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ABSTRACT In Proceedings of the 2018 33rd ACM/IEEE International Conference on Automa-

Highly configurable systems are complex pieces of software. To
tackle this complexity, hundreds of dedicated analysis techniques
have been conceived, many of which able to analyze system proper-
ties for all possible system configurations, as opposed to traditional,
single-system analyses. Unfortunately, it is largely unknown whet-
her these techniques are adopted in practice, whether they address
actual needs, or what strategies practitioners actually apply to ana-
lyze highly configurable systems. We present a study of analysis
practices and needs in industry. It relied on a survey with 27 practi-
tioners engineering highly configurable systems and follow-up
interviews with 15 of them, covering 18 different companies from
eight countries. We confirm that typical properties considered in
the literature (e.g., reliability) are relevant, that consistency between
variability models and artifacts is critical, but that the majority of
analyses for specifications of configuration options (a.k.a., varia-
bility model analysis) is not perceived as needed. We identified
rather pragmatic analysis strategies, including practices to avoid
the need for analysis. For instance, testing with experience-based
sampling is the most commonly applied strategy, while systematic
sampling is rarely applicable. We discuss analyses that are missing
and synthesize our insights into suggestions for future research.
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1 INTRODUCTION

Engineering a highly configurable system allows addressing va-
rying customer needs, reducing time-to-market of new system
variants, and experimenting with new ideas. Large configurable
systems can easily exhibit thousands of configuration options, lea-
ding to almost infinite configuration spaces. Software product lines
(SPLs) [1, 20], software ecosystems [12, 15], and personalization-
capable systems—especially in the automotive, avionics, telecom-
munication or power-electronics domain—are common examples of
highly configurable systems. The Linux kernel [14] boasts around
15,000 of configuration options, supporting different hardware ar-
chitectures, software features or runtime environments ranging
from Android phones to large supercomputer clusters.
Engineering highly configurable systems is challenging due
to variability—the number of configurations and system variants
grows exponentially with the number of configuration options.
Consider the popular analogy by Krueger et al. [35], where a sy-
stem with 320 Boolean, non-constrained configuration options has
more configurations than estimated atoms in the universe. Over the
last decades, many development techniques for highly configurable
systems have been conceived, mainly in the field of product line
engineering. While its development concepts have well been adop-
ted in industrial practice—consider the product line hall of fame
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Figure 1: Architecture of a highly configurable system and
categories of typical properties to assure or analyze
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(splc.net/hall-of-fame) and case studies [61, 69]—this is much less
clear for product-line analysis techniques.

Figure 1 shows a typical architecture of highly configurable sy-
stems. It consists of source code with configuration mechanisms
(here, preprocessor directives), a specification of configuration op-
tions (a.k.a., features [10]) and their dependencies in a variability
model (here, a feature model [14, 30]), and a mapping between
both (typically the build system). Properties to assure relate to: the
whole system with all configurations (general system properties,
e.g., reliability or performance), the codebase (code properties, e.g.,
option scattering or nesting), the option specification (variability
model properties, e.g., absence of dead options), and the mapping
(consistency properties, e.g., absence of dead source code).

Analysis techniques for highly configurable systems differ from
traditional analyses. Even though, the latter can be used on indivi-
dual variants (e.g., for optimization) when the system is configured
by the system vendor, using traditional analyses is not sufficient to
detect errors that pertain to all possible variants, especially when
customers configure it. Yet, even when the vendor is in control of
the configurations, applying traditional analyses, such as testing,
still requires effective configuration-sampling strategies [21, 53].

Creating analysis techniques for highly configurable systems
by lifting single-system analyses (e.g., model checking or type
checking) [47, 66], has received substantial attention over the last
decade. Such variability-aware analyses [66] elicit a certain system
property for all possible configurations. A recent survey [66] identi-
fied 123 analyses from the literature, including lifted type-checking,
static-analysis, and model-checking techniques. Alone for feature
models, an eight year old survey [8] identified—in 53 publications—
30 different analyses, realized upon a multitude of solvers with
different logical representations (e.g., propositional logic).

Although a vast variety of such analyses has been proposed in
the literature [6-8, 66], it is largely unknown whether and how
these are used. Specifically, we lack empirical data whether the
proposed analyses for highly configurable systems are adopted in
practice, whether they address actual needs or find errors, or what
analysis strategies are actually applied.

We present a study on the needs and practices for analyzing
highly configurable systems in industry. We combined a survey
with 27 employees—of companies ranging from less than ten to over
200 employees working on highly configurable systems ranging
from less than 25,000 lines of code to over one million lines of code,
containing between ten to over 10,000 configuration options—with
in-depth interviews of 15 survey participants. Our study design
relied on categorizing analysis techniques from the literature and
identifying properties analyzed by them; we used these to elicit
the need for and the severity of analyzing the properties. We also
elicited industrial practices. Since it is intrinsically difficult to ob-
jectively understand the real practices and map them to the state of
research, we triangulated results from the survey and interviews,
steering the latter based on the survey responses, and carefully
analyzing the results iteratively.

Our research questions are:

e RQ1: What are important properties of highly configurable
systems that should be analyzed? We elicited the perceived
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severity and reasons for analyzing the properties we identi-
fied from the literature (in the categories shown in Figure 1)
and those expressed by the practitioners.

® RQ2: What are industrial analysis practices? We asked our
participants about established (textbook) analysis tools and
techniques, and additional practices they apply. We also dug
deeper into specific ones to understand them qualitatively.

We contribute: (i) empirical data on the needs and state-of-
practice of analyzing configurable systems, (ii) synthesized insights
organized in categories inspired by the architecture of highly confi-
gurable systems and a classification of existing analyses from the
literature, (iii) a discussion of our study results and their implicati-
ons for researchers and practitioners, and (iv) a replication package
with further study details in an online appendix [65].

We proceed by discussing the background and related work on
the analysis of highly configurable systems in Section 2, followed
by the design and data analysis procedure for our survey and in-
terviews in Section 3. We report results in Section 4, organized as
insights covering the perceived relevance of various analyses and
reported challenges. We summarize the impact of our study and
propose possible directions for research in Section 5. We discuss
threats to validity in Section 6 and conclude in Section 7.

2 BACKGROUND AND RELATED WORK

We introduce highly configurable systems and software product
lines, to discuss analyses that have been proposed in the literature,
as well as works related to our study.

2.1 Highly Configurable Systems

Highly configurable systems offer configuration options (a.k.a., fea-
tures [10, 18, 36] or calibration parameters) that can be of different
types (e.g., Boolean or integer). Options are used in implementa-
tion artifacts (e.g., source code, test cases, requirements), either to
parameterize functionality or control variation points. The latter
can be realized using different mechanisms, including preprocessor
directives for conditional compilation (e.g., #IFDEFs), option/feature
toggles (e.g., simple IFs), build systems or component frameworks.

The available options and their dependencies need to be decla-
red, either in a dedicated variability model (explained shortly), a
textual configuration/properties file or a database; or informally,
such as in a spreadsheet. Models can be input to a configurator tool
that guides users to a valid configuration, which binds variation
points or parameterizes the system. We generally refer to option
specifications as variability models.

Software product lines—portfolios of system variants in a specific
domain—are typically realized as a highly configurable system. The
options (called features or decisions) are described in a dedicated
variability model, such as a feature [11, 14, 30] or a decision [23, 60]
model. Note that we use the terms option and feature synonymously.
Popular, feature-model based, configurator tools are pure::variants,
Gears, FeatureIDE or the Linux kernel configurator [5, 14]. The
research field of product-line engineering has conceived a large
number of analysis techniques.
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2.2 Analysis Techniques and Tools

Analysis techniques for highly configurable systems have been
studied for almost two decades by now.

Dynamic Analyses. As we will show, one of the most popular dyn-
amic analysis for highly configurable systems in industrial practice
is testing [25, 39, 51]. Several testing techniques for configurable sy-
stems are summarized by Engstrom et al. [25], with rather few that
have been evaluated through experiments or industrial case studies,
including techniques for integration and system testing [56] as well
as performance testing [55].

Testing is always specific to one configuration, Since it is of-
ten impossible to test all configurations, configuration sampling
strategies have been proposed [21, 28, 45, 53], including random
sampling or more systematic sampling strategies that try to enable
each option or certain option combinations (e.g., n-wise feature
interaction sampling) [53].

Static Analyses. In order to effectively analyze all possible confi-
gurations, a class of static analyses, called variability-aware ana-
lyses, has been developed over the last decade, typically by lifting
single-system analyses, such as dataflow analysis [42, 58], model
checking [37] or deductive verification [68]. Also defect prediction
using machine learning was proposed [54]. According to Thiim et
al’s survey [66], these analyses can check properties of the whole
system (family-based analysis) or of individual options in isolation
(feature-based analysis). Examples of properties are type-safety [31],
performance [27], temporal properties [19], or absence of unwanted
feature interactions [2, 3, 16, 29]. Unlike Thiim et al’s survey [66],
which identifies the state-of-the art, our study aims at presenting the
state-of-practice—offering insights about the adoption and potential
challenges when using existing variability-aware static analyses.
Variability Model Analyses. A vast number of analyses has been
proposed for variability models (especially feature models) as well
as analyses to check consistencies between variability models and
implementation artifacts. Recall Benavides et al’s survey [8]. Among
the 30 different analyses on feature models are, for instance, checking
model satisfiability (i.e., at least one configuration exists), checking
validity of configurations, counting or enumerating configurations,
and finding dead features. The majority of these analyses has been
evaluated on rather small, artificial models [14, 33]. Our study is
complementary to Benavides et al’s survey [8], since we match
these analyses to industrial needs. Finally, there are also analyses
that reason about feature-model edits [67], as well as analyses that
elicit quality properties on models using various model metrics [9],
such as the maintainability of a model [4].

Consistency and Code Analyses. Furthermore, to prevent incon-
sistencies between variability models and implementations artifacts,
consistency-related analyses have been proposed [38, 48, 50, 57, 63,
64, 70], many relying on SAT solvers, for instance, to check that
code constraints are consistent with variability-model constraints
(e.g., to find dead code [63, 64]), but there are also analyses using
theorem proving [59] or model checking [26]. Some of these have
been applied in practice [34]. Furthermore, assuring structural code
properties is also relevant. Studies on such properties focus mainly
on the structure of variation points [40, 41, 71], but do not elicit
needs or practices related to source-code analyses.
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Analysis Tools. As shown in a recent survey [46], many of the ana-
lyses above are tool-supported, but all are research protoypes. Some
industry-scale evaluations of specific tools have been conducted on
industrial systems, such as consistency checking [70]. Other eva-
luations rely on open-source systems, such as the Linux kernel or
other systems software [21, 32, 43]. Even though these evaluations
show the effectiveness of a technique, they do not investigate its
practical importance.

3 METHODOLOGY

Our study design aimed at obtaining insights about analyses that
are applied in practice and about the needs of practitioners. Thereby,
we also strive to obtain insights about the relevance of analyses
that have been proposed in the literature. Recall that most of these
proposed analyses are automated, yet, we do not narrow our scope
to these only, but also consider manual analyses. To this end, we
studied literature surveys, specifically Chastek et al. [17], Benavides
et al. [8], and Thium et al. [66]. We designed a structure, both for
the survey questionnaire and the interview guide, based on a clas-
sification of analysis techniques for product lines, largely inspired
by Chastek et al. [17] and the architecture of highly configurable
systems, as we illustrated in Figure 1. This structure comprised:
(i) analysis of general system properties, (ii) testing practices and
challenges, (iii) analysis of the variability model, (iv) consistency
analysis between variability model and implementation artifacts
(e.g., code); (v) analysis of implementation artifacts. The typical
properties, analyses, tools, and challenges identified in the lite-
rature were distributed in these categories. Specifically, instead
of asking about particular analysis techniques, which are likely
unknown to the participants, our focus was on properties regar-
ding the five categories. For instance, we extracted eight (in our
opinion) most relevant properties of variability models (explained
shortly in Section 4.4), for which analyses had been proposed, from
Benavides et al’s literature survey [8].

From experience, we expected many terms from the literature
to be unknown to industrial participants, so we developed the
questionnaire and interview guide iteratively with five industrial
test participants. Figure 2 shows our methodology. First, we de-
signed an interview guide based on the categories and conducted
a pilot interview. The experiences led to the first version of the
survey questionnaire, which we then tested with four industrial



ASE ’18, September 3-7, 2018, Montpellier, France

participants from the automotive, power electronics, and camera
systems domain. We then continued refining the terminology and
slightly adjusting the scope. For instance, we replaced product-line
terminology with more common terms (e.g., product line became
highly configurable system, variability model became configuration
specification). Furthermore, we added testing (and configuration
sampling), as the most frequently expressed analysis technique by
the pilot participants. We conducted further pilot interviews with
these participants, learning that a survey questionnaire before the
interview helps to familiarize interviewees with the terminology
and structure, and so allowed going deeper into certain aspects,
reducing unnecessary clarifications.

3.1 Survey Questionnaire

Design. We designed the survey questionnaire to take no more
than 25 minutes to complete. It first elicited brief respondent ethno-
graphics (e.g., professional background or experience), then general
characteristics of the configurable subject system (e.g., size, domain,
and architecture), and then covered the five analysis categories
in detail. Finally, we asked about general challenges. The whole
questionnaire is available in our online appendix [65].

All questions were optional to allow respondents to leave out
those questions they did not have the right technical background
in or did not know sufficient details about. Most questions were
closed-ended; for some we asked for additional elaborations. The
questions about the importance of analyzing specific properties
used a four-point scale asking participants to rate the importance of
analyzing the property: not necessary; nice to have, but not critical,
critical; and don’t know. This was followed by questions on which
property is assured and how.

Respondents. Trading the number of responses for an increased
confidence in them, we sent 81 invitations to our industrial partners
(manufacturers, consulting companies, tool vendors), also asking
them to kindly forward the invite to colleagues or collaborators.
We received 54 responses (response rate: 66.7 %). 43 % were com-
plete responses and 57 % were partial. From the latter, we disquali-
fied 50 % for the lack of responses to any of the analysis sections
(even when ethnographics, system characteristics, and challenges
were filled in), so only 27 (50 %) of the 54 respondents were consi-
dered. This indicates that many developers, who work on highly
configurable systems, are not familiar with respective analyses at
all. Excluding these enhances the confidence in our results. In the
remainder, we refer to individual respondents as S1, S2, and so on.

3.2 Interviews

Design. The follow-up, semi-structured interviews relied on an
interview guide largely following the questionnaire structure. We
first verified basic ethnographics with the interviewee and cha-
racteristics of the subject system, which helped getting into the
interview. For the main part, our strategy was to first briefly ana-
lyze the survey responses for each section and then going into
depth about certain properties perceived important or other as-
pects we found relevant. The sections and our preliminary analysis
provided a structure, but we let the interview flow freely. This way,
we obtained additional insights into analysis needs, practices, and
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challenges. For instance, we asked why a certain property was per-
ceived as critical, why it was analyzed or not, and what would be
needed to do so (e.g., presentation or scalability requirements). We
also engaged the interviewee to discuss the feasibility of applying
existing analyses she might not be aware of.

Interviewees. We invited 23 survey respondents who completed
all questionnaire sections for interviews, among which 15 accepted.
The interviews were conducted in person or via phone, typically
lasting around one hour or slighly longer, totaling to 17 hours alto-
gether. The interviews were recorded, stored securely, and transcri-
bed. In the remainder, we refer to individual interviewees using I1,
12, and so on.

3.3 Data Analysis and Interpretation

We analyzed the survey quantitatively by creating diagrams and
manually aggregating responses to questions, and qualitatively by
inspecting responses to the open-ended questions. For obtaining
trends about the importance of certain properties, we created violin
plots (note, the diagrams in the remainder omit the “don’t know”
responses) by assuming a continuous scale, carefully interpreting
these trends, triangulating with qualitative data. Violin plots indi-
cate where most answers of the four-point scale are; for instance,
if most answers regarding the relevance of a particular property
is towards critical, the plot will be thick at that point. The black
dot indicates the median. To analyze the interviews, we used open
coding [62] (a method from grounded theory) [22]: three authors
coded the interviews iteratively, continuously discussing and refi-
ning the codes, but also having a coding workshop with all authors,
until the codes were finalized. Based on the codes, we triangula-
ted results from the survey and interviews; for instance, crossing
information that a certain system property is perceived as critical,
with the details from the respective interview. We report the results
by first providing details about the systems, survey respondents,
and interviewees, and then by using a narrative style for the main
findings. While the relatively low number of survey responses and
interviews did not allow statistical hypothesis testing, we cross-
checked for support in the survey data when interesting conjectures
emerged during analysis.

4 RESULTS

We present our results by first describing our survey respondents,
interviewees, and their configurable systems. Tables 1 and 2 sum-
marize the latter two. We then provide findings related to our five
main analysis categories. We limit descriptive results and exact
statistics, which can be found in our appendix [65], but instead
highlight and discuss our main findings. Table 3 summarizes the
needs and practices observed.

4.1 Survey Respondents and Interviewees

The majority of survey respondents comprised developers (70 %),
followed by software architects (48 %) and team leaders (44 %). Al-
most half had over ten years of experience working with highly
configurable systems, a third between five and ten years. The ethno-
graphics of our interviewees largely resembled those of the survey
respondents (only the average experience deviated slightly).
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Table 1: System characteristics stated by survey respondents

domain system size (LOC)
automotive 27% < 25,000 4%
industrial automation 20 % 25,000-50,000 4%
aerospace&defense 12 %  50,001-100,000 12%
consumer electronics 8% 100,001-500,000 19 %
telecommunication 8% 500,001-1,000,000 27 %
office 8% > 1,000,000 35%
other 20 %
team size number of conf. options
<10 27%  10-50 15%
10-50 39%  51-100 31%
51-100 19%  101-500 12%
101-200 4% 501-1,000 8%
> 200 12%  1,001-10,000 19 %
> 10,000 15%
configurable artifacts option specification
source code 89%  configuration file 44 %
models 70%  variability model 41 %
test cases 52%  in source code 41 %
runtime configuration file 52%  in configurator tool 33%
requirements 48%  database 22 %
other 19%  other 11%
options with dependencies variability mechanism
none 20%  option/feature toggles 67 %
1-25% 36%  configurable build system 67 %
26-50 % 20%  conditional compilation 48 %
51-75% 12%  other 30 %
76-100 % 12%  component/service framework 26 %

4.2 System Characteristics

Table 1 summarizes our subjects’ highly configurable systems, which
cover a wide range of domains, mainly automotive, industrial au-
tomation, and aerospace and defense, among others. The largest
systems (15 % of them) exhibit over 10,000 configuration options.
As expected, the most frequent configurable artifact is source code
(89 %), followed very frequently by models (70 %), but half of the
survey respondents also mentioned test cases, requirements, as well
as runtime configuration files.

Since 70 % of the survey respondents stated that they configure
models, we asked our interviewees about the kinds of models. These
were domain-specific models, such as aircraft simulator models (I4)
in the aerospace and defense domain, and Simulink models in the
automotive domain (I15).

Close to a quarter of the respondents does not declare dependen-
cies between configuration options, while the majority of those who
declare them only does so for 26—-50 % of the options. For instance,
interviewee 12 stated that only few dependencies, mostly optional,
are modeled to reduce complexity. These dependencies are domain,
software, and hardware constraints (I1). For the systems where
dependencies are partly or not at all modeled, our interviewees
explained that this is because: (i) undeclared dependencies do not
cause problems due to the small number of variants (I3, I6, I13),
(ii) relationships for some options are determined at runtime (I4),
(iii) there is lack of time and money, since setting up rules and
calculating possibilities or consequences for certain rules takes too
much time (I4), or (iv) there are too many implicit dependencies in
the source code (I5) that cannot be expressed.

4.3 Analysis of General System Properties
Reliability (67 %), performance (65 %), absence of feature in-
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Table 2: Interviewee ethnographics

role exp.!  domain size?
I1  Team leader, Domain expert, 5-10  industrial automa- 100K-
System architect tion 500K
12 Department lead >10  industrial automa- > 1M
tion
I3 Developer, Team leader, Dom- >10  aerospace & defense ~ 100K-
ain expert, Software architect 500K
14 Developer, Configuration Mana- >10  aerospace & defense > IM
ger
15 Team leader, Software architect 5-10 automotive > 1M
16  Developer, Domain expert, >10  telecommunication 2.5M
Software architect
17 Project manager, Product mana-  5-10  banking/insurance 500K-1M
ger
I8  Developer 5-10  automotive 50K-100K
19 Developer, Modeler, System 5-10  automotive
architect
110 Developer, Software architect 5-10  automotive 500K
111  Developer 5-10  heat pumps
112 Developer >10  automotive
113 Developer, Team leader > 10 automotive 1.2K
114 Developer, Domain expert, > 10 network cameras 50M
System owner, System architect
I15  System owner 5-10  automotive > M

! experience with the system in years 2 system size in lines of code

teraction (65 %), behavioral correctness (62 %), and safety (44 %)
are perceived as the most important system properties. As
shown in Figure 3, assuring these properties for each configura-
tion is primarily perceived as critical, unlike properties such as
security or maintainability. While the differences are small and
likely not statistically significant, the reported percentages confirm
the expected relevance of these properties, which have been con-
sidered in the literature. Furthermore, for example in the case of
reliability, two survey respondents (S1, S6) and two interviewees
(I2, I5) perceived reliability as encompassing other properties such
as safety and security. For instance, a system that crashes due to
some “unforeseen combinatorial path through the code” is deemed
unreliable, insecure, and not meeting safety standards (S1).

We observed strong performance requirements, which are con-
firmed to be challenging to assure for all configurations. Their
violation affects safety and can have serious consequences (I5, 12,
S6).112: “We have time-critical performance [requirements], deviation
of 2ms is a fail” S6: “Our system is used to test telecom equipment
under stress. It is critical that the performance report from our system
is accurate given any configuration or combination of configurations.”

With the exception of cost constraints, all other system proper-
ties (shown in Figure 3) we asked about are assured by, at least, 29 %
of the survey respondents, who confirmed assuring one or more
properties. As expected, reliability is assured by the majority (79 %),
followed by behavioral correctness (71 %), performance (50 %), and
safety constraints (43 %). Safety was largely related to legislation,
especially in the industrial automation and automotive (e.g., carbon
emission or vehicle safety) domain (12, [10).

None of our survey respondents or interviewees assured cost
constraints, but some have expressed the lack of and the need for
tools that would help in cost analysis, for instance, tools to analyze
the cost of adding or removing features (I11, S17), or analyze feature
resource-consumption (I1, I14).

Testing and manual reviews are the most prominent analy-

sis practices. All survey respondents in fact do testing (100 %) for
assuring relevant system properties, followed by manual reviews
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Table 3: Overview of reported needs and associated practices

reported analysis needs

reported analysis practices’

analysis of general system properties (Section 4.3)

analyze reliability, performance, be-
havioral correctness, safety, unwanted
feature interactions

configuration sampling for testing

alleviate need for complex analyses

targeted test case selection
traceability between failed test cases
and configuration options

testing (100 %), manual reviews (67 %),
formal methods (20 %)

experience-based sampling (67 %), syste-
matic sampling (13 %), random sampling
(71%)
modularization of features to enable feature-
based testing using unit tests or to enable
feature-interaction testing using integration
tests; modularization limits test runs

2
exploit recorded database snapshots of confi-
guration option values

variability model analyses (Section 4.4)

analyze configuration validity, model
satisfiability, number of configurati-
ons, validity of edits

analyze impact of quick fixes and
small changes on variability model
reduce test effort

identify technical debt, lack of coding
discipline or missing knowledge

manual review (64 %), scripts (55 %), testing
(18 %), configurator tool (18 %)

2

analyse possible configurations
analyse anomalies of variability model (re-
dundant constraints or dead options)

consistency analyses (Section 4.5)

assure consistency of the variability
model

fast, flexible automated consistency
checking embedded in continous
deployment toolchain

integration of tools handling different
artifacts

manual review (80 %), automated techniques
(40 %), testing (30 %)
2

manual work (e.g., snapshots and manual
import/export)

source-code analyses (Section 4.6)

variability-aware static analysis tools

reduce need for complex analyses

avoid deeply nested ifs and #ifdefs

non-variability-aware static analysis tools
(80 %), manual reviews (70 %), proprietary
scripts (40 %)

adhere to coding standards (90 %), adhere to
company-specific style guides (80 %)

code reviews

feature interaction analyses (Section 4.7)

show absence of feature interactions
analyze feature interactions in loosely
coupled architectures

manual reviews, extensive testing
2

! percentage of survey respondents stating the practice (where applicable)

2no practice reported

(67 %). Only 20 % use formal methods, such as model checking. The
manual review process usually entails manual inspection of one
or more artifacts by the domain experts, for instance, 112 reports
that absence of feature interaction is assured by manually compa-
ring feature specifications, and trying to come up with potentially
unwanted interactions.

70 % of our survey respondents use regression testing. A practice
here is to perform regression testing only for a few selected main
configurations (I12), usually 3-4, because regression tests can be time-
intensive (two days in the case of I12) and the results are analyzed
manually by developers. On the other hand, I6 stated that their
regression tests are run on the stable release of the main branch
and are intended to test that “all the features in the stable branch
still work reliably.”

Additionally, unit and integration testing are also used (I1, I6,
I11). For I6, unit tests are performed by function developers and de-
signers to verify user-visible functional requirements, after which
integration testing is performed for components to include testing
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Legend: 1-not necessary, 2-nice to have, 3—critical

Figure 3: Importance of assuring general system properties

of “non-functional requirements.” Similarly for 111, test scripts are
written for features, when activated and when disabled, for indivi-
dual modules, and for integrated modules I11: “We have test scripts
for both the small modules and also all modules together in the main
module [... ] But when we implement a new feature that is configura-
ble, then we should do a test script for the feature that it works as it
should and we should also do a test script that doesn’t do anything
when it’s not configured.”

Experience-based configuration sampling is dominant, while
systematic sampling is usually not applicable. 87 % of survey
respondents sample configurations by considering known feature
interactions, largely based on developer experience (67 %). Only
13 % use systematic sampling (e.g., sample all combinations of two
options), and 7 % use random sampling.

The reasons why systematic sampling is not used are: (i) there
are too many meaningless combinations to test (I5) and (ii) impor-
tant configurations are usually known (I1, 12, I3, I6). Since most
companies rely on testing (see above), experience is used to sample
relevant configurations. While declaring dependencies in a variabi-
lity model to rule out meaningless combinations could reduce the
configuration space among which to systematically sample, even
this would leave too many meaningless configurations. Moreover,
declaring such dependencies is already perceived as challenging
owing to the high effort required to do so. I5: “In general, that’s one
of the concerns when the modeling is being done, the effort to foresee
all the possible constraints and dependencies sometimes is too high to
have really any effect.”

We dug deeper into the kind of experience used for sampling.
According to our interviewees, it comes from: typical use cases or a
representative set of configurations that customers use (I1, 12, 13, 16),
standard or critical configurations for a company (I1, 12), knowledge
of failures that occur in the after-market (I2), and relevant test cases
frequently executed based on developer knowledge of what might
go wrong (I5). For instance, S3: “Our regression test are based upon
the automated version of our qualification tests. Some parts have been
made specifically to catch some typical issues we have seen.”

In some cases, combinations of these experiences are used. S22:
“[...] includes both configuration options (V8 engine, long-haulage
truck, etc.) and testing conditions (hot climate, mountainous terrain,
etc.). [...] the testing department would usually define some configu-
rations/tests based on experience to increase testing coverage.” It is
also possible to combine systematic and experience-based sampling
due to a very large configuration space. S6: “We try to test all com-
binations (automated tests), but usually some combinations are not
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possible due to large variability, therefore, we often prio some tests to
automate, and that is usually based on experience.”

Feature- and family-based analyses are used, but in a very
limited way. Different strategies are employed to avoid sophisti-
cated analyses. Modularization of features was stated by 70 % of
survey respondents as one such strategy. Three interviewees (I1, 16,
I11) use unit testing for individual modules, and integration testing
for integrated modules. I1: “We have two approaches. One is [... ] to
cover feature by feature that we make sure that it works [... | as inten-
ded. And then we have what we call confident testing where we more
look at the applications where you have bundles of features that are
working together. [... ] not necessarily covering all the requirements
of every feature but covering [...] the interplay between the features
[...]” Based on the classification of analysis strategies by Thiim
et al. [66], we found these to be pragmatic cases of feature-based
analysis, where configuration options are analyzed in isolation, and
family-based analysis, where interactions of configuration options
are analyzed together. However, among our participants, this only
works for coarse-grained features that are modularized. We found
no evidence of any participant being able to do this for cross-cutting
or more fine-grained features.

Effective testing requires targeted test case selection and tra-
ceability. The needs with respect to testing can be roughly catego-
rized into test case selection and traceability. The former is separate
from sampling strategies (where configurations are selected), since
it pertains to the selection of the relevant test cases targeting dif-
ferent code qualities such as criticality or safety (I1), as well as
selecting test cases that target specific features (I5). This is often
challenging because tests themselves are rarely configurable (I2).
Traceability is relevant for understanding which configuration op-
tions were selected when a concrete test case failed (I3, I5). This
can be addressed by using a database snapshot of configurations
and their values to identify which configurations are affected by
bugs reported under a specific customer configuration (I5).

4.4 Variability Model Analyses

Satisfiability of a variability model and validity of a confi-
guration are perceived as the most critical properties. Recall
that we elicited the eight most relevant variability-model proper-
ties (cf. Section 3) for which analyses have been conceived in the
literature [8]. As Figure 4 shows, only two properties are perceived
as critical, by the median of respondents: validity of a configura-
tion—an existing configuration adheres to the variability model
(85 %)—and satisfiability of the model—at least one configuration
exists for the model (56 %).

We asked interviewees why these two properties are deemed
more critical despite them being available in many configurator
tools. They stated that these two properties are most critical due
to quick fixes or one-off changes made to the variability model
for some customers (I12). Such changes have the potential to easily
invalidate the model, resulting in the system not working at all
(I5). Consequently, expensive and time-consuming (and reportedly
sometimes financially risky) rework has to be done to ensure that
the configurable system works (I5, I7).
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The properties of the variability model are mostly assured
through manual reviews. The survey responses show that only
four of the properties from Figure 4, excluding those related to
edits, are assured: (i) validity of a configuration and (ii) satisfiability
of a specification, both assured by 85 % of the respondents, (iii)
number of possible configurations by 33 %, and (iv) list of all possible
configurations by 17 %. The validity of variability-model edits is
assured by 33 % of the respondents. The majority (64 %) assures
these properties through manual reviews, 55 % use scripts (e.g., to
collect statistics on configuration options and their references),
18 % use testing (e.g., regression testing), and only 18 % use the
capabilities of configurator tools. Notably, 17 uses model checking
to assure the validity of configurations. Since only 28 % of the
survey respondents stated to specify configuration options in a
configurator tool, and that over 85 % specify them directly in source
code or use a textual configuration file, it is not surprising that
these properties are mostly assured manually or through tests.

Change-impact analysis of model changes is important, but
should not be limited to the model. While all interviewees often
make edits to their variability models, e.g., adding a new configu-
ration option or changing dependencies, surprisingly, analyzing if
such edits lead to more configurations (generalization), fewer confi-
gurations (specialization) or maintain the number of configurations
(refactoring)—typical analysis reported in the literature [8, 67]—
is not perceived as important. A minority of survey respondents
perceives this analysis as critical (20 % for generalization, 17 % for
refactoring, and 16 % for specialization), while the majority perceive
it as nice to have (58 % for refactoring, and 48 % for specialization
and generalization) or unnecessary (28 % for specialization, 24 % for
generalization, and 17 % for refactoring). Interviewee I5 explained
that such analysis is not critical as long as relevant configuration
options get activated and the system operates as expected. Two
interviewees, however, perceived this analysis as critical, since it is
necessary to gauge the impact of the change (I10) or to exhaustively
test a new addition (I15).

From such explanations, we learned that analyzing the impact
of edits to variability models means more than knowing how the
number of configurations is affected. It is more important to analyze
the impact on other artifacts or the whole system. Indeed, five
interviewees requested specific analyses: (i) assess how a model-
change impacts existing configurations (I10, I15), implementation
artifacts, and system complexity (I1, I114), (ii) assess impact of option
name change without changing its structure and vice-versa (I1),
(iii) assess impact of splitting an option into two or more features
(I1), or (iv) easily understand the impact of switching options on
and of (S16). None of these analyses currently exists.

Finally, one interviewee explained the need for enhanced change-
impact analysis as a tradeoff of adopting a highly configurable
system (instead of using clone&own [24] for realizing variants. I1:
“We do not clone, but the complexity moves from doing so to the
[variability model] [...] where a need for a change potentially affects
all previous (as well as future) configurations, and it can be hard to
know the impact and to ‘fix’ previous configurations.”

Knowing the list and number of possible configurations helps
reducing test effort. Although not considered critically important
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Figure 4: Importance of assuring various properties of the
variability model

by the majority of survey respondents, the list of possible configura-
tions and number of possible configurations were considered critical
by 23 % and 15 %, respectively. As we learned, they help reducing
test effort. 112: “Every new combination of parameters that we do
results in about three month’s time of testing. So, everything we can
do to keep down the amount of configurations is gold for us. So, I
would say that, that is not only nice to have, that is critical.”

Anomalies of a variability model (redundant options, false
optional options, and dead options) indicate a lack of disci-
pline in adherence to coding guidelines and a lack of know-
ledge of a system. Since it is perceived critically important by 21 %
of our survey respondents, we asked the respective interviewees
why they perceived the analysis of anomalies of a variability model
as critical. Two interviewees stated that redundant constraints and
dead options indicate: a lack of discipline in adhering to coding
guidelines (I6), missing knowledge of one’s own system (I1), and
that false options indicate a bad smell or technical debt (I1).

Business priorities and the combinatorial explosion deter-
mine the criticality of addressing anomalies of a variability
model. While anomalies of a variability model were perceived as
critical by some interviewees, others did not share this view. Two
(I2 and I12) stated that they do not consider anomalies, such as
dead options, because: (i) the top management’s business priorities
might prefer investing time and money into adding new features
over addressing dead options, for instance, and (ii) due to a large
configuration space caused by the combinatorial explosion, addres-
sing anomalies of the variability model might introduce new bugs
that might take considerable effort to fix.

Var. model to archtecture

=

Var. model to code

—

Var. model to requirements Var. model to test scripts
2 3 1 2 3

Legend: 1-not necessary, 2—nice to have, 3—critical

Dependency decl. to code

—]

Figure 5: Importance of assuring consistencies between va-
riability model (especially constraints) and other artifacts
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4.5 Consistency Analyses

As Figure 5 shows, all elicited consistency properties were merely
perceived as critical by the survey respondents: variability model to
source code (76 %), dependency declarations to source code (58 %), vari-
ability model to requirements (56 %), variability model to architecture
specification (48 %), and variability model to test scripts (47 %).

Consistency between variability model and source code is
seen as most critical. Six interviewees explained that such in-
consistencies lead to variants that do not implement the selected
configuration or more than the configuration specifies. While rese-
arch on assuring such consistency exists [38, 49, 52, 57, 64], such
approaches typically need substantial adaptation and calibration
effort. Instead, according to I14, effective solutions should: be more
informative or much faster than testing, be flexible and allow incon-
sistencies during intermediary stages of development, and allow
continuous delivery by differentiating between which inconsisten-
cies would or would not impact the next product release.

Manual review is the primary means of analyzing consis-
tency. 80 % of survey respondents manually inspect different arti-
facts in order to assure consistency. 40 % use automated techniques
and(30 % use testing, that is, if a product behaves as expected, then
it is assumed that the dependencies between implementation arti-
facts are consistent. Examples of reported automated techniques
include: an automated build process that checks for dependencies
(S3), a code generator that checks for inconsistencies between the
variability model and source code (S15), and a tool that checks for
architectural violations given a variability model (S22).

Assuring consistency is also a tool-integration problem. Six
interviewees pointed out that they use automated consistency-
assurance techniques. For instance, 16 uses a script to check if
options used in the source code are defined in the variability model;
I5 checks consistency between the variability model and test cases
by mapping test cases to functionalities under which they are tes-
ted for each configuration (this mapping is partly tool-supported);
16 uses functional tests to check consistency between the varia-
bility model and a requirements database. Connecting variability
modeling tooling to, mainly, requirements management tools (I6),
and tools for deriving variants (I4), is primarily a tool-integration
problem. An example is described by 14 who raises the need for a
tool that would track each configuration-option selection across
the complete tool chain, when deriving a variant.

4.6 Source-Code Analyses

As shown in Figure 6, only two code properties were perceived as
critical in the survey: absence of deep nesting of #IFDEFs and #IFs
(40 %) and low scattering degree of configuration options (44 %). The
remaining properties were all perceived as nice to have. We asked
the interviewees to elaborate their answers regarding the criticality
of different code properties.

Manual reviews and non-variability-aware static analysis tools
are the primary means of analyzing source code. 70 % of the
survey respondents assure code properties using manual reviews,
followed by 40 % who use in-house scripts. Even though, 80 % as-
sure code properties using static analysis tools (e.g., Coverty, Code
Sonar or PC-Lint), none is variability-aware.
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Figure 6: Importance of assuring code properties

Adherence to coding standards can alleviate the need for
code analysis. The survey asked about coding guidelines, spe-
cifically about the adherence to coding standards such as MISRA,
and company-specific code style guides. Although both were jud-
ged as nice to have, the former is assured by 90 % and the latter
by 80 % of the survey participants. Considering that MISRA is a de
facto standard, the high percentage assuring compliance is not sur-
prising. However, the reason for enforcing adherence to company-
specific code style guides varies. Interviewee I1 stated that such
rules are crucial for enabling the collaborative development among
geographically distant teams. Other participants create rules to
facilitate script-based static code-analysis, for instance, 110: “There
are sometimes [... ] static variables that are used in one C-function
and then they are used again in another C-function, which makes it
really difficult for our parsing to see what is going on.”

Deep nesting of IFs and #IFDEFs is avoided. Although percei-
ved as critical, avoiding deep nesting is in most cases only assured
through code reviews based on aforementioned coding standards
(I1, I5, 12, 110). Another practice seen is to create explicit rules li-
miting the nesting to three levels. Other interviewees stated that
decisions are made on a case-by-case basis, even though, they admit
that the consequences of deeply nested structures can be serious
(I2, 11, 110). 110: “the cyclomatic complexity in the tool that we use
goes to the maximum because there [are] a lot of ways through the
code. So the potential of something going wrong is very high.”

4.7 Feature Interaction

Although feature interaction was not a separate category in the sur-
vey, interviews regularly included discussions about the importance
and the difficulties that hinder such analysis. The main observation
from the survey is that 65 % of the respondents perceive absence
of feature interaction as a critical property—in line with the 74 %
of respondents stating that sometimes specific combinations of
options cause problems.

Absence of feature interactions is also primarily analyzed by
testing or manual reviews. In cases when the absence of feature
interaction is assured, it is usually done through manual reviews (19,
I12) or extensive testing (110, I11). Still, recall the limited sampling
observed, disregarding more systematic coverage criteria. Four in-
terviewees stated that assuring the absence of feature interactions
would be nice, but not a game changer (13). Reasons for not percei-
ving feature interaction as a big problem are the manageable size of
embedded software, organizational culture that emphasizes feature
modularization, and mandatory regression testing.
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Analyzing feature interactions in large, loosely coupled sys-
tems is challenging. A specific challenge for feature interaction
in large systems that have loosely coupled modules was explained
by 114: “if you look into larger systems, [...] different processes [...]
communicate over IPC (Inter Process Communication) and then, you
cannot do this analysis with a compiler.” This can be extended to
distributed embedded systems where a feature implementation is
distributed across several computational units.

5 SUMMARY AND IMPACT

We now summarize our main results and discuss their implications
for practitioners and researchers.

Our subject systems can be seen as very typical and substan-
tial cases of industrial highly configurable systems from diverse
domains and of varying scales. While their main characteristics
(Section 4.3), including the configuration mechanisms and techno-
logies they use, largely resemble those of systems used in empirical
studies or evaluations of analysis techniques (e.g., open-source sys-
tems software), we observed a mismatch between typical assumpti-
ons made in the literature and the actual practitioners’ needs. Cer-
tain development structures and system characteristics—often ab-
stracted away when proposing new analysis technologies—appear
to hinder many of the more sophisticated analysis techniques.

Identified Needs (RQ1). We both confirm and refute common
assumptions. First, the severity that our practitioners express for
the common properties suggested in the literature confirms their
relevance for highly configurable systems. However, most of the
variability-model-related analysis properties are not seen as impor-
tant by our practitioners. The proposed change-impact analyses are
not seen as sufficient, because they are confined to the model and its
configuration space, not providing holistic insights on impacts on
implementation artifacts. Assuring consistencies between artifacts
(especially variability model and source code) is considered highly
critical, as well as identifying unwanted feature interactions.
Identified Practices (RQ2). We observed (as expected) testing as
the dominant practice. Interestingly, the configuration sampling
criteria that are necessary for testing primarily rely on experience.
Hardly any systematic sampling or random sampling is used. Our
results also suggest that the latter are not even applicable given
the configuration spaces that would still leave too many irrelevant
variants. Furthermore, hardly any formal method is used (apart from
limited model checking). Besides testing, manual work, such as code
reviews, is exercised, because often the variability models required
for more sophisticated analyses do not exist or are not expressed in a
form that can be used as an input. The lack of integrated tool chains
is also a factor, since artifacts required for performing analyses
are managed in different tools. Interestingly, the experience of the
developers and rules, such as coding standards, but also engineering
practices such as modularization of code, often alleviate the need
for sophisticated analyses of the highly configurable system.
Research Directions. Our results suggest to refocus some rese-
arch efforts towards the actual needs our study identified. General
research directions could be the following.

Improve engineering methods to alleviate the need for analyses.
Since most analyses need substantial investment and adaptation
towards the specific highly configurable system and its engineering
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environment, investigating ways to avoid them in the first place is
a worthwhile research avenue.

Conceive lightweight analyses that account for the diversity of
artifacts and tool chains, or that are even independent of these.
At least, authors of new analysis techniques should clearly state
assumptions on how variability is expected to be modeled and
manifested in the software artifacts.

Unify variability management and modeling concepts. We again [11,
13] observed a variety of variability and configuration mechanisms.
Addressing this tool-integration problem appears to require uni-
fying variability concepts with concepts from commonly used tools,
especially version-control systems [44].

Conceive hybrid analyses that combine manual reviewing with
variability-aware analyses. Recall that manual, case-by-case decisi-
ons on actions to be done upon analysis results cannot be avoided
and that state-of-the-art analysis tooling requires substantial setup.
Furthermore, variability-aware analysis are static by nature and,
therefore, typically produce many false positives. Thus, hybrid
analysis techniques could be efficient.

With respect to concrete analysis techniques, our results suggest
the following main research directions.

Improve testing techniques for highly configurable systems, es-
pecially automated test-case generation, test-case selection based
on quality properties (e.g., safety), and traceability management
between test cases and configurations that failed tests.

Investigate experience-based configuration sampling, especially
identify the sources of experience and map these sources to the
effectiveness of finding bugs. This requires experiments and field
studies. Furthermore, combining experience-based sampling and
systematic sampling seems to be a worthwhile research direction
based on our results.

Conceive change-impact analyses that are not confined to the vari-
ability model, but offer insights on the impact of changes to other
artifacts when done to the variability model or to the implementa-
tion artifacts. Concisely and effectively presenting change impacts
to engineers is another challenge.

Realize quicker and more flexible consistency checking, for in-
stance, to support continuous integration and deployment. The
feedback loop (from making changes to being alerted about incon-
sistencies) needs to be much shorter.

Conceive feature-interaction analyses for large and loosely cou-
pled systems. These analyses should take more diverse artifact
relationships into account and should go beyond static analyses
currently offered by compilers.

Finally, our study again emphasized that regular feedback loops
with practitioners are crucial, steering research efforts away from
analysis techniques that might be low-hanging fruits, but are not
perceived as needed in the real world.

6 THREATS TO VALIDITY

Construct Validity. Our survey and the interviews used the con-
cept of highly configurable system to ensure that all practitioners
could describe their practices without the need to adopt a specific
terminology. We used terms such as configuration option to refer
to the concept of feature, configuration specification to refer to va-
riability model, and provided short explanations for non-trivial
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questions to mitigate potential misinterpretations. We iteratively
developed our questionnaire and our interview guide using pilot
runs already with industrial participants. To ensure completeness,
participants could provide additional information. Finally, we used
violin plots to visualize trends in the responses about the severity
of different analyses. So, we interpreted the four-point scale as
continuous with equal distances between points, but did not use
this interpretation as a foundation for statistical analysis.

Internal Validity. We selected the participants based on their in-
dustrial and technical experience. This experience paired with the
combination of survey and interviews provided both general per-
spectives on analysis techniques and on assured properties, as well
as specific insights with respect to how analyses are performed and
what the needs are. Since all subjects were interested in exploring
new analysis techniques and were aware that their input might
shape future research, they were very open about the current li-
mitations and had no incentive to present their current practices
in a better light. Finally, even though, the interviews were con-
ducted by different researchers, the recordings were exchanged for
transcription and for coding to avoid potential biases.

External Validity. All our study participants work with highly
configurable systems of varying sizes and maturity, covering a wide
range of domains. The needs we elicited and the insights we derived
can be applied to highly configurable systems in similar domains.
Some needs and practices reported are dependent on a concrete
system, but we identified these and marked them accordingly if
they were mentioned.

Conclusion Validity. Our qualitative analysis depends on our
interpretation. However, we mitigated bias by collaboratively co-
ding the interviews using open coding, cross-checking the codes,
refining the codes, and conducting a coding workshop by all aut-
hors. We used triangulation and carefully formulated and verified
insights and conclusions to enhance our study’s validity.

7 CONCLUSION

We presented a study on the needs and practices of analyzing highly
configurable systems. We studied substantial industrial cases co-
vering a wide range of domains, development scales, and system
complexities. Mapping existing research results to industrial needs
and practices is intrinsically difficult, given the different cultures,
terminologies, and system architectures in practice. Our focus was
to deeply understand each case using expert interviews, while also
going into a reasonable breadth (still focusing on response quality)
with our survey. We found rather pragmatic practices and a surpri-
singly low adoption (and awareness) of academic analyses, even
though, most of the studied companies have research collaborations.
As future work, we intend to map needs to the state of the art from
the literature and conceive a research agenda.
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