
Intention-Based Integration of Software Variants
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Abstract—Cloning is a simple way to create new variants
of a system. While cheap at first, it unfortunately creates
a maintenance cost in the long term. Eventually, the cloned
variants need to be integrated into a configurable platform.
Such an integration is challenging: it involves merging the usual
code improvements between the variants, and also integrating
the variable code (features) into the platform. Thus, variant
integration differs from traditional software merging, which does
not produce or organize configurable code, but creates a single
system that cannot be configured into variants. In practice,
variant integration requires fine-grained code edits, performed
in an exploratory manner, in multiple iterations. Unfortunately,
little tool support exists for integrating cloned variants.

In this work, we show that fine-grained code edits needed
for integration can be alleviated by a small set of integration
intentions—domain-specific actions declared over code snippets
controlling the integration. Developers can interactively explore
the integration space by declaring (or revoking) intentions on
code elements. We contribute the intentions (e.g., ‘keep functi-
onality’ or ‘keep as a configurable feature’) and the IDE tool
INCLINE, which implements the intentions and five editable
views that visualize the integration process and allow declaring
intentions producing a configurable integrated platform. In a
series of experiments, we evaluated the completeness of the pro-
posed intentions, the correctness and performance of INCLINE,
and the benefits of using intentions for variant integration. The
experiments show that INCLINE can handle complex integration
tasks, that views help to navigate the code, and that it consistently
reduces mistakes made by developers during variant integration.

I. INTRODUCTION

Software variants emerge when architects experiment with new
ideas or customize systems towards new market segments, new
hardware platforms, runtime environments, or non-functional
properties. Variants are often created by cloning—copying
existing code and adapting it to new requirements by
implementing new or modifying existing features [1]–[6].
Cloning is easy and cheap [7]. It is encouraged by version
control tools through branching or forking. However, the
long-term effort of maintaining and evolving cloned variants
outweighs the benefits as soon as a few variants exist. When the
challenges of maintenance and further evolution accumulate,
architects often choose to re-integrate forked variants to benefit
from code reuse techniques. One popular way is to build a
configurable platform (or a software product line [2], [8])
that shares the variants’ common code and allows to configure
the variable features. The latter are typically represented by
configuration options (features) that control variation points
(e.g., preprocessor directives such as #if or #ifdef).

Even though re-engineering variants is the most common
way to create integrated platforms in software industry [2],
concerningly few methods and tools exist for the problem of
transforming existing variants into a configurable platform;
much less than for creating product lines from scratch. Prior
work has mainly focused on understanding the commonalities
and differences among variants [6], [8], largely sidestepping
the actual integration. Integration research appears necessary
to bring software product line results to a broader practice.

Not only is integrating cloned variants challenging, but it also
consumes the most valuable resources in software teams. One of
our industrial partners states: “Developers tend to be specialized
in one variant. [...] They have difficulties to switch from one
variant to another. Due to these difficulties, merges are done by
the most experienced developers, who we would want to use on
more useful tasks.” An engineer performing the task, needs to
understand the richness of the variants and their differences. She
also needs to consistently distinguish and integrate evolution
changes, common code, and variable code, injecting variation
points. Our contribution is to help this second challenge.

The two code excerpts on the left in Fig. 1 are simplified
variants of a file adapted from the mainline and a fork of a
3D printer firmware project. To integrate them (the rightmost
excerpt) developers need to comprehend the code, understand
the differences (and how they are aligned), make design deci-
sions (e.g., what to keep, what to remove), and low-level edits.
This can be done in many ways. Developers apparently need to
explore different possibilities and undo frequently. Specifically,
they need to obtain a single consistent #if hierarchy guarded by
correct #if expressions, especially cumbersome and error-prone
when multiple variations in forks overlap. We show in Sec. II
that it is difficult for integrators to align changes and obtain an
overview on the variants, even when using a modern diff tool.
Developers sometimes even give up to integrate larger and
conflicting variants [9], [10], especially when variants have
intricate and undisciplined #if structures typical in configurable
C projects, including our evaluation subjects [11]–[13].

We show how to partially automate the process, and how to
make it more flexible by centering it around recording (and
revoking) mostly independent, higher-level decisions, integra-
tion intentions—programming-language-independent actions
declared over code. They define how variants should be
integrated, whether to keep functionality, declare variants as
exclusive, or extract a configurable feature. While intentions do
not replace domain knowledge, they support exploring different



integrations much more flexibly than an undo system. One can
immediately observe results and revoke some of the recorded
intentions (with no undo stack discipline). Intentions can be
nested. Even though they are intuitively simple, their resolutions
on code can be complex (e.g., when intentions interact),
automatically creating variation points (i.e., #if structure) and
the created #if structures are correct by construction.

We propose and define the integration intentions, and
implement a prototype IDE tool INCLINE (intention-based
clone integration). INCLINE works with C preprocessor, but
it is otherwise language-independent. It offers five editable
views on the variant code. Unlike the views of diff tools,
designed for code merging, our views take integration of
variants with configuration options as a first class concept.
We evaluate INCLINE using five popular open-source systems
with forks: Marlin, a 3D printer firmware; Vim, a UNIX text
editor; BusyBox, a suite of shell tools; libuv, an IO library;
and PHP, an interpreter. We perform a set of realistic variant-
integration simulations with file variants up to 4K lines, and
a controlled experiment with 12 participants. We find that
intentions are sufficiently rich to integrate real variants, their
resolutions are correct. Most importantly, developers make less
mistakes when integrating with INCLINE, and find declaring
intentions simple and intuitive compared to manual integration.

We hope that INCLINE can further advance the integration
practice, and can be used as a device to obtain more data
from industrial partners and open-source developers about this
process with a further improvement in view.

II. MOTIVATION AND BACKGROUND

We now discuss variant integration challenges. These originate
from our running example, our own (action-research) expe-
riences with industrial partners and open-source variant-rich
systems, as well as a think-aloud exercise. In the latter, we let
three developers execute two integration tasks, respectively
from Marlin and Busybox, using Eclipse’s diff tool. The
participants received three files: one with the mainline code, one
with the related fork code, and the target solution. The Marlin
files had over 2,000 lines of code and over 100 #ifdef blocks;
the Busybox files 25 lines of code and only two #ifdef blocks.
During the integration, the participants were asked to speak
aloud about what they are doing. We recorded this process and
reviewed the spoken comments, used to illustrate and confirm
challenges in this section. In the following, we refer to our
running example (Fig. 1) and the think-aloud participants.
Challenge 1: Variant Integration is Not Code Merging.
Variant integration differs from traditional code merging
[14], which combines changes performed in isolation into
a single system. Merging does not directly support realizing
variants or building a configurable platform. Traditional merge
algorithms combine as much code as possible and delegate
conflicts they cannot resolve to the developer. In contrast,
our focus is on efficiently transforming system variants—that
were developed in parallel and that can realize conflicting (i.e.,
mutually exclusive) functionality—into a platform where they
can co-exist. Deciding whether a change should be shared

by all variants or be specific to some variants, has to be
done regardless whether a merge conflict occurs or not. Even
smoothly merging changes might need to become optional.

Research on variant integration is found under the broader
area of re-engineering legacy products into a software product
line [3], [8], [15], [16]. However, works in this area almost
solely focus on discovering commonalities and variabilities
between codebases to gain an understanding of how similar or
far apart they are, together with research on identifying and
locating features or synthesizing so-called feature models [17].
Challenge 2: Domain Knowledge. Integration requires dom-
ain knowledge of the developer, which we cannot alleviate. Yet,
even with such knowledge, the comprehension of what changed
in the variants is a challenge. Consider viewing the excerpts
from our running example in a traditional diff tool, as shown in
Fig. 3, which highlights the differences, but does not help with
the integration. Working with a diff tool, the developer needs
to comprehend such diffs, while editing the text to create an
appropriate #if structure. In fact, all our think-aloud participants
confirmed this challenge and demanded better views to explore
the variants and to observe how changes influence the result.
Challenge 3: Code Alignment. A closely related challenge
is code alignment, confirmed by all think-aloud participants.
Diff tries to align text and changes, but often fails, leading to
mismatching. Furthermore, using a single view, where variants
are explored and also modified, is problematic, since edits
change the diff. Using a new file where changes are copied
into increases effort (also cognitive effort), unfortunately. One
think-aloud participant stated the need to create a new file where
all the changes should be stored, such that the two variant
views can be used to understand the differences. Another one
was overwhelmed by the diff tool highlighting every line.
Challenge 4: Create a Valid Variation Point Structure.
Developers need to create a target #if structure, edit the code
to include respective changes, and create presence conditions
(Boolean expressions over features, determining when the
respective code is included in a variant derived from the
platform) [18]. In our running example (Fig. 1) the fork’s line
3 (added variable encoderDiff) could be either made mandatory
or optional, the latter by adding an #ifdef NEWPANEL.
Furthermore, the fork’s lines 5–7 could also belong to this
feature or another one (depending on domain knowledge)

The most trivial solution would be to create a new feature
that represents the variant (we will call such a feature FORK in
the remainder) and wrap the complete files in an #ifdef-#else
block. This fails to recognize any commonalities and creates
much redundancy, not providing any benefit. Another strategy
could be wrapping all differences in #ifdef blocks. GNU’s diff
tool using diff-w-DFORKfile1file2 actually supports that,
where FORK would be the feature name. However, this can
easily lead to an invalid #if structure, since the added directives
interfere with existing ones in the variants. This happens for our
example, as seen in Fig. 4. Figure 5 shows a correct structure.
Challenge 5: Low-Level Editing. Traditional integration
amounts to doing many low-level editing tasks, many of which



#ifdef ULTIPANEL
 uint8_t lastEncoderBits;
 uint32_t encoderPosition;
 #if PIN_EXISTS
  uint32_t blocking_enc;
 #endif
 uint8_t lcd_sd_status;
#endif // ULTIPANEL
 menu_t cM = lcd_status_scrn;
 bool ignor_click = false;
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#ifdef ULTIPANEL
 uint8_t lastEncoderBits;
  int8_t encoderDiff;
 uint32_t encoderPosition;
 #if (SDCARDDETECT > 0)
  uint32_t blocking_enc;
 #endif
  bool lcd_oldcardstatus;
#endif // ULTIPANEL
 menu_t cM = lcd_status_scrn;
 bool ignore_click = false;
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#ifdef ULTIPANEL
 uint8_t lastEncoderBits;
 #ifdef NEWPANEL
  int8_t encoderDiff;
 #endif
 uint32_t encoderPosition;
 #if PIN_EXISTS
  uint32_t blocking_enc;
 #endif
 #ifdef NEWPANEL
  bool lcd_oldcardstatus;
 #else
  uint8_t lcd_sd_status;
 #endif
#endif // ULTIPANEL
menu_t cM = lcd_status_scrn;
bool ignore_click = false;

Result

~11 edit operations

comprehension
comparison and code alignment
copy/paste variant-specific code
create valid #ifdef hierarchy
further code edits

iterate and explore

Fig. 1: Running example. Left: mainline and fork variants to be integrated. Right: integration goal. Middle: necessary activities.

need to be explored by developers.
For our running example, a developer could perform the

following edit operations (bottom right), based on her domain
knowledge that the fork realizes a feature called NEWPANEL:
(1) Take mainline as a base, copy fork’s line 3 and add
#ifdef NEWPANEL to make it optional. (2) Copy line 8 from fork
above line 7 in mainline, wrap by a new #ifdef NEWPANEL, move
mainline’s previous line 7 to the respective #else branch, to
preserve mainline’s functionality. (3) Fix typo on mainline’s
line 10 as already done in the fork (line 11). Essentially,
this amounts to, 11 line-level-based editing operations (e.g.,
highlight a line, copy it, write an #ifdef NEWPANEL).
Challenge 6: Introduce Features. The strategy of pairwise
diffing and wrapping changes in #ifdefs is relatively common.
For instance, the company Danfoss used it to integrate forks
[19], [20], creating “features” representing individual variants.
While this integration was quick (months) for a system with
1.5M lines of code, it took four years to achieve the desired
platform. The process was mostly manual, with minimal tool
support; during it, the platform was iteratively verified. It was
especially challenging to refactor the variant-based “features”
into around 1000 variant cross-cutting, intuitive features (e.g., a
feature representing a specific motor instead of PRODUCT_A).
Challenge 7: Iterative Exploration of the Integration.
Recall that many different edit sequences can lead to the
desired integration. Developers need to explore their edits,

#if ULTIPANEL

uint8_t lastEncoderBits;

preview

#if ULTIPANEL

uint8_t lastEncoderBits;

fork view

#if ULTIPANEL

uint8_t lastEncoderBits;

mainline view

side-by-side view#if ULTIPANEL

uint8_t lastEncoderBits;

uint32_t encoderPosition;
Mainline Fork

#if PIN_EXISTS

 uint32_t blocking_enc;

#endif

#if SDCARDDETECT > 0

 uint32_t blocking_enc;

#endif

Mainline Fork

  int8_t encoderDiff; 

Mainline Fork

 bool lcd_oldcardstatus;  uint8_t lcd_sd_status;

#endif

 menu_t cM = lcd_status_scrn;
Mainline Fork

 bool ignore_click = false; bool ignor_click = false;

Remove Intention
(automatically added)

Exclusive Intention
NEWPANEL

!NEWPANEL

Keep Intention

KeepAsFeature Intention

Keep Intention

NEWPANEL

Fig. 2: The integration of our example (Fig. 1) with INCLINE.
Developers add intention on the code within different views

Fig. 3: Our running example (Fig. 1) in a traditional diff tool

1 #ifdef ULTIPANEL
2 uint8_t lastEncoderBits;
3 #ifndef FORK
4 uint32_t encoderPosition;
5 #if PIN_EXISTS
6 #else /* FORK */
7 int8_t encoderDiff;
8 uint32_t encoderPosition;
9 #if (SDCARDDETECT > 0)

10 #endif /* FORK */

Fig. 4: An invalid #if structure created by diff -D for our
example (Fig. 1). Grey lines show the added structure, red lines
violations due to existing variant #ifs.

including refactoring #if structures and backtracking (undo
changes), which can be cumbersome and error-prone for low-
level editing. For instance, consider lines 4–6 in the mainline
and lines 5–7 in the fork (Fig. 1). In our example, the order
of these blocks when integrated does not matter, since they
have no side effects. But, if these were statements, it might
be necessary to move them to the right order—an insight
developers could just obtain after doing a first integration. All
our think-aloud participants confirmed the need for an iterative
exploration, with the ability to easily undo changes.

1 #ifdef ULTIPANEL
2 uint8_t lastEncoderBits;
3 #ifdef FORK
4 int8_t encoderDiff;
5 #endif /* defined(FORK) */
6 uint32_t encoderPosition;
7 #if (defined(FORK) || PIN_EXISTS) && (!defined(FORK) || SDCARDDETECT > 0)
8 uint32_t blocking_enc;
9 #endif

10 #ifdef FORK
11 bool lcd_oldcardstatus;
12 #else
13 uint8_t lcd_sd_status;
14 #endif /* defined(FORK) */
15 #endif /* defined(ULTIPANEL) */
16 menu_t cM = lcd_status_scrn;
17 #ifdef FORK
18 bool ignore_click = false;
19 #else
20 bool ignor_click = false;
21 #endif /* defined(FORK) */

Fig. 5: The default integration for our running example (Fig. 1)



Challenge 8: Cognitive Load of Variability. There is also
the cognitive load of the C preprocessor, whose #if directives
clutter source code and challenge comprehension [12], [21].
This can easily lead to code ending up in the wrong variant
(the wrong #if block) [22]. Graphical representation of the
preprocessor using dedicated tools have been proposed in the
literature [23], [24], but not for variant integration.

III. INTEGRATION WITH INCLINE

INCLINE addresses the challenges described above as follows.
Challenge 1: Variant Integration is not Code Merging.
Instead of merging, INCLINE creates an integrated platform
with a valid variation point (#if) hierarchy. INCLINE’s input
are pairs of file variants (mainline and fork), The variants,
written in any programming language, may already contain
features and variation points, which INCLINE reads and
manipulates. INCLINE shows differences in multiple editable
views (explained shortly), including a view providing a default
integration. For the latter, INCLINE adds the feature FORK and
wraps variant-specific code with the presence condition !FORK
(mainline) or FORK (fork), conjoined with presence conditions
of already existing variation points in the variants. Figure 5
shows the default integration for our example (Fig. 1).
Challenge 2: Domain Knowledge. To foster comprehension,
the developer can navigate and comprehend the default integra-
ted platform, the variants, and their differences using five views.
Figure 6 displays four of the views. The mainline view and the
fork view (top left and top right of Fig. 6) show the previous
variants (internally realized as a partial configuration of the
default integrated platform). The green bar represents a Keep
intention (explained shortly). The integrated side-by-side view
(bottom left of Fig. 6) shows the integrated platform, but with
the differences between mainline and fork arranged next to
each other, without #ifdef directives. The fifth view (illustrated
in Fig. 5), called integrated view, would display the integrated
platform like the integrated side-by-side view, but using #if

annotations. The result view (bottom right of Fig. 6) previews
the final result with all intentions resolved.

On a side note, we implemented INCLINE using the
language workbench MPS [25]. It relies on projectional editing
(a.k.a., syntax-directed or structural editing [26], [27]), where
a user’s editing gestures directly change the underlying AST,
without using any parser. The AST is still rendered into concrete
syntax (program code). Projectional editing is well-suited for
creating editable views. The variant views rely on a partial con-
figuration of the variational AST, for which we use Z3 [28] to
reason about presence conditions and calculate the projections.
Challenge 3: Code Alignment. The integrated side-by-side
view arranges the differences between mainline and fork
differently than an ordinary diff tool would do. Within the
source code, the view aligns chunks of code that are common
and shows chunks of code that differ in horizontal boxes, which
can be nested (just like preprocessor directives can be nested).
Showing the boxes and even nesting them is possible through
the technology projectional editing. This helps to represent the
code that differs together, side-by-side.

Fig. 6: Screenshot of INCLINE views: mainline view (top left),
fork view (top right), integrated side-by-side view (bottom left),
and result view (bottom right)

Challenge 4: Create a Valid Variation Point Structure. IN-
CLINE implements a simplified version of the C preprocessor
language (#ifdef, #else, #if, #elif, #endif directives). The
actual program code is stored as an unstructured uninterpreted
text (string of characters). So, INCLINE is independent of the
host language and would work on, say, C++ programs the same
as on C programs, without modification. To enhance editing the
target language (e.g., code completion, syntax highlighting), our
preprocessor language could also be composed with a language
available in MPS, such as C99 [29]. To import existing source
files into INCLINE, we built a C preprocessor parser upon
clang. To create the integrated variational AST, we use the
input files’ parse results to create XML-based representations
of their ASTs, and then use JNDiff [30] to obtain a valid
variation point hierarchy, which is then transformed into our
variational AST (explained shortly in Sec. V).
Challenge 5: Low-Level Editing. As the main contribution,
INCLINE aims at alleviating low-level editing operations to
improve the efficiency of developers and to reduce mistakes
(e.g., writing incorrect presence conditions or creating a wrong
#if structure where code ends up in the wrong variants).

Intentions specify the goal of integrating a change, that is,
how the integrated AST should be customized with respect
to the input variants. For instance, a developer could ask:
should the change be made common to all variants? Or only
to some of them? Or should it remain variant-specific? Is the
change standalone or is it intended to belong to a feature
implementation? In the views, the developer defines intentions
and if necessary can also manually edit the code.
Challenge 6: Introduce Features. INCLINE provides inten-
tions (KeepAsFeature, AssignFeature) that are parameterized
to allow specifying features. When adding such an intention
on the code in INCLINE, the user is asked about the feature.

Note that an effective management of an integrated platform



also needs mechanisms for modeling and managing features and
their dependencies. These are, however, orthogonal concerns
to variant integration and therefore beyond the scope of this
work. Yet, an integration would be valuable future work.
Challenge 7: Iterative Exploration. When declaring intenti-
ons in the views, the developer explores their effects in the
views, especially the result view. Since all views rely on one
variational AST, they are updated (synchronized) immediately.
Intentions can be easily removed the same way they are added—
with just one keystroke. Furthermore, since the integrated
variational AST is always syntactically correct, developers can
at any time derive individual variants (e.g., to run a test suite).

IV. RESEARCH METHODOLOGY

Definition of Intentions. To conceive our primary contribution,
the integration intentions, we relied on three sources. First, we
reflected the variability mechanisms that appear in integrated
platforms, since there code can be mandatory or optional,
controlled by presence conditions. Second, we relied on
experiences from the think-aloud exercise. Third, we inspected
diffs of the Marlin ecosystem. Marlin (>40 KLOC of C++
code) has over 4000 forks, many of which evolve separately and
independently add new functionality. Given this richness and
the existing re-integration efforts of the community, Marlin is
an ideal subject for conceiving intentions. our evaluation. Since
most forks contain no or just minimal changes, we specifically
looked at forks that implement new features and how they were
either already integrated into the mainline or what challenges an
integration would entail. We also inspected merge commits that
involved preprocessor directives, pull requests, and conflicting
commits—all examples of developers performing integrations
while dealing with variability. In the remainder, we formally
present the intentions and their deterministic resolutions.
We will later show that these intentions are sufficient for
integrations in five open-source systems, including Marlin.
Tool Design. Conceiving an end-user tool is intrinsically
difficult, especially given the resources of researchers. To obtain
a usable tool, the design followed an iterative process, with a
prototyping and evaluation feedback loop. In our first prototype
of INCLINE, we implemented the basic functionality: source
file import, user interface to declare intentions, and back-end
to resolve intentions. After that, we have executed a pilot user
study, to detect and resolve inefficiencies in the tool.

To check the usability of the first prototype, we recruited 16
MSc students to execute two integration tasks. We compared
the performance of INCLINE against Eclipse’s diff/merge tools.
We extracted two tasks from the histories of BusyBox and Vim.
Each task concerned the integration of code from a fork (for
Vim one that adds support for command-line completion; for
BusyBox one that is tailored for Android) to the mainline. The
participants were given a correct target integration and a brief
description of the integration goal. Showing a target solution
was a pragmatic way to reduce the influence of (lack of) domain
knowledge for this first usability check. The subjects solved
the task in controlled time. We observed how they worked

using screen recordings. The tasks used are available in the
online appendix [31, Pre-Study].
Improvement Cycle. Based on the results, we improved the
prototype and customized the default configuration. Specifically,
we: (i) added keyboard shortcuts for intention declaration
actions as we could see in the screencasts that mouse input
and menus were inefficient, (ii) by default, arrange views as in
Fig. 6 and use integrated side-by-side view instead of integrated
view by default, (iii) for convenience, added heuristic proposals
for further intentions to the user (e.g., when Keep declared for
all nodes in an #if branch, INCLINE proposes a corresponding
Remove intention for the nodes in the #else branch), and (iv)
improved the highlighting of the applied intentions, so it is
easier to see for which nodes intentions have been declared,
and reduced the observed trial-and-error.
Evaluation. We replayed real edits mined from the history
of five variant-rich open-source systems and conducted a
controlled experiment. See Sec. VI for details.

V. THE INTEGRATION INTENTIONS

We propose the following intentions to be used for high-
level control of the integration process: Keep, KeepAsFeature,
Exclusive, Remove, AssignFeature, and Order.

A. Variational AST and Views

A variational AST is a syntax tree with embedded #ifs. To
simplify the discussion we often see it just as a set of nodes
(Nodes). For each node n, we identify a sequence of conditions,
cn1 , c

n
2 , · · · , cnk , used in the #ifs on the path from the AST’s

root (cn1 ) to n (cnk ). A node that is not wrapped by any #ifdef

(non-variable node) has an empty sequence of conditions.
We define the presence condition pc(n) to be the conjunction

of all conditions used by the #ifs the node n ∈ Nodes is
contained in. For a non-variable node it is true.

pc(n) =
∧
i∈1..k

cni

We define a block as a set of nodes in the AST: block ∈
P(Nodes). We also introduce an order of nodes, which
describes the syntactic order of the C/C++ program. If a node n1
exists before node n2 in the syntactic order, we write n1 < n2.

A view is a projection of the AST showing only a specific set
of variants specified by a view constraint ρ over features. For
the views mainline and fork, ρ = ¬FORK and ρ = FORK ,
respectively. For the integrated views ρ = true. Of course, ρ
can be a more complex expression, not just a literal, to filter out
more variability not relevant for the integration.In the remainder,
we limit ourselves to simple view constraints, though. Note
that the view through which an intention is declared forms the
context for the intention and as such influences its resolution.

To determine how conditions are shown in a view, we
substitute every occurrence of the view constraint in the
conditions with true:

∀n ∈ Nodes cnρ = cn[ρ← true],

where cnρ denotes the conditions shown in the view.



#ifndef FORK // block_not_fork
int servo_e1[] = SE

int servo_e2[] = SEA
#else // block_fork
int16_t servo_e1 = SE
int16_t servo_e2[] = SEA
#endif

int servo_e1[] = SE
int servo_e2[] = SEA
#ifdef FORK
int16_t servo_e1 = SE
int16_t servo_e2 = SEA
#endif

Fig. 7: Keep intention (left) and result (right)

In the variant views, we render the AST as follows:
• We hide nodes where pc(n)[ρ← true] ≡ false
• We show nodes without the surrounding #if if cnk ≡ true
• For the remaining nodes, we simplify presence conditions

[18] with respect to the view constraint using an SMT
solver

Special care needs to be taken for blocks containing nodes
with complex presence conditions. Complex conditions contain
both the view constraint ρ and some unrelated terms. When
using views, a complex presence condition is shown as a
non-complex condition, since the view constraint is simplified.
Still, the hidden view constraint is part of the context that the
intentions are declared in, just as if the node was implicitly
wrapped in an #if with the view constraint as its condition.
Formally, we say a condition is complex iff cn 6≡ cn[ρ← true].
For an #if node n with a complex condition, we rewrite the
sequence of conditions so that it ends with the view constraint.
We use the notation pc(n, ρ) to denote the presence condition
of node n in a view with constraint ρ:

pc(n, ρ) =
∧
i∈1..k

cni ∧ ρ

B. Semantics of Intentions

We now define the individual intentions and illustrate them
with examples. Intentions are partial functions transforming
ASTs. We formalize their semantics as effects they have on
the presence conditions and ordering of nodes. In Sec. V-C,
we show how the intentions are resolved (implemented) on the
AST. The figures (for instance, Fig. 7) show the integrated AST
on the left, selected nodes on which an intention is declared in
gray, and the desired result on the right. The examples use the
integrated view, which shows all variants at once. The verbosity
of this view makes it most suitable to explain how intentions
work. For each intention we use the notation pc′(n) to illustrate
the resulting presence condition of the node n, and pc(n) for
the presence condition before the intention resolution.
Keep. The Keep intention includes a block as it appears in
mainline or fork in an unconditional manner, without guarding
it with any additional feature. Consider the example in Fig. 7
where we define block_not_fork to represent the set of nodes in
the ¬FORK branch highlighted with gray, and the block_fork
represents the set of nodes in the FORK branch. The fork
changes the type of the servo variables to be 16-bit signed
integers, because different hardware and compiler are used for
this variant. During the integration process, it is decided that the
hardware used in the fork should no longer be supported, and
only the code from mainline is kept. We apply the Keep inten-
tion on the block_not_fork set of nodes. The right side shows

#ifdef FORK // block_fork
card.pauseSDPrint();

#endif

#ifdef SDSUPPORT
card.pauseSDPrint();
#endif

Fig. 8: KeepAsFeature intention (left) and result (right)

the result of applying Keep on the selected block_not_fork. The
nodes from the fork should be removed (which can be done
with the dual of Keep, Remove, described below). Note that
the integration is not completed, as there is still a block from
the forked variant, which should be resolved later.

The effect of Keep(block) on the presence conditions is:

pc′(n) =

{
cn1 ∧ ... ∧ cnk−1, if n ∈ block
pc(n), otherwise

The nodes for which Keep was declared should no longer
be under the constraint created by the #ifdef that directly
wraps those nodes (in the example we drop !FORK). Their
new presence condition is the conjunction of all but the last
constraint that directly wrapped the nodes. All nodes that are
not part of the intention are unchanged.
KeepAsFeature. The KeepAsFeature intention preserves a
block from one of the variants, but makes it conditionally
present, only linked to a certain feature or combination of
features. It wraps the block with a new presence condition
given with the intention. In the example of Fig. 8, a fork
developer added functionality to pause a 3D print from an
SD card. Not concerned with other devices than the one for
which the fork was developed, she included the new behavior
unconditionally. However, in the integration process, it became
clear that this functionality only makes sense in variants
supporting SD cards, thus, it needs to be included conditionally.
The desired result is shown on the right side of the figure.

KeepAsFeature(block, F) replaces the last constraint from
the sequence of constraints with the new presence condition:

pc′(n) =

{
cn1 ∧ ... ∧ cnk−1 ∧ F, if n ∈ block
pc(n), otherwise

Exclusive. This intention declares that two code blocks should
be mutually exclusive (enforcing the separation of conflicting
functionality), controlled by a choice condition. In Fig. 9 the
fork introduces a new optional feature FIL_DISPLAY and
keeps the line that prints a message on the LCD display under
a specific condition. The integration requires keeping the
optional feature and ensuring that when this feature is not
selected a message is shown on the LCD (to not break the

#ifndef FORK //block2
lcd.print(msg);

#else
#ifdef FIL_DISPLAY //block1
if(condition){
lcd.print(msg);

}else{
lcd.print(trnsf(data));

}
#endif
#endif

#ifndef FIL_DISPLAY
lcd.print(msg);
#else
if(condition){
lcd.print(msg);
}else{
lcd.print(trnsf(data));
}
#endif

Fig. 9: Exclusive intention with the three parameters block1,
block2, FIL_DISPLAY (left) and result (right)



#ifdef SD
card.pauseSDprint();

#endif

#ifdef SDSUPPORT
card.pauseSDprint();
#endif

Fig. 10: AssignFeature intention (left) and result (right)

mainline variant). Therefore, we keep both blocks as a mutually
exclusive implementation using the Exclusive intention.

We introduce the helper function common(block) which
returns the longest common subsequence of conditions of
nodes in the block (semantically akin to the prime implicate
of the set of presence conditions of the block’s nodes):

common(block) = c1 ∧ . . . ∧ cs such that

∀n∈block
∧
i∈1..k

cni →
∧
i∈1..s

ci and s is maximal such.

Then the Exclusive(block1, block2, F) has the effect as follows:

pc′(n) =


common(block1 ∪ block2) ∧ F, if n ∈ block1

common(block1 ∪ block2) ∧ ¬F, if n ∈ block2

pc(n), otherwise

We use the common conditions of the nodes in block1 and
block2 as the basis and then include the feature condition F
(or its negation) to control the selection of the variant.
Remove. This intention deletes the selected nodes from the
AST. By definition, it ensures that the selected nodes do not
exist in the updated AST’: ∀n ∈ block n /∈ AST ′
AssignFeature. This intention is used when code was already
integrated, but its presence condition should be changed (e.g.,
simplified, weakened, or strengthened). This intention can only
be declared for complete #if-#else-#endif blocks. Fig. 10 shows
the renaming of feature SD (left) to SDSUPPORT (right). The
effect of AssignFeature(n, F) is that the last constraint of nodes
from both branches (#if and #else of the #ifdef block) is repla-
ced with the given feature, and respectively the negated feature:

pc′(n) =


cn1 ∧ ... ∧ cnk−1 ∧ F, if n ∈ if branch of n
cn1 ∧ ... ∧ cnk−1 ∧ ¬F, if n ∈ else branch of n
pc(n), otherwise.

Order. This intention prescribes an order of blocks from the
variants for the integrated AST (with respect to the concrete
syntax). As a notation, we resort to the operators > and <,
which declare that the first block be put before the second block,
and vice versa. This intention re-orders blocks or ensures their
correct order during integration, especially when further intenti-
ons are applied. For example, we apply the intention Keep on a
mainline and a fork block, but we want the mainline code to be
executed first, we declare order(block_fork, block_main,<),
which then yields the correct order.

C. Intention Resolution

We conceived a deterministic AST in-place transformation
to resolve intentions, which needs to consider all declared
intentions at once, since intentions can interact. Although
intentions are declared on blocks of nodes, their resolution will
affect other nodes. Algorithm 1 outlines the intention resolution.

Algorithm 1 Intention Resolution Algorithm
Require: AST
1: for all type in {Keep, KeepAsFeature, Exclusive, ...} do
2: for all node in breadth-first(AST) do
3: intention = getIntention(AST, node, type)
4: if intention != null then
5: AST = EXECUTEINTENTION(AST, intention)
6: end if
7: end for
8: end for

We resolve intentions in a specific order: based on our own
defined intention priority, and on the AST structure (top down,
from outermost to innermost node). The intention priorities
are (descending, from resolved first to resolved last): Keep,
KeepAsFeature, Exclusive, Order, AssignFeature, Remove. The
priority aims to minimize unexpected interactions of intentions.
For example, when resolving a Keep, a node might be moved
out of its parent for which a Remove intention could be declared.
The defined priority ensures the node is actually kept in the
result and not overruled by the Remove intention.

Each intention resolution will use the result from the previous
intention resolution as its base, therefore, the resolution of one
intention will likely influence the resolution of intentions that
are declared for descendant nodes. The idea is that intentions
for descendant nodes do not influence parent nodes.

The method EXECUTEINTENTION (line 5 in Algorithm 1)
refers to the following specific resolution for each intention:
Keep. Fig. 11 illustrates the resolution with a simple example.
Observe how the #if structure of sibling nodes is affected. In
general, resolving Keep(block) amounts to first moving all
following sibling nodes of block to a new #if node placed as a
following sibling of the parent #if node of block. The new #if

node has the same condition as the parent #if of block. Second,
the nodes in block itself will be moved as new following sibling
of their parent node, so that they are a preceding sibling of
the newly created #if node. Recall that the view determines
the context for intentions (cf. Sec. V-A), and that in the variant
views the #if conditions shown are simplified (feature FORK is
enabled or disabled). If a Keep intention is declared on such an
#if with a simplified condition in the view, then the simplified
condition is propagated to the AST.
KeepAsFeature. KeepAsFeature(block , feature) is resolved
like Keep, except that the nodes unwrapped during the Keep
step are now wrapped in a new #if with the condition feature.
Exclusive. We resolve Exclusive(block1, block2, feature)
using Keep on block1 and block2. The results are wrapped
in a new #if where the nodes of block1 are moved to the true
branch and the nodes from block2 are used in the else branch.
The condition of the new #if is given by the parameter feature.
Order. For order(block1, block2, <) we assume the nodes of
block1 and block2 have the same parent. If all nodes in block2

are, based on their position in the parent’s list of child nodes, be-

#if A
a()
b()
c()
#endif

#if A
a()
#endif
b()
#if A
c()
#endif

Fig. 11: Resolution of Keep (b()) splits #if block (right)



fore the nodes of block1, we switch their position. We perform
this action similarly with reversed parameters for operator >.
Remove. For Remove(block) we remove all nodes in block
from the AST. Nothing happens when a node was already re-
moved (e.g., Remove was declared for an ancestor of the node).

A generic cleanup step after intention resolution removes
empty #if nodes, which do no longer contain any nodes.
Example. In our running example (Fig. 2), we declare five in-
tentions. First, a KeepAsFeature intention is used for the added
variable encoderDiff on the fork side. Second, a Keep intention
covers the #if PIN_EXISTS of the mainline side. Technically,
#if PIN_EXISTS of the mainline side and #if SDCARDDETECT>0 of
the fork side are both representations of the same #if AST
node. The AST node has a complex condition, based on our
definition in Sec. V-A, from which simpler but view-specific
conditions are derived for the representation. The Exclusive
intention comprises two nodes (lcd_sd_status in mainline and
lcd_oldcardstatus in fork view). The last intentions are a pair
of Keep and Remove intentions.

The intentions are resolved first in order of their priority,
i.e., INCLINE first resolves the two Keep intentions. Within
the same priority, a breadth-first traversal is used so that
first the intention for the last line of the fork view is
resolved, then the one for #if PIN_EXISTS of the mainline,
because the corresponding node is nested in the AST node
for #ifdef ULTIPANEL. After that, the remaining intention types
are resolved. Each intention is resolved by modifying the
underlying AST, e.g., to resolve the KeepAsFeature intention
a new #ifdef node is created which wraps the node with
the variable encoderDiff. In a cleanup step, the now empty
#ifdef FORK (c.f., line 3 in Fig. 5) is removed from the model.

VI. EVALUATION

To establish how well INCLINE supports developers during va-
riant integration, we formulated the following questions. Their
evaluation methods are detailed in the following subsections.

RQ1 What is the coverage of the proposed set of intentions
with respect to real-world integration needs?

RQ2 Is the implementation of intention resolution correct with
respect to their semantics, even for large files?

RQ3 What is the benefit of INCLINE over manual variant
integration from users’ perspective?

Subject Systems. We chose open source systems that use
preprocessor directives to implement variability, and for which
real forks are available. We used active projects from different
domains to minimize the bias towards a particular usage of the
preprocessor. Links to the projects are in our online appendix
[31]. It is key to identify files for which alternative or new
functionality has been added in a fork, so a realistic case for
integration with variability can be made (as opposed to simple
merging without variability, used for development branches).

Marlin (>40 KLOC of C++ code) is a 3d printer firmware
as described above. BusyBox (>160 KLOC of C code) is a
collection of common shell commands (e.g., grep, cut) for
embedded Linux applications. Vim (>300 KLOC of C code)

is a popular terminal-based text editor extending the Unix vi
standard. libuv (>50 KLOC of C code) is a popular IO library.
PHP (>1,000 KLOC of C code) is the interpreter for the PHP
scripting language.

A. RQ1: Coverage of Intentions

Method. To show that the defined set of intentions is complete
enough to handle real-world integration tasks, we replay non-
trivial merges from the history of Marlin, libuv, and PHP.
For Marlin, we retrieved all 2,065 merge commits of the
mainline repositories. To identify complex merge tasks, we
extracted those that had conflicts, yielding 49 merges. We
discarded two merges that conflict only in documentation
files, two conflicted in whitespace, and three conflicted in
user configuration files. Another three merges were discarded
because the pertinent artifacts had syntax errors and could not
be compiled. Additionally, four merges were discarded because
they simply accepted the mainline changes as evolution (empty
changeset). In addition to the resulting 35 merges, we selected
commits from two more projects, libuv and PHP, in the same
way. From over 100 merge commit with conflicts, we sampled
10 commits from each project. We used the remaining 55
merge commits as tasks. We manually integrated these 55
cases, selecting intentions and performing the integration, so
that the result was identical to the original historical merge.
Results. Using intentions for integration is successful in all 55
cases. In two of these cases additional code was added during
the merge, which we needed to add in addition to the intentions
as well. We observed neither obviously missing intentions nor
cases requiring awkward sequences of intention applications.

Conclusion: The proposed set of intentions suffices for real-
world variant integration.

B. RQ2: Correctness & Scalability of INCLINE

Method. We validated that INCLINE produces correct results
when correct intentions are assigned, and that we can use it
on large files without scalability problems. We simulated ten
Marlin integrations in total. The first group of seven commits
was selected randomly from the 35 merge commits of the
previous experiment. The second group are three integration
tasks selected from Marlin forks (see appendix [31])—we to
avoid focusing on merge conflict commits only (in this group
we merge parallel lines of development that have not been
merged before). The selected forks contain significant changes
to the mainline, covering both evolution and new features.

Most tasks comprised only a single file, some two or three,
but each file can be very large (up to nearly 4,000 LOC and
40 #ifdef blocks to be handled during the task). Three authors
served as evaluators, among whom we randomly distributed
the ten tasks to execute with INCLINE. We then manually
peer-reviewed the integration results to detect any discrepancies
from the specifications of semantics in Sec. V-B.
Results. We only found minor errors in the implementation of
INCLINE. These errors have been fixed, before proceeding to
the next experiment. We also analyzed mistakes done by the



authors to improve the usability of INCLINE. Furthermore, the
broad range of file sizes (from tens up to thousands of lines
of code) witnesses the scalability of the tool. The intention
resolution is instantaneous for smaller files, and for the largest
file (∼4,000 LOC) it took about 2s on a regular office laptop.

Conclusion: INCLINE produces semantically correct output
and it scales to files up to 4K lines of code without difficulties.

C. RQ3: Benefits of INCLINE

Method. We conducted a controlled experiment with 12
developers (experienced PhD students) using INCLINE and
Eclipse to solve realistic tasks from Vim and BusyBox—those
from the improvement cycle (cf. Sec. IV). In reality, a developer
has some domain knowledge about the variants to be integrated.
We captured this in the experiment setup by providing a detailed
explanation of the purpose of the variants’ parts and how they
should be integrated (but unlike in the improvement cycle,
we did not present the expected final result). We used a 2x2
within-subjects counterbalanced Latin square design:

INCLINE/vim, Eclipse/busybox INCLINE/busybox, Eclipse/vim
Eclipse/vim, INCLINE/busybox Eclipse/busybox, INCLINE/vim

Each participant performed two tasks, using two treatments:
Eclipse, and INCLINE, in a random order to reduce learning
effects. Using a within-subjects design, we lower the number
of participants, while every subject participates in each task.
Furthermore, we mitigated learning effects by randomizing the
order of the tasks (counterbalanced part of the design).

Participants were trained through a video tutorial on how
to use both tools, as well as being instructed on preprocessor
usage (they only needed to use #ifdef, #else, and #endif). Each
participant first solved a training task extracted from Marlin,
to get familiar with the tools. The training task performance
is not included in the experiment results. During the actual
experiment, we recorded the screen and log keystrokes (in
Eclipse) and intentions (in INCLINE). We measured the
performance of subjects using proxies: number of mistakes per
task, the time to complete each task, and the number of edit
operations (and number of intentions) applied per task.

We counted mistakes made by the subjects as follows. For
Eclipse, a mistake can be a missing preprocessor annotation,
missing code or extra code—this is because Eclipse merge
tools are text-editing oriented. For INCLINE, we check for
wrong intentions or no intentions applied by the participant
that leads to errors in the resulting file. For both tools, errors
concerning comments were counted as a half mistake, errors
in formatting of code are ignored.
Results. The subjects using INCLINE made less mistakes than
those using Eclipse (7 mistakes vs 17.5). Only four (33%)
participants made integration errors working with INCLINE,
compared to eleven (91%) with Eclipse. This is no surprise:
INCLINE has better support for keeping or removing code
without using clipboard, and the syntax of #ifdef structures
created by INCLINE is correct-by-construction. The mistakes
with INCLINE included missing relevant nodes in the declared
intentions (3 mistakes), declared incorrect intentions (1), or
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Fig. 12: Effort, completion times, and errors

declared different intentions for the same node with an
unexpected result for the user (3). Common mistakes with
Eclipse included lines guarded by incorrect presence conditions
(8), leaving code that should be removed (4), removing too
much (2) and a broken #ifdef structure (1). In four cases,
subjects integrated code in wrong order which we account
with half error each.

INCLINE required less decisions to be executed during
integration (Fig. 12a). The BusyBox task involved 15 intentions
on average, while almost 50 edit operations were used in
Eclipse on average to achieve the same goal. This effect is
not so pronounced for the Vim task, where the performance
is similar (28 for INCLINE, 25.5 for Eclipse). The most
commonly used intentions were Keep (48%), KeepAsFeature
(21%) and Remove (18%). Exclusive was not used often (7
%), although ten (83%) users used Exclusive at least once.
AssignFeature and Order were not used at all. AssignFeature
is an escape intention, that allows to handle unanticipated
changes, and Order is rather intricate–these two not being used
speaks well for the expressiveness of the core intentions.

Subjects performing INCLINE integrations were almost
as fast as the Eclipse users (Fig. 12b). It appears that the
tasks are relatively small, so substantial influence comes from
understanding the variants. Second, participants spend a lot
of time (which we count in the result) reading back and
forth through the descriptions to understand the integration
goal. Third, some participants always verify the preview after
applying an intention. This likely happens as the users are
not very familiar with the tool and intentions, and thus either
do not trust the tool or are not sure if they applied the right
intention. The efficiency of INCLINE would likely improve
greatly, should the tool be used professionally. For new users
though, INCLINE shines already, as it facilitates learning
and exploration with quick undo, and multiple views for
manipulating the different variants and the integration result.
One of the subjects mentions that “It was really useful to
declare all the intentions while still having the original files in
sight and previewing the result.”. Note that the times reported
in Fig. 12b do not include the cost of correcting the mistakes
introduced by subjects. Since Eclipse integrations contained
more than twice the number of mistakes, the actual cost of
completing the integration with Eclipse is likely much higher.

Conclusion: INCLINE supports integration with lower error
rate than Eclipse merge tools, with less edit operations, at no
significant increase in cost (time).



We complemented the controlled experiment with a survey
to gain qualitative insights on the benefits of INCLINE.
Method. The survey was designed as a mix of closed and
open questions. The closed questions, using the Likert scale
(1 strongly disagree, 5 strongly agree), target the intuitiveness
of intentions, and gauging how participants feel about their
mistakes and integration difficulties with INCLINE. The
open questions aim at gathering concrete evidence of the
advantages and challenges of using INCLINE, suggestions for
improvements, and tool preference for integration tasks. We
sent the 12 participants the survey via email after performing
the integration tasks and received 10 answers. The questionnaire
design and results are available in our online appendix [31].
Results. Participants strongly agree (mean 4.8, standard devia-
tion 0.42) that the Keep and Remove intentions are intuitive. Ho-
wever, the Exclusive intention seems more confusing, because
the user cannot directly select it. 40% of the subjects agree and
20% strongly agree that integration with INCLINE is faster than
with Eclipse, but none of the participants disagrees (despite the
actual time measurements saying the opposite, even if not very
strongly, see Fig. 12b). One potential reason is that by not doing
many clipboard operations or editing text, INCLINE appears
faster through the usage of intentions. Similarly, 60% of the
participants agree and 30% strongly agree that intention based
integration is not complex, suggesting that there is potential for
intention-based integrations. Finally, when asked what are the
advantages of using intention-based over manual integration,
some participants mentioned that ‘’Less effort and reduction in
human error due to either typing or copying and pasting‘’ or

‘’Intentions are much more intuitive and user friendly. Saves you
some typing and copy-pasting. The synchronized views were
also very useful, because you can choose either the mainline,
the combined view, or the fork to make updates, whatever is
more convenient for the task at hand.‘’ There is a consensus
that INCLINE is ‘’much more intuitive and less error-prone.‘’

D. Threats to Validity

External Validity. We mitigated selection bias, as the main
threat in our evaluation, by using multiple open source projects
that have been actively developed and many variants have
emerged. We used both mainline source files as well as forks
to create realistic integration tasks. Results from these projects
are also valid for other systems, since the C preprocessor
is used similarly in open-source and industrial systems [32].
For the controlled experiment, we recruited experienced PhD
students. Only basic program understanding was required, and
we recapped the preprocessor use, to mitigate any potential
difference in programming experience. Finally, recall that
graduate students perform similarly to professional developers
in software experiments like this one [33], [34].
Internal Validity. Simple bugs in the tool chain can hide
or distract from evaluating the intention concept. We used an
iterative design methodology, even conducting a pre-study as an
experiment with 16 MSc students just to validate the prototype
and to find usability issues to be fixed. The experiment
participants using INCLINE have disadvantages compared to

plain merge tools, mostly due to the lacking experience and the
UI of a research prototype. It is very likely that this negatively
biased the performance, so our results regarding the benefits
of INCLINE can be seen as lower bounds. Still, we mitigated
this threat by training users through a tutorial and a warmup
task for INCLINE. We also randomly assigned the tasks to the
participants, minimizing the learning effects.

VII. RELATED WORK

Many works focus on re-engineering a single system into a
product line [35]–[38], typically proposing refactoring techni-
ques for creating configurable platforms. The main difference
is that we focus on integrating multiple system variants into a
product line, systematically guiding the process with intentions
and views. Others provide support for evolving existing
product lines. For instance, Liebig et al. [39] provide three
refactorings (rename identifier, extract function, inline function)
that preserve the variants. Instead, we support obtaining product
lines. Our intentions are explicitly not variant-preserving.

A recent mapping study on re-engineering variants into
product lines shows that the majority of papers on this
topic focuses on detecting and analyzing commonalities and
variabilities of the variant systems [8]. Only the following
few support the actual variant integration. Rubin et al. [16]
present a conceptual framework with seven operators to re-
engineer cloned variants into product lines. The operators are
abstract and some are related to our intentions, but none is
implemented. We provide full tool support instead. Fischer et
al. [40] propose a method to detect reusable features among
variants, allowing to compose them to derive a new system.
Martinez et al. present a framework for re-engineering a set of
assets into a product line [41]. All these works lack support
for handling variability using preprocessor directives as the
most common technique for variation points.

Case studies of manual re-engineering also exist. Hetrick
et al. re-engineer cloned variants into a product line, creating
variation points, and switching to product line engineering [42].
Jepsen et al. [19] compute pairwise differences of two products,
and wrap differences using #ifdef to create the initial integrated
platform. The platform was iteratively refined, deciding to keep,
remove or introduce a new feature [20].

Recall that variant integration is different from traditional
merging. Still, we are inspired by techniques known from
it. Our technique for creating the initial integrated platform
works on ASTs and as such is related to structural merge [14],
[43]–[45] and diff/merge for models beyond ASTs [30], [46].

VIII. CONCLUSION

We presented a method and a tool to integrate forked variants
into a configurable integrated platform. The core idea is
to offer a set of intuitive integration intentions resembling
domain-specific actions to execute integration tasks. Instead of
focusing on low-level #if directives, developers can express
the integration goal using intentions declared on code blocks of
the original variants, make edits to the code, and immediately
observe the result. The experimental evaluation shows that



the method reduces the number of required editing operations
and the number of integration errors against a baseline of
a merge tool. We also showed that it can handle complex
integration tasks and merges with conflicts. Declaring intentions
was easy, and only rarely direct editing was required. Although
understanding the integration goal is sometimes difficult, the
different views help to explore and navigate the code. Applying
intentions and revoking them is particularly useful to explore
the result, before committing the changes.
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