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A Study of Feature Scattering in the Linux Kernel
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Krzysztof Czarnecki, and Jesus Alejandro Padilla

Abstract—Feature code is often scattered across a software system. Scattering is not necessarily bad if used with care, as witnessed by
systems with highly scattered features that evolved successfully. Feature scattering, often realized with a pre-processor, circumvents
limitations of programming languages and software architectures. Unfortunately, little is known about the principles governing scattering in
large and long-living software systems. We present a longitudinal study of feature scattering in the Linux kernel, complemented by a
survey with 74, and interviews with nine Linux kernel developers. We analyzed almost eight years of the kernel’s history, focusing on its
largest subsystem: device drivers. We learned that the ratio of scattered features remained nearly constant and that most features were
introduced without scattering. Yet, scattering easily crosses subsystem boundaries, and highly scattered outliers exist. Scattering often
addresses a performance-maintenance tradeoff (alleviating complicated APIs), hardware design limitations, and avoids code duplication.
While developers do not consciously enforce scattering limits, they actually improve the system design and refactor code, thereby
mitigating pre-processor idiosyncrasies or reducing its use.
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1 INTRODUCTION

S CATTERING of feature code is commonly perceived as an unde-
sirable situation [1–4]. Scattered features are not implemented

in a modular way, but are spread over the code base, possibly
across subsystems. The tangling of scattered features with different
implementation parts can lead to ripple effects and require frequent
developer synchronization, which challenges parallel development.
Scattered features may significantly increase system maintenance
efforts [5, 6]. Yet, feature scattering is common in practice [7–9].

Feature scattering allows developers to overcome design limi-
tations when extending a system in unforeseen ways [5] or when
circumventing modularity limitations of programming languages,
which impose a dominant decomposition [10–12]. Figure 1 illus-
trates the scattering of a feature CONFIG_A which has three ifdef
references, as opposed to the non-scattered feature CONFIG_C,
which has only one such reference (cf. Section 2.3). In other cases,
the cost of modularizing features might be initially prohibitive
or simply too difficult to be handled in practice [13]. In contrast,
feature scattering requires little upfront investment [6], although
maintenance costs may rise as the system evolves. Many long-lived
and large-scale software systems have shown that it is possible to
achieve continuous evolution while accepting some extent of feature
scattering. Examples span different domains, such as operating
systems, databases, and text editors [7, 9, 14].

Surprisingly, there are no empirical studies investigating feature
scattering in large and long-lived software systems. Such studies
are key in creating a widely accepted set of practices to govern
feature scattering and may eventually contribute to a general
scattering theory, which could serve as a guide to practitioners—for
instance, in identifying implementation decay [15], assessing the
maintainability of a system [16], identifying scattering patterns [17]
or setting practical scattering thresholds [9].

To contribute to a deeper understanding of feature scattering
and its evolution, we present a case study of one of the largest
and longest-living software systems in existence today: the Linux
kernel. Its features are manifested as compile-time configuration
options that users select when deriving customized kernel images.
Our analysis covers evolution, practices, and circumstances leading
to feature scattering.

The Linux kernel is the operating system kernel upon which

free and open-source software operating system distributions,
such as Ubuntu, OpenSUSE, Fedora and Android, are built. Its
deployment goes beyond traditional computer systems, such as
personal computers and servers, to embedded devices, such as
routers, wireless access points, and smart TVs, as well as to mobile
devices. Introduced in 1991, the Linux kernel boasts over ten
million source lines of code (mostly written in C), and 12,000
contributors from more than 200 companies. Contributors work
on one or more kernel subsystems, for instance, the device driver
sub-system (hereafter referred to as the driver subsystem) and the
file system (hereafter referred to as the fs subsystem). There are two
categories of contributors: developers and maintainers. Maintainers
are a more restricted group than developers and concentrate more on
kernel structure and quality standards of patches contributed to the
kernel. They review, modify, and authorize patches, before they are
merged into the mainline repository managed by Linus Torvalds.

A feature can be scattered within a subsystem (a.k.a. local
scattering), or across subsystems (a.k.a. global scattering). Due to
the sheer size of the kernel, we scoped our longitudinal analysis
of the source code to features of the driver subsystem, which we
identified as the largest and fastest growing kernel subsystem (see
Sec. 3). We analyzed the scattering of driver features within and
across the device-driver subsystem and followed-up with developers
and maintainers through a survey and interviews, to understand
their practices, circumstances, and perceptions of feature scattering.
The survey and interviews, however, were not exclusive to the

#ifdef CONFIG_A
void function1(){
/* code here */

}

#endif
/* … */

#ifdef CONFIG_A || CONFIG_B
void function2(){
/* code here */

}

#endif

#ifdef CONFIG_A
void function3(){
/* code here */

}

#endif

#ifdef CONFIG_C
void function1(){

/* code here */
}

void function2(){
/* code here */

} 
void function3(){
/* code here */

}

#endif

(a) Scattered feature (b) Non-scattered feature

Fig. 1: An example of a scattered and a non-scattered feature
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driver subsystem.
Research Questions. We formulated three research questions to
empirically investigate the impact of feature scattering on the
maintenance of a large and long-lived software system—the Linux
kernel: the first question targeted analysis of the kernel’s code
to investigate trends of feature scattering (how feature scattering
evolves with the evolution of the kernel), and the last two questions,
as a follow-up to the first, targeted developers of the Linux kernel
to investigate their perception of feature scattering and its impact
on maintenance effort of the kernel, and how they cope with it.

RQ1: How does feature scattering evolve? We conducted a
longitudinal1 analysis of feature scattering in the code base
comprising almost eight years of the kernel’s 26 years of evolution.
In these eight years (from version 2.6.12 to 3.9), the kernel growth
has been steady, from 4,752 to 13,165 features, many of which
are scattered [14] (note that our analysis began with kernel version
2.6.12 when the Linux development community switched from
using a proprietary version control system called Bitkeeper, to Git).
To understand this evolution, we formulated three sub research
questions:

RQ1.1: How does the growth of scattered features differ
from non-scattered features? We analyzed the relative and
absolute growths of scattered and non-scattered driver
features—for instance, to understand whether the proportion
of scattered features is increasing, decreasing or stable.

RQ1.2: How does the growth of locally scattered features
differ from globally scattered features? We analyzed the
relative and absolute growths of driver features that are
scattered (i) within the driver subsystem only (local scat-
tering) and (ii) across, at least, another subsystem (global
scattering). We aimed at understanding how scattering is
related to the kernel’s architecture.

RQ1.3: How does the extent of feature code scattering
evolve over time? We analyzed the extent (degree) of the
scattering of feature code, aiming at understanding the
underlying distribution and possible thresholds, as well as
how this degree relates to local and global scattering.

The results of RQ1 formed the basis for formulating two further
research questions, RQ2 and RQ3, complementing our analysis by
a survey with 74 kernel developers (62 of whom contributed to the
driver subsystem; 17 were subsystem maintainers—13 of whom
worked on the driver system), as well as interviews with 9 kernel
developers, aiming at understanding phenomena observed in our
longitudinal study.

RQ2: What are the circumstances of feature scattering? We
investigated both possible causes and circumstances leading to
feature scattering by analyzing the survey and interview data.
We also identified and asked the interviewees about examples of
scattered code that they developed and that we identified as such
in the kernel’s codebase. Furthermore, we studied whether certain
kinds of features are more likely to be scattered.

RQ3: What are practices for coping with feature scattering?
We analyzed the survey respondents’ and interviewees’ reported
practices for coping with feature scattering and whether developers
consciously maintain a scattering threshold for the number of
scattered features or for the features’ scattering degrees.

1Longitudinal refers to an observational research method in which data
(about feature scattering in our case) is repeatedly gathered for the same subjects
(the Linux Kernel in our case) over a long time period (eight years in our case).

Results. With respect to RQ1, we found that the majority of driver
features can actually be introduced without causing scattering
and that the number of scattered features remains proportionally
nearly constant throughout the kernel’s evolution. We also found
that scattering is not limited to subsystem boundaries and that
the implementation of the majority of scattered driver features is
scattered across a moderate number of four to eight locations in
the code. With respect to RQ2, we found that developers introduce
scattering in the Linux kernel, among other reasons, to avoid
code duplication and to support hardware variability, backwards
compatibility, and code optimization. We also learned that the
features that are most prone to scattering are those relating to
platform devices—devices that cannot be discovered by the CPU
as opposed to hotplugging ones. With respect to RQ3, we found
that developers try to avoid feature scattering mostly by alleviating
the problems of pre-processor use and refactoring existing code to,
for instance, improve system architecture, but the majority do not
consciously maintain a scattering threshold.
Contributions. In summary, our contributions comprise:
• A dataset covering almost eight years of the evolution of

feature code scattering extracted from the Linux kernel repo-
sitory (from version 2.6.12 to 3.9). It serves as a replication
package, as a benchmark for tools, and for further analyses.

• Empirical data from a survey and interviews aimed at
understanding the state of practice of feature scattering in
the Linux kernel.

• An online appendix [18] with further details on our dataset,
scripts to analyze the data, and additional statistics.

An earlier version of this work appeared as a conference
paper [19]. Its focus was on analysis of the source code to
understand feature scattering trends during eight years of the Linux
kernel’s evolution. In this article, we broaden the scope of our
study to include developer perspectives on feature scattering in the
Linux kernel. In particular, we added an analysis and discussion of
circumstances that lead to feature scattering from the perspective
of developers, including how developers try to limit or avoid it, and
what kinds of features are usually scattered.

On a final note, even though our study relies on only one subject
system, its size and number of contributors, and subsystems of
very different nature (with the driver subsystem being the largest
and most diverse one) enhance the study’s external validity. Furt-
hermore, we triangulate2[20] data obtained from the longitudinal
study of the code base with survey and interview data obtained
from real kernel developers.

2 BACKGROUND

We now discuss how the kernel represents its features and how they
evolve. We also introduce relevant terminology and definitions.

2.1 Feature Representation
Features in the Linux kernel are explicitly declared in the kernel’s
variability model written in the Kconfig language [21–24]. Features
are referenced in build rules of Linux’s Makefiles and in C pre-
processor directives, controlling the compilation of entire source
files or fragments therein, respectively. Henceforth, we refer to
such fragments as extensions. The kernel’s code base comprises

2Triangulation is a technique for validating data through cross verification
from two or more sources; it is a common way to enhance research results for a
study of a phenomena involving same subjects.
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menuconfig ACPI
  bool "Advanced Configuration and Power Interface) 
         Support"
  depends on PM

if ACPI
config ACPI_BATTERY
  tristate "Battery"
...

endif

(3.9: drivers/acpi/Kconfig)

if ACPI is present
   run acpi/Makefile
...

(3.9: drivers/Makefile)

compile bus.c
compile glue.c
...
if ACPI_BATTERY is present
   compile battery.c

...
void __init
init_IRQ (void)
{
#ifdef CONFIG_ACPI
        acpi_boot_init();
#endif
        ia64_register_ipi();
        register_percpu_irq(...);
...
}

(3.9: arch/ia64/kernel/irq_ia64.c

(Variability Model) (Build Files) (Source File)

(v3.9: drivers/acpi/Makefile)
1

1

Variability model rendering

3 Triggering of build rules

4 Pre-processing

5 Compilation of post-processed
files

2 Feature selection

ACPI

Battery

Fig. 2: Binding of different artifacts based on selected features

mostly C implementation and header files (43 % C implementation
files, 39 % C header files, 4 % assembly, and 14 % other).

To illustrate how the variability model, Makefiles, and C
files bind together, consider the Advanced Configuration and
Power Interface (ACPI) driver. ACPI is an industry standard to
manage power consumption of hardware devices [25]. Figure 2
illustrates the steps involved in configuring the ACPI feature,
with excerpts of each artifact type (variability model, build file,
source file). First, an interactive configurator renders the Linux
kernel variability model (step 1). From the rendered model, users
select features of interest (step 2). Once the user is done with
selecting features, the build process triggers build rules (illustrated
as gray boxes) that conditionally compile specific source files
matching the feature selection (step 3). In our example, when
feature ACPI is selected, the build process enters the acpi
directory and executes its Makefile, which triggers the compilation
of bus.c and glue.c. Note that compiling battery.c further
requires selecting ACPI_BATTERY. Prior to a file’s compilation,
the build process invokes the C pre-processor (step 4) to resolve all
macro references and conditional pre-processor directives —#if,
#ifdef, #ifndef, #elif (henceforth, generically called ifdefs).
In our example, if a user builds the kernel for the IA64 CPU,
selecting ACPI3 causes the C pre-processor to include a call to
acpi_boot_init (shown in gray) inside the implementation of
init_IRQ in irq_ia64.c. After pre-processing, the source files
are compiled into object code (step 5) and eventually linked into
the kernel binary image or a loadable kernel module (LKM).

LKMs are dynamically loaded at runtime—either upon user
request, as a dependency of another LKM, or when the operating
system identifies a hotplugged device, for which it must load the
supporting device-driver module (if any). Only driver features
having the feature type “tristate” in the variability model (e.g.,
ACPI_BATTERY), can become an LKM. Three possible values can
be selected for a tristate feature: y (compile into kernel image),
m (compile as LKM), or n (absent). Features that do not result in
LKMs are either Boolean (e.g., ACPI), with values y (present) or
n (absent), or value-type features, such as integer, string, and hex
(not shown in the example).

The Linux kernel is a highly configurable software system [14,
26–28], so users can derive customized variants (kernel images)
by selecting particular features of interest. The variability of the
kernel is either resolved at build-time, by pre-processing ifdefs and

3Feature macros are prefixed with CONFIG_ in the kernel.

static linking, or at runtime (e.g., when loading/unloading LKMs).4

2.2 Kernel Evolution
The Linux kernel evolves continuously. Figure 3 summarizes its
growth in terms of source lines of code (SLOC) and number of
features. As Fig. 3a shows, the code base has increased by 159%
since the first release recorded in the kernel’s git repository (v2.6.12,
June 2005), with a growth of 2.6 ± 1.5% between two consecutive
main releases.5 The kernel’s feature set, shown in Fig. 3b, displays
a similar trend, and strongly correlates with SLOC growth (Pearson
product-moment correlation r = 0.996). Since release v2.6.12, it
has increased by 177%, growing by 2.8 ± 1.4% between main
releases. The latest kernel release in our analysis (v3.9, April 2013)
contains over 13,000 features implemented in more than 33,000 C
files, which amount to over 10 million SLOC. These C files contain
over 34,000 ifdefs that explicitly refer to at least one feature in the
variability model.

2.3 Feature Scattering
We consider a feature scattered when it is not implemented in a
modularized way, but rather distributed over multiple extensions
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Fig. 3: Kernel growth evolution

4Other kinds of runtime variability also exist, such as changing the attributes
of a device driver through the sysfs virtual filesystem [29, 30].

5The short-hand 2.6 ± 1.5% denotes an arithmetic mean of 2.6% with
standard deviation of 1.5%. In the remainder, the mean (or average) should
always be understood as the arithmetic mean.
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Fig. 4: Feature distribution per subsystem

in the code base (cf. Sec. 3.3.2). We trace these extensions by
identifying ifdefs that refer to the corresponding feature. Thus, our
measurement of scattering is based on the declaration of features in
the variability model and their syntactic reference in code—both as
defined by the original developers. This notion of feature scattering
captures the number of places that a developer may consider upon
changing a feature of interest [9].

3 METHODOLOGY

Our research method comprises a longitudinal source-code study
complemented by a survey and interviews of kernel developers.
This section provides details about our methods for collecting and
analyzing the evolutionary data of feature code scattering and for
conducting the survey and interviews.

3.1 Scoping
Our longitudinal analysis of the source code concentrated on driver
features, which are defined in the driver subsystem of the Linux
kernel. Beside practicality, this decision rests on existing work
stating that the Linux kernel evolution is mainly driven by the
evolution of its device drivers [14, 27, 31–33], and on our own
analyses (which we explain shortly). Setting the scope to features
in the driver subsystem required us to distinguish them from
features of other subsystems.

3.2 Identifying Driver Features
According to Corbet et al. [34] the kernel has seven major
subsystems: arch (architecture-dependent code), core (scheduler,
IPC, memory management, etc.), driver (device drivers), firm-
ware (firmware required by some devices), fs (file system),
net (networking), and misc (miscellaneous). To distinguish driver
features from features of other subsystems, we sliced the kernel’s
codebase according to a mapping between files and Corbet et al.’s
subsystems6 created by Greg Kroah-Hartman, a kernel maintainer.7

After identifying each file’s subsystem, we considered the subsy-
stem of a feature’s declaring Kconfig file as the feature’s subsystem.
Some driver features, although very few (0.65 ± 0.46%), are also
declared in other subsystems (e.g., core). As we cannot disambi-
guate with certainty, we excluded these features from our analysis.

Once we identified the unique features in each subsystem, we
were able to confirm that the kernel is actually driven by the
evolution of driver features. As Fig. 4 shows, the driver subsystem
is not only the largest, but also the fastest growing.

6https://raw.github.com/gregkh/kernel-history/master/scripts/genstat.pl
7http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/

MAINTAINERS

2. Checkout 
each main
release

(Release snapshot)(Cloned kernel git repository) (main releases)

3. Clean files1. Collect main 
releases

v2.6.12
v2.6.13

...
v3.9

(Cleaned snapshot)

4. Collect
feature refs

5. Collect
scattering info

(Extracted DB)

Fig. 5: Data extraction for the longitudinal source-code study

3.3 Longitudinal Source-Code Study
We now describe how we collected and analyzed data from the
source code and its history for answering RQ1.

3.3.1 Data Collection
We followed the process shown in Fig. 5. First, we queried the
kernel’s source management system (git) to list all release tags.
From the listing, we filtered the main stable-release identifiers
(step 1).8 We then checked each main release out (step 2), from
which we listed all C implementation and header files and cleaned
them by removing empty lines and comments, and by transforming
multilines9 into single ones (step 3). We also eliminated white
space between in the source code as a means to facilitate pattern
matching when mining references to a feature (through its ifdef
variable) across the code (step 4). Finally, we collected metadata of
each identified feature reference (step 5), including the name of the
file in which a feature is referenced, the line in which the reference
occurs, and the associated ifdef pre-processor directive. Note that
we did not consider arbitrary preprocessor macros, but only those
defined in the kernel’s variability model (Kconfig files). All feature
references and their associated metadata were then stored in a
relational database. For any given feature reference, there exists
an associated file record in the database, which in turn links to a
kernel subsystem in a given main release.

Further details on the data, the database schema, the dataset,
and associated scripts, can be found in our online appendix [18].

3.3.2 Analysis
To answer RQ1’s three sub-questions, we issued SQL queries
through the R statistical environment, which we connected to our
database. We plotted the results and calculated different statistics.
In particular, we measured the scattering degree (SD) of a feature ft
in terms of its scattering degree at each implementation and header
C file f in a set of target subsystems S:

SD(ft, S) =
∑
s∈S

∑
f∈s

SDF(ft, f), (1)

where SDF(ft, f) is the number of ifdefs (#if, #ifdef, #ifndef,
#elif) in f referring to ft. This is an alternative, yet equivalent,
definition to how other researchers measure scattering [9]. Note
that sub systems are disjoint, hence no files are shared among them.

The SD metric falls under the umbrella of absolute metrics,
which count the number of source-code entities relating to a

8Unstable releases are suffixed with -rc (e.g., v2.6.32-rc1). We do not
include updates to stable (main) releases (e.g., v2.6.32.1) in our set of releases.

9Multilines end with the ’\’ character. They spread many physical lines, but
are interpreted as a single line by the C compiler.

https://raw.github.com/gregkh/kernel-history/master/scripts/genstat.pl
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/MAINTAINERS
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/MAINTAINERS
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given feature. In contrast, relative metrics assess feature scattering
relative to the code size of extensions [35]. Existing research [36]
comparing absolute metrics with relative ones shows that the
former correlate better with properties of interest (e.g., bugs),
which justifies our choice for the SD metric.

A feature is scattered when its SD value is at least 2. A single
extension (SD = 1) does not qualify a feature to be scattered, as it
has no spread in the source code. In our previous example (Fig. 2),
ACPI is a scattered feature; in addition to the reference in the ifdef
inside init_IRQ, it also has 110 corresponding ifdefs elsewhere.

3.4 Developer Survey and Interviews
Answering RQ2 (circumstances of scattering) and RQ3 (practices
to cope with scattering), we relied on a survey and semi-structured
interviews with developers of the Linux kernel. We designed a
survey questionnaire to cover several aspects of the developers’
experience with scattered features. In particular, our focus was
on their perception of the challenges and strategies they used in
the face of scattered code. After analyzing the survey results, we
performed follow-up interviews with selected survey respondents,
investigating RQ2 and RQ3 in more detail, especially by discussing
concrete Linux code examples that the interviewees actually
contributed to the kernel.

Some Linux developers were not familiar with some concepts
and vocabularies commonly used in academia. To ensure that
participants knew what scattering is, we provided a brief description
on the cover page of the questionnaire and explained it to our
interviewees. Additionally, we consistently used the Linux kernel’s
term config option when referring to feature.

3.4.1 Developer Survey
We designed the questionnaire to take no more than seven minutes
to be completed. All questions were optional and mostly closed-
ended. In specific cases, the participant was asked to provide
additional options or to elaborate. Table 1 presents an overview
of the structure of the survey with a sample of the questions. The
online appendix [18] contains the full questionnaire, which was
constructed and distributed using the online tool SurveyGizmo.

All participants were open-source developers with varied
technical and industrial experience. There were no exclusion
criteria. We obtained the list of potential survey respondents from
the kernel’s source code repository, querying git to get the author
information of all commits. There was no compensation offered
to the participants for their involvement other than the benefit
of improved understanding of how feature scattering impacts
maintenance tasks and better understanding of how to improve
current practices.

3.4.2 Survey Respondents
From a total of 12,248 unique contributors we identified, we
selected a random sample of 2000 potential respondents and sent a
targeted e-mail inviting them to our survey. A total of 1,966 invites
were delivered via SurveyGizmo, while 34 failed (likely due to
invalid e-mail addresses). According to the Software Engineering
Institute’s guidelines for designing an effective survey in Software
Engineering [37], when the population is a manageable size and can
be enumerated, simple random sampling is the most straightforward
approach to avoid selection bias. This is the case for our study with
a population of 12,248 Linux kernel contributors.

From the 1,966 e-mails sent, we received 112 responses (5.7%
response rate). We disqualified 38 without actual responses (those

TABLE 1: Structure of the survey and interviews

section # question examples

su
rv

ey

respondent
background

2. What is your role in working with the kernel?

kernel
development

4. Which kernel subsystems do you work on?

6. Which of the following methods do you use to
create a new device driver?

perceptions on
scattering

9. Working with highly scattered code is challenging.1

10. Does highly scattered code impact the following
software-development aspects?

reasons for
scattering

12. Why do you introduce or maintain scattered code?
Add more reasons in the three textfields if you
want.

coping with
scattering

15. Do you try to limit scattering? If so, how?

17. To what extent do you agree with the following
strategies to avoid scattering?1

other development
activities

19. Are you also working as a professional developer in
a company?

in
te

rv
ie

w

reasons for
scattering

Q1.5. We want to talk about this specific commit
[see Listing 1] you authored. Considering it, what is
the reason for adding scattering?

factors influencing
scattering

Q2.3. In general, what scenarios make config options
prone to scattering?

refactoring In the previous survey, many contributors (73%)
revealed they try to limit scattering by refactoring.

Q3.1. When do you refactor a scattered config option? Is
there a tipping point?

1 5-point Likert-scale question eliciting agreement with the statement

without responses to any of the survey questions of interest to the
study despite responding to basic ethnographic questions, such
as role of the respondent and work place), leading to 74 valid
responses that we considered. 62 of these were from contributors
of the driver subsystem. For aspects of feature scattering that were
specific to the driver subsystem, we considered the 62 responses
only, however, for more general aspects, all the responses were
considered. Since all questions were optional, certain aspects
discussed in this study are limited to a subset of the respondents.
In the remainder, we code respondents’ quotes using S1, S2, etc.
for anonymity reasons.

3.4.3 Interviews
We invited 26 survey respondents, who had agreed to be contacted,
to participate in structured interviews, of which 9 agreed to be
interviewed. We queried the Linux kernel commit history to find
concrete code examples of scattering introduced by each participant.
The goal was to use real examples authored by the participants
to contextualize the questions regarding the reasons for scattering.
For instance, Listing 1 states cases of scattering introduced by
a commit that interviewee I1 authored; we used this during the
interview with I1 to find out why this was the case. The interview
guide, including how we personalized it for each interviewee, is
available in our online appendix [18]. Table 1 presents an overview
of the structure of the interview guide with a sample of questions.

We conducted two interviews via Skype and seven by e-mail.
In fact, we observed in a previous study [38] that Linux developers
strongly prefer e-mail communication. The Skype interviews were
recorded and transcribed. We combined all related answers from
the transcripts and the e-mails, and then interpreted and compared
them to the individual questions we asked (see Table 1). In the
remainder, we code interviewees as I1, I2, etc. for anonymity.

4 RESULTS

In this section, we present our results on the evolution of scattering
(RQ1), the possible circumstances that lead to the observed
scattering (RQ2), and the practices for coping with it (RQ3).
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4.1 Scattering Evolution (RQ1)
To answer RQ1 (How does feature scattering evolve?), we analyzed
how scattered features evolve compared to non-scattered features,
the differences between scattering locality (locally versus globally
scattered), and how the scattering degree evolves. In the survey,
80% of participants perceived scattering as challenging. We discuss
here how this perception is reflected in the kernel’s evolution based
on our analysis of the code.

4.1.1 Scattered versus Non-Scattered Features

To understand how the growth (increase in the number) of
scattered features differs from non-scattered features, we plotted the
proportion of scattered driver features in each kernel release, along
with their absolute number. In both cases, we compared the growth
rate of scattered driver features with the evolution of non-scattered
features. Figure 6 displays both plots, with summary statistics
provided in the appendix (Tables 1 and 2). When calculating the
scattering degree (Eq. 1) to identify scattered features, we took S
as the union of all kernel subsystems.

On average, 18 ± 1.2% of driver features are scattered in
any given release, with a maximum of 21% and a minimum
of 16%. The average proportion is stable over time, although
a decreasing trend starts from release v2.6.22 and ends v2.6.26.
In absolute terms, the number of scattered driver features grows
by 2.5 ± 2.4% between each pair of consecutive main releases.
Since the first release under analysis (v2.6.12), the number of
scattered driver features has grown by 142%, as given by the Diff
statistic.10 Release v3.9 has over 1,000 scattered driver features.
The latter number, however, grows almost six times slower when
compared to non-scattered driver features, as given by the ratio of
their regression line slope coefficients: 20 for scattered features
and 114 for non-scattered features (see appendix Tables 1 and 2).
Moreover, the absolute growth of scattered driver features is not
monotonic, with three small periods of decrease: v2.6.13–v2.6.14,
v2.6.26–v2.6.27, and v3.5–v3.6.

Our data indicate that the kernel architecture allows most driver
features to be incorporated without causing any scattering. Some
driver features, however, do not fit well into this architectural model
and are scattered across the source code. Moreover, the proportion

Listing 1: Commit by I1 that introduces scattering
I1:

Commit: 47118af076f64844b4f423bc2f545b2da9dab50d
Dec 29, 2011
"mm: mmzone: MIGRATE_CMA migration type added"

In the files:
include/linux/mmzone.h
Lines 44, and 64

mm/page_alloc.c
Lines 753, and 899

mm/vmstat.c
Line 616

introduced 5 new #ifdefs
with the configuration option CONFIG_CMA

More details on:
https://github.com/torvalds/linux/commit/
47118af076f64844b4f423bc2f545b2da9dab50d

10The percentage difference (Diff ) of two non-percentage values x2 and x1

is 100× (x2 − x1)/x1. If x2 and x1 are percentages, the Diff value is simply
x2 − x1. When calculating Diff for a given metric (e.g., number of scattered
driver features), we take x2 to be the metric value at the last inspected kernel
release (v3.9), whereas x1 is the metric value for the first release (v2.6.12).

of scattered driver features is nearly constant, which may indicate
that it is an evolution parameter actively controlled throughout the
kernel evolution. Section 4.3, will discuss in more detail what the
possible circumstances of such scattering are.

4.1.2 Local versus Global Scattering
Next, we investigated to what extent the scattering of driver features
was local and to what extent global. Recall, a globally scattered
driver feature has at least one associated ifdef in an implementation
or header C file that is not in the driver subsystem. In the case
of a locally scattered driver feature, referring ifdefs occur only
in the driver subsystem. Ideally, most scattering should be local,
contributing to internal cohesion and decreasing coupling (local
scattering is better for maintenance since it does not require cross-
subsystem coordination when maintaining a feature).

The growth of locally scattered driver features varies along
the Linux kernel evolution. Nonetheless, it dominates the growth
of globally scattered driver features, both proportionally and in
absolute numbers. Figure 7 shows the corresponding plots, with
summary statistics provided in the appendix (Tables 3 and 4).

In release v2.6.12, the proportion of locally scattered driver
features is 70%—the highest across all releases. Immediately
after, the proportion follows a steady decrease, which stabilizes
around 57% from v2.6.38 onwards. In the latest release (v3.9), the
percentage of locally scattered features is 56.8% (648 absolute).
The stabilization of local scattering causes a stabilization of
globally scattered driver features at 43%. The latter, however,
was preceded by an increasing trend. In absolute terms, the number
of globally scattered driver features grows at a faster rate than
locally scattered ones, as given by their corresponding slope
coefficients. Consequently, their relative difference decreases over
time, resulting in the funnel shape of Fig. 7a.

The relative and absolute dominance of local scattering con-
tributes to internal cohesion within the driver subsystem. We
conjecture that it eases maintenance, as local scattering requires less
synchronization across subsystems. Nonetheless, it is interesting
to see that the gap between the proportions of locally and globally
scattered features has consistently decreased, with a growing
proportion of globally scattered driver features. In other words,
there is an increasing dependency from other subsystems to driver
features. Although the latter may indicate an evolution decay, it
does not seem to hinder the Linux kernel growth. As we showed in
Section 2.2, the kernel has grown at a similar pace between each
pair of consecutive releases. Thus, we interpret the stabilization
of the proportion of globally scattered driver features as an effort
to control its preceding growth trend. 43% seems a current upper
limit kept by Linux kernel developers. Indeed, as we learned from
our interviewees, kernel developers do make efforts to limit global
scattering by making drivers as self-contained as possible, except
in corner cases which they handle by introducing scattering for
reasons that we discuss in Section 4.3.1.

4.1.3 Scattering Degrees

To understand how the extent of feature code scattering evolves
over time, we plotted the scattering degrees (SD) of all scattered
driver features at each kernel release. When measuring SD (see
Eq. 1), we took the target set of subsystems (S) as the union of
all subsystems in the kernel. The boxplot in Figure 8, which is
adjusted for skewness [39], shows that 50% of all scattered driver
features have a low scattering degree, with SD ≤ 4 across all main
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Fig. 6: Growth of the number of scattered and non-scattered features

releases. However, for the second half of the scattered features, the
scattering degree considerably increases. In the third quartile (up
to 75% of the scattered features in the boxplot distribution), SD
values practically double, lying between seven and eight. In the
remaining 25%, the highest SD values that are not outliers range
from 34 to 55, as indicated by the top whiskers. In this range, the
average SD value is 44 ± 5.3. Above the top whiskers, outliers
(shown as dots) have high SD values, with a minimum of 35 and a
maximum of 377 (median of 63). As the kernel evolves, outliers
have grown in absolute and relative numbers. Figure 9 shows the
respective graphs (summary statistics are in the appendix Table 5).
In absolute numbers, outliers show a 500% increase, with as little
as 7 features in release v2.6.12 and 42 in v3.9. Relatively, however,
the Diff between the first and last release is only 2.2%.

The analysis of the SD values of scattered driver features
indicates a skewed distribution. In the kernel’s evolution, 75% of
SD values are small (4) to medium (8). A dispersion, however,
occurs in the remaining 25% (values 34–377), pushing the
distribution tail to the right. Consequently, the distribution is skewed
to the right, increasing the difference between a typical SD value
(4) and the mean (8). In such settings, the mean is not a robust
statistic. Instead, practical scattering limits should be relative (e.g.,
75% of the features should have SD ≤ 8), rather than a single
value to which all features should adhere.

To ascertain the observed skewness, while summarizing how
unevenly SD values are distributed among scattered driver features,
we calculated the Gini coefficient [40] for each kernel release.
The Gini coefficient is a popular summary statistic in economics,
measuring the inequality of wealth (SD, in our case) among the
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Fig. 7: Growth of the number of locally and globally scattered
driver features
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Fig. 8: SD values of scattered driver features

individuals (features, in our case) of a population. Its value is in
the range of zero and one; zero means a perfect equality, where
all individuals have the same wealth. A high value, in contrast,
denotes an uneven distribution.

Figure 10 shows the evolution of the Gini coefficient in the
kernel evolution. The coefficient follows a decreasing trend in the
first 12 releases, meaning that SD becomes more evenly distributed.
From release v2.6.23 on, we observe an increasing trend, indicating
that SD is more concentrated towards a particular set of features.
The absolute difference between the Gini coefficients in v2.6.23
and v3.9, however, is only 0.06, which indicates that SD distribution
does not vary considerably. At all times, the Gini coefficient is
closer to one than to zero, confirming the observed right-skewness.

Finally, we partitioned the SD distribution into globally and
locally scattered driver features. For each feature, we took the
average of all its SD values, as reported at each release where
the feature existed. We then compared the distributions of the
averages in each partition. As Table 6 in the appendix shows,
starting from the median, globally scattered features have higher
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Fig. 9: Growth of outlier scattered features

average SD values. Thus, globally scattered driver features do
not only affect more subsystems, but also tend to have higher
prospective maintenance costs, given that more locations in the
code base might have to be maintained.

4.2 Survey Respondents and Interviewees

From our 74 survey respondents with valid responses, 49 (66 %)
were working as professional developers in companies. Of these,
17 (35 %) were contributing to the kernel as part of their job, 13
(27 %) were contributing as private persons, and 19 (39 %) were
contributing both for the company and private. 58 (78 %) of all
respondents had worked with the kernel for more than five years.

The respondents had different roles in their work with the Linux
kernel; the largest group with 55 (74 %) are developers, followed
by 17 (23 %) maintainers. As stated above, maintainers review,
modify, and authorize the incorporation of changes into the kernel,
therefore we considered their participation relevant for our study.

The majority of survey respondents, 62 (84 %), were contri-
butors to the driver subsystem, however, not exclusively. Driver
contributors also declared experience with other subsystems: arch
(52 %), net (27 %), fs (21 %), core (15 %), and others (16 %).

As a subset of survey respondents, the interviewees’ characte-
ristics somewhat resembled the population of survey respondents.
The only significant difference was with respect to the subsystem
to which they contributed, as only 3 (33 %) of the interviewees
were contributors to the driver subsystem. However, this did
not affect our results since our interview questions concerned
feature scattering in general, as well as practices for coping with it,
regardless of the subsystem.

4.3 Circumstances of Scattering (RQ2)

To answer RQ2, we investigated the circumstances that could
possibly explain the scattering phenomena observed in Sec. 4.1.

4.3.1 Reasons for Introducing Scattering
First, we tried to understand what methods developers use to create
new device drivers. Four options were listed in the survey: (i)
clone an existing driver and adapt it, (ii) develop from scratch, (iii)
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Fig. 10: Evolution of the Gini coefficient of the SD value of
scattered driver features

use a template, and (iv) extend an existing driver by introducing
variants using ifdefs (without cloning). Additionally, respondents
were asked to sort the options they selected according to how
frequently they used them. The most frequently used option would
be placed first, while the least used would be placed last. The results
are shown in Table 2. This question had exactly 62 respondents,
which corresponds with the number of respondents contributing to
the driver subsystem (Sec. 4.2); this was expected considering that
the question was about creation of device drivers.

As Table 2 indicates, cloning and adapting an existing driver
is the most frequently and widely used approach, with 83 % of
the respondents stating that they use it and 43 % placing it in first
position. This can possibly explain why the number of scattered
features remains proportionally nearly constant throughout the
kernel’s evolution, since code is simply copied and adapted to each
new driver, carrying with it all the scattering (see Sec. 4.1.1). Ho-
wever, the fourth ranked option is of particular interest since it can
potentially introduce feature scattering: extend an existing driver by
introducing variants using ifdefs (without cloning). Despite being
ranked lowest of all options, 56 % of the respondents stated that they
do apply this method when creating new device drivers. Of these
respondents, 8 % placed it in first position, 22 % in second position,
18 % in third position, and 8 % in fourth position. This result in-
dicates two things: first, it gives an indication as to how developers
perceive working with ifdefs; indeed, when asked explicitly in a
separate question, 55 % of the survey respondents stated that they
perceived working with ifdefs as challenging; secondly, it indicates
that despite this perception, developers still use ifdefs for some
aspects of development (as discussed next), which, in turn, may
lead to feature scattering. Since the majority of survey respondents
stated that they create new drivers by either cloning and adapting
an existing driver (83 %), or developing from scratch (69 %), we
learned from their additional comments, that generally ifdefs are
used when extending an existing driver with a new version by
adding new features, while cloning is mostly used for new drivers.

S52: “Sometimes you add features to an existing subsystem,
which means extending existing code. Since sometimes

TABLE 2: Ranking of methods used to create new device drivers

overall
rank method respondents per rank1

total21 2 3 4

1 clone an existing
driver and adapt it

43 % 32 % 7 % 83 %

2 develop from scratch 33 % 13 % 5 % 17 % 69 %
3 use a template 15 % 16 % 17 % 5 % 51 %
4 extend an existing

driver by introducing
variants using ifdefs

8 % 22 % 18 % 8 % 56 %

1 the total number of respondents for this question was 62
2 total per rank (row total)
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TABLE 3: Reasons for introducing or maintaining scattered code

reason stated by

avoid code duplication 44 %
support hardware variability (for limitations in hardware
detection)

43 %

keep backwards compatibility 37 %
optimize the code for performance or binary size 33 %
avoid refactoring existing code with scattered features 24 %
introduce support for generic hardware devices 17 %
other 17 %

these are optional features that are not necessary or are
dependent on hardware/software support, these get the ifdef
treatment.”

S41: “Complete new device type –> clone. Extend existing
device with new version –> extend, however, avoid ifdef
as much as possible. However, sometimes ifdef can prevent
unnecessary inclusion of unused data objects.”

S24: “I would use ifdefs in a driver only if I have
configurable parts that can only be enabled/disabled before
compiling it or if it has dependencies which I cannot control.
It depends on how different the new hardware is. If the new
hardware is just a variation of another part, extend with
ifdefs or runtime checks.”

In what follows, we analyze why developers introduce or
maintain scattering. Table 3 shows results from the respective
survey question. We discuss the four most frequent reasons.
(1) Avoid Code Duplication. The most voted reason for scattering
is a common situation that leads to scattering using conditional
compilation directives. Pre-processor directives are often added on
very specific lines of code to implement variability while avoiding
code duplication. Listing 2 demonstrates this situation with two of
the code fragments from the Linux kernel affected by a commit11

authored by interviewee I1, which increased the scattering degree
of a feature called CMA (Contiguous Memory Allocator—allowing
to allocate large, contiguous memory blocks) by 5. The commit
introduced five new extensions of the feature in the files include/li-
nux/mmzone.h (lines 44, and 64), mm/page_alloc.c (lines 753, and
899), and mm/vmstat.c (line 616). With these extensions in hand,
we asked the commit author why he introduced them.

The author explained that scattering was introduced mainly to
avoid code duplication. He further added that one alternative would
have been to concentrate the variability in a single conditional
compilation directive as much as possible, avoiding or limiting
scattering, but the consequence would have been more duplicated
code. For instance, moving the ifdef from mmzone.h:44 (see Lis-
ting 2) to outside of the enum would have required that the enum be
duplicated—one enum which would include MIGRATE_CMA to
be defined within the #ifdef CONFIG_CMA block, and the second
enum excluding MIGRATE_CMA to be defined in the #else block.
(2) Support Hardware Variability. Developers often use pre-
processor directives to check platform settings to circumvent
limitations in hardware detection. An example of devices with
such limitations are platform devices, which we will discuss in
Sec. 4.3.2. We asked the interviewees in what circumstances the
device driver API was not sufficient for hardware detection. In
general, they stated that some devices either cannot be detected

11https://github.com/torvalds/linux/commit/47118af

entirely or do not provide enough information to accurately detect
hardware differences (I1, I4, I10). However, one interviewee (I4)
stated that this problem “seems to be rare in modern hardware.”

I1: “Some buses may provide a way to probe a device and
ask the device for its parameters, but that’s not always
available. For example, if a device is connected to some
particular memory address range, there is no way to detect
it and it has to be statically configured as being there.”

I10: “When the bus the device is attached to doesn’t
enumerate devices as robustly as PCI (especially platform
devices).”

While the use of “data structures available at runtime, such
as device-tree” (I4) may solve most of these hardware detection
problems, it does not always work; firstly, because some buses
do not have enumeration capabilities, and secondly, because some
vendors, to save production costs, create hacks in the hardware
design that make software architecture design particularly difficult
(I2, I7). To react to such weird cases, developers rely on code
scattering to overcome limitations in the kernel design:

I7: “Hardware is [...] not developed by software engineers
or [...] reviewed by software engineers. [...] as a program-
mer you are used to, if you read a value you do not modify
it. With some hardware devices it’s the other way around.
You read a register and you change the internal state. And
these are really bad things, but in these cases you have an
IFDEF in the Linux kernel configuration.”

We also asked interviewees about circumstances when deve-
lopers would prefer ifdefs to the device driver API and what the
trade-offs would be. While some could not think of such situations
(I1, I10), others stated that ifdefs should be used only when there is
no other alternative, for instance, to address hardware limitations as
discussed above (I1), and that drivers I2: “should be self-contained
as far as is possible,” implying that drivers should be acting as
plugins that do not have feature code scattered outside of the
subsystem. However, one prominent exception raised to this was
when optimization is necessary, that is, optimizing the resulting
kernel binary image and how it performs during runtime (I4, I9).
Due to limitations inherent in the kernel design, a developer would
evaluate trade-offs with questions, such as, does it pay off to avoid
scattering; would the cost of implementing a non-scattered solution
be worthwhile? Should I invest in a one-size fits all design, which
is very expensive to build, or should I build a good-enough solution
that handles most of the cases, handling corner cases by scattering?
Such trade-offs explain why many features of the driver subsystem

Listing 2: Scattering of CONFIG_CMA to avoid code duplication
//mmzone.h:44
enum {

MIGRATE_UNMOVABLE,
MIGRATE_RECLAIMABLE,
MIGRATE_MOVABLE,
MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
MIGRATE_RESERVE = MIGRATE_PCPTYPES,

#ifdef CONFIG_CMA
(...)
MIGRATE_CMA,

#endif
MIGRATE_ISOLATE, /* can’t allocate from here */
MIGRATE_TYPES

};

#ifdef CONFIG_CMA
# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
#else
# define is_migrate_cma(migratetype) false
#endif

https://github.com/torvalds/linux/commit/47118af
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are globally scattered (e.g., inside the arch subsystem), which leads
to the global scattering observed in Sec. 4.1.2.

In addition to addressing limitations in hardware detection,
17 % of survey respondents stated that they introduce scattering to
provide support for generic hardware devices, such as USB, PCI,
and ACPI. We also discuss these in Sec. 4.3.2.
(3) Maintaining Backwards Compatibility. The third most voted
reason for introducing scattering was maintaining backwards
compatibility. We asked interviewees what compatibility meant
in the context of Linux kernel development. Foremost among
the explanations was that scattering is a mechanism for keeping
backwards compatibility affecting user space (I1, I2, I4, I7, I10),
but less so elsewhere, since interfaces within the kernel have no
obligation of backwards compatibility.

I2: “It’s particularly applicable to user-space interfaces:
Linus has a policy of never breaking the user-space API,
except in highly restricted circumstances.”

I4: “This is almost never an issue in the context of the
Linux kernel, because interfaces within the kernel have no
obligation to maintain backwards compatibility. However,
this can arise in user-space interfaces, when attempting to
consolidate code.”

In addition, maintaining backwards compatibility also involves
scenarios where refactoring code that is well up and running is
perceived as a regression risk not worth taking, or:

I2: “where a driver is restructured and provision of
compatibility with the old version within the structure of
the new might mandate the use of code scattering.”

Avoidance of perceived regression risks is what accounts for
the 24 % of survey respondents in Table 3 who stated that they
avoid refactoring existing code with scattered features.
(4) Optimizing for Performance or Binary Size. Lastly, since this
reason is one of the top four reasons for scattering feature code,
we asked interviewees why this was so. They explained that (i)
this is usually necessary when dealing with resource-constrained
architectures, such as ARM (I3), (ii) when the exclusion of ifdefs
in writing code that accounts for many variants would lead to bugs,
such as someone using a feature that is not actually supported in a
particular configuration of the kernel (I1), and (iii) to avoid code
duplication, dead code, and unused data related to a feature (I1, I2,
I4). One interviewee explains:

I4: “Runtime detection still leaves code in the final binary
for the path not taken. Compile-time ifdefs eliminate
that code. Most of the time, static inline functions and
similar techniques allow avoiding scattering of these ifdefs.
However, in occasional cases, code becomes more readable
by repeating the ifdef more than once within the same file,
to avoid repeating other code instead.”

Other. We had nine other reasons for scattering, indicated as ’other,
17 %’ in Table 3. Three of these are covered by our discussion of
’maintaining backwards compatibility’ as a reason for scattering
since respondents indicated that they opt to maintain scattered code
because refactoring such code is perceived as a regression risk. Two
have been ommitted for lack of clarity from respondents. The other
four were: (i) sometimes it’s the one-eyed among blind option, (ii)

support OSes other than Linux, (iii) to group pieces of code on the
functional basis where it is more natural to place them, and (iv) to
introduce debugging version of a function. In the case of (ii), an
example use of preprocessor directives would be the construction
of a path either using the backslash (\) or forward slash (/)–which
depending on the OS, or supporting OS specific data types. These
are cases where makefiles may not suffice.

4.3.2 Types of Features
Motivated by previous experience [9], we investigated whether
specific kinds of features exist that by their nature affect where
a feature is scattered across (i.e., locally or globally) or that lead
to higher scattering degrees. First, we used the code analysis
(longitudinal study) to hypothesize on the types of features prone
to scattering. The characteristics we tested are the result of
past experience and observations when manually analyzing and
classifying features in the Linux kernel [14, 21, 22] and other
systems [41]. Later, we verified our assertions with data obtained
from the interviews with developers.

The first kind of features we observed relates to platform
devices. As opposed to hotplugging devices, platform devices
cannot be discovered by the CPU. Corbet [29] explains12 that, while
any device sitting on a bus like PCI (with built-in discoverability)
can tell about its type of device and its resources; platform devices,
however, are not discoverable and still need the kernel to provide
ways to be told about the hardware that is actually present.

In Linux, a platform driver is any driver that uses the C structure
platform_driver. Since platform devices are not discoverable
by the CPU, the kernel cannot automatically load their LKMs,
as in hotplugging. Instead, board-specific code [42] instantiates
which devices to support for a target CPU, and with which drivers.
However, developers do not instantiate all possible platform devices
when porting Linux to a particular CPU, as only some will be
present at all times. In the face of such hardware variability,
it is intuitive to assume that developers will be more prone to
introducing extensions outside the driver subsystem (e.g., in arch,
which contains CPU-specific code), conditioning them on the
presence of specific platform devices and their associated drivers
and capabilities. For non-platform driver features, the opposite
should occur: through hotplugging, devices should be discovered
at runtime, triggering the automatic loading of required LKMs.

The second kind of scattering-prone features concerns abstracti-
ons that provide a core infrastructure for developing drivers. These
abstractions do not bind to a specific vendor, but rather represent
a generic set of devices and driver-related capabilities. Examples
include generic buses (e.g., USB, PCI, and ACPI), drivers declaring
specific device classes (such as audio or network devices),13 and
hardware-description frameworks (e.g., OpenFirmware). Since
these features denote abstractions in the operating-system domain,
we assume that they should be more likely to be scattered
compared to non-infrastructure features. In such cases, extensions
in code would check for specific generic functionality and related
capabilities,allowing features to react accordingly.

We investigated whether the kind of a feature affects the
scattering locality (i.e., local or global) or scattering degree.
Influence on Scattering Locality. We tested the effect of being
a platform feature on scattering locality by collecting a random
sample of 10% of all scattered driver features (population size is

12http://lwn.net/Articles/448499/
13http://www.kernel.org/pub/linux/kernel/people/mochel/doc/text/class.txt

http://lwn.net/Articles/448499/
http://www.kernel.org/pub/linux/kernel/people/mochel/doc/text/class.txt
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Fig. 11: Scattering location of sampled (non-)platform drivers

1,700) and by manually classifying them as either platform or not. A
platform-driver feature is either part of a platform driver (i.e., it has,
at least, one compilation unit instantiating a platform_driver
structure) or it is a capability of a container platform-driver feature.
For further details on the classification criteria we used, see our
online appendix [18]. We performed the χ2 statistical test on the
sample with at a significance level of 0.05. See appendix (Sec. 4
and Table 7) for the hypotheses and results.

In summary, we found strong evidence (p = 1.933× 10−5 <
0.05) of a dependency between being a platform-driver feature
and scattering locality. In fact, our analysis indicates that platform-
driver features are 2.5 times more likely to be globally scattered
than non-platform ones. Conversely, a non-platform driver fea-
ture is 1.8 times more likely to be locally scattered. The test
confirms our initial understanding: When facing non-discoverable
devices, developers are more likely to introduce ifdefs outside
the driver subsystem. For non-platform devices, the scattering of
their driver code is likely local. As Fig. 11 shows, most globally
scattered platform-driver features in our sample are scattered across
the arch subsystem, either only in arch, or in both arch and
driver (‘either’ is captured by the ‘+’ sign, whereas ‘and’ is
denoted by ‘&’). This is evidence for a tight relationship between
the arch subsystem and platform-driver features; since platform
devices are not discoverable by the CPU, supporting the drivers
of some of such devices requires scattering CPU-dependent code,
which is mostly found inside the arch subsystem.

To analyze the influence of infrastructure features on scatte-
ring locality, we classified the same sampled features as either
infrastructure or not, and performed the same statistical test as
before (see appendix Sec. 4 and Table 8). However, there was
no strong evidence suggesting that being an infrastructure-driver
feature affects scattering location; the χ2 test resulted in a p-value
greater than the chosen significance level.

Influence on Scattering Degree. To analyze the influence of being
a platform or an infrastructure-driver feature on scattering degree,
we calculated the average SD value of each sampled feature across
all releases containing it. We performed two one-tailed Mann-
Whitney-Wilcoxon rank sum statistical tests to assess whether:
(i) the platform-driver features and (ii) the infrastructure-driver
features in this set systematically yield higher average SD values

as opposed to all other features.14 See Sec. 4 in the appendix.
Overall, we did not find convincing evidence that average SD

values are systematically higher in platform-driver features.
Likewise, there also seems to be no significant influence of

being an infrastructure-driver feature on scattering degree. The test
only supports the null hypothesis (i.e., that there is no difference in
the distribution of average SD values of platform and non-platform
driver features). However, in the case of the outliers observed
in RQ1.3 (see Fig. 8), we did find some influence of being an
infrastructure-driver feature on extremely high SD values, as 9 out
of the 15 most scattered driver features in the kernel evolution were
infrastructure features. For more details see the appendix.
Developers’ perspective. To better understand our results, we asked
our interviewees about our observations with regard to platform
and infrastructure driver features. Interestingly, all confirmed our
understanding that these types of features are prone to scattering
due to hardware limitations in discoverability, as we discussed in
Sec. 4.3.1. For instance, two interviewees expressed:

I1: “Platform drivers don’t surprise me. [...] the more low
level, the harder it may be to probe/detect a device. Unless
we know where the device is, we may be unable to discover
it and even if there is a way to discover its existence, it may
not provide a way to ask for its parameters.”

I10: “I believe OF [an infrastructure driver feature] is
scattered so widely because it is the primary, evolving,
interface for device discovery for SOC systems [...]. I think
we’re stuck with this because of the way ARM support was
driven into the kernel. Several competing vendors trying to
find the most expeditious (not best) common framework to
integrate their disparate implementations.”

In response to our question “Are there other kinds of devices
that cannot be detected? Why can they not be under the hood of
the device driver API?” two interviewees stated:

I9: “Some HW needs to be probed by direct register read, if
not present you will read an invalid pointer.”

I10: “Any device that isn’t attached to an enumerable bus.
That’s devices on most any system that isn’t based on
PCI. The device driver API would need to support an
architecture independent device enumeration interface. We
currently have a hardware based enumeration (PCI) and a
software based enumeration (devtree). There may be more.
But a layer of abstraction above the existing enumeration
mechanisms would be needed to fully fold discovery under
the device driver API.”

Since most of device drivers are PCI-based, the Linux kernel
provides a good enough abstraction to handle most common drivers.
In cases where the software architecture fails to integrate new
drivers (e.g., those very close and dependent on specific CPU
architectures), scattering is used as an alternative solution.

Lastly, we asked interviewees what scenarios, in general,
make some features prone to scattering. As expected, the most
prominent scenario is the non-discoverability of devices. Secondly,
we observed that scattering is indeed a choice in some particular

14"Systematically" means that the probability of having an average SD
greater than a value X among platform/infrastructure-driver features is greater
than the probability of having an average SD > X among other features [43].
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cases. Developers do it consciously based on trade-off decisions
they make, such as for optimization. In addition, time-to-market
concerns by the vendors contributing device support also make
some options prone to scattering.

I10: “ [...] especially [from] vendors that don’t yet have
a long term relationship with the kernel development
community. When a TI or an Altera (before Intel) start
building Linux support for their products, they often start
in a vacuum. Their development cycle is based on time-
to-market, not kernel design and support. Then, they
partner with a large distribution for help getting their
code submitted to the kernel. There’s some pushback from
the community. But in the end, it’s more expeditious to take
their submission and work on cleaning it up than it would
be to lose the device support.”

4.4 Coping with Scattering (RQ3)
As stated above, 80 % of survey respondents perceived scattering
as challenging. Some of the reasons for this perception are that:
scattering complicates program comprehension (84 %), introduces
more bugs (53 %), decreases code quality (51 %), hinders evolution
(46 %), and lowers patch acceptance (41 %). With RQ3, we
tried to understand what strategies developers employ to cope
with challenges posed by scattering. Recall that, as observed in
Sec. 4.1.1, the proportion of scattered driver features is nearly
constant throughout the eight-year history of the kernel. So, it
is natural to ask whether developers might consciously manage
scattering degrees or enforce limits in practice, or whether they
limit their use of ifdefs, thereby limiting scattering?
(1) Adherence to Coding Guidelines. The Linux kernel development
documentation provides coding guidelines that advise developers
to avoid the use of ifdefs in code. Specifically, the patch submission
guide15 states: “Code cluttered with ifdefs is difficult to read and
maintain. Don’t do it. Instead, put your ifdefs in a header, and condi-
tionally define ‘static inline’ functions, or macros, which are used in
the code. Let the compiler optimize away ‘the no-o’ case.” Further-
more, the kernel development process16 reinforces this as follows:
“Conditional compilation with #ifdef is, indeed, a powerful feature,
and it is used within the kernel. But there is little desire to see code
which is sprinkled liberally with #ifdef blocks. As a general rule,
#ifdef use should be confined to header files whenever possible.”

We asked our survey respondents if they adhere to the above
coding guidelines to avoid the use of ifdefs. Table 4 indicates
that almost all participants try to avoid ifdefs following different
strategies, chief among them being those given by the Linux kernel
coding guidelines, that is, the use of static in-line functions (77 %)
and putting ifdefs into header files (54 %). These strategies have
the potential to limit or reduce scattering as a consequence.

Putting ifdefs only in header files prevents a feature from being
scattered in different parts of the same code file or in undisci-
plined ways (not aligned with the structure of the language) [8].
Specifically, scattered feature code is refactored into a (potentially
parameterized) static inline function, whose body (the feature code)
is protected by an ifdef with an else branch that will return null.
So, if the feature is disabled, the compiler will optimize away

15https://www.kernel.org/doc/Documentation/SubmittingPatches
16https://www.kernel.org/doc/Documentation/development-process/4.

Coding

TABLE 4: Strategies for avoiding the use of ifdefs
strategy stated by

use static inline functions 77 %
put ifdefs into header files 54 %
use selection statements (e.g., if and switch) from the C
language instead of ifdefs

48 %

use optional code confined in one single ifdef 14 %
other 14 %
reject patches containing ifdefs 11 %
none (no attempt to avoid using ifdefs) 5 %

TABLE 5: Strategies for limiting scattering
strategy stated by

improving system design 73 %
refactoring existing code 73 %
copying code (allowing duplicates) 13 %
none (no attempt to limit scattering) 9 %
other 5 %
enforcing max. number of ifdefs an option can appear in 2 %

the inlined function. So, using static inline functions, any other
occurrence of the feature code is replaced by a function call without
a surrounding ifdef, effectively reducing scattering.

One of the most voted strategies is the use of selection
statements from the C language (if or switch) instead of ifdefs
(59 %). From a practical perspective, this allows the compiler to
syntax- or type-check even disabled code, which would not be seen
by the compiler when cut out by the pre-processor (since the build
always relies on one specific feature selection). Yet, it does not
alleviate the feature scattering problem as such.
(2) Conscious Management of Scattering (Better System Design).
To learn if the survey respondents consciously manage feature
scattering (not only ifdefs), we asked them if they try to limit it,
and if so, how. Table 5 indicates that only 10 % do not try to limit
scattering, but the majority (90 %) uses at least one strategy to limit
it. The most used strategies are (i) improving system design (81 %),
and (ii) refactoring existing code (74 %). These results indicate
that developers indeed do consciously manage feature scattering in
the Linux kernel by actively and proactively limiting it. However,
generally they do not enforce any limits by use of a threshold as
only 2 % (one respondent) reported doing so.

In addition, using a Likert-scale of 1 (strongly disagree) to 5
(strongly agree) and 3 as neutral, we asked survey respondents
which of the suggested strategies they perceived suitable to
completely avoid scattering. Fig. 12 indicates that the trend of
responses leans towards using a better system design (86 %) and
better modularity mechanisms in the C language (58 %). And,
as expected, the majority (72 %) disagreed that code duplication
could be one such strategy. Recall that in Sec. 4.3.1, we found
that avoiding code duplication was the top most reason for why
developers of the Linux kernel introduced scattering, hence the
disagreement observed here. One other proposed option was, ‘I
don’t see any alternative’, to which many respondents expressed
neutrality (46 %) or agreement (18 %). This apparent hesitation
to adopt the alternatives proposed might indicate an inclination
towards the code-size and performance optimization trade-offs
discussed earlier in Sec. 4.3.1. Investigating this in a follow-up
study would be valuable future work.

S12: “Mostly I try to follow the Linux guidelines, since they
are good practice hints. However, there may be exceptions
when scattered ifdefs are needed for goals like performance,
code size and so on.”

(3) Conscious Management of Scattering (Refactoring). Since

https://www.kernel.org/doc/Documentation/SubmittingPatches
https://www.kernel.org/doc/Documentation/development-process/4.Coding
https://www.kernel.org/doc/Documentation/development-process/4.Coding
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refactoring was stated by 74 % of the survey respondents as one
of the top strategies for limiting scattering, we asked interviewees:
‘When do you refactor a scattered configuration option? Is there a
tipping point that triggers such a decision?’ Even though there was
no general agreement, some interviewees stated that refactoring
is only performed in instances where either the targeted ifdefs are
no longer needed (I1, I7, I8) or the refactoring does not break the
logical structure of the driver code and offers code optimization
and performance trade-offs (I2). The decision to refactor is often
made when the developer realizes that making a new change to
the code is made difficult by the scattered feature, at which point
trade-offs are evaluated, and if the refactoring is worth the effort
then it is performed (I1, I2, I4). Even though interviewee I2 stated
that no common approach to refactoring exists, as each driver and
piece of hardware is different, some refactoring strategies include
the use of static inline functions and header files as provided by
the Linux kernel coding guidelines, and the use of “macros that
serve a similar function, such as for access to a structure field that
may not always exist,” (I4), provided that specific values signal
for the absence of a given field information. Lastly, interviewee I4
suggested an interesting strategy:

I4: “In the future: make compilers smarter, to avoid needing
certain config options at all. For instance, compilers with
link-time optimization (LTO) can include smarter ways of
detecting unused code or data throughout the program, and
omit that code or data without requiring an explicit config
option for it. ”

In summary, we observed that developers focus their efforts
on removing ifdefs individually, but did not find any indication that
they take the overall scattering degree of a feature into account.

5 THREATS TO VALIDITY

External Validity. A significant threat to external validity is that our
data are based on one case study only. Still, it is one of the largest
open-source projects in existence today. Furthermore, our focus on
device drivers is justified by the insight that it is the largest and
most vibrant subsystem of the Linux kernel. Despite this focus, we
study scattering not only within this subsystem, but also investigate
how device-driver features affect the other subsystems of the kernel.

To investigate whether two specific kinds of features (platform
and infrastructure features) relate to scattering degrees and lead
to global scattering, we performed hypothesis testing based on a
sample of 170 scattered features (population size is 1,700), since
it required a manual classification of features. This sampling is
justified, and we rely on standard p-value limits to test hypotheses.

●

●

●

●

●

●

Use of component frameworks I do not see any alternative

Supporting cloning (i.e., code duplication) Use more tools to enforce guidelines

Use better modularity mechanisms in C Use a better system design

1 2 3 4 5 1 2 3 4 5

Likert−scale response

To what extent do you agree with the following strategies to avoid scattering?

Fig. 12: Strategies for avoiding scattering (1–completely disagree,
2–disagree, 3–neutral, 4–agree, 5–completely agree)

Recall that the investigation of outliers does not rely on sampling,
but on classifying the whole population (54 features).

Our analysis of code scattering relied on pre-processor
directives. However, variability in the Linux kernel also affects
entire files, as their compilation is controlled by specific features.
Thus, we show only a partial, yet valid, view of the true story.
Our results can be complemented by studying code scattering on
the more coarse-grained source file level. Using this information
would be valuable future work.

Finally, the majority (66 %) of our survey respondents and
interviewees work as professional developers in different companies
besides contributing to the Linux kernel. Hence the insights they
provided on feature scattering may not be specific only to the Linux
kernel but may be applicable to other systems.
Internal Validity. There is always the risk that bugs in our custom-
made tools and scripts impact results. To mitigate this threat, we
have performed extensive code reviews. Two authors inspected the
code for almost 16 hours in total, and created over 70 test cases.

For all code analyses, we excluded features that we could
not uniquely map to one subsystem. This limitation, however,
has no further influence on our results, as only very few driver
features (0.65± 0.46% per kernel release) are declared in multiple
subsystems. We also exclude references to features that occur in
strings in the code, assuming that such references have no influence
on maintenance, as opposed to the code parts controlled by pre-
processor directives, which we analyze.

To avoid limiting conclusions to individual perspectives, the
survey covers a broad range of roles of respondents that contribute
to more than one subsystem of the Linux kernel. In addition,
owing to the substantial technical and industrial experience of our
interviewees, our work provides both a general perspective on
feature scattering as well as in-depth insights on technical issues.
Construct Validity. To measure scattering of feature code, we relied
on a very simple metric (SD). Given that it is a very low-level
metric, it is reliable. Since it measures the parts related to feature
code as specified by the original developers (using pre-processor
directives), it is also a very valid measurement of scattering. In fact,
the ability to rely on this information is a major advantage over
previous studies, which had to recover the mapping of features (or
concerns, see Sec. 6) to code.

It is not completely clear, however, how these syntactic
code extensions, which aim at realizing configurability, relate to
semantic code extensions, that is, units of functionality from a
domain-oriented view. Understanding this relationship constitutes
an interesting future research question [44].

With respect to the survey and interviews, we limited the
effect of potential subjectivity by considering statements affirmed
by more than one interviewee and several survey responses.
Introductory explanations to non-trivial questions were given to
respondents to mitigate misinterpretation. Furthermore, to ensure
completeness, both survey respondents and interviewees were
given opportunity to provide additional answers not covered by
devised questions, but relevant.

6 RELATED WORK

Feature scattering is part of a broader research topic: scattering of
concerns. Concerns do not only comprise features [45], but also
requirements, design elements, design patterns or programming
idioms [17, 36]. The representation of features in the Linux ker-
nel [21, 41, 46] can be compared to concern models [5], which map
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concerns to code and support concern location. A particular rese-
arch interest has been on cross-cutting concerns, which are under ge-
neral suspicion to negatively influence quality and maintainability.

Eaddy et al. [36] investigate the relationship of cross-cutting
concerns to defects, arguing that insufficient modularization can
lead to increased defects. For instance, code maintenance might
miss parts of the implementation, leading to inconsistencies.
Furthermore, concerns might be tangled with other concerns, so
changing one concern might accidentally affect the other. The
authors analyze three open-source projects written in Java, where
they manually mapped concerns to classes and bugs. They identified
a high correlation between scattering and defects, regardless of
the system’s size. Their manual concern identification technique
was proposed in previous work [35], where they argued that
automated concern location through execution traces would have
been incomplete, missing non-functional concerns, such as logging.
In our study, we include these kinds of features and fully trace their
implementation through pre-processor directives.

Chaikalis et al. [47] present a longitudinal case study on feature
scattering in four, relatively small (24 KLOC to 177 KLOC) open
source Java projects. They use dynamic analysis to trace classes
implementing features, together with formal concept analysis [48]
to analyze the feature-to-class/method mapping. Their results show
an almost continuous increase of scattering, and the Gini coefficient
of the scattering degrees increasingly fluctuates over time. Interes-
tingly, feature implementations increasingly accumulate in already
large classes. Their study inspired our use of the Gini coefficient,
and we also observed an almost linear scattering increase. However,
their notion of scattering is very different from ours, as they
consider all code involved in the control-flow when executing
a feature, which may include methods not related to the feature
implementation. Consequently, despite small projects, they observe
very high scattering degrees (up to 1,467 methods). We did not
consider such dependencies.

Several studies investigate structural characteristics of cross-
cutting concerns. Figueiredo et al. [17] identify patterns of cross-
cutting concerns in the source code of three case studies. Their
catalog of 13 patterns characterizes patterns in terms of (i) their
scattering degree and relative code size of their implementations in
the scattered classes or methods, (ii) how concerns scatter along an
inheritance hierarchy, (iii) control- and data-flows, and (iv) whether
they are realized by code-cloning. The authors use pattern-detection
techniques and identify patterns in three Java projects. Interestingly,
they find a negative correlation between some patterns and design
stability. In a product-line re-engineering effort, Couto et al. [49]
find that six of their total of eight features follow the octopus
pattern—one of Figueiredo’s et al’s patterns.

In our study, the features we considered were all optional
features—that is, units of variability—which can be switched
on or off using the pre-processor. Since optional features are
the predominant type of features in the Linux kernel [21], this
focus is justified. However, features are typically used as units of
functionality [45] and rather mandatory. As such, they are used for
communication, planning or keeping an overview understanding
on the development, among others. Since they are not optional,
their locations are usually not explicitly recorded in the source
code and instead need to be recovered—a discipline called feature
location [50–55]. To avoid feature-location efforts, researchers
have proposed to use embedded annotations to record feature
locations directly in the code (similar to ifdefs) together with
respective tooling and case studies [56–59]. Notably, Krüger et

al. [44] manually annotated feature locations of mandatory features
in the open-source 3d printer firmware Marlin and found that their
code-level characteristics differ from optional features. Specifically,
mandatory features are less scattered, probably since they align
better with the software architecture. Since no substantial history
of such a project with annotated mandatory features exists, we
cannot conduct a longitudinal study and contrast the results, which
however would be an interesting future work.

Finally, researchers have also extracted realistic thresholds
for source-code metrics as a prerequisite to assess quality and
maintainability of systems. For instance, Oliveira et al. [60]
calculate thresholds for common source-code metrics upon two
corpora of Java projects, while accounting for the heavy tail of the
underlying metric distributions. They argue that certain percentages
of classes naturally violate thresholds (e.g., outliers). In the face of
heavy-tailed distributions, the authors state that thresholds should
not be based on a single limit value (e.g., mean); instead, thresholds
should be relative. A relative threshold defines a percentage p of
code entities that a metric threshold k applies to (e.g., p = 85% of
the methods should have McCabe complexity of at most k = 14).
From p, it follows that (100 − p)% of code entities should not
have a metric value greater than k. Similarly, Queiroz et al. [9]
propose thresholds by analyzing the statistical distribution of three
feature-related metrics (scattering degree, tangling degree, and
nesting depth of pre-processor annotations) collected from 20 pre-
processor-based systems. Our work stresses the importance of
relative thresholds, as outliers in the Linux kernel evolution skew
the scattering distribution. Consequently, the mean as a threshold
value is not representative of the typical scattering degree that
most features in the Linux kernel adhere to. Moreover, we show
that 75 % of scattered driver features have SD ≤ 8. This relative
threshold, however, is based on the analysis of adjusted boxplots,
rather than applying Oliveira’s calculation technique, which is not
directly applicable to our case.

7 CONCLUSION

We studied scattering of feature code in the Linux kernel by
analyzing almost eight years of its evolution history, surveying
74 kernel developers, and interviewing nine of them. Our goal was
not to investigate limitations or maximum degrees of scattering,
but to obtain empirical data on whether and how scattering can be
handled to the extents found in one of the largest feature-based
systems in existence today.

We learned that the majority of driver features (82 %) is
introduced without causing scattering (RQ1.1). Classic modularity
mechanisms, as employed by the Linux kernel software architecture,
seem to suffice. Yet, the absolute number of scattered driver
features is still higher than expected. Proportionally, however, the
amount of scattered features remains nearly constant throughout
the kernel’s evolution. We also found that scattering is not limited
to subsystem boundaries (RQ1.2). While most driver features are
in fact only implemented in the driver subsystem, a significant
proportion (43 %) of features has extensions in other subsystems.
This proportion, however, is stable in the last third of releases.
The majority (75 %) of scattered driver features is scattered across
moderate four to eight locations in code (RQ1.3). Moreover, the
median is low and constant across the entire evolution (SD = 4).
Yet, the distribution is skewed, with outliers having scattering
degrees up to 377. Thus, the arithmetic mean is not a reliable
threshold to monitor the evolution of feature scattering. Outliers,
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however, are limited in number, accounting for less than 4% of the
total number of features in the kernel; even though their absolute
counting and magnitude grow with the system size.

We identified and analyzed two kinds of features that are prone
to scattering. Infrastructure features account for 9 out of the 15 most
highly scattered features (outliers) in the scattering distribution of
driver features, affecting many parts of the code. Platform features
in the Linux kernel are more frequently scattered across subsystem
boundaries, but do not necessarily have higher scattering degrees.
The cases where platform-driver features affect the scattering
degree occur within non-infrastructure outlier features, where
platform-driver features account for most of the outliers in that
group. While scattering of platform features across subsystem boun-
daries could be potentially avoided, the necessary generalization of
code and abstraction layers might be too expensive or difficult to be
achieved in practice, due to hardware detection limitations. Thus,
scattering using pre-processor directives is a natural mechanism
in this context, yet facing a potential maintenance trade-off. This
result was confirmed by our survey and interviews.

From the developers’ perspective, we found that feature
scattering is introduced in the Linux kernel for four main reasons
(RQ2): avoid code duplication, support hardware variability due to
limitations in hardware detection, support backwards compatibility
for the user-space and preservation of the logical structure of
drivers, and optimize code for binary size and performance. As
established during code analysis, we also confirmed that features
most prone to scattering are those relating to platform devices,
which cannot be discovered automatically by the CPU. Upon
evaluating maintenance and performance trade-offs, developers do
try to avoid feature scattering mostly by improving system design,
such as by adhering to coding guidelines to use static functions
and placing ifdefs in header files, and refactoring existing code, but
they do not consciously maintain a scattering threshold (RQ3).

Our results suggest the following research directions. First,
considering that full feature modularity is almost impossible
to achieve, and also does not appear to be necessary according
to our study, we suggest considering lightweight modularity
techniques. An interesting technique could be module projections
[61–63], where feature code is physically scattered, but developers
can easily obtain projections of modules in their IDE. Second,
feature scattering should already be considered when designing
the system architecture, accounting for some extent of scattering
and possibly a limited number of highly scattered outliers.
Identifying early indicators for how well architectures cope with
feature scattering, or conceiving decision support for making
the right design decisions with respect to feature scattering,
appears to be an interesting research direction. Finally, recall our
observation that scattering partly originates from badly designed
hardware. Improving hardware design methodologies, potentially
incorporating principles known from software design could lead
to better hardware design practices that alleviate this problem.
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