
Effects of Explicit Feature Traceability on
Program Comprehension

Jacob Krüger
Otto-von-Guericke University

Magdeburg, Germany
jkrueger@ovgu.de

Gül Çalıklı
Chalmers | University of Gothenburg

Gothenburg, Sweden
calikli@chalmers.se

Thorsten Berger
Chalmers | University of Gothenburg

Gothenburg, Sweden
bergert@chalmers.se

Thomas Leich
Harz University & METOP GmbH

Wernigerode & Magdeburg, Germany
tleich@hs-harz.de

Gunter Saake
Otto-von-Guericke University

Magdeburg, Germany
saake@ovgu.de

ABSTRACT
Developers spend a substantial amount of their time with program
comprehension. To improve their comprehension and refresh their
memory, developers need to communicate with other developers,
read the documentation, and analyze the source code. Many stu-
dies show that developers focus primarily on the source code and
that small improvements can have a strong impact. As such, it is
crucial to bring the code itself into a more comprehensible form. A
particular technique for this purpose are explicit feature traces to
easily identify a program’s functionalities. To improve our empi-
rical understanding about the effects of feature traces, we report
an online experiment with 49 professional software developers.
We studied the impact of explicit feature traces, namely annotati-
ons and decomposition, on program comprehension and compared
them to the same code without traces. Besides this experiment, we
also asked our participants about their opinions in order to com-
bine quantitative and qualitative data. Our results indicate that, as
opposed to purely object-oriented code: (1) annotations can have
positive effects on program comprehension; (2) decomposition can
have a negative impact on bug localization; and (3) our partici-
pants perceive both techniques as beneficial. Moreover, none of
the three code versions yields significant improvements on task
completion time. Overall, our results indicate that lightweight tra-
ceability, such as using annotations, provides immediate benefits to
developers during software development and maintenance without
extensive training or tooling; and can improve current industrial
practices that rely on heavyweight traceability tools (e.g., DOORS)
and retroactive fulfillment of standards (e.g., ISO-26262, DO-178B).

CCS CONCEPTS
•General and reference→ Empirical studies; • Software and its
engineering → Software design tradeoffs; Maintaining software.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5572-8/19/08. . . $15.00
https://doi.org/10.1145/3338906.3338968

KEYWORDS
Program comprehension, Feature traceability, Software mainte-
nance, Separation of concerns
ACM Reference Format:
Jacob Krüger, Gül Çalıklı, Thorsten Berger, Thomas Leich, and Gunter Saake.
2019. Effects of Explicit Feature Traceability on Program Comprehension. In
Proceedings of the 27th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE ’19),
August 26–30, 2019, Tallinn, Estonia. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3338906.3338968

1 INTRODUCTION
Developers often need to understand the purpose and the details of
specific parts of a codebase, which is a time-consuming and cogniti-
vely demanding activity during software engineering [33, 60, 61]. A
developer performs this activity, known as program comprehension,
when they are new to a program or forgot details that are required
for their task [8, 31]. Consequently, to gain implicit knowledge
about a program, developers need to read and comprehend the
code, which can be facilitated by mentoring and by explanations
from other developers. However, communicating knowledge in
such a way requires considerable effort from other developers and
interrupts their own activities.

To tackle such problems, several techniques have been proposed
to reverse-engineer information or to improve program compre-
hension, often upon empirical studies. Contemporary techniques
comprise, for instance, creating on-demand documentation [47],
topic modeling [64], and visualizing execution traces [14]. Still,
developers are known to mainly focus on the source code itself,
rather than documentation and other artifacts [6, 33, 51, 57]. Con-
sequently, bringing the source code into a more understandable
form is crucial to support program comprehension and to improve
the software design. Several concepts and techniques have been
proposed for this purpose, such as programming paradigms (e.g.,
object-orientation [3], feature-orientation [21]), code recommen-
dations (e.g., on identifier names [15, 34], decomposition strate-
gies [27, 59]), and other supportive techniques (e.g., source code
comments [39, 67], documentation traceability [1, 37]).

In this paper, we are concerned with a design decision that is
often argued to positively impact software development andmainte-
nance: Explicit traceability of software features in the source
code. Explicit traceability refers to code styles that explicitly mark

https://doi.org/10.1145/3338906.3338968
https://doi.org/10.1145/3338906.3338968

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Jacob Krüger, Gül Çalıklı, Thorsten Berger, Thomas Leich, and Gunter Saake

what parts of the code belong to what feature. Such explicit locati-
ons help developers to faster identify relevant code and understand
what the corresponding feature does. As we report in Section 2,
some studies indicate a positive effect of explicit traces on program
comprehension. However, these studies are usually conducted as
controlled experiments with a small number of students and in-
volve special implementation techniques, such as feature-oriented
programming [44]. In contrast, we (i) conducted an experiment in-
cluding 49 experienced, professional software developers; (ii) used
feature traces that are independent of implementation techniques;
and (iii) compared both types of traces not only to each other, but
also to object-oriented code without any traces.

For this experiment, we randomly distributed all invited deve-
lopers into three groups, each of which had to perform six tasks
on Java code that comprised (1) no feature traces, (2) annotated
features or (3) decomposed features. We refer to annotating (i.e.,
features were commented) and decomposing (i.e., features were
implemented in separate classes) as separation of features [27, 53].
By using lightweight designs to incorporate feature traces, we did
not need to teach our participants a new implementation technique.
We did this to reduce learning efforts, which we argue to benefit
the usability and introduction of explicit feature traces in practice.
The results indicate that, compared to pure object-oriented code,
annotations can have a positive impact on understanding features,
while decomposition can potentially hamper bug localization. Still,
due to our sample size, we have to be careful with interpreting
these results, but qualitative responses also indicate a strong favor
of most participants towards explicit feature traces. In combination
with findings of other researchers on more specialized implementa-
tion techniques [24, 27, 50, 53], we argue that explicit feature traces
and especially annotations can improve program comprehension
and support automation without negatively impacting the time that
developers need to analyze code.

In summary, our contributions are as follows:
• We report and discuss quantitative data on the correctness
and completion time of our participants for six program
comprehension tasks.

• We discuss qualitative responses to shed further light into
the benefits and problems that our participants faced.

• We provide a replication package that includes our experi-
mental design, the source code of our subject system, and
all anonymized responses in a repository.1

Our results provide empirical insights into the impact of explicit
feature traces on developers’ task performance. Especially, as we
confront our participants with unfamiliar code, they have no previ-
ous knowledge about it and face the scenario of familiarizing with
new code and the assigned tasks.

2 RELATEDWORK
The notion of features has become a fundamental concept, not only
to implement variability in software product lines [2, 7], but for
software engineering in general—used to communicate, document,
and structure systems [4, 28]. In particular, an extensive body of
research investigates the task of locating features in the source code

1https://doi.org/10.5281/zenodo.3264974

of a system [5], automatically [49] as well as manually [25, 63]. Fea-
ture location is a time-consuming and costly task that is necessary
to maintain or fix—essentially, comprehend—a feature that is not
made explicit in the code. The benefits of explicit feature traces are
apparent, as they free the developer from locating features in the
code, saving time and providing focus points for developers [19, 23].

Research in the related area of requirements traceability is con-
cerned with tracing requirements throughout various artifacts
down to the source code of a system. To this end, several techniques
have been proposed to recover traces to the source code [9, 40].
Moreover, empirical studies [10, 18, 37, 46] suggest that such traces
can significantly facilitate developers’ tasks. However, most of such
techniques rely on external tools, and requirements are a different
abstraction than features. Both can be in any relation to each other,
for example, a feature needs to fulfill multiple requirements.

Due to the variety of techniques that can be used to enable fea-
ture traceability, an important question arises: What technique is
suitable in what situation to support developers understand source
code? In this regard, researchers have compared different feature
characteristics and traceability techniques to gain insights. For in-
stance, Liebig et al. [36], Passos et al. [42, 43], Melo et al. [38], and
we [26] investigated the characteristics of feature implementations
and how these impact maintainability, evolution, and the archi-
tecture of a system. Furthermore, Feigenspan et al. [12] analyzed
whether background colors instead of textual annotations facilitate
program comprehension. In contrast, Parnas [41] discusses how to
decompose a system into modules or components, another widely
used technique to separate and trace features.

Despite such techniques and studies, it is still an open issue how
to separate features most effectively. Several authors argue about
potential advantages and disadvantages of annotating features in a
single codebase versus separating them into modules [22, 30, 35].
Due to the complexity of comparing such implementation techni-
ques and due to psychological biases [55], only few researchers
report empirical studies. Siegmund et al. [53] conducted a control-
led experiment in which they compare preprocessor annotations
and feature-oriented programming. However, this experiment in-
cludes only eight students, limiting more general interpretation.
In a follow-up experiment on bug fixing [50], 33 students have
been involved, but the results show no significant benefits of either
technique. Our previous works on this topic include a survey with
34 developers [27], a preliminary analysis of developer communi-
ties [24], and a case study [29]. During these works, we have been
concerned with annotating and decomposing features to provide
insights into the opinions and experiences of developers, but they
do not provide experimental evidence on pros and cons of either
technique. All these studies focus on specialized implementation
techniques for variability, adding complexity and effort for practical
usage. Moreover, none of these studies analyzes pros or cons of
using any of these techniques compared to not using it.

Overall, it is still not clear to what extent separating fe-
atures with one of the basic techniques—annotations or de-
composition—impacts a developer’s ability to understand a
program.Our goal is to improve the empirical evidence concerning
the impact of such explicit features traces. In contrast to previous
works, we are not concerned with implementation techniques that

https://doi.org/10.5281/zenodo.3264974

Effects of Explicit Feature Traceability on Program Comprehension ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

allow variability, but rely on comments and classes that do not re-
quire developers to learn new concepts. This also excludes the usage
of external tools, as these add further abstractions and developers
may be reluctant to use them [27]. Moreover, we are interested in
understanding the pros and cons of feature traces compared to code
that does not comprise any. Nonetheless, our experimental design
is partly inspired by previous studies and guidelines [11, 53, 54].

3 EXPERIMENTAL DESIGN
In this section, we describe the goal, subject system, implementation,
distribution of participants, and tasks of our experiment.

3.1 Goal & Research Questions
We aimed to empirically assess the impact of explicit feature tra-
ces in source code. To this end, we have been concerned with two
established techniques: annotations and decomposition into com-
ponents (cf. Section 2). Arguably, both techniques facilitate feature
location, as features are separated and can be easily found through
searching their identifiers in annotations or file names, respectively.
In order to investigate their impact on program comprehension,
we considered the different code versions as independent varia-
bles, comprising the three levels object-oriented, annotated, and
components. Moreover, we aimed to control the participants’ pro-
gramming experience, meaning that we considered the experience
as independent and not as confounding variable.

To address our goal, we defined three research questions:
RQ1 To what extent does feature traceability impact the ef-

fectiveness of program comprehension?
We investigated whether annotations or decomposition im-
prove our participants’ ability to correctly understand code
(i.e., effectiveness). To this end, we used the number of faults
as metric (dependent variable) and compared the ratios of
correct solutions between all three code versions.

RQ2 To what extent does feature traceability impact the ef-
ficiency of program comprehension?
We investigated whether annotations or decomposition faci-
litate our participants’ ability to understand code faster (i.e.,
efficiency). To this end, we measured their completion time
(dependent variable) for each task.

RQ3 What is our participants’ perception of feature tracea-
bility on the performed tasks?
Besides quantitative measures, we were concerned with our
participants’ perception of explicit feature traces. In parti-
cular, we wanted to understand what problems or benefits
they experienced while understanding the source code. Con-
sequently, we addressed this research question based on qua-
litative responses and mapped those to our quantitative data.

Based on existing studies [50, 53], we hypothesized that an-
notations and decomposition perform comparable to each other.
In contrast, we assumed that the explicit traceability of features
would facilitate all tasks compared to pure object-oriented code,
while the correctness should remain similar. Overall, we defined
our null-hypotheses that we aimed to refute with our data as follows
for the corresponding research questions:
H1 The correctness of our participants’ task solutions does not

differ between groups.

H2 The efficiency of our participants to complete tasks does not
differ between groups.

We tested each hypothesis by comparing two groups to each other
(pair-wise) for all of our six tasks (cf. Section 3.4), resulting in a total
of 18 tests for each hypothesis (e.g., object-oriented compared to
annotations, annotations compared to composition). We corrected
our test results to address multiple hypothesis testing (cf. Section 4).

3.2 Subject System
As our subject system, we selected Mobile Media, which has been
developed by researchers of the software-product-line commu-
nity [68] and was later extended with feature annotations (using
the C preprocessor) that we used as baseline [53]. Due to its careful
design and usage of standard coding techniques, it is an appropriate
subject system that has been used in several studies [50, 52, 53]. Mo-
reover, it is implemented in Java, which is one of the most common
programming languages.

The software provides a content management system for media
files on mobile devices. In our experiment, we used a single file,
namely MediaControler.java, that implements ten features of the
software. These features are related to storing and managing pho-
tos, music, and videos. To avoid biases, we removed all existing
comments in the file. Moreover, we removed library imports, which
contribute to approximately 10% of the total lines of code, and an
SMS feature, of which only a small part is implemented in this file.
We did this to limit the code size that our participants had to read,
which was around 400 lines, in the end.

Finally, we refactored the file into three different versions:

(1) Object-Oriented: In this version, we only removed the existing
preprocessor annotations (e.g., #ifdef) to provide the source
code without any feature traces. Thus, we obtained pure
object-oriented code that we used for the control group.

(2) Annotated: For annotation-based feature traces, we replaced
existing preprocessor annotations with traceability anno-
tations based on existing studies (i.e., //&begin [feature],
//&end [feature]) [19, 26, 28]. We decided to do this, (i) as
C preprocessor annotations are rarely used in Java programs,
(ii) to avoid confusion over potential variability we are not
interested in, and (iii) to not introduce new concepts.

(3) Components: To obtain the decomposed version, we extrac-
ted each feature into a class and added static methods that
comprise the feature’s code. For each class, we used the
corresponding feature’s name as file name and removed all
existing annotations.

Due to these code designs, the participants did not need to learn
any new concepts for any version. Knowledge about comments and
object-orientation are sufficient to understand such feature traces
after a short introduction.

3.3 Distribution of Participants
We personally invited 144 software developers from different coun-
tries and asked them to share the invitation with others. Our goal
was to include developers with industrial experiences and incre-
ase their motivation to participate. After accepting the invitation,
each developer had to fill in a survey to assess their programming

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Jacob Krüger, Gül Çalıklı, Thorsten Berger, Thomas Leich, and Gunter Saake

Table 1: Questions to quantify programming experience.

ID Question | Answering Options (A)

Q1 How do you estimate your programming experience?
A: 1 (very inexperienced) – 10 (very experienced)

Q2 How experienced are youwith the Java programming language?
A: 1 (very inexperienced) – 10 (very experienced)

Q3 For how many years have you been programming?
A: ◦ <2; ◦ 2-5; ◦ 6-10; ◦ 11+

Q4 For how many years have you been programming for larger
software projects (e.g., in companies)?

A: ◦ <2; ◦ 2-5; ◦ 6-10; ◦ 11+
Q5 What is your highest degree of education that is related to

programming?
A: Multiple choice (optional text)

experience. We provide an overview of the survey questions and
possible answers in Table 1.

These questions are based on an empirically derived propo-
sal [54]. We based the answer classifications for Q3 and Q4 on
a large user survey of Stack Overflow.2 In this survey, approxima-
tely one quarter of the participants has been in each of the classes
we show in Table 1. We mapped the classes to a scale from one to
ten (i.e., 2, 4, 7, 9), aligning them to the first two questions. Consi-
dering the degree, we only identified whether a developer received
one (8) or not (3), as it is hardly possible to say which ones may
indicate “better” developers. For the experience value, we computed
the average of all scales and considered a developer as novice if the
result was below or equal to 5.5—or as expert, otherwise. We rand-
omly distributed our participants into three groups, one for each
code version (i.e., object-oriented, annotated, components), with
equal ratios of novices and experts, and sent the actual experiment.

3.4 Tasks & Questions
For the first part of our experiment, we selected six tasks that
involve, but are not directly concerned with, feature location for
two reasons:

• Participants of the annotated and components groups can
quickly locate features by searching the names.

• We aimed to limit learning effects that may impact our sub-
jects’ performances in completing their tasks.

In contrast to the straight-forward task of feature location, we were
interested in the impact of feature traceability on tasks that require
actual comprehension. Therefore, we designed two sections with
three tasks, each.

In the first section, we were concerned with comprehending fea-
tures and their interactions, which does not only require to locate
the corresponding code, but to also understand it. Feature interacti-
ons represent different system functionalities that interact and may
influence each other. Thus, feature interactions are an important
challenge that can easily result in problems during program com-
prehension and bug fixing [2]. The tasks that we defined for the
first section were:

(1) Out of four feature pairs, select those that interact;
2https://insights.stackoverflow.com/survey/2016#developer-profile-experience

Table 2: Questions to evaluate the participants’ experiences
with the tasks and on feature traceability.

ID Question | Answering Options (A)

EQ1 Did you have any problems in answering the survey, e.g., under-
standing the questions or concepts?

A: ◦ yes; ◦ no
EQ2 What was your strategy for comprehending the code in order to do

the tasks?
A: Free text

EQ3 What have been yourmain problems or challenges during the tasks?
A: Free text

EQ4 (Annotated) Do you think that the annotations provided for each
feature helped you understand the code?
(Components) Do you think that the separation of features into
classes helped you understand the code?
(Object-Oriented) Do you think that a different code design concer-
ning the features (e.g., annotating their begin and end, implement
them in separate classes) would have facilitated your program com-
prehension?

A: Free text
EQ5 Did you face an interruption (more than 5 minutes) for any of the

6 tasks?
A: Checkbox for each task

EQ6 Do you have any comments on the survey?
A: Free text

(2) Select the lines where two described features interact; and
(3) Out of four statements about this feature interaction, select

those that are correct.
In the second section, we asked our participants to locate bugs,
which we inserted:

(4) Into a feature (cannot capture photos);
(5) Into a feature interaction (wrong counter for videos); and
(6) Into the base code (cannot delete photos).

These bugs resemble simple faults (i.e., copy-paste errors, incre-
ments), similar to mutations [20]. Each task was about a different
feature to mitigate learning biases.

At the end of our experiment, we asked our participants to ela-
borate on their experiences and to describe whether they faced any
problems. We show the corresponding questions in Table 2. EQ1
was a simple check question to verify if there were any misunder-
standings, which could also be elaborated on in EQ6. We used EQ5
to verify whether a participant was interrupted during any task,
meaning that we considered the corresponding results differently.
With the remaining three questions, we were concerned with gat-
hering qualitative data to answer RQ3. We remark that EQ4 exists
in three different versions, one for each code version.

3.5 Implementation & Testing
Due to the tasks we defined (i.e., marking lines of code) and the
design of our experiment (i.e., accessible via internet), we were
not able to reuse existing survey tools without considerable costs
and adaptations. For these reasons, we decided to implement our
own solution that was based on a simple server-client architecture
and fulfilled the requirements of our experiment. We tested our
implementation extensively with own test runs. Code reviews and

https://insights.stackoverflow.com/survey/2016#developer-profile-experience

Effects of Explicit Feature Traceability on Program Comprehension ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Table 3: Experience values of our participants.

Version Experience ParticipantsMin Median Mean Max

Annotated 5.60 7.00 6.96 8.80 18
Components 4.00 7.20 6.88 9.20 15
Object-Oriented 6.20 7.60 7.61 9.20 16

Total 4.00 7.40 7.15 9.20 49

additional tests of our implementation were performed by three col-
leagues consisting of a software developer, a system administrator,
and a PhD student. Moreover, two of these colleagues tested the
actual survey to evaluate formulations and the tasks’ complexity.
None of the three colleagues participated in the actual experiment.

We decided to conduct our experiment via the internet to incre-
ase our range, provide the opportunity to conduct the tasks at any
time, and have access to developers all around the world without
extensive traveling. Thus, this is not a fully controlled experiment,
but an unsupervised one that was conducted in real-world settings
in which developers may be distracted or switch tasks. With this
design, we aimed to increase the external validity of our results.

4 RESULTS AND DISCUSSION
In this section, we report details about the participants of our experi-
ment and the results. We separately report and discuss observations
for each of our research questions.

4.1 Participants
Unsurprisingly, not all developers that we invited participated in
our experiment. Overall, we received 49 responses from around
the world, mostly from Turkey (20), Germany (13), and the United
States (7). In Table 3, we show the distribution of our participants’
experience values based on our rating scale (cf. Table 1). Only two
participants stated that they have worked for less then two years
on large-scale projects. As we can see, the median and mean values
are close to each other and among the groups. While the distribu-
tion of participants for each program version is not identical, the
differences are small. Moreover, most participants are considered
experts according to our analysis with only three of them in the
components group not achieving this rating.

Overall, we can see small differences between the groups of
participants. Nonetheless, we had at least 15 participants and 12
experts for each code version of our experiment. Considering this
information, the responses we analyzed represent a diverse and
experienced set of practitioners. Thus, we argue that none of the
differences threatens the results of our study, but we have to be
cautious with our interpretations.

Validity of Responses. As aforementioned, we aimed to attract
experienced software developers and intended to focus on external
validity. Due to our study design, there have been several partici-
pants who reported disruptions while they worked on a task or
problems in understanding some details (however, most elaborated
about code issues, rather than the experiment itself). To address
this issue, we first performed a sanity check in the context of RQ1

for developers stating comprehension problems. Considering RQ2,
we removed all completion times for which interruptions were
reported, as these measures would not accurately represent the
required effort.

Due to technical issues, single data points for some participants
are missing. First, three participants reported problems with task
1, or were just missing the entry. We decided not to count these
responses, wherefore task 1 for the annotated group comprises
only 15 responses (cf. Figure 1). Second, one participant of the
components group did answer all questions except the elaboration
(cf. Table 2). We decided to include this response, but to put it into
the group with comprehension problems for the sanity check (as-
suming that there have been misunderstandings). Except for these
four, we excluded all other unfinished or incomplete responses.

4.2 RQ1: Effectiveness
In Figure 1, we show how many of our participants were able to
correctly solve each task. We distinguish between three groups
according to our first independent variable, the version of the code
the participants investigated (A: Annotated; C: Components; OO:
Object-Oriented). Moreover, we considered whether the partici-
pants indicated problems in understanding any part of the expe-
riment (CP) or not (NCP). We applied hypothesis testing to test
whether our observations may be significant. In particular, we tes-
ted observation 1 that represents our sanity check and based on
which we scoped our remaining observations, analyses, and tests.

Observation 1: Difficulties in understanding the survey had no
impact on the results. Comparing the correct and incorrect answers
of the participants with and without comprehension problems for
each task, we can see that the distributions are similar. Moreover, in
some tasks the ratio of correctly solved tasks with comprehension
problems is identical compared to those without problems (e.g.,
for task 2 of the annotated group, both have eight correct and one
incorrect answer). Thus, it seems that problems in understanding
our experiment had only limited impact on our participants’ abi-
lity to correctly solve a task. This is reasonable, as the code was
unknown to our participants, meaning that they had to understand
it anew anyway. As in daily life, they can still understand code,
even if facing a potentially vague assignment. In addition, most
participants stated that the code was the problem for understanding
(e.g., too long), rather than the tasks themselves. However, the code
and its design were the subject we aimed to understand, meaning
that the results should be comparable.

Hypothesis testing. Based on our observation, we hypothesized
that there are no threatening differences between the participants who
did have and who did not have problems in understanding our expe-
riment. To test our hypothesis, we applied Fisher’s exact test [13],
as implemented in the R statistics software [45]. We used Fisher’s
exact test, because it can be applied on small sample sizes, but we
still have to be careful with interpreting the results. To account
for multiple hypothesis testing, we relied on a Bonferroni-Holm
correction [16] with a global confidence interval of 0.95. In the
remaining paper, we report the p-values of all significant results

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Jacob Krüger, Gül Çalıklı, Thorsten Berger, Thomas Leich, and Gunter Saake

6

6

2

1

3

1

5

6

1

7

8

8

8

1
1

7

3

1

4

2

2

6

6

1

2

8

7

5

3

3

4

1

7

8

8

7

1

2

3

2

5

5

8

7

1

8

7

1

2

6

3

2

4

8

5

3

5

5

4

4

6

2

7

7

4

1

4

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6

A C OO A C OO A C OO A C OO A C OO A C OO

0.00

0.25

0.50

0.75

1.00

Group

R
ep

so
ns

es

Incorrect (CP) Incorrect (NCP) Correct (CP) Correct (NCP)

Feature Comprehension Bug Localization

Figure 1: Distribution of correctly and incorrectly solved tasks for each code version (A:Annotated; C: Components; OO:Object-
Oriented) and task. Moreover, we display whether the corresponding participants stated comprehension problems or not (CP:
Comprehension Problems; NCP: No Comprehension Problems).

and also state the approximated, Bonferroni-Holm corrected thres-
hold that had to be fulfilled. The null-hypothesis is that correct and
wrong responses are equally distributed.

In total, we tested 18 hypotheses, one for each pair-wise combi-
nation of groups for each of the six tasks. None of the tests indicated
that the differences are significant, wherefore we cannot reject our
null-hypothesis So, we continued under the assumption we derived
from our observation, namely that participants who had problems
in understanding the survey did not perform worse than those who
did not. Due to this observation, we focused on all participants and
did not separate those that had comprehension problems for our
remaining analyses.

Observation 2: Explicit feature traces result in higher effectiveness
for comprehending feature interactions. Considering the first three
tasks, we can see in Figure 1 that the pure object-oriented code
performs worse compared to annotations and components. For the
first and third task, only one participant who worked on the object-
oriented version was able to correctly identify and understand
the feature interactions. Moreover, concerning task 2, only three
more participants have been able to correctly solve the task. This
result seems unsurprising, as explicit feature locations facilitate
understanding interactions considerably: Developers can focus on
certain parts of the code and do not have to identify the code that
implements the feature first, which is time consuming and can be
faulty, as every developer has an own, potentially different, notion
of what a feature comprises [4, 5, 25].

However, it is surprising that participants who analyzed compo-
nents had considerably more problems while identifying features
that interact (task 1). The data shows that participants selected
multiple wrong interactions. In contrast, they were more often able
to correctly explain how features interact (task 3). For this task,
the faulty responses usually show that it seems unclear for the
annotated group, to what extent features interact: Which feature
does modify which feature in what way? Both groups performed
comparable for locating a single feature interaction (task 2).

Potentially, it is easier to identify that features interact at all
if their code is close to each other (annotated code), rather than
separated into different classes—resulting in the code loosing its sur-
rounding context and potentially leading to the anti-pattern action
at a distance [24, 27]. In contrast, this loss of context may be better
to identify how features interact in the data-flow: Method calls can
already indicate whether a functionality is only used or whether
variables are changed. By inspecting the separated features, deve-
lopers can more easily identify globally accessible and potentially
interacting variables. Annotated code may complicate this analysis
as all context, even irrelevant one, is connected to the feature. Iden-
tifying and understanding the actual data-flow interactions [48] of
features remains challenging, even with explicit feature traces, as
was explicitly stated by some participants (cf. Section 4.4).

Observation 3: Decomposition results in less effectiveness for bug
localization. For the last three tasks, we can see that participants
who faced the decomposed code identified fewer bugs correctly

Effects of Explicit Feature Traceability on Program Comprehension ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

compared to other groups. Surprisingly, they even performed worse
for a faulty named label within a feature (task 4). As this bug is
connected to, and thus directly placed in, a feature, we expected
that the participants could easily identify the bug. The wrongly
selected answers show that most participants identified the correct
class, but selected a wrong line after the actual bug. As is also
highlighted by participants’ feedback (cf. Section 4.4), this problem
seems connected to the fact that the classes represented features
and not logical objects, as intended in object-oriented programming.
Again, the same issue of lost context and understanding data-flow
we described for our previous observation seems to have impacted
our participants’ ability to locate bugs. However, to understand
these effects inmore detail, we require additional studies on locating
and fixing bugs in decomposed code.

Observation 4: Annotations do not result in more effective bug lo-
calization. For annotations, we observe that the ratio of correctly
localized bugs is similar compared to the object-oriented version.
Thus, annotations seem to have no negative impact on bug loca-
lization. As the bugs are rather simple, the annotations may not
be helpful in this scenario, or the analysis of object-oriented code
may have resulted in better knowledge of our participants. More
extensive studies of these factors are needed to better understand
how they influence developers’ program comprehension.

Hypothesis testing. For each task, we compared all groups against
each other (pair-wise tests). To account for learning effects of our
participants, we conducted all 18 tests simultaneously and corrected
them together—instead of testing each task individually. Again, we
used Fisher’s exact test and the Bonferroni-Holm correction. To
this end, we always assumed as null-hypothesis that the ratio of
correct and incorrect answers between two groups is equal (cf. H1).

The test results include three significant outcomes for which we
can refute our null hypothesis. For tasks 1 and 2, we found signifi-
cant differences between the annotated and object-oriented group
(p < .0001 and p < .001 with corrected thresholds of p = .0028 and
p = .0029, respectively). This supports our second observation that
explicit feature traces support comprehending feature interactions.
However, this is solely limited to annotations and does not signifi-
cantly apply to the decomposed code version. In addition, we found
significant differences between components and object-oriented
code for task 4, supporting our third observation (p < .001 and a
corrected threshold of p = .0031).

To summarize RQ1, our results indicate that explicit feature
traceability can have positive, but also negative, effects on
program comprehension. Still, we have to be careful with
interpretations and must conduct industrial studies, for which
annotations seem to be more promising.
O1 Understanding problems do not bias the results.

Not rejected.
O2 Explicit traces improve interaction comprehension.

Accepted twice for annotated code.
O3 Decomposition hampers bug localization.

Accepted once.
O4 Annotations have no effect on bug localization.

Not rejected.

4.3 RQ2: Efficiency
In Table 4, we display statistics about the times our participants
in each group needed to complete a task, regardless of correctness.
We only considered participants that did not state interruptions for
a task (undisturbed). Nonetheless, we found few extreme outliers
where some participants worked for several hours on a single task.
These outliers indicate that the corresponding participant had been
interrupted, but did not state so. In order to address such extreme
cases, we removed entries that were more than twice above the
third quartile of each task and group. This led to the exclusion of 22
data points from our analysis, the difference between undisturbed
and included participants in Table 4.

Observation 5: Explicit feature traceability does not influence effi-
ciency. The results do not vary heavily between different versions
of the code. Moreover, only the first task required considerably
more time compared to the others. This is rarely surprising, as our
participants had to get familiar with the code and its structure. For
all other tasks, all groups needed between 1.19 and 3.2 minutes to
complete a task, on average. Likewise, the minimum and maximum
times are similar throughout all tasks. Thus, explicit feature tracea-
bility seems to have neither a positive nor a negative impact on the
analysis time, especially compared to the time needed to familiarize
with the code.

Hypothesis testing. We compared the completion time distributi-
ons of our groups within each task with the Kruskal-Wallis test [32].
This test does not require normal distributions and can compare
multiple groups against each other. The null-hypothesis, which we
aimed to refute, was that there are no significant differences bet-
ween the completion times (cf. H2). As none of the tests resulted
in a p-value below 0.3, we cannot reject our null-hypothesis and
argue that our observation is reasonable.

To summarize RQ2, the results show no impact of explicit
feature traceability on the completion times. Considering that
annotations seem to improve program comprehension, this
indicates an overall positive effect of these.
O5 Explicit feature traces do not influence efficiency.

Not rejected.

4.4 RQ3: Participants’ Perception
In Table 5, we summarize the qualitative responses we received
from our participants, which are particularly important to practi-
tioners [62]. Partly, the numbers do not accumulate to the total
number of participants, as we allowed each participant not to ela-
borate in detail; but they could also provide multiple insights with
their response. We read all their comments and summarized the
mentioned analysis strategies, challenges, and opinions on code
design for each group. Our summarizing strategy followed the idea
of open-card sorting [58].

Analysis strategies. Concerning their analysis strategy, many
participants in each group stated that they started with a general
exploration of the source code (25). They aimed to understand
the structure of the code and its behavior on an abstract level.
How these tasks have been performed is quite different among the
participants: Some simply skimmed through the code to get a rough

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Jacob Krüger, Gül Çalıklı, Thorsten Berger, Thomas Leich, and Gunter Saake

Table 4: Statistics on the completion times (in minutes) of our participants.

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6
A C OO A C OO A C OO A C OO A C OO A C OO

Und. Part. 10 10 9 13 12 15 16 14 15 18 13 16 18 13 15 16 10 16
Incl. Part. 10 8 9 12 11 13 14 14 13 16 11 15 16 12 14 15 10 14

Times (mins)
Min 2.91 2.23 2.72 0.44 1.14 0.91 0.70 0.67 0.52 0.38 0.66 0.61 1.63 1.47 0.57 0.61 1.30 0.76

Mean 13.07 5.51 12.27 1.72 3.26 3.30 2.73 2.26 1.84 1.19 2.40 1.58 3.03 2.90 2.91 3.23 2.59 1.49
Median 11.23 4.03 9.75 1.06 2.63 2.09 2.04 2.11 1.68 1.07 1.79 1.21 2.66 2.54 2.28 3.20 2.50 1.23

Max 25.02 12.73 22.92 4.90 8.48 11.96 7.29 4.70 3.90 2.33 6.37 4.09 6.84 5.95 7.55 8.82 5.05 3.48
SD 8.34 3.59 7.54 1.43 2.34 3.14 1.78 1.30 0.89 0.52 2.01 1.00 1.45 1.37 2.01 2.16 1.19 0.75

Part.: Participants; Und.: Undisturbed; Incl.: Included; SD: Standard Deviation

Table 5: Summary of our participants’ qualitative responses
concerning analysis strategies, challenges, and code design
(“–” means not applicable).

Response
#Mentioned

Annotations Components Object-Oriented

Participants 18 15 16

Analysis strategy

Get picture of code 7 6 12
Look for keywords 4 2 8
Use search function 0 1 3
Follow annotations 8 – –
Follow class names – 7 –

Challenges

Code quality 9 6 6
Code length 7 0 1
Missing IDE 4 4 3
Feature location 2 0 3
Missing knowledge 1 3 1

Code design

Positive 14 9 –
Unsure 2 2 –
Negative 2 3 –
Components 1 – 5
Comments – 0 4
Explicit locations – – 3

understanding, while others focused on specific code constructs,
such as labels and methods.

Unsurprisingly, 15 participants relied on the explicit feature
traces to address their tasks, if these were available. In some cases,
the participants mentioned that they also focused on keywords
(14), mostly to understand details, and used their browser’s search
function (4). Keywords and searches were also explicitly mentioned
and used by participants that worked on the object-oriented code.
This behavior aligns with the results of previous studies on manual
feature location [25, 63].

Challenges. Considering challenges, 21 participants mentioned
quality issues of the code. Most concerns were connected to design
decisions of our experiment that they did not like, for example,

the (long) code length (8), missing comments, or inappropriate
identifiers. We specifically removed comments to avoid biases and
reduced the code size, but the code had to be large enough for
feature traces to be useful.

Other general concerns were the intentionally missing IDE sup-
port (11), avoiding too many biases that would make any meaning-
ful assessment impossible. Five participants also mentioned their
missing knowledge about the system as a problem that hampered
their comprehension. However, this was also intended to have equal
preconditions for every participant. Interestingly, not only two par-
ticipants of the object-oriented group, but also two participants
of the annotated group had problems to identify feature locations.
For example, in the annotated group, one participant indicated the
need for decomposing features to avoid cluttering:

“[T]he biggest challenge for me was that all of the features are
in a single place, just written one after another.”

Opinions. Concerning the feature traceability techniques on their
own, most of our participants stated a positive perception after the
experiment. For example, 14 out of 18 participants in the annotated
group argue that the annotations helped, some stating that they
were elementary to locate and understand features—conflicting
some scientific beliefs about annotations:

“Yes, they did. In fact, without the annotations (provided that
they are correct), it would have been significantly more difficult
to understand which part of the code does what.”

The few critics of annotations were not focusing on the actual
annotations, but argue that comments indicate poor code:

“[N]o, adding comments in the code is a bad sign, it screams
that code is not self explanatory enough.”

Similarly, nine of 15 participants stated a positive effect of de-
composing the system into features. Most participants stated that it
helped to faster trace features:

“It helps [to] logical[ly] aid to decide where to start.”

The negative experiences were connected to identifying which
feature to look at. Such issues mainly arose because our participants
had not been familiar with the system:

Effects of Explicit Feature Traceability on Program Comprehension ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

“Yes, I understood the intent [...] with this sorting, naming and
separation. It was still unfamiliar and took more time than it
would have with familiar code.”

This indicates that decomposition has to be used carefully: The
right separation strategy is important and especially to new deve-
lopers we have to explain how it is used. For developers who are
familiar with the structure of the code and its features, this pro-
blem will arguably diminish. One participant specifically explained
their experienced pros and cons of decomposition and may best
summarize our overall results (i.e., RQ1):

“On the one hand, it made the classes small and locating pos-
sibly relevant code easy. On the other hand, interactions were
more difficult to spot because I had to switch between different
classes.”
For the object-oriented group, we did not ask about the anti-

cipated impact of the code design, but whether annotations or
decomposition would have been helpful:

“Features could have been implemented in a more organized
way. [W]e clearly need more than one class here.”

More precisely, four participants were in favor of decomposing the
code and five were in favor of adding comments (i.e., annotations)
to indicate feature locations:

“More comments and better restructuring of the code should be
more helpful.”

Overall, 11 out of 16 participants mentioned that any explicit feature
traces in the code would have been helpful.

To summarize RQ3, the results show that most of our parti-
cipants have a positive perception of explicit feature traces.
Thus, introducing traces in practice may not be a problem
and especially annotations are simple to adopt. Condensing
the qualitative responses, we can derive three observations:
O6 Explicit features extend general analysis strategies.
O7 Feature traces themselves are unproblematic to use.
O8 Making features explicit has a positive perception.

5 THREATS TO VALIDITY
The goal of our study was to provide empirical insights into a fun-
damental design decision based on studying experienced software
developers in the real world. Due to the trade-offs between internal
and external validity [56], and the magnitude of interacting fac-
tors that impact program comprehension, we can hardly address
all biases—resulting in more internal threats. In the following, we
report threats to the validity of our study based on the guidelines
of Wohlin et al. [66].

Construct Validity. Concerning the construct validity of our study,
some participants indicated that they had problems understanding
the survey or the concepts of annotations and decomposition to
separate features. To mitigate this threat, we provided small exam-
ples and used check questions to identify whether any confusions
occurred. Moreover, we performed a sanity check on the correct-
ness of tasks and found no differences for participants who stated
comprehension problems. So, we argue that this threat is properly
addressed in our design. In addition, most participants stated that

they had problems with the code and not the experimental design,
meaning that the construct validity would not be threatened.

Internal Validity. We aimed to reduce the impact of different
development environments by using a web-interface to display the
code. Still, we kept identifier names as well as syntax highlighting,
and did not control for tool usage (e.g., searches). While we cannot
ensure that our participants conducted the experiment with the
exact same set-ups (e.g., noise level, using additional tools, web
searches), we argue that developers in real-world settings also have
a multi-fold of tools, environments, and different comprehension
patterns. Thus, the set-up may bias our results, but reflects practice.

Our code examples comprise different techniques to trace featu-
res, namely annotations and decomposition. We relied on the exis-
ting preprocessor directives in the original Mobile Media system
to add our own annotations. For the decomposition, we separated
the corresponding code into different classes. Both techniques are
inspired by the usage of preprocessors in open-source and indus-
trial systems, which are similarly structured [17]. Together with the
additional changes that we applied to the code (i.e., removing one
feature, deleting imports and comments), the nature of our code
examples changed. Such changes may have influenced the results.
We did all changes in order to keep our participants motivated
and to control biases. Still, we cannot fully avoid this threat to our
study and, for example, another decomposition may have resulted
in better results for our participants in the corresponding group.

A concerning internal threat are learning effects of our partici-
pants, meaning that they may got more familiar with the code. We
addressed this threat in two ways: First, while we used a single code
example, we asked about different features for each task. This way,
our participants may have achieved better understanding about the
overall code, but not the specific feature. Most of the participants
also indicated that they did neither focus on nor did achieve an un-
derstanding of the overall code, besides a general overview. Second,
we decided against a random order of the survey tasks. So, for each
task, the experience with the source code should be comparable
between our participants. Based on this, we argue that learning
effects are mostly impacted by the different traceability techniques
for features, which is the concern of our research questions.

External Validity. Software developers have various backgrounds,
expertise with a programming language, and experiences with cer-
tain tasks. To address these threats, we invited a group of experien-
ced software developers from several countries and organizations.
Besides most of them working on larger projects for a long time, we
also evaluated their programming experience, based on which we
randomly sampled them into equally distributed groups. While the
responses resulted in three novices being part of the same group,
they were close to expert level. Overall, our participants are a rather
homogeneous group considering their experiences, wherefore we
argue that such threats are diminished, but may have occurred.

Several background factors, such as age, gender, or motivation
may have an impact on the results. Moreover, program compre-
hension comprises cognitive processes that highly depend on the
individual developer, as they learn and understand based on diffe-
rent patterns and rates. We aimed to address such factors partly by
measuring them (i.e., programming experiences) and by personally
inviting participants (e.g., increasing motivation). Still, we cannot

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Jacob Krüger, Gül Çalıklı, Thorsten Berger, Thomas Leich, and Gunter Saake

control all of these factors perfectly. Consequently, they remain a
threat to the external validity of our study.

Several studies used Mobile Media to provide code examples for
empirical studies. The code is also designed to reflect a real-world
system, and thus we argue that our examples can be considered as
realistic. Nonetheless, Mobile Media is an academic system, which
is why our results may not be completely transferable to industrial
practice. Still, our participants’ activities during program compre-
hension will most likely not have changed, since such systems are
similarly structures in industrial, open-source, and academic con-
texts [17, 53]. In addition, all participants faced the same system
(independent variable), meaning that our analysis of feature traces
(dependent variable) remains valid.

Conclusion Validity. We have to be careful with the conclusions
we derived from our observations. While they are interesting, our
statistical tests revealed only few significant correlations. Howe-
ver, due to the problems of such tests [65], we only used them as
supportive means and focused more on our actual observations. To
this end, we carefully investigated different variables and analyzed
their impact on program comprehension. This way, we aimed to
mitigate threats to the conclusion validity.

Despite the discussed threats, we argue that our study is valid
and provides reliable and interesting insights into an important
design decision. We used quantitative and qualitative methods,
combining measured data with subjective responses and tested our
observations statistically. Still, we encourage other researchers to
conduct further studies in this direction to strengthen the empirical
evidence and gain insights into the impact of explicit feature traces.
In this regard, we argue that our study can be replicated.

6 CONCLUSION
In this paper, we reported an online experiment with 49 experienced
software developers concerning explicit feature traceability, which
we implemented based on annotations and decomposition. We ba-
sed our design on existing studies and recommendations, with a
particular focus on increasing the external validity of our results.
To this end, we invited especially practitioners from various coun-
tries and organizations. We relied on quantitative and qualitative
analyses to find indications for the following four conclusions:

(1) Annotations positively impact the effectiveness of develo-
pers when comprehending features and their interactions,
while not negatively impacting bug localization.

(2) Decomposition into components has no significant impact
on the effectiveness of developers when comprehending fea-
tures, but resulted in less correct bug localization. However,
this is arguably connected to the structure, size, and cohesion
of the decomposed features.

(3) Explicit feature traces do not impact the efficiency of develo-
pers during program comprehension.

(4) Explicit feature traces do not result in comprehension pro-
blems and practitioners have a positive perception of such
explicit traces.

We remark that there are several threats to our results andwe highly
encourage further studies. However, we argue that, especially for
annotations, our results indicate that explicit feature traces can be
a helpful means to support program comprehension. In particular,

this may be the case if developers are facing unfamiliar code. As
they are also simple to introduce, annotations may be a good way
for organizations to implement and test feature traceability as well
as for researchers to conduct further studies in this direction.

In future work, we aim to extend our analysis and focus on
additional variables, particularly extending our investigations to
programmers’ memory. Moreover, we plan to design different expe-
riments and observational studies that maximize internal or exter-
nal validity, including collaborations with industrial partners. This
way, we can consolidate the empirical knowledge about explicit
feature traces, provide more precise recommendations to practitio-
ners, and identify open research problems. Furthermore, we argue
that different tracing techniques should be compared to identify
what impact they may have. Similarly, our study was focused on
program comprehension tasks. In the future, we also aim to analyze
the impact of explicit feature traces on other activities that we did
not consider, for example, on maintaining and evolving a system
(e.g., introducing new features).

ACKNOWLEDGMENTS
Jacob Krüger would like to thank ACM SIGSOFT for supporting the
presentation of this paper with a CAPS award. Gül Çalıklı’s work
is supported by the SEFIS project funded by Chalmers Area of Ad-
vance (ICT-SEED-2018). Thorsten Berger’s work is supported by the
ITEA project REVaMP2 funded by Vinnova Sweden (2016-02804),
and by the Swedish Research Council Vetenskapsrådet (257822902).
Thomas Leich’s (LE 3382/2-1, LE 3382/2-3) and Gunter Saake’s (SA
465/49-1, SA 465/49-3) work is supported by the German Research
Foundation (DFG) project EXPLANT.

We thank Christian Lausberger for testing and administrating
the experiment; Wardah Mahmood and Yüceer Çalıklı for testing
our tasks; and Sebastian Krieter for helping us troubleshoot our
R code. Moreover, we thank the anonymous reviewers for their
valuable feedback, and especially for pointing out a bug in our data
transformation. Finally, we would like to thank all participants of
our experiment for their valuable help.

REFERENCES
[1] Giuliano Antoniol, Gerardo Canfora, Gerardo Casazza, Andrea De Lucia, and

Ettore Merlo. 2002. Recovering Traceability Links Between Code and Documen-
tation. IEEE Transactions on Software Engineering 28, 10 (2002), 970–983.

[2] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. 2013. Feature-
Oriented Software Product Lines: Concepts and Implementation. Springer.

[3] Deborah J. Armstrong. 2006. The Quarks of Object-Oriented Development.
Communications of the ACM 49, 2 (2006), 123–128.

[4] Thorsten Berger, Daniela Lettner, Julia Rubin, Paul Grünbacher, Adeline Silva,
Martin Becker, Marsha Chechik, and Krzysztof Czarnecki. 2015. What is a
Feature? A Qualitative Study of Features in Industrial Software Product Lines. In
International Conference on Software Product Line (SPLC). ACM, 16–25.

[5] Ted J. Biggerstaff, Bharat G. Mitbander, and Dallas Webster. 1993. The Concept
Assignment Problem in Program Understanding. In International Conference on
Software Engineering (ICSE). IEEE, 482–498.

[6] Mauro Cherubini, Gina Venolia, Rob DeLine, and Andrew J. Ko. 2007. Let’s
Go to the Whiteboard: How and Why Software Developers Use Drawings. In
Conference on Human Factors in Computing Systems (CHI). ACM, 557–566.

[7] Paul Clements and Linda Northrop. 2001. Software Product Lines: Practices and
Patterns. Addison-Wesley.

[8] Joseph W. Davison, Dennis M. Manci, and William F. Opdyke. 2000. Understan-
ding and Addressing the Essential Costs of Evolving Systems. Bell Labs Technical
Journal (2000).

[9] Alexander Delater and Barbara Paech. 2013. Tracing Requirements and Source
Code During Software Development: An Empirical Study. In International Sym-
posium on Empirical Software Engineering and Measurement (ESEM). IEEE, 25–34.

Effects of Explicit Feature Traceability on Program Comprehension ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

[10] Alexander Egyed, Florian Graf, and Paul Grünbacher. 2010. Effort and Quality
of Recovering Requirements-to-Code Traces: Two Exploratory Experiments. In
International Requirements Engineering Conference (RE). IEEE, 221–230.

[11] Janet Feigenspan, Christian Kästner, Sven Apel, and Thomas Leich. 2009. How to
Compare Program Comprehension in FOSD Empirically: An Experience Report.
In International Workshop on Feature-Oriented Software Development (FOSD).
ACM, 55–62.

[12] Janet Feigenspan, Christian Kästner, Sven Apel, Jörg Liebig, Michael Schulze,
Raimund Dachselt, Maria Papendieck, Thomas Leich, and Gunter Saake. 2013.
Do Background Colors Improve Program Comprehension in the #ifdef Hell?
Empirical Software Engineering 18, 4 (2013), 699–745.

[13] Ronald A. Fisher. 1936. Statistical Methods For Research Workers. Oliver and
Boyd.

[14] Florian Fittkau, Santje Finke, Wilhelm Hasselbring, and Jan Waller. 2015. Com-
paring Trace Visualizations for Program Comprehension through Controlled
Experiments. In International Conference on Program Comprehension (ICPC). IEEE,
266–276.

[15] Johannes C. Hofmeister, Janet Siegmund, and Daniel V. Holt. 2019. Shorter
Identifier Names Take Longer to Comprehend. Empirical Software Engineering
24, 1 (2019), 417–443.

[16] Sture Holm. 1979. A Simple Sequentially Rejective Multiple Test Procedure.
Scandinavian Journal of Statistics (1979), 65–70.

[17] Claus Hunsen, Bo Zhang, Janet Siegmund, Christian Kästner, Olaf Leßenich,
Martin Becker, and Sven Apel. 2016. Preprocessor-Based Variability in Open-
Source and Industrial Software Systems: An Empirical Study. Empirical Software
Engineering 21, 2 (2016), 449–482.

[18] Khaled Jaber, Bonita Sharif, and Chang Liu. 2013. A Study on the Effect of
Traceability Links in Software Maintenance. IEEE Access 1 (2013), 726–741.

[19] Wenbin Ji, Thorsten Berger, Michal Antkiewicz, and Krzysztof Czarnecki. 2015.
Maintaining Feature Traceability with Embedded Annotations. In International
Conference on Software Product Line (SPLC). ACM, 61–70.

[20] Yue Jia and Mark Harman. 2011. An Analysis and Survey of the Development of
Mutation Testing. Transactions on Software Engineering 37, 5 (2011), 649–678.

[21] Kyo C. Kang, Sajoong Kim, Jaejoon Lee, Kijoo Kim, Euiseob Shin, and Moonhang
Huh. 1998. FORM: A Feature-Oriented Reuse Method with Domain-Specific
Reference Architectures. Annals of Software Engineering 5, 1 (1998), 143.

[22] Christian Kästner, Sven Apel, and Klaus Ostermann. 2011. The Road to Feature
Modularity?. In International Software Product Line Conference (SPLC). ACM,
5:1–5:8.

[23] Sebastian Krieter, Jacob Krüger, and Thomas Leich. 2018. Don’t Worry About
It: Managing Variability On-The-Fly. In International Workshop on Variability
Modelling of Software-Intensive Systems (VaMoS). ACM, 19–26.

[24] Jacob Krüger. 2018. Separation of Concerns: Experiences of the Crowd. In Sym-
posium on Applied Computing (SAC). ACM, 2076–2077.

[25] Jacob Krüger, Thorsten Berger, and Thomas Leich. 2019. Features and How
to Find Them: A Survey of Manual Feature Location. In Software Engineering
for Variability Intensive Systems: Foundations and Applications. LLC/CRC Press,
153–172.

[26] Jacob Krüger, Wanzi Gu, Hui Shen, Mukelabai Mukelabai, Regina Hebig, and
Thorsten Berger. 2018. Towards a Better Understanding of Software Features
and Their Characteristics: A Case Study of Marlin. In International Workshop on
Variability Modelling of Software-Intensive Systems (VaMoS). ACM.

[27] Jacob Krüger, Kai Ludwig, Bernhard Zimmermann, and Thomas Leich. 2018.
Physical Separation of Features: A Survey with CPP Developers. In Symposium
on Applied Computing (SAC). ACM, 2042–2049.

[28] Jacob Krüger, Mukelabai Mukelabai, Wanzi Gu, Hui Shen, Regina Hebig, and
Thorsten Berger. 2019. Where is my Feature and What is it About? A Case
Study on Recovering Feature Facets. Journal of Systems and Software 152 (2019),
239–253.

[29] Jacob Krüger, Marcus Pinnecke, Andy Kenner, Christopher Kruczek, Fabian
Benduhn, Thomas Leich, and Gunter Saake. 2018. Composing Annotations
Without Regret? Practical Experiences using FeatureC. Software: Practice and
Experience 48, 3 (2018), 402–427.

[30] Jacob Krüger, Ivonne Schröter, Andy Kenner, Christopher Kruczek, and Thomas
Leich. 2016. FeatureCoPP: Compositional Annotations. In International Workshop
on Feature-Oriented Software Development (FOSD). ACM, 74–84.

[31] Jacob Krüger, Jens Wiemann, Wolfram Fenske, Gunter Saake, and Thomas Leich.
2018. Do You Remember this Source Code?. In International Conference on
Software Engineering (ICSE). ACM, 764–775.

[32] William H. Kruskal and W. Allen Wallis. 1952. Use of Ranks in One-Criterion
Variance Analysis. Journal of the American Statistical Association 47, 260 (1952),
583–621.

[33] Thomas D. LaToza, Gina Venolia, and Robert DeLine. 2006. Maintaining Men-
tal Models: A Study of Developer Work Habits. In International Conference on
Software Engineering (ICSE). ACM, 492–501.

[34] Dawn Lawrie, Christopher Morrell, Henry Feild, and David Binkley. 2007. Ef-
fective Identifier Names for Comprehension and Memory. Innovations in Systems

and Software Engineering 3, 4 (2007), 303–318.
[35] Duc Le, Eric Walkingshaw, and Martin Erwig. 2011. #ifdef Confirmed Harmful:

Promoting Understandable Software Variation. In Symposium on Visual Languages
and Human-Centric Computing (VL/HCC). IEEE, 143–150.

[36] Jörg Liebig, Sven Apel, Christian Lengauer, Christian Kästner, and Michael
Schulze. 2010. An Analysis of the Variability in Forty Preprocessor-Based Soft-
ware Product Lines. In International Conference on Software Engineering (ICSE).
ACM, 105–114.

[37] Patrick Mäder and Alexander Egyed. 2015. Do Developers Benefit from Require-
ments Traceability when Evolving andMaintaining a Software System? Empirical
Software Engineering 20, 2 (2015), 413–441.

[38] Jean Melo, Claus Brabrand, and Andrzej Wąsowski. 2016. How Does the De-
gree of Variability Affect Bug Finding?. In International Conference on Software
Engineering (ICSE). ACM, 679–690.

[39] Sebastian Nielebock, Dariusz Krolikowski, Jacob Krüger, Thomas Leich, and Frank
Ortmeier. 2019. Commenting Source Code: Is it Worth it for Small Programming
Tasks? Empirical Software Engineering 24, 3 (2019), 1418–1457.

[40] Nan Niu, Wentao Wang, and Arushi Gupta. 2016. Gray Links in the Use of
Requirements Traceability. In International Symposium on Foundations of Software
Engineering (FSE). ACM, 384–395.

[41] David L. Parnas. 1972. On the Criteria to Be Used in Decomposing Systems into
Modules. Communications of the ACM 15, 12 (1972), 1053–1058.

[42] Leonardo Passos, Jesús Padilla, Thorsten Berger, Sven Apel, Krzysztof Czarnecki,
and Marco Tulio Valente. 2015. Feature Scattering in the Large: A Longitudinal
Study of Linux Kernel Device Drivers. In International Conference on Modularity
(MODULARITY). ACM, 81–92.

[43] Leonardo Passos, Rodrigo Queiroz, Mukelabai Mukelabai, Thorsten Berger, Sven
Apel, Krzysztof Czarnecki, and Jesus Padilla. 2018. A Study of Feature Scattering
in the Linux Kernel. IEEE Transactions on Software Engineering (2018). Preprint.

[44] Christian Prehofer. 1997. Feature-Oriented Programming: A Fresh Look at Objects.
In European Conference on Object-Oriented Programming (ECOOP). Springer, 419–
443.

[45] R Core Team. 2018. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing. https://www.R-project.org

[46] Patrick Rempel and Parick Mäder. 2016. Preventing Defects: The Impact of
Requirements Traceability Completeness on Software Quality. IEEE Transactions
on Software Engineering 43, 8 (2016), 777–797.

[47] Martin P. Robillard, Andrian Marcus, Christoph Treude, Gabriele Bavota, Oscar
Chaparro, Neil Ernst, Marco Aurélio Gerosa, Michael Godfrey, Michele Lanza,
Mario Linares-Vásquez, Gail C. Murphy, Laura Moreno, David Shepherd, and
Edmund Wong. 2017. On-Demand Developer Documentation. In International
Conference on Software Maintenance and Evolution (ICSME). IEEE, 479–483.

[48] Iran Rodrigues, Márcio Ribeiro, Flávio Medeiros, Paulo Borba, Baldoino Fon-
seca, and Rohit Gheyi. 2016. Assessing Fine-Grained Feature Dependencies.
Information and Software Technology 78 (2016), 27–52.

[49] Julia Rubin and Marsha Chechik. 2013. A Survey of Feature Location Techniques.
In Domain Engineering. Springer.

[50] Alcemir Rodrigues Santos, Ivan do CarmoMachado, Eduardo Santana de Almeida,
Janet Siegmund, and Sven Apel. 2019. Comparing the Influence of Using Feature-
Oriented Programming and Conditional Compilation on Comprehending Feature-
Oriented Software. Empirical Software Engineering 24, 3 (2019), 1226–1258.

[51] Ivonne Schröter, Jacob Krüger, Janet Siegmund, and Thomas Leich. 2017. Com-
prehending Studies on Program Comprehension. In International Conference on
Program Comprehension (ICPC). IEEE, 308–311.

[52] Kanwarpreet Sethi, Yuanfang Cai, Sunny Wong, Alessandro Garcia, and Claudio
Sant’Anna. 2009. From Retrospect to Prospect: Assessing Modularity and Stability
from Software Architecture. In Conference on Software Architecture & European
Conference on Software Architecture (WICSA/ECSA). IEEE, 269–272.

[53] Janet Siegmund, Christian Kästner, Jörg Liebig, and Sven Apel. 2012. Comparing
Program Comprehension of Physically and Virtually Separated Concerns. In
International Workshop on Feature-Oriented Software Development (FOSD). ACM,
17–24.

[54] Janet Siegmund, Christian Kästner, Jörg Liebig, Sven Apel, and Stefan Hanenberg.
2014. Measuring and Modeling Programming Experience. Empirical Software
Engineering 19, 5 (2014), 1299–1334.

[55] Janet Siegmund and Jana Schumann. 2015. Confounding Parameters on Program
Comprehension: A Literature Survey. Empirical Software Engineering 20, 4 (2015),
1159–1192.

[56] Janet Siegmund, Norbert Siegmund, and Sven Apel. 2015. Views on Internal and
External Validity in Empirical Software Engineering. In International Conference
on Software Engineering (ICSE). IEEE, 9–19.

[57] Janice Singer, Timothy Lethbridge, Norman Vinson, and Nicolas Anquetil. 2010.
An Examination of Software EngineeringWork Practices. InCASCON First Decade
High Impact Papers (CASCON). IBM, 174–188.

[58] Donna Spencer. 2009. Card Sorting: Designing Usable Categories. RosenfeldMedia.
[59] Peri Tarr, Harold Ossher, William Harrison, and Stanley M. Sutton, Jr. 1999. N De-

grees of Separation: Multi-Dimensional Separation of Concerns. In International
Conference on Software Engineering (ICSE). ACM, 107–119.

https://www.R-project.org

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Jacob Krüger, Gül Çalıklı, Thorsten Berger, Thomas Leich, and Gunter Saake

[60] Rebecca Tiarks. 2011. What Maintenance Programmers Really do: An Observati-
onal Study. In Workshop on Software Reengineering (WSR).

[61] Anneliese von Mayrhauser, A. Marie Vans, and Adele E. Howe. 1997. Program
Understanding Behaviour during Enhancement of Large-Scale Software. Journal
of Software Maintenance: Research and Practice 9, 5 (1997), 299–327.

[62] Ivonne von Nostitz-Wallwitz, Jacob Krüger, Janet Siegmund, and Thomas Leich.
2018. Knowledge Transfer from Research to Industry: A Survey on Program
Comprehension. In International Conference on Software Engineering (ICSE). ACM,
300–301.

[63] Jinshui Wang, Xin Peng, Zhenchang Xing, and Wenyun Zhao. 2013. How Deve-
lopers Perform Feature Location Tasks: A Human-Centric and Process-Oriented
Exploratory Study. Journal of Software: Evolution and Process 25, 11 (2013), 1193–
1224.

[64] Tianxia Wang and Yan Liu. 2017. Jsea: A Program Comprehension Tool Adopting
LDA-Based Topic Modeling. International Journal of Advanced Computer Science
and Applications 2, 3 (2017).

[65] Ronald L. Wasserstein, Allen L. Schirm, and Nicole A. Lazar. 2019. Moving to a
World Beyond “p < 0.05”. The American Statistician 73 (2019), 1–19.

[66] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and
Anders Wesslén. 2012. Experimentation in Software Engineering. Springer.

[67] Scott N. Woodfield, Hubert E. Dunsmore, and Vincent Yun Shen. 1981. The Effect
of Modularization and Comments on Program Comprehension. In International
Conference on Software Engineering (ICSE). IEEE, 215–223.

[68] Trevor J. Young. 2005. Using AspectJ to Build a Software Product Line for Mobile
Devices. Master’s thesis. University of British Columbia.

	Abstract
	1 Introduction
	2 Related Work
	3 Experimental Design
	3.1 Goal & Research Questions
	3.2 Subject System
	3.3 Distribution of Participants
	3.4 Tasks & Questions
	3.5 Implementation & Testing

	4 Results and Discussion
	4.1 Participants
	4.2 RQ1: Effectiveness
	4.3 RQ2: Efficiency
	4.4 RQ3: Participants' Perception

	5 Threats to Validity
	6 Conclusion
	References

