
Principles of Feature Modeling
Damir Nešić
Royal Institute of

Technology
Stockholm, Sweden

Jacob Krüger
Otto-von-Guericke

University
Magdeburg, Germany

Ştefan Stănciulescu
ABB Corporate Research

Baden-Dättwil
Switzerland

Thorsten Berger
Chalmers | University of

Gothenburg
Gothenburg, Sweden

ABSTRACT
Feature models are arguably one of the most intuitive and success-
ful notations for modeling the features of a variant-rich software
system. Feature models help developers to keep an overall under-
standing of the system, and also support scoping, planning, develop-
ment, variant derivation, configuration, and maintenance activities
that sustain the system’s long-term success. Unfortunately, feature
models are difficult to build and evolve. Features need to be iden-
tified, grouped, organized in a hierarchy, and mapped to software
assets. Also, dependencies between features need to be declared.
While feature models have been the subject of three decades of
research, resulting in many feature-modeling notations together
with automated analysis and configuration techniques, a generic
set of principles for engineering feature models is still missing.
It is not even clear whether feature models could be engineered
using recurrent principles. Our work shows that such principles
in fact exist. We analyzed feature-modeling practices elicited from
ten interviews conducted with industrial practitioners and from
31 relevant papers. We synthesized a set of 34 principles covering
eight different phases of feature modeling, from planning over mo-
del construction, to model maintenance and evolution. Grounded
in empirical evidence, these principles provide practical, context-
specific advice on how to perform feature modeling, describe what
information sources to consider, and highlight common characte-
ristics of feature models. We believe that our principles can support
researchers and practitioners enhancing feature-modeling tooling,
synthesis, and analyses techniques, as well as scope future research.

CCS CONCEPTS
• Software and its engineering → Software product lines;
Software reverse engineering.

KEYWORDS
Feature models, modeling principles, software product lines
ACM Reference Format:
Damir Nešić, Jacob Krüger, Ştefan Stănciulescu, and Thorsten Berger. 2019.
Principles of Feature Modeling. In Proceedings of the 27th ACM Joint Euro-
pean Software Engineering Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE ’19), August 26–30, 2019, Tallinn, Estonia.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3338906.3338974

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5572-8/19/08. . . $15.00
https://doi.org/10.1145/3338906.3338974

1 INTRODUCTION
Software product lines are portfolios of system variants in an appli-
cation domain. They are typically engineered as an integrated soft-
ware platform that exploits the commonality and manages the vari-
ability among the variants [21, 66, 78], to facilitate systematic soft-
ware reuse, enhance maintenance, and reduce costs. However, pro-
duct lines are inherently complex because they integrate the featu-
res—many with complex dependencies—of all possible system vari-
ants [27, 30] in the codebase of one software platform. To handle this
complexity, features need to be managed and, therefore, modeled.

Feature models [11, 24, 46, 68], introduced almost three decades
ago, are the most common and popular notation for modeling the
features of a software product line. Engineers use them to describe
features and their dependencies in an intuitive, tree-like structure.
Product-line users derive individual variants—represented by a
valid combination of features and their values—from the feature
model. To this end, feature models offer various modeling con-
cepts, such as optional and mandatory features, a feature hierarchy,
feature groups, and cross-tree constraints, as illustrated in a toy
example in Fig. 1 (explained in detail in Sec. 2). Feature modeling
is supported by major product-line engineering tools [5], such as
pure::variants [15], Gears [53], and FeatureIDE [77]. Many resear-
chers, practitioners, and tool vendors have introduced additional
concepts, such as feature attributes, feature cardinalities [6, 7, 25]
or non-propositional constraints [14, 65], thus gradually increasing
the expressiveness of feature models.

Feature modeling has been intensively considered in research
and applied in practice [9, 11, 59], as witnessed by over 5,000 ci-
tations of the original publication on feature modeling [46], the
software-product-line community’s hall of fame (splc.net/hall-of-
fame), experience reports [74, 78], and textbooks [4, 21, 66, 78].
To complement feature-modeling tooling, researchers contribu-
ted hundreds of feature-model analyses [7, 63, 76], refactorings
and management techniques [1, 2], as well as automated synthe-
sis techniques [3, 72]. Most feature models are created manually

#ifdef Regenerative_Braking
if (mode==AUTO)
 brake_force=estimateForce();

#endif

Requirement ValidityID
Top vehicle speed limited to 180km/h [All engines]1
Top vehicle speed is adjustable by
the driver

[El. engine]2

Vehicle

EngineBrakes

Electric Hybrid PetrolRegenerative

→Electric Regenerative

Legend:
Feature
Mandatory
feature
Optional
feature
Alterantive
features
Cross-tree
constraints F1→F2

Figure 1: A feature model (top) with representations of fea-
tures in code (bottom left) and requirements (bottom right).

https://doi.org/10.1145/3338906.3338974
https://doi.org/10.1145/3338906.3338974
http://splc.net/hall-of-fame
http://splc.net/hall-of-fame

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Damir Nešić, Jacob Krüger, Ştefan Stănciulescu, and Thorsten Berger

and often in the context of re-engineering legacy variants into a
software product line [11].

Despite decades of research, there is only limited knowledge on
how feature models are, or should be, designed in practice. Despite
numerous surveys, experience reports, and case studies [9, 11, 59],
there is no modeling methodology for feature models that could be
used to systematically design feature models based on established
practices. It is not even clear whether practices that have been repor-
ted adhere to recurrent principles, and, if so, to what extent. We are
only aware of one, 20-years old selection of design guidelines based
on individual author experiences [58]. A modeling methodology, or
at least a set of consolidated principles representing best practices,
would not only help practitioners design feature models, but would
also help the research community conceive better modeling tools,
processes, and to scope future research.

Our long-term goal is to establish a modeling methodology and
process for feature modeling. In this paper, we present a study of
feature-modeling practices we identified from a systematic lite-
rature review of 31 papers and ten interviews with experts who
created feature models in small to ultra-large projects with several
thousands of features. By triangulating from these two sources, we
collected practices performed by practitioners, analyzed them, and
synthesized them into 34 general feature-modeling principles orga-
nized into eight categories (modeling phases): preparation and plan-
ning, training, information sources, model organization, modeling,
dependencies, model validation, and maintenance and evolution.
In detail, we contribute:

• 34 feature-modeling principles originating from practice;
• a detailed discussion of each principle with usage guidelines;
• an online replication package with more details (e.g., list
of 654 papers identified during snowballing; the relevant
interview and paper quotes for each principle).1

Overall, our principles are a first step towards defining a feature-
modeling process and can help practitioners as well as researchers
to understand best practices of feature modeling.

2 BACKGROUND AND MOTIVATION
In this section, we describe typical feature modeling concepts and
the contexts in which feature modeling is applied. We refer to Fig. 1,
in which we show a toy feature model from the automotive domain,
to illustrate the relation of features to requirements and code. Real-
world feature models are significantly larger, reportedly comprising
up to 15,000 features in current editions of the Linux kernel, which
relies on its own notation of feature models [13, 14].

2.1 Feature Modeling
Feature models organize features [8, 55], which abstractly represent
the commonality and variability of variants in a product line. Being
intuitive entities, features are also used beyond software product
lines in agile development processes for single systems (e.g., feature-
driven development, SCRUM or XP) as a means to communicate and
maintain an overall understanding of the system. Feature models
have been introduced as part of the FODA method [46] and quickly
became popular due to their simple notation. One of the most

1https://bitbucket.org/easelab/featuremodelingprinciples

valuable concepts is the feature hierarchy, as it structures features
and allows users to navigate in the model. Beyond such ontological
semantics, feature models express the set of all possible variants
(configuration-space semantics) by using constraints as follows.
Feature Modeling Concepts. Features can be mandatory (e.g.,
Engine in Fig. 1) or optional (e.g., Regenerative) within a product
line. Optional features can be enabled or disabled for individual
variants, subjected to further constraints. The feature hierarchy im-
poses constraints in the form of parent-child implications, mainly
to prevent the selection of features that would not have any effect
when the parent feature is not selected. Features can have types.
Most notations restrict features to Boolean, while others offer va-
rious types for features [12, 14, 71]. The original FODA notation
defined features as Boolean, but also defines the notion of feature
attributes—dedicated variables associated with features for holding
non-Boolean values (e.g., integer, real values). Similarly to FODA,
other feature-modeling notations have adopted the concept of fea-
ture attributes [7]. Whether non-Boolean values are useful typically
depends on the domain. In our example, all features have Boolean
values. Feature groups impose constraints on the grouped features.
OR and XOR groups are most common, while MUTEX groups are
rare [14]. Some notations have introduced arbitrary bounds (cal-
led group cardinalities) specifying the minimum and maximum
numbers of features that can be selected from a group. In our ex-
ample, the features Electric, Hybrid, and Petrol belong to an XOR
group. Finally, all feature dependencies that cannot be expressed
using these concepts can be declared as cross-tree constraints. These
are typically propositional expressions over features, but some
feature-modeling notations allow arithmetic or string constraints.
Our example contains a very simple constraint: Electric implies the
selection of Regenerative. Feature models are configured by assig-
ning values to features, typically in an interactive configuration
process supported by a configurator tool.
Feature Modeling in Practice. Given the need for upfront invest-
ments [20, 54], product lines are rarely developed from scratch [11].
Instead, most organizations start with ad hoc reuse practices, such
as clone& own [18, 31], which are simple and cheap, but impose
maintenance problems in the long run. As such, most product lines
are adopted by re-engineering variants into an integrated platform,
typically referred to as re-active (or extractive adoption) as opposed
to proactive adoption [52]. Feature modeling is conducted during
such migrations. Typically, as reported in experience reports [44, 45,
56], different artifacts are compared between individual variants,
such as requirements and source code, to identify differences, which
are abstracted into features and organized into a feature model.

2.2 Modeling Principles
For individual modeling languages, the literature offers modeling
guidelines and principles. For example, there are guidelines for UML
class diagrams [33], business process-models [61], or implementa-
tion principles for domain-specific languages [62, 75, 79]. There are
established principles for software design, such as divide and con-
quer (break the problem into smaller parts) and software layering,
where layers manage different concerns. Architecture design is
also supported by established guidelines, such as the principle high
cohesion and low coupling or the principle information hiding, both

https://bitbucket.org/easelab/featuremodelingprinciples

Principles of Feature Modeling ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Synthesis

P21-P26
(6)

P1-P26
(6+20)

Manual search
through DBLP

2,484 papers

Automated search
through ACM DL

first 100 papers

P27,P28,P30,P31
(4)

P27-P31
(4+1)

Backwards snowballing
from P21-P26

654 papers

Backwards snowballing
from P27,P28,P30,P31

105 papers

Expert
interviews

10 interviews

Figure 2: Process for identifying relevant data sources

of which increase modularity and facilitate the maintenance of a
software system. Such general design principles are rather abstract
and become practically applicable only when placed in the con-
text of a particular language or a technique, such as modeling of
object-oriented or aspect-oriented systems. Although we expect
that feature modeling practices adhere to these general principles,
it is unclear how to apply these principles to feature modeling. For
example: what are the details of applying high cohesion and low
coupling in a feature model, what information sources to take into
account for modeling, or what organizational structure is needed?

3 METHODOLOGY
To identify modeling principles, we relied on two sources. First, fol-
lowing the structure of a systematic literature review according to
the snowballing method [81], we identified papers that report about
feature-modeling practices. Second, we conducted ten interviews
with feature-modeling practitioners. These practitioners included
vendors of feature-modeling tools who have reported their practices
when guiding organizations during feature modeling. We analyzed
both types of sources to identify modeling practices in either source,
triangulated these practices, and synthesized them into principles.

3.1 Literature Review
To identify relevant papers, we relied on a lightweight literature
review process because systematic literature reviews [51] spend
significant effort on calculating various statistics about identified
papers, whereas our primary goal was a qualitative analysis.
Search Method. As automated searches in digital libraries face
several issues [17, 70], we decided to rely on the DBLP library and
to manually analyze a set of relevant venues. To identify the initial
set of papers, we analyzed publications from research and industry
tracks in the proceedings of the last five instances (as of June 2018)
of the following conferences and workshops: ASE, ESEC/FSE, FOSD,
ICSE, ICSME, ICSR, MODELS, SANER, SPLC, and VaMoS.

As we show in Fig. 2, we analyzed 2,484 papers in this step.
By reading their titles, abstracts, and if necessary the body of a
paper, we identified papers P21–P26 (marked * in Tbl. 1) as the ones
containing relevant feature-modeling practices. We used papers
P21–P26 as the initial set for backwards snowballing. To this end, we
analyzed each reference from P21–P26 by reading the title, abstract,
and if necessary the referenced paper itself, thus leading to new
relevant papers. In turn, we also analyzed the references of newly
identified papers until the reference lists of all relevant papers were
exhausted. Through the snowballing process, we identified papers
P1–P20 (cf. Tbl. 1), and together with the initial papers (P21–P26),
their reference lists contained 654 papers. To increase the confidence
that we identified all relevant papers, we searched the ACM Guide
to Computing Literature with the search string (+Experience Report

+(Variability OR Feature) +(Specification OR Model)). We then sorted
the results according to relevance, as all other sorting criteria are less
appropriate, for example, date of publication or number of citations.
By reading titles, abstracts, and if necessary the full papers, we
analyzed the first 100 results and identified papers P27, P28, P30,
P31 as relevant ones (marked ** in Tbl. 1). Then, we used these four
papers as the initial set for another backwards-snowballing round
that led to the identification of paper P29. The reference lists of
papers P27–P31 contained 105 papers.
Selection Criteria. While analyzing the venues and applying bac-
kwards snowballing, we used the following inclusion criteria:

i) The paper is written in English.
ii) The paper describes the application of feature modeling

where either (1) practitioners report their experiences, (2)
researchers analyze open-source or proprietary systems and
report identified practices or (3) tool-vendors or educators
report experiences during feature-modeling training.

iii) The paper is either a reviewed paper or a technical report.

Besides conference and journal publications, we also included techni-
cal reports, because they can often include valuable industrial in-
sights even without ensuring quality by peer review.
Data Extraction. From each paper, we extracted all details about
the reported feature-modeling practices. In particular, we focused
on lessons learned that helped us to assess whether a practice was
helpful for the organization or not. The extraction was done by two
of the authors, while the other two authors checked if the extracted
material is sufficiently detailed, understandable, and relevant.

3.2 Expert Interviews
We complemented the practices reported in the literature by con-
ducting semi-structured interviews with ten participants from nine
organizations. The interviews were designed and conducted inde-
pendently from the literature review in order to avoid introducing
bias towards any practice. Each interviewee had several years of
experience with feature modeling and they were recruited among
our industrial partners and companies (e.g., tool vendors) having a
close relationship to the research community. Each interview lasted
around an hour on average, only one was considerably shorter,
around 25 minutes. We first elicited the context of feature modeling
in the form of characteristics of the project (e.g., domain, kind of
system, team structure, implementation technologies), when the
interviewee was from a company applying feature modeling. For
the tool vendors, we asked about typical contexts. Second, we asked
about the practices used for creating and evolving the models, in-
cluding the involvement of different roles and characteristics of the
resulting models (e.g., size, shape, and constraints). Finally, we eli-
cited perceived benefits and challenges of feature modeling, among
others, to get an understanding whether the reported practices
were successfully applied or not. The interviews were conducted
in person, via phone or Skype, recorded, and transcribed.

3.3 Synthesis of Principles
Our goal was to establish a set of principles. We define a principle as
a generalized practice that has the following three characteristics:
a) it concerns a well-established feature modeling concept; b) it is

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Damir Nešić, Jacob Krüger, Ştefan Stănciulescu, and Thorsten Berger

Table 1: Overview of the 31 paper we identified. Single and double asterisks indicate papers that were used as initial sets for
the first and second round of snowballing, respectively. Dashes indicate information that was not explicitly stated.
ID Ref Venue Year Research Type Technique/Tool Domain Context #Principles

P1 Kang et al. [48] SPE 1999 Industrial case study/Method FODA/FORM Telecommunications — 8
P2 Griss et al. [37] ICSR 1998 Experience report/Method FODA, UML Telecommunications — 6
P3 Kang et al. [47] AnSE 1998 Experience report/Method FODA/FORM Multiple — 6
P4 Cohen et al. [22] — 1992 Industrial case study FODA Defense Extractive 10
P5 Hein et al. [38] SPLC 2000 Industrial case study FODA, UML Automotive Extractive 22
P6 Lee et al. [57] SPLC 2000 Industrial case study Feature model Elevators Extractive 2
P7 Kang et al. [49] Software 2002 Experience report FODA/FORM — — 4
P8 Lee et al. [58] ICSR 2002 Experience report FODA — — 13
P9 Kang et al. [50] — 2003 Industrial case study/Method FODA/FORM Inventory system Extractive 7
P10 Sinemma et al. [73] SPLC 2004 Industrial case study COVAMOF Multiple Extractive 3
P11 Gillan et al. [35] VaMoS 2007 Experience report — Telecommunications Extractive 2
P12 Hubaux et al. [41] SPLC 2008 Open source case study OmniGraffle E-government Extractive 4
P13 Schwanninger et al. [69] MODELS 2009 Industrial case study Pure::variants Industrial automation Extractive 8
P14 Berger et al. [13] ASE 2010 Open source case study Kconfig/CDL Linux/eCos — 4
P15 Dhungana et al. [29] JSS 2010 Industrial case study Decision oriented Industrial automation Extractive 5
P16 Hubaux et al. [40] VaMoS 2010 Literature review Feature diagrams — — 4
P17 Berger et al. [14] TSE 2013 Open source case study Kconfig/CDL Multiple — 4
P18 Berger et al. [11] VaMoS 2013 Survey Multiple Multiple Multiple 5
P19 Manz et al. [60] ICGSE 2013 Industrial case study Feature model Automotive Extractive 4
P20 Berger et al. [10] IST 2014 Open source case study Kconfig/CDL Systems software Proactive 4
P21* Berger et al. [9] MODELS 2014 Interview study Multiple Multiple Multiple 5
P22* Chavarriaga et al. [19] SPLC 2015 Industrial case study SPLOT Electrical transformers Extractive 10
P23* Gaeta et al. [34] SPLC 2015 Industrial case study SysML Avionics Extractive 3
P24* Lettner et al. [59] MODELS 2015 Industrial case study FeatureIDE Industrial automation Extractive 15
P25* Fogdal et al. [32] SPLC 2016 Industrial case study Pure::variants Industrial automation Extractive 5
P26* Pohl et al. [67] ICSE-SEIP 2018 Industrial case study Pure::variants Automotive — 5
P27** Boutkova et al. [16] SPLC 2011 Experience report Pure::variants Automotive Extractive 6
P28** Nakanishi et al. [64] SPLC 2018 Experience report FODA/FORM — Teaching SPL 1
P29 Iwasaki et al. [43] SPLC 2010 Experience report FORM Network equipment Extractive 3
P30** Derakhshanmanesh et al [28] RE Journal 2014 Experience report Pure::variants Automotive Extractive 5
P31** Hofman et al. [39] SPLC 2012 Experience report FODA UML profile Healthcare Extractive 3

applicable to an arbitrary domain; and c) it is up-to-date and relates
to modern tools and modern software-engineering practices.

We extracted nearly 190 instances of practices by reading through
the identified papers and the interview transcripts. We wrote down
each practice, which typically amounted to one to three sentences,
keeping traceability to the original source. Then, while considering
the modeling context, we iteratively merged redundant practices.
Specifically, it was necessary to recapitulate how the overall mo-
deling was done and what the characteristics of the model and pro-
ject were. If these were not the same, the practices were strong can-
didates for generalized principles, as they seem to be applicable in
various contexts. Likewise, if practices were contradicting, we revie-
wed the context and decided whether the practice should be made

Table 2: Overview of our interviewees and their domains.

ID Role Domain #Feature #Principles

I1 Consultant — (tool vendor) — 14
I2 Consultant — (tool vendor) — 10
I3 Consultant — (tool vendor) — 6
I4 Architect Automotive ≥1000 6
I5 Architect Ind. automation ≤1000 6
I6 Arch./develop. Web shops ≤40 5
I7 Consultant — (various) — 4
I8 Team leader E-learning ≥1000 11
I9 Architect Automation ≤100 9
I10 Team leader Automotive — 5

conditional upon the context. For instance, cross-tree constraints
are regularly modeled in systems software, while many of the inter-
viewees stated to avoid constraints modeling. After closer analysis,
we realized that this depends on who configures the feature model.
If this is done by a domain expert from the company itself, investing
the effort into the typically expensive constraint modeling does not
pay off, because employees are typically aware of these constraints.
In contrast, if feature-model configuration is performed by end
users, this requires a model with correct and complete constraints
to prevent derivation of invalid configurations. During the iterative
definition of principles, we discussed them among the authors until
consensus of the formulation was reached and a category was deci-
ded. Initially, the categorization was inspired by Lee et al. [58], but
the final categorization emerged from the set of included principles.

4 DATA SOURCES
Identified Papers. We identified 31 papers reporting relevant
practices, as we show in Tbl. 1. The majority (14) of these papers are
industrial case studies, followed by experience reports (10), open-
source case studies (4), one survey, one interview study, and one
literature review. The papers cover a period of over 20 years, are
published in various venues, and use over ten different feature mo-
deling notations. Moreover, feature modeling has been applied to
14 different domains. Most studies (18) are extractive (cf. Sec. 2.1),
one is proactive, two have multiple contexts, and one relates to

Principles of Feature Modeling ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

teaching. The far right column contains the number of instances
of principles we identified from each paper.
Interviewees. In Tbl. 2, we characterize our interviewees toget-
her with the domains in which they performed feature modeling.
Six of them are consumers of feature modeling tooling, meaning
practitioners applying feature modeling for the variants of their
company (I4, I5, I6, I8, I9, I10). The remaining four interviewees are
rather producers of such tooling (one was an independent consul-
tant), and they mainly acted as consultants for companies adopting
product-line engineering and feature modeling (I1, I2, I3, I7).

Interviewees I1, I2, and I3 work in different roles for companies
offering feature-modeling and product-line-engineering tooling.
All of them have decades of experience in consulting companies
in transitioning to product lines, mainly in the embedded systems
domain. I4 is a software architect in a large (≤99,000 employees)
car manufacturer producing over 400,000 cars per year from three
main platforms. I4 is involved in feature modeling and variability
management in this product line. I5 is a software architect respon-
sible for variability management at a large (≤25,000 employees)
vendor of electronics and mechanical components for end-user and
industrial applications. The company has a large portfolio of vari-
ants, many of which were originally derived with the clone& own
approach. I6 is a department lead, acting as a software architect
and a developer, in a small (≤50 employees) consulting company
that delivers customized web-based e-commerce and enterprise
applications. Specifically, I6 was involved in the design of a feature
model, and the development of the target system. Around 400 to
500 possible variants can be generated from this product line. I7 is a
consultant who sells methodology and approaches for solving custo-
mer problems. I7 has experiences in using feature models with two
different customers. I8 is a project lead, who led the development
of a large software migration project in the domain of university
course and staff management. I9 leads an architecting team and
is a solution architect in a large international company (≤140,000
employees) providing solutions in industrial automation. For the
needs of this study, I9 discussed the experiences of creating a pro-
duct line with around 15 variants. I10 is a software team leader in a
large company (≤30,000 employees) in the automotive domain. I10
is responsible for managing configurable software for an embedded
device, with an exponential number of possible variants that can
be sold as applications to customers.
Interviewees’ Product Lines. We briefly summarize the charac-
teristics of the software product lines that the consumers of feature-
modeling tooling engineer, reporting the sizes of the corresponding
feature models in Tbl. 2. In the domain of I4, several hierarchically
organized feature models exist, where the ones higher in the hier-
archy contain hundreds and the lower ones thousands of features.
Furthermore, because the company relies on different suppliers,
the variability is implemented by different variability mechanisms.
The product line of I5 relies on the most traditional set-up with a
single, moderately sized feature model, and where the variability is
primarily bound statically at build time, among others, using the C
preprocessor (e.g., #ifdefs). The domain of I6 is modeled in a single
feature model and the variability mechanism is a Java preprocessor
developed in-house. I8’s domain comprises a large feature model
with very few Boolean features, where the variability is mainly

bound at runtime. The domain of I9 relies on a single, moderately
sized feature model, and the variability mechanism is a configurable
build system for C++ based components. Finally, in the domain of
I10, several models exist to represent the common components
and their versions, as well as fine-grained features of those compo-
nents, and configuration parameters for each feature. The system
self-configures at boot time using a configuration file.

5 IDENTIFIED PRINCIPLES
We now present the 34 feature-modeling principles we synthesized
from our data sources. Each principle defines what should be done
or how it should be done. Furthermore, for each principle, we dis-
cuss why it is relevant and applicable. We grouped the principles
into eight phases and ordered them in the most probable sequence
they would be applied when building feature models. The phases
in Sec. 5.1–5.3 capture principles relevant for pre-modeling activi-
ties, such as planning or identifying information sources. Phases
in Sec. 5.4–5.7 capture those relevant for the actual modeling and
validation of the obtained feature model. Finally, Sec. 5.8 captures
those relevant for post-modeling activities, that is, maintenance
and evolution. The acronyms used to label principles correspond
to section titles and order of appearance within the section.

5.1 Planning and Preparation
PP1: Identify relevant stakeholders. (P4). We identified this prin-
ciple in P4, according to which the relevant types of stakeholders in
the beginning (called sources in P4) are domain experts with detailed
knowledge about the variants or platform that shall be modeled.
Depending on the domain and organizational processes, these sta-
keholders can include diverse roles (e.g., architects, application
engineers, project managers, requirements engineers). Identifying
these stakeholders is one of the precursors for obtaining domain
knowledge (IS1) and conducting workshops (M1). Another type of
stakeholders is the modelers who will perform the actual modeling
and subsequent model maintenance (called producers in P4). The
roles that typically belong to this group are system and software
architects as well as product managers, since their everyday work
includes creating abstract system models. Identifying these stake-
holders is required for training modelers (T1). Finally, users of the
feature model are another type of stakeholders (called consumers in
P4). Depending on the purpose of the featuremodel (PP3), this group
can include diverse roles, from product managers to developers
and any role in between. Understanding who the users of a feature
model are will inform the decisions about model decomposition
(PP4), feature identification (M6), and creating views (M9)
PP2: In immature or heterogeneous domains, unify the dom-
ain terminology. (P5, P6, P8, P9, P27). To facilitate the modeling
process and model comprehension, it is beneficial to unify the ter-
minology used by stakeholders and provide descriptive terms (e.g.,
for feature names). P8 advises that “in an immature or emerging
domain, standardize domain terminology and build a domain dictio-
nary. If not done, different perceptions of domain concepts could cause
confusion among participants in modeling activities and lead to time-
consuming discussions.” Similarly, P27 explicitly states that “the first
step during the introduction of the feature-based variability modeling

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Damir Nešić, Jacob Krüger, Ştefan Stănciulescu, and Thorsten Berger

was the definitions for the all relevant terms [...] [as a] precondition
for the successful collective work.”
PP3: Define the purpose of the feature model. (P12, P23, P24,
P26, P30). Users of feature models can be divided into two catego-
ries. First, feature models can support design and management of
a product line, for instance, as an explicit model of the domain
or as a tool for product-line scoping. Second, feature models can
support the actual product-line development, for instance, to coor-
dinate teams developing different features or as an input for an
automated build system and configurator. For example, P24 pre-
sents an industrial case study in which feature models are used
to capture three different concerns, the problem space, the solution
space, and the configuration space, which contains partial configu-
rations of the problem-space feature model that are referenced by
the solution-space feature model. Another example is P12, which
presents an analysis of an open-source system in which a feature
model supports system configuration. P12 notes that it was not
clear if the feature model captures the design time or runtime vari-
ability. Therefore, if a feature model has multiple purposes, model
views should be defined (M9). Finally, a clear feature-model purpose
avoids unnecessary effort, for example, by reducing discussions.
PP4: Define criteria for feature to sub-feature decomposi-
tion. (P5, P8, P12, I4, I8). The semantics of the feature model hierarchy
are not well-defined [23]; it can represent relations such as part-of,
functionality decomposition, and feature responsibilities. Defining
how and when a feature should be divided into sub-features facilita-
tes achieving a consistent model that provides a single perspective
on the product line (PP3). According to P5, an indication of a good
feature hierarchy is a low number of cross-tree constraints (MO4).
P12 confirms that there is no obvious way to build the feature
model hierarchy and that prototyping is often required. Interview
and paper sources report that the hierarchy represents functional
decomposition (P8, I4, I8), which is in line with the most common
interpretation of features, as we describe in M6.
PP5: Plan feature modeling as an iterative process. (P8, P22,
P24). Not surprisingly, we learned that feature modeling should
iteratively alternate between domain scoping and modeling. On the
one hand, using an iterative process allows to gradually increase
expertise in feature modeling; on the other hand it facilitates safe
evolution of feature models, because the changes between feature
model versions are typically not significant. For example, it allowed
P22 to “(1) train the domain experts using simpler models, (2) practice
with them how to introduce new features and constraints, and (3)
define practices to review and debug the models continuously.”
PP6: Keep the number of modelers low. (P21, P22, P25, I1, I9,
I10). Industrial practice shows that the number of stakeholders
performing the modeling should be low, in some cases a single
person. Typically, only few stakeholders have the overview domain-
knowledge necessary to create the model. I1 states that “it’s usually
the individual subsystem leaders or their architects or the lead de-
signers in their subsystems that can capture the feature models.” I9
reports that only architects and project managers are involved in the
modeling process. I10 also mentions that few domain experts are
involved in this phase to define the needed behavior of the feature
model and to discuss it with software experts.

5.2 Training
T1: Familiarize with the basics of product-line engineering.
(P25, P26, P29, I1). The stakeholders who will perform the modeling
should familiarize themselves with the basics of product lines (e.g.,
product-line architecture, variant derivation) and especially with
the notation of the used modeling technique and tool. It is beneficial
to establish intuition about the correspondence between program-
ming concepts used in every-day work, for example, classes or
data types, and feature types and their graphical representations
in the selected tool. I1 states that stakeholders can be trained by
explaining, for instance, that Boolean features correspond to single
checkboxs, and enum features to multiple checkboxes in the tool.
T2: Select a small (sub-)system to be modeled for training.
(P8). As we identified in P8, the initial system to be modeled should
be small (see also PP5), with a lot of commonality, and without
strict deadlines regarding the release to production. This facilita-
tes training of feature modeling and can improve feature-model
acceptance, due to the ability to have arbitrarily fast feedback loops.
T3: Conduct a pilot project. (P29, I1). The feature model training
is ideally run as a guided exercise in the form of a pilot project that
lasts several days, for instance, three days in the case of I1. The pilot
project requires that the activities in principles T1 and T2 have been
performed. I1 reports that in the context of extractive product-line
adoption, it is necessary to guide the stakeholders that pose detailed
knowledge about the variants, typically developers, towards under-
standing the differences between the variants in terms of domain
concepts and not implementation-level differences. Often, when as-
ked about the differences between variants, the developers respond
with very specific, implementation-level answers. By asking for the
reason of these differences multiple times (corresponds to M3), de-
velopers will provide more and more abstract explanations, which
is a core experience according to I1: “every time they say something
you say ‘why’, and now kind of abstract up one level you go why, and
you know, after that 3 or 4 whys they will probably get to the essential
feature.” Overall, analyzing around 20-50 variation points, identi-
fying, and modeling corresponding features within the maximum
of three days is a good target. Verifying that the obtained feature
model can be configured as expected can be based on principle QA2.

5.3 Information Sources
IS1: Rely on domain knowledge and existing artifacts to con-
struct the feature model.. (P1–P5, P15, P19, P22, P24, P25, P27, I1–I3,
I9, I10). The sources of information to identify features are twofold.
First, domain experts and stakeholders (PP1) contribute their know-
ledge about the domain, existing systems, and customer needs. This
type of knowledge is typically extracted and documented in works-
hops (M1). I10 explains that “There are certain application engineers
[...] who are experts in making the link between what the behavior
should be [...] and discuss that with the software experts to define what
it should be doing.” Second, in the context of extractive product-line
adoption, different engineering artifacts can be used to identify
features and their dependencies, such as configuration files, dom-
ain vocabularies, specifications, manuals, contracts, documentation,
and the actual source code. Features and their dependencies are
typically extracted by identifying differences between the artifacts
from different variants (cf. M2, M3). I1 explains how features are

Principles of Feature Modeling ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

retrieved manually: “we look at source code clones/branches/versions
to get the product differences (e.g., by looking at ifdef variables), and
identify and extract features from these differences manually.”

5.4 Model Organization
MO1: The depth of the feature-model hierarchy should not
exceed eight levels. (P14, P17, P21, P28, I1–I5, I8, I9). While rarely
made explicit in experience reports (only in P28), survey papers and
most of our interviewees report that the feature-model hierarchy
is typically between three to six levels deep. Feature models with a
deeper hierarchy are typically split into several models (cf. MO3).
For example, I4 says that “at most I’ve seen three levels deep” similarly
to I1: “We usually don’t see them going more than 3 levels deep.” I9
reports that “It is more spread than deep I would say; It is just the
way this model was evolving.” Even in the highly complex Linux
kernel, the maximum hierarchy depth is eight levels (P17). Deep
hierarchies are typically avoided in order to prevent deep sub-trees
that the users must read and understand.
MO2: Features at higher levels in the hierarchy should be
more abstract. (P3, P4, P8, P9, P13, P14, P17, P21 P27, P30, I8).We found
that the higher a feature is in the feature-model hierarchy, the
more it is visible to the customers or it represents a more abstract
domain-specific functionality. Features in middle levels usually
represent functional aspects, while bottom-level features capture
detailed features of technical concerns, such as the build process,
hardware, libraries, and diagnostics. In P3, the levels in a feature
model are (from highest to lowest abstraction): capability featu-
res, operating environment features, domain technology features,
and implementation technique features. P2 uses the RSEB [36]
methodology, which makes a distinction between architectural and
implementation features. This principle is strongly connected to PP4
and ensures a consistent, comprehensible model.
MO3: Split large models (P4, P5, P12, P13, P15, P19, P22, P24, P26, P27,
P30, P31, I1, I2, I8) and facilitate consistency with interface mo-
dels (P5, P31). Several sources state that large feature models with
thousands of features should be decomposed into smaller ones. For
example, features representing implementation details and features
representing user-visible characteristics should be placed in diffe-
rent feature models (compliant with MO2). P15 states that “our first
brute-force approach was to put all model elements into one single
model. This did not scale [...] It also became apparent [...] a single
variability model is inadequate to support evolution in the multi-team
development.” However, splitting large models raises consistency
maintenance issues. An interesting principle for consistency main-
tenance is to identify the features that participate in inter-model
dependencies and extract them into a separate feature model, the
so-called interface feature model (P5) or a feature dependency dia-
gram (P31). Then, the inter-model dependencies are isolated and
easier to maintain. Even if the goal is to create a single feature
model, it can be easier to create several smaller feature models,
which capture the concerns of different stakeholders, and merge
them later. Such smaller models can also be used as prototypes that
are refined during iterative modeling (PP5).
MO4: Avoid complex cross-tree constraints. (P11, P20, P21, P31,
I2–I7). Cross-tree constraints allow adding dependencies between
subtrees of a feature model. However, complex constraints, typically

in the form of arbitrary Boolean formulas, hamper comprehension,
maintenance, and evolution of the model—and can make it harder
to understand configuration problems. Because of that, almost all
interviewees reported that they avoid cross-tree constraints or use
simple ones that are typically supported by tools for feature mo-
deling, such as requires, excludes, or conflicts. If constraints cannot
be simplified, P21 reports that some companies capture complex
constraints in the the feature-to-asset mapping by using the concept
of presence conditions [80]. P31 reports a practice where each feature
involved in a cross-tree constraint is tagged, to indicate that there
are additional constraints affecting the selection of this feature.
MO5: Maximize cohesion and minimize coupling with fea-
ture groups. (P1, P3, P14, P22, P24, I6). We identified the explicit
structural principle that feature groups should represent related
functionalities, while abstract features should be used for structu-
ring. A high cohesion within a group and low coupling to other
groups (absence of cross-tree constraints) indicates that the features
belong together. P1 and P3 also state that and groups on a high
level and or groups on a low level indicate high reuse (cohesion),
while high alternative groups indicate limited reuse.

5.5 Modeling
M1: Use workshops to extract domain knowledge. (P8, P15, I1,
I3, I9). Workshops are used extensively to initiate feature modeling,
and two papers, as well as two of our interviewees, report them
as being the most efficient way to start. To this end, stakeholders
identified in the planning phase (PP1) as the ones with detailed
knowledge about the systems are asked to describe and model va-
riants based on their experiences. With the purpose of identifying
features, the workshops should be used to determine why diffe-
rences between different variants exist. The question “Why does
this difference exist?” should be repeatedly asked until the answers
converge to an abstract reason that represents a feature (I1).
M2: Focus first on identifying features that distinguish va-
riants. (P8, P9, P15, P27, I1, I2). According to multiple sources, it is
easier for most stakeholders to describe the features that distinguish
variants from each other rather than focusing on the commona-
lities. For example, P15 states: “The variability of the system was
therefore elicited in two ways: moderated workshops with engineers
[...] to identify major differences and [...] used automated tools to
understand the technical variability at the level of components by
parsing existing configuration files.” P8 argues for this principle by
stating that “Products in the same product line share a high level of
commonality. Hence, the commonality space would be larger to work
with than the difference space.”
M3: Apply bottom-up modeling to identify differences bet-
ween artifacts. (P8, P15, P27, I1–I3). Different artifacts (IS1) can be
analyzed to identify the differences between existing variants. As
reported by I1, I3, and I2, source code files are typically the first
artifacts to be analyzed, and the analysis can be done automati-
cally by diff tools (P15, I2). However, the differences are typically
interpreted manually, for example, in workshops (M1), as bottom-
up modeling is the central technique for understanding extractive
product-line adoption (I1).
M4: Apply top-downmodeling to identify differences in the
domain. (P5, P21, I2). For a top-down analysis, workshops (M1) focus

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Damir Nešić, Jacob Krüger, Ştefan Stănciulescu, and Thorsten Berger

more on domain experts, project managers, and system require-
ments, as explained by I2: “Top-down is successful with domain
experts, more abstract features.” The features that emerge from the
top down analysis typically represent commonalities or abstract
features that help with feature model structuring (MO5).
M5: Use a combination of bottom-up and top-downmodeling.
(P13, P21, I2). Due to the different results that can emerge from
bottom-up and top-down analyses (M2), it is highly recommended
to combine both strategies. A top-down analysis results in more
abstract (higher-level) features, while a bottom-up analysis pro-
vides insights on more fine-grained (lower-level) features. Thus,
combining both strategies increases completeness and provides a
checking mechanism, for example, whether all features are imple-
mented in the systems. For instance, P13 reports that “the feature
model was built in a top-down and a bottom-up manner. [...] The
user visible features became top level features, while internal features
either ended up in the lower level of the feature model or in separate,
more technical sub-domain feature models.”
M6: A feature typically represents a distinctive, functional
abstraction. (P5, P8, P9, P18, I1, I3, I6, I7, I9). While some works use
feature models to represent non-functional properties (e.g., perfor-
mance requirements or physical properties, such as color), most
sources and interviewees emphasize that features should represent
functional abstractions (P5, P18, I1, I3, I7, I9). A concrete example,
mentioned by I3, is not to model the CPU type as a feature, as it does
not represent externally visible functionality—it should rather be a
feature attribute. Features should be used to capture the externally
visible characteristics of a system, most often by abstracting a set
of functional requirements (P8).
M7: If needed, introduce spurious features. (P12).We identified
in P12 that a “spurious feature represents a set of features [...] that
are actually not offered by current software assets, which is argua-
bly paradoxical when modeling the provided software variability.”
For example, in a phone conference system, if a language is se-
lected for which there is no translation, then the default language
should be used. A feature that represents all languages with Una-
vailable Translation (UT) can be declared in order to express the
following cross-tree constraint: UT requires DefaultLanguage. Note
that contrary to the majority of feature definitions, UT represents
a functionality that the system does not posses.
M8: Define default feature values. (P14, P17, I8). We found in
three sources that it can be beneficial to define default feature
values if the configuration space of a feature model is very large.
Then, deriving a configuration becomes a reconfiguration problem.
Interestingly, in each source that used default values, the feature
modeling tool also supported visibility conditions for features (P17).
In these sources, the default value of a feature can be modified only
if the corresponding visibility condition is satisfied.
M9: Define feature-model views. (P19, I8). Not all parts of a fea-
ture model are equally relevant to all stakeholders. Feature model
views can unclutter the model representation for selected stakehol-
ders according to their needs. P19 reports that “not all features and
associated artifacts are relevant for an individual engineer [...] we rea-
lized user-specific views by development phase and abstraction specific
feature models within a hierarchical feature model”. The abstraction
specific view, referred to in P19, is a partial configuration of one

feature model that can be referred to from another feature model. A
technique called profiles, reported by I1, uses the same mechanism
to expose a subset of all features from one feature model to another.
M10: Prefer Boolean type features for comprehension. (P14,
P17, P22, P23, I2, I5–I7, I9). Most interviewees reported that the vast
majority of features are of type Boolean. I8 is a notable exception,
reporting mostly non-Boolean features, representing some more
application-logic-related specifications that were moved into the
feature model. However, I7 considers that the main strength of
feature modeling is that it is a “nice way of organizing configuration
switches”, thus confirming the strong preference for Boolean fea-
tures. We note that there are domains, such as operating systems,
where high numbers of numerical features exist (P14, P17).
M11: Document the features and the obtained featuremodel.
(P4, P12, P30, I8–I10). Several interviewees explicitly emphasized the
importance of documenting the feature model, while most other in-
terviewees implicitly mentioned the importance of documentation,
such as I8: “we’ve put a lot of effort into extensively documenting all
options and immediately document in the editor.” This principle is
related to PP2 and PP5, because any new terminology (i.e., features,
constraints) should be continuously unified and documented (e.g.,
the rationale for introducing the new element). I10 mentions that
the implementation itself often is the documentation, which crea-
tes problems when variants should be refactored into a platform.
Therefore, I10 suggests that feature documentation and feature
implementation should be simultaneous activities.

5.6 Dependencies
D1: If themodels are configured by (company) experts, avoid
feature-dependency modeling. (P21, I1, I2, I5–I8). The majority of
interviews suggested that in real-world feature modeling, iden-
tifying dependencies is expensive and if explicitly modeled, the
maintenance of the feature model becomes complex. Moreover, the
interviewees reported that the experts configuring the model are
typically aware of the undeclared dependencies (e.g., I6: “There
were some cross-tree dependencies [...], but they weren’t in the model
(the one configuring the model needed to know them)”) and I8: “[de-
pendencies are] typically not modeled”). Consequently, dependency
modeling is avoided or the modeled dependencies are rather sim-
ple, for instance, requires and excludes (e.g., I1: “Very few cross-tree
constraints [...] typically requires and conflicts”). An estimate of in-
terviewee I3 is that, if explicitly modeled, around 50% of features
would be involved in dependencies. It also seems that, in order
to compensate for the absence of explicit dependencies, custom
dependencies with domain-specific semantics are introduced. For
example, after a new system release, a new feature can be recom-
mended by another feature. We remark that the sources advising
against feature-dependencies modeling either consider small to
medium-sized feature models (several tens to several hundreds of
features) or feature models whose configuration spaces define a
relatively small number of configurations (several tens).
D2: If the main users of a feature model are end-users, per-
form feature-dependency modeling. (P10, P14, P24, I4). Conside-
ring end-users instead of domain experts, we identified a principle
that opposes D1. If feature model configuration is done by end-users
(related to the purpose of the feature model PP3), or with large

Principles of Feature Modeling ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

feature models (with thousands of features), feature-dependency
modeling should be performed. Thereby, it can be ensured that cor-
rect configurations are derived, and support for choice propagation
and conflict resolution can be offered.

5.7 Quality Assurance
QA1: Validate the obtained featuremodel inworkshopswith
domain experts. (P8, P22, P24, I1). Because a feature model repre-
sents the complete domain, we found several sources that empha-
size the benefits of involving various domain experts in the review.
P24 states that different domain experts should participate because
“they can focus on their area of expertise, i.e., product management, ar-
chitecture, or product configuration aspects. Our results further show
that detailed domain expertise is required for defining the feature
models [...].” According to I1, aspects that should be discussed are
“what are the right names for the features, what are the right ways
of structuring the features, try the process of first creating the new
product [configuration] that never existed before [...].” Also, it is bene-
ficial if domain experts that have not been involved in the modeling
review the feature model, to validate if the model is intuitive (P8).
QA2: Use the obtained feature model to derive configurati-
ons. (P1, P3–P5, I1, I8). The obtained feature model should allow de-
riving configurations that represent variants whose artifacts were
used for feature identification and feature model creation. Further-
more, we found statements that deriving new configurations that
did not exist explicitly before, and verifying that they are meaning-
ful with respect to existing implementation, is an indicator that the
feature model faithfully represents the domain. Customers may be
involved, as I8 reveals: “We have a workshop with customer where
we discuss how things need to be configured in detail to adhere to
their domains.” If the feature model does not allow deriving any
new configurations besides the ones analyzed, this might be an
indication that migrating to a product-line is not profitable.
QA3: Use regression tests to ensure that changes to the fea-
ture model preserve previous configurations. (I9, I10). During
two interviews, we found that, to ensure that an update of a feature
model preserves the previously defined configurations, regression
testing can be used. I9 explains that creating reference variants
from the feature model helps covering the different combinations
running in real-world systems, which are thoroughly tested within
their continuous integration servers. This is further acknowledged
by I10, who stated to perform “testing, a lot of testing”, referring to
regression testing, whenever there are variability related changes.

5.8 Model Maintenance and Evolution
Although some of the previous principles facilitate easier mainte-
nance and evolution of feature models (MO2–MO5), in this section
we present three additional principles.
MME1: Use centralized feature model governance. (P13, P14,
P21, P22, P26, P27, P29, I1, I4, I5). We identified in several sources that
having a dedicated employee, or a dedicated team, which governs
the feature model, ensures consistent and reliable evolution of
the feature model. I1 stated that “somebody [...] chief architect or
whoever [...] becomes the lead product-line engineer, okay, so they
really own the overall feature model.” This is especially the case in
closed environmentswhere the enterprise has complete control over

the feature model, in contrast to open-source or community-driven
projects. In cases where several feature models exist, a dedicated
team should maintain each model. Centralized model governance
also facilitates strict access-control management.
MME2: Version the feature model in its entirety. (P17, I4, I8,
I9). Versioning individual features would probably lead to feature
model inconsistencies, thus we found several advises to version
the complete feature model. When a newer version of the feature
model contains features that are obsolete, but are preserved for
compatibility purposes, such features are marked as deprecated (I8).
MME3: New features should be defined and approved bydom-
ain experts. (P22, I5, I8, I10). In order to introduce a new feature into
the feature model, it is necessary to specify the feature, define how
it is going to be tested, and to consider the implications of adding a
new feature to the existing implementation. Consequently, a new
feature should be approved by relevant domain experts. For exam-
ple, I5 stated: “we have to make sure that the work is done properly.
Because [...] you can be stopped by simple technical issues, like we
cannot merge back, because the branch is frozen.”

6 DISCUSSION
As themajority of papers (cf. Tbl. 1) reports experiences of extractive
product-line adoptions, the principles that most sources agree on
relate to bottom-up feature modeling. Specifically, the principles
agreed on most are about information sources from which features
can be identified (PP2, IS1), feature-identification techniques (M2,
M3), what the identified features represent (M6, M10), and what the
desirable properties of the resulting feature models are (MO1–MO4).

Some of the identified principles are applicable only in particular
modeling scenarios. For example, considering dependencies (i.e.,
D1 and D2), the choice to model feature dependencies depends
on the purpose of the feature model, namely on the decision who
configures the model. Moreover, some principles represent different
ways of addressing the same issue (e.g., MO3 and M9). For this
example, splitting a large feature model into smaller ones (MO3)
and defining feature-model views (M9), both aims at separating the
concerns of different stakeholders.

Choosing either principle comes with its own benefits and dra-
wbacks. Defining views on a single feature model facilitates centra-
lized model governance (MME1) and avoids the need for interface
models (P5, P31). In contrast, if multiple models are used, each
of them will probably have a lower depth (MO1), with less com-
plex cross-tree constraints (MO4), which facilitates maintenance.
Despite the fact that principle MO3 is supported by 15 sources,
compared to only two supporting M9, the reason for this might
be that feature views require sophisticated tool support, which is
rarely readily available. Namely, we know of only two research
tools that support feature-model views [2, 42]. Although our results
uncover that separation of concerns implies trade-offs, defining
how to optimally separate the concerns of different stakeholders in
different contexts requires further research.

Interestingly, the principles related to planning and training
(PP1–PP6, T1–T3), do not have a high number of sources that sup-
port them. The majority of sources that support these principles are
either industrial case studies or tool-vendor interviews. Such sour-
ces report experiences from case studies during which an external

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Damir Nešić, Jacob Krüger, Ştefan Stănciulescu, and Thorsten Berger

person or organization guided the feature modeling and product-
line adoption in a host company. Consequently, although feature
models are considered to be an intuitive and simple modeling nota-
tion, companies must expect a certain amount of effort for training
to clearly define the scope and purpose of a feature model.

The papers that we identified in our literature review (cf. Tbl. 1)
report experiences on more than ten different notations for feature
models. Moreover, they are concerned with 14 different application
domains. We remark that among the diverse modeling notations,
few were used repeatedly; namely FODA/FORM as the first no-
tation that has been proposed (P1, P3, P7, P9, P28); and the tool
pure::variants and its notation that is established in practice (P13,
P25, P26, P27, P30). Similarly, there are a two prominent domains,
namely automotive (P5, P19, P26, P27, P30) and industrial auto-
mation (P13, P15, P24, P25). However, none of the principles is
specific to a particular notation or domain. In contrast, the princi-
ples we identified are general and applicable to any domain and
feature-modeling notation.

We ordered the principles in the most reasonable sequence of
steps that are needed to create a feature model, but this ordering
does not represent a definitive modeling process. For example,
some principles can be optional and some can be applied differently,
depending on an organization’s domain and context. Defining and
validating a modeling process is part of our future work.

7 RELATEDWORK
The most notable work that defines a set of principles for feature
modeling is reported by Lee et al. [58]. Unlike that paper, we present
a systematically collected set of principles from papers on indus-
trial practices and experiences, supported by practices reported by
feature-modeling practitioners. Other than Lee et al., who share
their personal knowledge on creating feature models, we identified
31 papers to collect empirical evidence. Perhaps the most related pa-
pers among those we identified, regarding methodological support
in terms of well-defined feature-modeling principles, are the works
based on the FORM methodology [26, 47, 49, 50, 57]. The core of
FORM is a layered feature model that is based on the original FODA
method [46]. Besides the fact that the defined practices are based
solely on the authors’ experiences, we note that this research is
two decades old and the set of practices does not provide guide-
lines for issues arising in modern feature modeling. For example,
these works do not report on combining bottom-up and top-down
modeling, model hierarchy definitions, and model views. Several
industrial case-studies reported practices used for creating feature
models with the purpose to adopt product lines [19, 34, 38, 59]. Be-
cause these case studies report experiences from specific domains
and are based on specific technologies, the reported practices are
rather specific. In contrast, our principles are either generally ap-
plicable, since we synthesized them from several practices, or we
clearly state the context in which they apply. Other related papers
are the surveys and case studies by Berger et al. [9–11, 13], which
investigate the characteristics of successful industry-grade and
open-source feature models. Although not primarily aiming at iden-
tifying modeling principles, these works provided insights into the
characteristics of feature models, and thus helped us to understand
which modeling principles will lead to such feature models.

8 THREATS TO VALIDITY
Construct Validity. To ensure correct interpretation of interview
data, each interview started with an introduction where we tried to
understand the project the interviewee worked with. In line with
semi-structured interview methods, we allowed thorough expla-
nations of the relevant terminology in the interviewees’ domains,
upon which we adjusted our question’s terminology in order to
detect intricate details about the modeling principles.
Internal Validity. To ensure completeness and avoid the need
for forwards snowballing, the initial set of papers was identified
manually by analyzing five instances of relevant conferences and
workshops. To increase our confidence about completeness, we
verified with an automatic search. To ensure that we can obtain
insights about different sizes and usages of feature models, we se-
lected the interviewees based on experience and the characteristics
of their product lines. Finally, to ensure that we identify domain-
independent, generally applicable principles, we interviewed tool-
vendors and consultants with broad experience in feature modeling.
External Validity. To ensure that the identified principles can be
used in arbitrary domains to create feature models with various
purposes and sizes, we based the study on research papers, techni-
cal reports, interviews with practitioners, consultants, and tool
providers, all of which reported experiences about diverse applica-
tions of feature modeling in practice. For the few principles that
are applicable in a specific context, we state this context clearly.
Conclusion Validity. We claim that the extracted principles are
general and are reasonable with regards to our analysis and scope.
Our study is based on a systematic and reproducible method that
relies on qualitative data obtained from literature and interviews
with practitioners. To avoid misinterpretation of the collected data,
we have jointly analyzed our sources, triangulated the principles
between literature and interviews, and refined the principles and
categories until we reached a consensus among all authors.

9 CONCLUSION
Feature modeling has received almost 30 years of attention in re-
search and practice. However, a comprehensive modeling metho-
dology is still missing. Towards such a methodology, we showed
that recurrent modeling practices actually exist and that these can
be synthesized into generalized principles. We presented a list of
34 feature modeling principles, synthesized from practices we iden-
tified in the literature and in interviews with ten feature-modeling
practitioners. The presented principles cover eight categories, from
training and planning the modeling activities, via identifying the re-
levant stakeholders and relevant information sources, to the actual
modeling, model organization, model validation, as well as model
maintenance and evolution. We hope that our insights help practi-
tioners to design feature models and researchers to design methods
and tools that are aligned with accepted modeling principles. As
future work, we plan to synthesize an executable modeling process
and validate it with our industrial partners.
Acknowledgments. Supported by Vinnova Sweden (ITEA pro-
ject REVaMP2 2016-02804, ECSEL project PRYSTINE 2018-01764)
and the Swedish Research Council (257822902). We thank our in-
terviewees as well as Robert Lindohf, Olivier Biot, and Slawomir
Duszinsky for valuable feedback on earlier drafts of this paper.

Principles of Feature Modeling ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

REFERENCES
[1] Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert B. France. 2010.

Composing Feature Models. In International Conference on Software Language
Engineering (SLE). Springer, 62–81.

[2] Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert B. France. 2013.
FAMILIAR: A Domain-Specific Language for Large Scale Management of Feature
Models. Science of Computer Programming 78, 6 (2013), 657–681.

[3] Nele Andersen, Krzysztof Czarnecki, Steven She, and Andrzej Wąsowski. 2012.
Efficient Synthesis of Feature Models. In International Software Product Line
Conference (SPLC). ACM, 106–115.

[4] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. 2013. Feature-
Oriented Software Product Lines. Springer.

[5] Rabih Bashroush, Muhammad Garba, Rick Rabiser, Iris Groher, and Goetz Botter-
weck. 2017. CASE Tool Support for Variability Management in Software Product
Lines. ACM Computing Surveys 50, 1 (2017), 14:1–14:45.

[6] Don Batory. 2005. Feature Models, Grammars, and Propositional Formulas. In
International Software Product Line Conference (SPLC). Springer, 7–20.

[7] David Benavides, Sergio Segura, and Antonio Ruiz Cortés. 2010. Automated
Analysis of Feature Models 20 Years Later: A Literature Review. Information
Systems 35, 6 (2010), 615–636.

[8] Thorsten Berger, Daniela Lettner, Julia Rubin, Paul Grünbacher, Adeline Silva,
Martin Becker, Marsha Chechik, and Krzysztof Czarnecki. 2015. What is a
Feature? A Qualitative Study of Features in Industrial Software Product Lines. In
International Software Product Line Conference (SPLC). ACM, 16–25.

[9] Thorsten Berger, Divya Nair, Ralf Rublack, Joanne M. Atlee, Krzysztof Czarnecki,
and Andrzej Wąsowski. 2014. Three Cases of Feature-Based Variability Modeling
in Industry. In Model-Driven Engineering Languages and Systems Conference
(MODELS). Springer, 302–319.

[10] Thorsten Berger, Rolf-Helge Pfeiffer, Reinhard Tartler, Steffen Dienst, Krzysztof
Czarnecki, Andrzej Wąsowski, and Steven She. 2014. Variability Mechanisms
in Software Ecosystems. Information and Software Technology 56, 11 (2014),
1520–1535.

[11] Thorsten Berger, Ralf Rublack, Divya Nair, Joanne M. Atlee, Martin Becker,
Krzysztof Czarnecki, and Andrzej Wąsowski. 2013. A Survey of Variability
Modeling in Industrial Practice. In InternationalWorkshop on Variability Modelling
of Software-Intensive Systems (VaMoS). ACM, 7:1–7:8.

[12] Thorsten Berger and Steven She. 2010. Formal Semantics of the CDL Language.
Technical Note. Available at http://www.cse.chalmers.se/~bergert/paper/cdl_
semantics.pdf.

[13] Thorsten Berger, Steven She, Rafael Lotufo, Andrzej Wąsowski, and Krzysztof
Czarnecki. 2010. Variability Modeling in The Real: A Perspective from the
Operating Systems Domain. In International Conference on Automated Software
Engineering (ASE). ACM, 73–82.

[14] Thorsten Berger, Steven She, Rafael Lotufo, Andrzej Wąsowski, and Krzysztof
Czarnecki. 2013. A Study of Variability Models and Languages in the Systems
Software Domain. IEEE Transactions of Software Engineering 39, 12 (2013), 1611–
1640.

[15] Danilo Beuch. 2004. pure::variants Eclipse Plugin User Guide. pure-systems GmbH.
[16] Ekaterina Boutkova. 2011. Experience with Variability Management in Requi-

rement Specifications. In International Software Product Line Conference (SPLC).
IEEE, 303–312.

[17] Pearl Brereton, Barbara A. Kitchenham, David Budgen, Mark Turner, and Mo-
hamed Khalil. 2007. Lessons from Applying the Systematic Literature Review
Process within the Software Engineering Domain. Journal of Systems and Software
80, 4 (2007), 571–583.

[18] John Businge, Openja Moses, Sarah Nadi, Engineer Bainomugisha, and Thorsten
Berger. 2018. Clone-Based Variability Management in the Android Ecosystem. In
International Conference on Software Maintenance and Evolution (ICSME). IEEE,
625–634.

[19] Jaime Chavarriaga, Carlos Rangel, Carlos Noguera, Rubby Casallas, and Viviane
Jonckers. 2015. Using Multiple Feature Models to Specify Configuration Options
for Electrical Transformers: An Experience Report. In International Software
Product Line Conference (SPLC). ACM, 216–224.

[20] Paul C. Clements and Charles W. Krueger. 2002. Point / Counterpoint: Being
Proactive Pays Off / Eliminating the Adoption Barrier. IEEE Software 19, 4 (2002),
28–31.

[21] Paul C. Clements and Linda Northrop. 2001. Software Product Lines: Practices and
Patterns. Addison-Wesley.

[22] Sholom G. Cohen, Jay L. Stanley Jr., A. Spencer Peterson, and Robert W. Krut Jr.
1992. Application of Feature-Oriented Domain Analysis to the Army Movement
Control Domain. Technical Report CMU/SEI-91-TR-28. Carnegie-Mellon Univer-
sity.

[23] Krzysztof Czarnecki and Ulrich W. Eisenecker. 2000. Generative Programming:
Methods, Tools, and Applications. Addison-Wesley.

[24] Krzysztof Czarnecki, Paul Grünbacher, Rick Rabiser, Klaus Schmid, and Andrzej
Wąsowski. 2012. Cool Features and Tough Decisions: A Comparison of Variabi-
lity Modeling Approaches. In International Workshop on Variability Modeling of
Software-Intensive Systems (VaMoS). ACM, 173–182.

[25] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. 2005. Formalizing
Cardinality-Based Feature Models and their Specialization. Software Process
Improvement and Practice 10, 1 (2005), 7–29.

[26] Eduardo S. de Almeida, Jorge C. C. P. Mascena, Ana P. C. Cavalcanti, Alexandre
Alvaro, Vinicius C. Garcia, Silvio R. de Lemos Meira, and Daniel Lucrédio. 2006.
The Domain Analysis Concept Revisited: A Practical Approach. In International
Conference on Software Reuse (ICSR). Springer, 43–57.

[27] Sybren Deelstra, Marco Sinnema, and Jan Bosch. 2005. Product Derivation in
Software Product Families: A Case Study. Journal of Systems and Software 74, 2
(2005), 173–194.

[28] Mahdi Derakhshanmanesh, Joachim Fox, and Jürgen Ebert. 2014. Requirements-
Driven Incremental Adoption of Variability Management Techniques and Tools:
An Industrial Experience Report. Requirements Engineering 19, 4 (2014), 333–354.

[29] Deepak Dhungana, Paul Grünbacher, Rick Rabiser, and Thomas Neumayer. 2010.
Structuring the Modeling Space and Supporting Evolution in Software Product
Line Engineering. Journal of Systems and Software 83, 7 (2010), 1108–1122.

[30] Ivan do Carmo Machado, John D. McGregor, and Eduardo Santana de Almeida.
2012. Strategies for Testing Products in Software Product Lines. SIGSOFT Software
Engineering Notes 37, 6 (2012), 1–8.

[31] Yael Dubinsky, Julia Rubin, Thorsten Berger, Slawomir Duszynski, Martin Becker,
and Krzysztof Czarnecki. 2013. An Exploratory Study of Cloning in Industrial
Software Product Lines. In European Conference on Software Maintenance and
Reengineering (CSMR). IEEE, 25–34.

[32] Thomas Fogdal, Helene Scherrebeck, Juha Kuusela, Martin Becker, and Bo Zhang.
2016. Ten Years of Product Line Engineering at Danfoss: Lessons Learned and
Way Ahead. In International Systems and Software Product Line Conference (SPLC).
ACM, 252–261.

[33] Open Network Foundation. 2015. UML Modeling Guidelines. Technical Report
ONF TR-514. Open Network Foundation.

[34] Jesús Padilla Gaeta and Krzysztof Czarnecki. 2015. Modeling Aerospace Systems
Product Lines in SysML. In International Conference on Software Product Line
(SPLC). ACM, 293–302.

[35] Charles Gillan, Peter Kilpatrick, Ivor T. A. Spence, T. John Brown, Rabih
Bashroush, and Rachel Gawley. 2007. Challenges in the Application of Fea-
ture Modelling in Fixed Line Telecommunications. In International Workshop on
Variability Modelling of Software-Intensive Systems (VaMoS). 141–148.

[36] Martin L. Griss. 1997. Software Reuse Architecture, Process, and Organization
for Business Success. In Israeli Conference on Computer Systems and Software
Engineering (ICCSSE). IEEE, 86–89.

[37] Martin L. Griss, John Favaro, and Massimo d’Alessandro. 1998. Integrating
Feature Modeling with the RSEB. In International Conference on Software Reuse
(ICSR). IEEE, 76–85.

[38] Andreas Hein, Michael Schlick, and Renato Vinga-Martins. 2000. Applying
Feature Models in Industrial Settings. In International Software Product Line
Conference (SPLC). Kluwer, 47–70.

[39] Peter Hofman, Tobias Stenzel, Thomas Pohley, Michael Kircher, and Andreas
Bermann. 2012. Domain Specific Feature Modeling for Software Product Lines.
In International Software Product Line Conference (SPLC). ACM, 229–238.

[40] Arnaud Hubaux, Andreas Classen, Marcilio Mendonça, and Patrick Heymans.
2010. A Preliminary Review on the Application of Feature Diagrams in Practice.
In International Workshop on Variability Modelling of Software-Intensive Systems
(VaMoS). 53–59.

[41] Arnaud Hubaux, Patrick Heymans, and David Benavides. 2008. Variability
Modelling Challenges from the Trenches of an Open Source Product Line Re-
Engineering Project. In International Software Product Line Conference (SPLC).
IEEE, 55–64.

[42] Arnaud Hubaux, Patrick Heymans, Pierre-Yves Schobbens, Dirk Deridder, and
Ebrahim Khalil Abbasi. 2013. Supporting Multiple Perspectives in Feature-Based
Configuration. Software & Systems Modeling 12, 3 (2013), 641–663.

[43] Takashi Iwasaki, Makoto Uchiba, Jun Otsuka, Koji Hachiya, Tsuneo Nakanishi,
Kenji Hisazumi, and Akira Fukuda. 2010. An Experience Report of Introducing
Product Line Engineering across the Board. In International Software Product Line
Conference (SPLC). 255–258.

[44] Hans P. Jepsen and Danilo Beuche. 2009. Running a Software Product Line: Stan-
ding Still is Going Backwards. In International Software Product Line Conference
(SPLC). ACM, 101–110.

[45] Hans P. Jepsen, Jan G. Dall, and Danilo Beuche. 2007. Minimally Invasive Migra-
tion to Software Product Lines. In International Software Product Line Conference
(SPLC). IEEE, 203–211.

[46] Kyo C. Kang, Sholom Cohen, James Hess, William Nowak, and Spencer Peterson.
1990. Feature-Oriented Domain Analysis (FODA) Feasibility Study. Technical
Report CMU/SEI-90-TR-21. Carnegie-Mellon University.

[47] Kyo C. Kang, Sajoong Kim, Jaejoon Lee, Kijoo Kim, Euiseob Shin, and Moonhang
Huh. 1998. FORM: A Feature-Oriented Reuse Method with Domain-Specific
Reference Architectures. Annals of Software Engineering 5, 1 (1998), 143–168.

[48] Kyo C. Kang, Sajoong Kim, Jaejoon Lee, and Kwanwoo Lee. 1999. Feature-
Oriented Engineering of PBX Software for Adaptability and Reuseability. Soft-
ware: Practice and Experience 29, 10 (1999), 875–896.

http://www.cse.chalmers.se/~bergert/paper/cdl_semantics.pdf
http://www.cse.chalmers.se/~bergert/paper/cdl_semantics.pdf

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Damir Nešić, Jacob Krüger, Ştefan Stănciulescu, and Thorsten Berger

[49] Kyo C. Kang, Jaejoon Lee, and Patrick Donohoe. 2002. Feature-Oriented Product
Line Engineering. IEEE Software 19, 4 (2002), 58–65.

[50] Kyo C. Kang, Kwanwoo Lee, JaeJoon Lee, and SaJoong Kim. 2003. Domain
Oriented Systems Development: Practices and Perspectives. CRC Press, Chapter
Feature-Oriented Product Line Software Engineering: Principles and Guidelines,
29–46.

[51] Barbara A. Kitchenham and Stuart Charters. 2007. Guidelines for Performing
Systematic Literature Reviews in Software Engineering. Technical Report EBSE-
2007-01. Keele University.

[52] Charles W. Krueger. 2001. Easing the Transition to Software Mass Customization.
In International Workshop on Software Product-Family Engineering (PFE). Springer,
282–293.

[53] Charles W. Krueger. 2007. BigLever Software Gears and the 3-Tiered SPL Metho-
dology. In Conference on Object-Oriented Programming Systems and Applications
Companion (OOPSLA). ACM, 844–845.

[54] Jacob Krüger, Wolfram Fenske, Jens Meinicke, Thomas Leich, and Gunter Saake.
2016. Extracting Software Product Lines: A Cost Estimation Perspective. In
International Systems and Software Product Line Conference (SPLC). ACM, 354–
361.

[55] Jacob Krüger, Mukelabai Mukelabai, Wanzi Gu, Hui Shen, Regina Hebig, and
Thorsten Berger. 2019. Where is my Feature and What is it About? A Case
Study on Recovering Feature Facets. Journal of Systems and Software 152 (2019),
239–253.

[56] Elias Kuiter, Jacob Krüger, Sebastian Krieter, Thomas Leich, and Gunter Saake.
2018. Getting Rid of Clone-and-Own: Moving to a Software Product Line for
Temperature Monitoring. In International Systems and Software Product Line
Conference (SPLC). ACM, 179–189.

[57] Kwanwoo Lee, Kyo C. Kang, Eunman Koh, Wonsuk Chae, Bokyoung Kim, and
ByoungWook Choi. 2000. Domain-Oriented Engineering of Elevator Control Soft-
ware: A Product Line Practice. In International Software Product Line Conference
(SPLC). Kluwer, 3–22.

[58] Kwanwoo Lee, Kyo C. Kang, and Jaejoon Lee. 2002. Concepts and Guidelines
of Feature Modeling for Product Line Software Engineering. In International
Conference on Software Reuse (ICSR). Springer, 62–77.

[59] Daniela Lettner, Klaus Eder, Paul Grünbacher, and Herbert Prähofer. 2015. Fe-
ature Modeling of two Large-Scale Industrial Software Systems: Experiences
and Lessons Learned. In International Conference on Model Driven Engineering
Languages and Systems (MODELS). IEEE, 386–395.

[60] Christian Manz, Michael Stupperich, and Manfred Reichert. 2013. Towards
Integrated Variant Management in Global Software Engineering: An Experience
Report. In International Conference on Global Software Engineering (ICGSE). IEEE,
168–172.

[61] Jan Mendling, Hajo A. Reijers, and Wil M. P. van der Aalst. 2010. Seven Process
Modeling Guidelines (7PMG). Information and Software Technology 52, 2 (2010),
127–136.

[62] Daniel Moody. 2009. The “Physics” of Notations: Toward a Scientific Basis for
Constructing Visual Notations in Software Engineering. IEEE Transactions on
Software Engineering 35, 6 (2009), 756–779.

[63] Mukelabai Mukelabai, Damir Nešić, Salome Maro, Thorsten Berger, and Jan-
Philipp Steghöfer. 2018. Tackling Combinatorial Explosion: A Study of Industrial
Needs and Practices for Analyzing Highly Configurable Systems. In International
Conference on Automated Software Engineering (ASE). ACM, 155–166.

[64] Tsuneo Nakanishi, Kenji Hisazumi, and Akira Fukuda. 2018. Teaching Software
Product Lines As a Paradigm to Engineers: An Experience Report in Education
Programs and Seminars for Senior Engineers in Japan. In International Systems
and Software Product Line Conference (SPLC). ACM, 46–47.

[65] Leonardo Passos, Marko Novakovic, Yingfei Xiong, Thorsten Berger, Krzysztof
Czarnecki, and Andrzej Wąsowski. 2011. A Study of Non-Boolean Constraints in
Variability Models of an Embedded Operating System. In International Software
Product Line Conference (SPLC). ACM, 2:1–2:8.

[66] Klaus Pohl, Günter Böckle, and Frank J. van Der Linden. 2005. Software Product
Line Engineering: Foundations, Principles, and Techniques. Springer.

[67] Richard Pohl, Mischa Höchsmann, Philipp Wohlgemuth, and Christian Tischer.
2018. Variant Management Solution for Large Scale Software Product Lines. In
International Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP). ACM, 85–94.

[68] Pierre-Yves Schobbens, Patrick Heymans, and Jean-Christophe Trigaux. 2006. Fe-
ature Diagrams: A Survey and a Formal Semantics. In International Requirements
Engineering Conference (RE). IEEE, 139–148.

[69] Christa Schwanninger, Iris Groher, Christoph Elsner, and Martin Lehofer. 2009.
Variability Modelling throughout the Product Line Lifecycle. In International Con-
ference on Model Driven Engineering Languages and Systems (MODELS). Springer,
685–689.

[70] Yusra Shakeel, Jacob Krüger, Ivonne von Nostitz-Wallwitz, Christian Lausberger,
Gabriel Campero Durand, Gunter Saake, and Thomas Leich. 2018. (Automated)
Literature Analysis - Threats and Experiences. In International Workshop on
Software Engineering for Science (SE4Science). IEEE, 20–27.

[71] Steven She and Thorsten Berger. 2010. Formal Semantics of the Kconfig Language.
Technical Note. Available at http://www.cse.chalmers.se/~bergert/paper/kconfig_
semantics.pdf.

[72] Steven She, Rafael Lotufo, Thorsten Berger, Andrzej Wąsowski, and Krzysztof
Czarnecki. 2011. Reverse Engineering Feature Models. In International Conference
on Software Engineering (ICSE). ACM, 461–470.

[73] Marco Sinnema, Sybren Deelstra, Jos Nijhuis, and Jan Bosch. 2004. COVAMOF: A
Framework forModeling Variability in Software Product Families. In International
Software Product Line Conference (SPLC). Springer, 197–213.

[74] Mirjam Steger, Christian Tischer, Birgit Boss, Andreas Müller, Oliver Pertler,
Wolfgang Stolz, and Stefan Ferber. 2004. Introducing PLA at Bosch Gasoline Sys-
tems: Experiences and Practices. In International Software Product Line Conference
(SPLC). Springer, 34–50.

[75] Misha Strittmatter, Georg Hinkel, Michael Langhammer, Reiner Jung, and Robert
Heinrich. 2016. Challenges in the Evolution of Metamodels: Smells and Anti-
Patterns of aHistorically-GrownMetamodel. InWorkshop onModels and Evolution
(WME). 30–39.

[76] Thomas Thüm, Sven Apel, Christian Kästner, Ina Schaefer, and Gunter Saake.
2014. A Classification and Survey of Analysis Strategies for Software Product
Lines. ACM Computing Surveys 47, 1 (2014), 6:1–6:45.

[77] Thomas Thüm, Christian Kästner, Fabian Benduhn, Jens Meinicke, Gunter Saake,
and Thomas Leich. 2014. FeatureIDE: An Extensible Framework for Feature-
Oriented Software Development. Science of Computer Programming 79 (2014),
70–85.

[78] Frank J. van der Linden, Klaus Schmid, and Eelco Rommes. 2007. Software Product
Lines in Action. Springer.

[79] Arie van Deursen and Paul Klint. 1998. Little Languages: Little Maintenance?
Journal of Software Maintenance: Research and Practice 10, 2 (1998), 75–92.

[80] Alexander von Rhein, Alexander Grebhahn, Sven Apel, Norbert Siegmund, Dirk
Beyer, and Thorsten Berger. 2015. Presence-Condition Simplification in Highly
Configurable Systems. In International Conference on Software Engineering (ICSE).
IEEE, 178–188.

[81] Claes Wohlin. 2014. Guidelines for Snowballing in Systematic Literature Stu-
dies and a Replication in Software Engineering. In International Conference on
Evaluation and Assessment in Software Engineering (EASE). ACM, 38:1–38:10.

http://www.cse.chalmers.se/~bergert/paper/kconfig_semantics.pdf
http://www.cse.chalmers.se/~bergert/paper/kconfig_semantics.pdf

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Feature Modeling
	2.2 Modeling Principles

	3 Methodology
	3.1 Literature Review
	3.2 Expert Interviews
	3.3 Synthesis of Principles

	4 Data Sources
	5 Identified Principles
	5.1 Planning and Preparation
	5.2 Training
	5.3 Information Sources
	5.4 Model Organization
	5.5 Modeling
	5.6 Dependencies
	5.7 Quality Assurance
	5.8 Model Maintenance and Evolution

	6 Discussion
	7 Related Work
	8 Threats to validity
	9 Conclusion
	References

