling and test input mutation and
allows our model to represent both logical and concrete levels
of scenario. Mutation of test input values is commonly used
is software testing, including driving automation systems [7].
Assigned values represent boundaries, and a concrete value
is selected before a scenario is executed. Stochastic behavior
with probability distributions is also supported. However,
since many different probability distributions can be used,
(e.g., Gaussian), they must be defined elsewhere.



E. Triggers & Actions

In GeoScenario we introduce triggers & actions to orchestrate
how a scenario evolves. The basic concept is to add trigger
nodes over strategic places of the road network, and activate
different actions over dynamic elements. Each triggers has
owners and targets. Owners activate triggers, whereas targets
execute the action (Figure 5). Owners can be the Ego itself
or agents (vehicles, pedestrians). Targets can be any dynamic
element whose state can change over the scenario, but can
not be Ego. This rule follows our assumption of the ADS as
a black box system, limited to the initial conditions and the
driving mission. Actions can change an agent’s state, or the
scenario itself. Listing 4 shows a trigger example.

Fig. 5. GeoScenario Trigger. When the owner activates a trigger, an action
is executed on the target. The trigger can be activated when the owner
reaches the trigger node location, when the Scenario reaches a certain time
t, or when a metric between two agents reaches a certain value x.

A trigger can be activated by three types of conditions, or by
a combination of them: (i) Time: activated when the scenario
execution reaches a given time t. A set of timed triggers
allow the designer to control the scenario in chronological
order with timed events. For example, at a given time t = 10,
a pedestrian starts crossing an intersection. (ii) Location:
activated by overlap, when the owner reaches the trigger
node location. Must be placed over strategic points of the
Road Network. They are especially useful when timed events
can not guarantee Ego and other agents are at the right place
at the right moment. For example, one can place a trigger
with Owner = Ego, and and action for a pedestrian to start
a path over a crosswalk. This trigger guarantees the walking
happens at the desired distance between Ego and pedestrian.
(iii) Metric condition: activated when a given condition based
on a metric is true. This trigger allows situations where an
Action needs to be performed with no specific location, but at
any location after a relative condition. For example, a vehicle
moving over a path on the road starts to decelerate to stop
only when the distance between Ego and a vehicle is less
than 100 meters. To support a condition, a GeoScenario needs
to track a given metric between agents.

Listing 4. Trigger
<node id=’4’ lat=’43.50909’ lon=’-80.53654’>

<tag k=’gs’ v=’trigger’ />
<tag k=’activate’ v=’location’ />
<tag k=’name’ v=’start_trigger’ />
<tag k=’owner’ v=’Ego’ />
<tag k=’target’ v=’leading_vehicle’ />
<tag k=’apath’ v=’west_path’ />
<tag k=’aspeedprofile’ v=’yes’ />

</node>

A metric is also defined as an element in GeoScenario, by
explicitly declaring which agents are tracked. We encourage
scenarios to include references for how a metric is calculated

since different approaches can be used. For example, TTC
can be used by a variety of methods leading to different
values [31], [27], [25].

This paper only provides an overview of our model.
All details (with examples) can be found in our project’s
repository.1 Additionally, the model can be easily extended
with new features and attributes to support tool specific
requirements (for example, to support conversion between
models).

F. Tool Set

Accessible tools are important to make the model useful for
engineers and adopted by the community. Since our format
was developed on top of OSM primitives, we adapted it’s
standard map editing tool: JOSM [1]. By adding a set of
custom presets and style sheets, we can now easily design
and understand a GeoScenario on top of the Road Network
(Lanelet layer) and other map layers (e.g., Bing Maps, ESRI
maps) before its execution. Figure 6 shows a sample scenario
designed in our custom tool.

The second tool is the GeoScenario Checker: a set of
scripts to evaluate a Scenario’s conformity with the standard.
Both tools are available at the Project’s website along with
their usage instructions. A third tool, a complete scenario
simulator will be released as part of this project, but is out
of the scope of this paper.

Fig. 6. JOSM adapted to design GeoScenarios

V. APPLICATION

We incorporated GeoScenario to Autonomoose Project testing
infrastructure as the official data format to design and run
test scenarios in simulation. In this section we describe our
project and present a sample scenario, tested in simulation
with our autonomy stack.

1https://git.uwaterloo.ca/wise-lab/geoscenario

https://git.uwaterloo.ca/wise-lab/geoscenario


A. The Research Platform

“Autonomoose” is the University of Waterloo self-driving
research platform. The platform is a Lincoln MKZ Hybrid
modified to autonomous drive-by-wire operation and a suite of
lidar, cameras, inertial and vision sensors (see Figure 7). The
car is equipped with computers to run a complete autonomous
driving system, integrating mapping, sensor fusion, motion
planning, and motion control software in a custom autonomy
software stack fully developed at Waterloo as part of the
research. The system was the first Canadian-built ADS to be
tested on public roads in Canada in August 2018. More info
is available on the project website. 2

The autonomy stack is implemented on top of Robot
Operating System (ROS) framework [5]. ROS offers an inter-
process communication interface based on publish/subscribe
anonymous message passing. We can explore this interface to
isolate the components we want to test and use data from our
simulation tools to create a realistic testing environment. We
focus our test on motion planning modules to explore Ego’s
interactions with other traffic agents. Because the publish/sub-
scribe system is anonymous, we can isolate Motion Planning
modules by simulating data from sensors (e.g., gps, imu), and
Perception modules (vehicle and pedestrian detection) through
ROS topic messages. We assumed all sensors work perfectly
without failure. This means our simulation environment is
able to provide accurate detection of all vehicles within the
range of the sensors in a map representing the Road Network.

Fig. 7. Autonomoose research platform. Lincoln MKZ Hybrid modified to
autonomous drive-by-wire operation and a suite of lidar, cameras, inertial
and vision sensors

B. Designing a Test Scenario

We model the most frequent crash scenario according to
NHTSA (lead vehicle stopped) as illustrated in Fig. 1. We
model this car-following scenario with a single Ego goal at
the end of the road to define a driving mission, a dynamic
agent as the leading vehicle shortly after the Ego start position
following the road with constant speed over the east path.
When the leading vehicle reaches a trigger, it switches
to decelerate path. This path contains a speed profile,

2https://www.autonomoose.net/

Fig. 8. Rear end pre-crash scenario modeled in GeoScenario and executed
in our Simulation Environment. Both vehicles are following the same lane.
When reaching the trigger, the leading vehicle switches to a decelerating
path profile until a complete stop. The blue line between vehicles indicates
the range (distance between two vehicles). The red box is the bounding box
used to simulate detection and bypass perception modules.

decelerating from 30km/h to a complete stop in a short space.
Ego is the trailing vehicle and must react to avoid a collision.
If a collision happens, the ADS failed and the scenario
must end. Figure 8 shows how we modeled our scenario,
and its execution in our simulation environment. Triggers
with different conditions can be used to explore this scenario
with different ranges, and different speed profiles (e.g., an ag-
gressive deceleration profile increasing the level of difficulty).

VI. FUTURE WORK

We plan to improve GeoScenario to support testing with
a focus on the perception task. For example, environment
conditions that must be simulated to affect detection (e.g.,
rain, snow, sun light or visibility in general) can be modeled
as both static and dynamic elements (weather changing
scenarios). New actions performed by dynamic agents can
be added to support scenarios exploring agent behaviour that
goes beyond path following. For example, we can explore
scenarios where vehicle lights are used for prediction before
a leading vehicle starts to decelerate or turn, or simulating
a distracted pedestrian talking over the phone to test the
system’s capabilities to predict unsafe behavior.

We are building a database of testing scenarios with a wide
coverage of requirements, exploring a wide range of system
capabilities along many phases of development. Scenarios
will be both manually designed by engineers and extracted
from traffic data. All scenarios will be openly available, and
the database will be extended with new scenarios from the
community.

We plan to release two additional tools to support the
applicability of GeoScenario in projects from the community.
The first is the scenario extractor, to generate scenarios from
different naturalistic driving databases (e.g., NGSIM [22],
[18], SPMD [30]) into GeoScenario files. Finally, a complete
driving scenario simulator with full support for GeoScenario
will be released as an open source Unreal Plugin, supporting

https://www.autonomoose.net/


a series of available open source Unreal based simulation
tools (e.g., AirSim [28] and Carla [13]).

VII. CONCLUSION

We proposed GeoScenario as a DSL for scenario represen-
tation. We identified key elements that compose typical test
cases and which need to be formally declared and executed
on self-driving vehicle testing. By adopting GeoScenario on
the simulation infrastructure of the Autonomoose Project to
validate the autonomy stack under simulation, we demon-
strated its applicability in practice. The language was built
on top of well-known Open Street Maps primitives, designed
to be simple and easily extensible. A tool-set to easily design
and validate scenarios using our DSL is publicly available
and we hope it encourages the adoption by the community.
With the contribution from more researchers, we plan to
publish a shared database of tool-independent test scenarios
for self-driving vehicles.
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