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ABSTRACT
The notion of features is commonly used to describe, structure,
and communicate the functionalities of a system. Unfortunately,
features and their locations in software artifacts are rarely made
explicit and often need to be recovered by developers. To this end,
researchers have conceived automated feature-location techniques.
However, their accuracy is generally low, and they mostly rely
on few information sources, disregarding the richness of modern
projects. To improve such techniques, we need to improve the em-
pirical understanding of features and their characteristics, including
the information sources that support feature location. Even though,
the product-line community has extensively studied features, the
focus was primarily on variable features in preprocessor-based sys-
tems, largely side-stepping mandatory features, which are hard to
identify. We present an exploratory case study on identifying and lo-
cating features. We study what information sources reveal features
and to what extent, compare the characteristics of mandatory and
optional features, and formulate hypotheses about our observations.
Among others, we find that locating features in code requires sub-
stantial domain knowledge for half of the mandatory features (e.g.,
to connect keywords) and that mandatory and optional features
in fact differ. For instance, mandatory features are less scattered.
Other researchers can use our manually created data set of features
locations for future research, guided by our formulated hypotheses.
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1 INTRODUCTION
The notion of features is commonly used to specify, manage, and
communicate the behavior of software systems and to support de-
velopers in comprehending, reusing, or changing these systems [2].
As such, features are helpful entitites during software development,
maintenance, and evolution [4, 27]. However, despite developers
being aware of and using features to describe their systems, fea-
tures and their locations are rarely made explicit in source code.
When a system evolves over time, the knowledge of features and
their locations quickly fades, which then needs to be recovered. In
fact, feature location [3, 10, 23, 32] is one of the most common and
expensive tasks in software engineering [5, 18, 28, 37].

To recover features and their locations, different (semi-)auto-
mated techniques have been proposed [26, 32]. Unfortunately, their
accuracy is generally low, they require substantial effort (e.g., cali-
bration towards the project), and often focus on one information
source only, such as keywords in source code. To improve man-
ual or automated feature-location techniques, we need to improve
the empirical understanding of features. This includes information
sources that can be used to recover features and their locations,
strategies to exploit these information sources, and characteristics
of features. Furthermore, realistic datasets of feature locations are
necessary to evaluate and compare corresponding techniques.

Different notions of features exist [4, 6]. The software-product-
line engineering (SPLE) community has extensively investigated
features as units of variability [2, 7]—so-called optional features.
These features are used in variation points, such as preproces-
sor directives (e.g., # ifdef ) or if statements and can therefore be
easily located. Their characteristics are also well-understood, due
to extensive studies [22]. Yet, this only represents variable (op-
tional) features, while little is known about non-variable (manda-
tory) features—units of functionality, used for system evolution
and maintenance. This notion of features is more common in in-
dustrial software engineering [4] and in research on concern loca-
tion [12, 14, 31].

We strive to improve the empirical understanding of software
features and their characteristics. Our goal is two-fold: First, we ex-
plore information sources existing in modern open-source projects,
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aiming to understand to what extent they can be used to iden-
tify mandatory features and their locations. Second, we analyze
how the characteristics of mandatory features differ from optional
ones, aiming to understand whether and how insights gained from
studies of optional features apply to mandatory features.

In this paper, we present an initial exploratory study on identi-
fying and locating features in Marlin, a variant-rich open-source
embedded firmware for 3D printers. Hosted on Github, it boasts a
richness of different information sources that can contain traces or
indicators for features. After studying the development culture and
processes, we manually explore these sources as entry points for
identifying and locating features. We document the features in a
feature model and their locations in the source code. We analyze
core characteristics, compare mandatory to optional features, and
formulate hypotheses that try to explain the differences. Finally,
we discuss our next steps to continue this work and to address its
current limitations. In summary, we contribute:

• a set of feature fact sheets for 43 features that contain infor-
mation sources and search strategies for each feature;

• a data set of the Marlin source code with annotated features
and a corresponding feature model;

• empirical data on characteristics of the features; and
• an online appendix containing all these contributions.1

On a final note, we hope that we can raise discussions about the
different notions of features. Our findings are an initial assessment
of Marlin, to be extended in future work. Yet, our preliminary re-
sults already provide insights into the different notions of features
and indicate that researchers should carefully distinguish them.
For instance, we find different characteristics among mandatory
and optional features, which implies that it can be problematic to
derive conclusions about feature-based maintenance and evolution,
when studying preprocessor directives (optional features), only.
Furthermore, we describe different information sources that sup-
port locating features. Together with the provided data set, these
results can help to improve feature location techniques and to steer
developers who need to recover features and their locations.

2 NOTIONS OF FEATURES
Several notions of features exist [2, 4, 6]. We distinguish between
features as units of variability and as units of functionality.
Features as Units of Variability. In SPLE, features are primarily
seen as units of variability, given the widespread use of annotation-
based variability mechanisms, typically using preprocessors and
conditional compilation (e.g., # if or # ifdef ) [2, 25]. In Listing 1, we
show a code excerpt from Marlin, where the preprocessor macro
NOOZLE_PARK_FEATURE represents an optional feature. During the
build process, the annotated code is only included if this macro
(feature) is enabled. Through code-level dependencies and to foster
automated configuration, these optional features are often declared
in a variability model [8, 33], which is typically the input for a
configuration tool (however, Marlin uses simple configuration files).

In this notion, the locations of features only represent their vari-
able parts; any mandatory code part that also belongs to a feature
is not annotated. As such, locating the variable code is easy, but
recovering the locations of mandatory parts is difficult and costly.
1https://github.com/hui8958/Marlin/tree/MarlinFeatureAnnotations

Listing 1: Preprocessor code in Marlin_Main.cpp

1 # i f ENABLED(NOZZLE_PARK_FEATURE )
2 / ∗ ∗
3 ∗ G27 : Park the no z z l e
4 ∗ /
5 inline vo id gcode_G27 ( ) {
6 / / Don ' t a l l ow noz z l e pa rk ing wi thout homing f i r s t
7 i f ( axis_unhomed_error ( ) ) r e t u r n ;
8 Nozzle : : park ( parser . ushortval ( ' P ' ) ) ;
9 }
10 # e n d i f / / NOZZLE_PARK_FEATURE

Likewise, completely mandatory features may not be represented
in the feature model. So, in summary, this notion is useful if fea-
tures are only used to configure a product line, not if features shall
be used, for instance, to plan development, to communicate, to
maintain a system, to fix bugs, or to re-engineer a system.

Take the example of re-engineering cloned products into a prod-
uct line [11, 21, 34] and specifically consider a single feature that is
cloned among two variants, and slightly modified in one variant. If
the feature is integrated into one platform, only the differences will
be annotated (likely, a new feature representing the differences is in-
troduced). The actual location of the whole feature is not annotated
and likely needs to be recovered for maintenance and evolution.

Given the availability of many open-source systems with op-
tional features, studies on their code-level characteristics, measur-
ing tangling or scattering degrees, have been conducted [2, 22]. It
is often argued that these metrics influence maintenance and evo-
lution effort. However, the exact relationship is still largely unclear,
due to the limitation that only optional features are studied.
Features as Units of Functionality. A broader notion of features
is to see them as units of functionality, which we adopt in this paper.
Here, a feature represents a functionality (or concern) in a system,
regardless of whether it is an optional or mandatory functionality in
the case of a product line. Such features and their locations are rarely
documented, for example with feature-traceability databases [30]
or embedded feature annotations [18], wherefore recovering their
locations is costly and error-prone [37]. Even automated or semi-
automated feature-location techniques require substantial manual
effort (e.g., for calibration or for finding so-called seeds from which
they can start exploring code) and fall short in accuracy [32]. They
also often only take one information source into account (e.g., code
comments), while it is not clear which other information sources
can be used for systems rich in meta-data, such as open-source
projects hosted on GitHub, with potentially relevant information
in issue trackers, pull requests, or Wiki pages.

3 STUDY DESIGN
We conduct a case study on Marlin, a configurable 3D-printer
firmware with a rich set of information sources.

3.1 Research Questions
We formulate two research questions:
RQ1 What information sources help to locate features to what extent?

Automated feature-location techniques usually exploit infor-
mation sources, such as code or requirements documents. For
Marlin, several different information sources, for instance,
code, release logs, and pull requests, exist. We systematically



Towards a Better Understanding of Software Features VAMOS 2018, February 7–9, 2018, Madrid, Spain

analyze these sources to recover both mandatory and optional
features and to record information about each feature.

RQ2 What are differences between mandatory and optional features?
We compare core code-level characteristics of mandatory and
optional features. Specifically, we use the most commonly
used metrics to characterize features: Lines of feature code,
tangling degree, and scattering degree. We formulate hypothe-
ses, aiming to explain our findings.

Answering these research questions provides insights into the
Marlin and similar systems. Still, the results need to be comple-
mented by case studies of other systems (or other forks of Marlin)
to obtain more detailed insights into information sources, feature-
location strategies, and to create larger datasets. Such extensions
are also necessary to confirm or refute our formulated hypotheses.
Furthermore, our identified features and their locations need to be
evaluated, for instance, by performing feature-based maintenance
and evolution tasks and measuring the benefit of features and the
accuracy of their locations.

3.2 Subject System
Our subject system is Marlin, which reflects two common represen-
tations of variants: First, Marlin relies on the C preprocessor [20] to
implement variation points in its platform. Thus, optional features
are defined as preprocessor macros in the code and can be con-
figured in the files Configuration.h and Configuration_adv.h.
Marlin’s build system is based on plain Makefiles, which contain
conditionals (e.g., ifeq) to select the respective files to be built
based on a configuration. Second, Marlin exists in over 4.600 forks
by third-party developers that extend and adapt it to their own
needs [34] (a.k.a. clone-and-own [11, 29]), thus potentially intro-
ducing additional variability compared to the original fork. Our
analysis is based on the mainline of Marlin.

3.3 Methodology
Domain Analysis. To identify and locate features, it is crucial
to understand and become experts in Marlin’s domain. To this
end, we construct two 3D printers: A Delta printer—which uses
trigonometric functions to move arms up and down to position the
printing-nozzle—and a Cartesian printer—which uses Cartesian co-
ordinates and a rail for each axis to move the printing-nozzle. Here,
we learn about the hardware components and follow instructions
described in the manual. We then install the Marlin firmware onto
the printers’ motherboards and test some configurations. During
this phase, we get an understanding on the functionality of hard-
ware components and how they are connected to the firmware. In
particular, we learn which optional features that are defined as pre-
processor macros are represented by which hardware. As a result,
we also identify hardware commonalities between both printers,
which are essentials for 3D-printing. After construction, we create
a first version of a feature model with 6 optional and 13 mandatory
features based on our understanding of the hardware components.
Pilot Study onMarlin’s Ecosystem. After constructing the print-
ers and gaining first insights into the 3D-printing domain, we con-
duct a pilot study on the Marlin ecosystem. Here, we identify 18
developers that are actively extending Marlin. We study their de-
velopment behavior for new features based on pull requests and

commits. In this phase, we do not identify new features, but aim to
determine additional information sources for this purpose.
Manual Feature Location. The previous steps improve our un-
derstanding on 3D printing, Marlin, and some optional features.
Thus, domain knowledge and the release log, with corresponding
pull-requests and commits, are our initial information sources. We
then completely manually locate features by performing a system-
atic code review, relying on information sources we identify in the
pilot study. Starting with Marlin’s main file, we continue to read
comments, g-code documentation, and aim to understand the code.

We annotate the location of each feature—if it is not yet in pre-
processor directives (in the case of optional features)—by relying
on an embedded feature-annotation approach [18] and a tool to
visualize these features and their annotations [1]. The annotations
are lightweight: //&begin[<feature name>] and //&end[<feature
name>] associate the lines between these comments to a feature,
and // line&[<feature name>] annotates single lined source code
that is separated from the rest of its feature. We refine the feature
model to represent newly identified features.
Documentation. For each identified feature, we create a feature
fact sheet to document the following information:

• Name of the feature
• Feature’s name in preprocessor directives and annotations
• Description of the feature’s behavior
• Used information sources
• Applied search strategy
• Release version
• Feature characteristics (LOC, scattering, tangling)
• Pull request with commit links, numbers, names, code change

All feature fact sheets, the corresponding data, and the constructed
feature model are publicly available.1

3.4 Metrics
To describe each feature and to answer RQ2, we calculate the fol-
lowing metrics per feature, based on its annotations:

(1) Lines of Code (LOC) represents the size of a feature based on
the number of implemented code lines.

(2) Scattering Degree (SD) describes at how many different lo-
cations a feature is implemented. Here, we consider non-
consecutive lines of code belonging to the same feature as
different locations.

(3) Tangling Degree (TD) measures the number of other features
that are (partly) included within a considered feature. Thus,
we count the number of other features surrounded by our
annotations or preprocessor directives for the considered
feature.

4 RESULTS
We report our results by first describing insights from the pilot
study, and then answering and discussing the research questions.

4.1 Pilot Study
In the pilot study, we explore the Marlin Github project, together
with its community and development culture. We find that the pri-
mary means of communication are issue trackers and pull requests.
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Figure 1: Entry points used to locate features

In the issue tracker, new features, coding standards, potential solu-
tions, and improvements are discussed. Based on the raised issues,
tasks are normally self-assigned by developers. To contribute, de-
velopers are asked to fork Marlin into an own repository in which
they develop their code. When an issue is implemented, the cor-
responding developer creates a pull request for the changes. Key
developers of Marlin then review the source code to avoid bugs or
bad formats and, after acceptance, a branch in the main repository
is created to merge the changes.

We find that pull requests for new features are linked to the
release log, in which developers track development, quality im-
provements, and bug fixes for each release. Interestingly, the pull
requests are labeled and categorized by the developers, for example,
as PR:Bugfix, PR:Coding Standard, and PR:New Feature. After
analyzing the commits that belong to a pull request, we find that
names for new features are derived from the preprocessor direc-
tives, for example PRINTCOUNTER (cf. Listing 1). Thus, we identify
the release log and the corresponding pull requests and commits as
information source to identify and locate features.

We also find an additional, domain-specific information source:
G-code instructions [13]. G-code is a numerical control program-
ming language that is used for computer-aided manufacturing to
operate machine tools. The so-called g-code instructions specify
the system’s behavior to the machine controller, for example, the di-
rection and speed of movement. Such instructions are directed into
corresponding implementations to command the electrical units of
3D printers, as we illustrate in Listing 1. Because g-code instructions
and their domain functions are documented, we use them as one of
the information sources during manual feature identification.

Interestingly, the Marlin community uses the notion of optional
features and structures its communication around them. A unified
terminology seems to be in use from the source code up to the
tracking systems and release log. In contrast, we find no explicit
use of mandatory features in the release log or pull requests.We also
learn that Marlin’s main file Marlin_Main.cpp contains the main
logic of 3D-printing. It handles input commands and interprets

them into electrical functions. As a result, the file is the largest in
Marlin with over 10.000 lines of code.

4.2 RQ1: Information Sources for Entry Points
Based on the findings in our pilot study, we apply different strate-
gies involving a set of information sources to identify and locate
features. The release log documents a number of features, which
allows us to identify those pull requests and commits in which a
new feature is introduced. Each feature in the release log is linked
to a maximum of six pull requests. Given that there are around
4.000 pull requests in Marlin, this documentation turns out to be
a tremendous help. Due to the linked commits, we gain an excel-
lent entry point to locate features in code, using commit messages
and documented code changes. In total, we analyze 38 pull request
and 100 related commits, allowing us to locate 24 optional and 1
mandatory feature. Yet, the release log only contains new features
from the latest releases, while older features are not documented,
so we consider other sources as well.

For this purpose, we perform a systematic code review, starting
from the most important file Marlin_Main.cpp. It turns out that
most mandatory features in the system are, partially or completely,
located in that file. We systematically study the whole file to locate
features using our previously collected domain knowledge. From
there, we continue to analyze all other files. Note that we also
identify features in this step we were unaware of before. Altogether,
the systematic code review took 25 hours.

Besides domain knowledge and the release log, we focus on dif-
ferent source-code elements. Here, we consider # ifdef directives
that, unsurprisingly, are present for all optional features we iden-
tify, and even in one mandatory feature. Another helpful means
are g-code commands that are present in four mandatory and one
optional feature. Due to the g-code documentation and g-codes’
strong connection to hardware, it is fairly easy to understand the
behavior that is implemented in these features. Finally, we investi-
gate the remaining source code based on comments and keywords,
which helps us to identify and locate twelve mandatory and six
optional features. In total, we locate 30 optional and 13 mandatory
features in Marlin, as we show in Figure 1.

During code analysis, we find that some features, for instance
Endstop, are easy to locate with keyword searches, as all locations
contain this term. However, in other cases we need more domain
knowledge to scope the keywords. For example, we find the term
feedrate multiple times in the code and comments. Only our do-
main knowledge from building the printers helps us to connect this
term to the speed of the motor that feeds material to the extruder.
This suggests that syntax-based feature location techniques highly
rely on a good understanding of the domain.
Discussion. Due to the existing notion of features being optional,
Marlin developers do not provide much information about manda-
tory features in the version control system or the release log. Thus,
these information sources are not suitable for locating mandatory
features. Besides the actual source code and its elements, mainly
domain knowledge helps to identify mandatory features of Mar-
lin. As a result, we argue that feature-location techniques can be
improved by considering different types of documentation while
analyzing the source code. Especially comments seem interesting,
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Table 1: Means and medians of the considered metrics

Feature Type Mean Median
LOC SD TD LOC SD TD

Mandatory 305.46 15.69 11.69 262 12 5
Optional 155.37 7.97 5.1 72.5 5 1

as they are directly connected to the corresponding source code
in most cases. However, several questions arise, for example how
to ensure that the used documentation is maintained simultane-
ously to the code [15]. Other domain-specific information sources
may be helpful, such as the g-code commands in our study, but
require domain knowledge to identify them. Ultimately, we find five
complementary information sources helpful, as shown in Figure 1:

• Domain knowledge (i.e., building two printers)
• Release log (i.e., pull requests, commits)
• Code analysis (i.e., comments, dependencies)
• # ifdef
• G-code

Using these and a combination with other information sources
can facilitate identifying and locating both types of features. In
particular, we experience that domain knowledge is necessary to
identify features and find their locations.

4.3 RQ2: Mandatory vs. Optional Features
Figure 2 shows the distribution of lines of code (Figure 2a), scat-
tering degree (Figure 2b), and tangling degree (Figure 2c) among
optional and mandatory features. The curves display a smoothed
relative distribution for which the highest number of features in
a bin represents 100%. Additionally, Table 1 shows the mean and
median values for these metrics. We see that the mean of each
metric is approximately twice as high for mandatory features com-
pared to optional ones. Considering the median, this difference
increases further, for instance, the median for mandatory features
is approximately 3.6 times the size of the optional ones. This reflects
that for all three metrics, most features are represented on the left
sides of the distributions in Figure 2. For example, most features
have less than 400 lines of code, have a scattering degree below 23,
and tangling degree below 10. In each case, some outliers exist for
mandatory as well as optional features.

In Figure 3, we compare the lines of code of each feature to its
scattering (Figure 3a) and tangling (Figure 3b). Unsurprisingly, we
see that smaller code sizes are often connected to less scattering and
tangling. However, there are exceptions, for instance a mandatory
feature of 214 lines at 75 different locations: Board controls pins
on the motherboard of a printer and connects it to other hardware,
therefore the feature is distributed heavily in the code. For optional
features, it seems that a larger size results in more scattering and
tangling. In contrast, scattering of mandatory features seems inde-
pendent to their size but connected with tangling increases.

To test if the displayed relations are significant, we use Spear-
man’s Rho and Kendall’s Tau significance tests [16]. Both tests are
rank correlations and are used to test for monotonic dependencies
between two parameters. Neither of both tests requires a normal
distribution and the results range from -1 (negative correlation) to 1
(positive correlation). For each test, our null hypothesis is that there
is no correlation between the parameters. So, we try to discard
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Figure 2: Comparing mandatory and optional features. The
histograms show the stacked number of features in each bin.
The curves approximate the relative distribution for which
the binwith the highest number of features represents 100%.
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Figure 3: Relations between scattering, tangling, and lines of feature code for the located features

this hypothesis in favor of the alternative hypothesis that there is a
correlation. In Table 2, we show the results of each test.
Discussion. Our results show that optional and mandatory fea-
tures do vary in their characteristics. In addition, we find various
significant correlations among optional and mandatory features.

Considering the scattering degree, we find that:
• Size and scattering of mandatory features are not correlated.
• Size and scattering of optional features have a moderate to
strong positive correlation.

Considering these findings, we can reason about the way Marlin
evolved over time. Conceptually, we consider two possibilities: On
the one hand, mandatory features could be the dominant dimension
of decomposition [35] and define the architecture of Marlin. Thus,
optional features are later on weaved into the code wherever they
are needed. On the other hand, the changeability of the system could
be the main interest of developers. Then, we would assume that
optional features are implemented cohesive to facilitate replacing
and exchanging them (e.g., similar to components).

As the scattering of mandatory features is not correlated to
their size, we argue that they are implemented as required. For
example, Board is scattered in the code because it needs to control
hardware at different points. However, even large features with over
800 lines are rather cohesive, indicating that they are implemented
as a single unit. In contrast, optional features are more scattered

Table 2: Results of the significance tests

Correlation Feature Type Test Level P-value

Scattering
Mandatory Spearman -0.062 0.84

Kendall -0.039 0.854

Optional Spearman 0.663 6.507 × 10−5
Kendall 0.54 4.58 × 10−5

Tangling
Mandatory Spearman 0.604 0.029

Kendall 0.47 0.03

Optional Spearman 0.78 3.648 × 10−7
Kendall 0.624 6.792 × 10−6

the larger they are. This indicates that they may be integrated into
the code afterwards to implement their functionality where it is
necessary. Thus, we argue that the first approach is more reasonable
and that mandatory features align to the system’s architecture.

Considering the tangling degree, we find that:
• Size and tangling of mandatory features have a strong positive
correlation.

• Size and tangling of optional features have a moderate positive
correlation.

These correlations are not surprising: A higher number of tangled
features of one type should also increase the tangling degree of the
other type. However, there are several optional features that are not
tangled at all, meaning that they do not affect any behavior of other
features. In contrast, almost all mandatory features are tangled,
which is reasonable as they provide base functionality of Marlin
that is extended by and, thus, interacts with optional features.

4.4 Additional Remarks
We remark that for two features it is challenging to identify whether
they are mandatory or optional, mainly because we do not solely
rely on the existence of preprocessor directives, but the actual
behavior of features:

• A feature allowing printers to move in arcs is heavily encap-
sulated in preprocessor directives. But as this is a necessary
movement for all 3D printers, we classify it as mandatory.

• A feature to cancel the heat-up phase is not yet implemented,
only some empty methods exist. During our study, discus-
sions between developers on how to implement this feature
are ongoing. As we cannot extract any data for this feature,
we ignore it. Since the same funcationality can be achieved
by stopping the printing, this feature is likely optional.

In addition, we observe an interesting situation: Some optional
features are not completely wrapped in conditional-compilation
directives. In these cases, we find that the non-wrapped code does
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not affect the system’s behavior if the feature is deselected (e.g., dead
code). Still, this can potentially be a source for errors, since such
false-optional code may change the system’s behavior in certain
configurations. Further investigations of such false-optional code
and its error-proneness, for example in different variants and during
system evolution, is necessary.

5 HYPOTHESES AND PROSPECTS
Based on our results, we formulate three hypotheses that we aim
to refute or confirm in our future work.

H1 Mandatory and optional features have different code-level char-
acteristics. In Marlin, mandatory features have twice the size, scat-
tering degrees, and tangling degrees compared to optional ones.
Also, their scattering degrees do not correlate to their size, which is
the case for optional ones. Considering different implementations,
developers, and domains, we may be able to identify correlations
that help to classify features. This could improve automatic analysis,
for example for feature location and reverse engineering. We will
analyze additional systems and also include contributions of other
researchers to validate if such correlations always exist.

H2 Effort and time to locate each type of feature depends on the
used information sources. While we did not (yet) precisely measure
the necessary efforts and time for each information source, we ex-
perienced that they are relatively different for features. Assessing
the effort needed to locate and understand features with each infor-
mation source can help to reduce costs of feature location, scope
corresponding techniques, and identify suitable sources. We will
conduct controlled experiments to measure the location effort of
mandatory features based on different information sources and also
apply this methodology on systems without variability.

H3 Mandatory feature are aligned with the architecture of the sys-
tem. For Marlin, we find that the scattering degree of mandatory
features does not correlate to their size. However this correlation
exists for optional features. Also, while mandatory features are
twice as scattered as optional ones, this seems to be connected to
their actual purpose, for example controlling different hardware
adapters. We also look into the development history and optional
features are implemented later on and integrated at different points.
Considering reuse and evolution, this leads to the question how
systems are decomposed in practice: Are mandatory features the
core of the system and optional ones are weaved into them? Or are
optional features made as reusable as possible and mandatory ones
adapted to this structure? In future work we aim to investigate the
structure of additional systems, analyze their evolution, and per-
form empirical studies to verify our hypothesis. Most likely, we will
find systems for both decompositions and also their combinations.
Here, it is interesting to identify the reasons why systems evolve
in a specific way.

6 THREATS TO VALIDITY
The main threat to the internal validity is that we, and not the
original developers, identify the features and their locations. As a
result, feature locations and metrics may be biased. However, we
mitigate this threat with two authors becoming domain experts by
assembling two different kinds of 3D printers (i.e., Delta, Cartesian),

which differ in their mechanics and algorithms. We also perform a
pilot study in which the authors extensively read documentation
(e.g., about g-code commands), and meta-data (e.g., issue tracker)
available in the Marlin Github repository. The source code is also
analyzed in pairs, which includes cross-checking of the code un-
derstanding and of the locations. We plan to validate the data set
with original Marlin developers. Furthermore, for our statistical
tests, large sample sizes for mandatory feature are necessary to
strengthen the significance tests.

A threat to the external validity is that we only consider one sys-
tem, which may differ from others. Yet, Marlin is a substantial case,
and as an embedded system, it shares characteristics with many
other embedded systems. In fact, preprocessors are used similarly
in almost all open-source and industrial C/C++ systems [17].

7 RELATEDWORK
Feature-Location Datasets. We are aware of few data-sets on fea-
ture location: Olszak and Jorgensen [26] develop a tool for feature
location, which they apply onmultiple systems for which the source
code and data is partly available. Ji et al. [18] annotate feature loca-
tions in the source code of the freely available Clafer Web Tools.
The authors provide a set of four system with annotated feature
locations in the source code. Martinez et al. [24] maintain an online
catalog of case studies connected to extractive SPLE. This includes
five academic and open-source systems on which reproducible
feature-location studies with available source code are performed.
Such data sets complement ours and we can use them to extend
our work and test our hypotheses with independently derived data.
Experiments on Manual Feature Location. Wang et al. [36, 37]
report three exploratory experiments conducted on four Java open-
source systems. Their goal is to understand how developers perform
feature location tasks to identify distinct phases, patterns, and ele-
mentary actions. For evaluating the effectiveness of patterns and
actions, the authors rely on junior developers. Similarly, Damevski
et al. [9] perform a field study on developer behavior when per-
forming feature location tasks. They report the frequency and type
of code search tools used, queries, retrieval strategies employed, as
well as patterns of developer behavior during feature location.

While these works involve manual feature location, they do not
explicitly distinguish between optional and mandatory features.
Furthermore, they do not include an investigation of information
sources for mandatory features. Both studies focus on feature loca-
tion in GUI-based systems and observe participants’ interactions
with the GUI, but do not consider preprocessor-based code.
Case Studies. Wilde et al. [38] report experiences of a feature loca-
tion case study on unstructured FORTRAN code. The authors use
two semi-automatic techniques and compare them to manual fea-
ture location. Their study reveals that both techniques are effective
in locating features but require considerable adaptation.

Jordan et al. [19] conduct an industrial in-vivo observation on
two experienced software engineers modernizing a COBOL system.
They aim to understand manual location searches and identify help-
ful tools. Their results suggest that domain knowledge improves
effectiveness and that search tools do not yield relevant results.

Ji et al. [18] conduct a simulation study using a clone-based
product line on which they apply an embedded feature annota-
tion approach. They locate features based on the following sources:
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Project wikis, commit messages, commit diffs, code, issue trackers,
and the original developers. Still, their focus is to show the ben-
efits of embedding feature traceability rather than investigating
information sources or feature characteristics.

Krüger et al. [21] identify and manually map features in five
cloned systems. As information source, they use code-clone detec-
tion to identify initial seeds from which they extend their search.
The authors’ focus is to locate features and compare their results
to a fully automated refactoring.

While all these works are related to ours, the goal of our study
is complementary. Mainly, we investigate other research questions,
comparing optional and mandatory features, than most works, or
consider other information sources, for example compared to Ji et al.
[18]. Furthermore, our subject system differs in its development
approach and we do not use any feature location technique.

8 CONCLUSION
We presented an initial exploratory study of manual feature location
in Marlin. We explored and described information sources that were
useful to locate Marlin’s features, and compared the characteristics
of optional and mandatory features. We contribute a data set of
feature locations, usable by other researchers to evaluate feature-
location techniques or study feature characteristics.

Among others, locating features in code required substantial do-
main knowledge for half of the mandatory features (e.g., to connect
keywords). We also found substantial differences in the code-level
characteristics of mandatory and optional features, with regard to
size, scattering degree, and tangling degree. For instance, mandatory
features are less scattered, which we attribute to a better alignment
of mandatory features to the system’s architecture. We formulated
these findings as hypotheses, which need to be confirmed or refuted
by studying other Marlin forks or systems.
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