
FLOrIDA: Feature LOcatIon DAshboard for
Extracting and Visualizing Feature Traces

Berima Andam
Chalmers University

of Technology, Sweden
berima@student

.chalmers.se

Andreas Burger
ABB Corporate

Research, Germany
andreas.burger
@de.abb.com

Thorsten Berger
Chalmers | University

of Gothenburg, Sweden
thorsten.berger
@chalmers.se

Michel R. V. Chaudron
Chalmers | University

of Gothenburg, Sweden
michel.chaudron

@cse.gu.se

ABSTRACT
Features are high-level, domain-specific abstractions over im-
plementation artifacts. Developers use them to communicate
and reason about a system, in order to maintain and evolve
it. These activities, however, require knowing the locations
of features—a common challenge when a system has many
developers, many (cloned) variants, or a long lifespan. We
believe that embedding feature-location information into soft-
ware artifacts via annotations eases typical feature-related
engineering tasks, such as modifying and removing features,
or merging cloned features into a product line. However,
regardless of where such annotations stem from—whether
embedded by developers when writing code, or retroactively
recovered using a feature-location technique—tool support
is needed for developers to exploit such annotations.
In this tool demonstration, we present a lightweight tool

that extracts annotations from software artifacts, aggregates
and processes them, and visualizes feature-related informa-
tion for developers. Views, such as which files implement a
specific feature, are presented on different levels of abstrac-
tion. Feature metrics, such as feature size, feature scatter-
ing, feature tangling, and numbers of feature authors, are
also presented. Our tool also incorporates an information-
retrieval-based feature-location technique to retroactively
recover feature locations.

CCS Concepts
•Software and its engineering → Maintaining soft-
ware; Abstraction, modeling and modularity; Soft-
ware product lines;

Keywords
features; feature location; visualization; tool support

1. INTRODUCTION
The notion of feature is commonly used when engineering
software systems. A feature abstracts over concrete software

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

VaMoS ’17 February 01-03, 2017, Eindhoven, Netherlands
© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4811-9/17/02.

DOI: http://dx.doi.org/10.1145/3023956.3023967

artifacts, such as code, requirements or models. Developers
use features for communicating and reasoning about a system,
as well as keeping a comprehensive understanding of it. Using
features is especially helpful when many variants of a system
exist, as features provide an intuitive way of distinguishing
individual variants [7, 4, 8].
Many software-engineering activities are centered around

features [19], such as extending or removing a feature, prop-
agating a feature across variants, or consolidating cloned
features. All these activities require developers to under-
stand the features that exist in a system as well as their
exact locations in the artifacts. Unfortunately, maintaining
or recovering feature locations can be a daunting task [10].
For instance, externally kept feature-location information
may quickly become inaccurate when it is not continuously
updated—a laborious and error-prone task.
We rely on feature locations documented as annotations

embedded in software artifacts. Such embedded annotations
have previously been shown as beneficial for engineering
software with many variants [15, 19], especially when vari-
ants are not realized as a software product line [3, 11, 2]
with an integrated platform, but using clone&own. Adding
such annotations to artifacts is cheap, while the mainte-
nance effort is low, as they naturally co-evolve with their
artifacts (as opposed to externally kept feature locations),
which significantly reduces manual updates [15].
However, tool support is needed to exploit embedded

annotations. In large systems with many (cloned) vari-
ants, the number of features and annotations may be huge—
challenging developers who need to quickly understand how
a specific feature is realized. Thus, visualizations and aggre-
gations of the features and their locations are required.
In this tool demonstration, we present the lightweight tool

Feature LOcatIon DAshboard (FLOrIDA) to support feature-
related engineering activities. FLOrIDA extracts embedded
annotations from software artifacts (e.g., requirements and
code), processes them, and presents various views visualizing
features and their locations to the developer. The views com-
prise a feature tree, visualizations (e.g., which files or folders
realize features of interest), and various metrics that help
understanding core characteristics of features in a system.
FLOrIDA addresses two main use cases. Its primary use

case is to continuously support developers during engineering,
encouraging them to add features and annotations. In this
light, FLOrIDA’s views help in keeping an overview under-
standing of a system and its variants. FLOrIDA’s secondary
use case is feature-location recovery. To this end, it incor-
porates a simple, automated feature-location technique [24],

http://dx.doi.org/10.1145/3023956.3023967

which proposes annotations that can then be explored by
developers in order to be confirmed, removed or adjusted.
Both use cases aim at supporting feature-based develop-

ment without having established a software product line
with an integrated platform. In other words, the embedded
annotations represent traceability, but not variability infor-
mation (e.g., represented using #IFDEFs). The latter only
represent optional or alternative artifacts (e.g., code), but
do not necessarily express the location of software features.
In fact, this difference distinguishes FLOrIDA from com-
mon variability-management tools, such as pure::variants,
Gears or FeatureIDE. Furthermore, FLOrIDA aims at be-
ing lightweight instead of depending on a larger tool-chain,
specifically to support feature-based development without
having established a product line relying on an integrated
platform and systematic variability management. Yet, know-
ing feature locations is essential for merging cloned features
to eventually adopt a software product line—introducing
variability annotations to account for differences between
cloned features or to make features optional.
The tool FLOrIDA, its source code, a user guide, and links

to repositories with open-source projects that have features
and embedded annotations, are available online.1

2. MOTIVATION AND BACKGROUND
Feature Location. Knowing the source artifacts of a soft-
ware feature is required for many software-engineering tasks.
However, feature locations are often not documented explic-
itly, and the knowledge about a feature’s locations quickly
deteriorates after development. Consequently, much of a
developer’s time is spent searching feature locations [27, 21,
10, 24] for performing feature-related tasks, such as extend-
ing or removing a feature. Moreover, if a system has many
variants, tasks requiring feature-location knowledge also com-
prise propagating features across variants or merging cloned
features when establishing a software product line.
Feature-Location Recovery. Retroactively recovering
feature locations is costly and error-prone. Although au-
tomated feature-location techniques [24] might help, they
usually provide a low accuracy and require substantial effort
for their application—still leaving the majority of the work
to the developers in large systems. Furthermore, the auto-
matically identified locations are typically relatively coarse-
grained, on the file- or function/method level, although fea-
tures are often more fine-grained, comprising just one or few
lines. Consequently, the identified feature locations need to
be adjusted, which requires tool support for reasoning about
the locations.
To prevent expensive feature-location recovery, we believe

that features and feature locations should be continuously
recorded during development—when the knowledge about
features is still fresh in the minds of developers.
Embedded Feature Annotations. To record feature lo-
cations, two storage strategies are possible. Locations can
be stored outside the source artifacts (i.e., external storage,
such as in a traceability database) or directly within the
artifacts. Since the external storage of feature locations (e.g.,
in a traceability database) is brittle and requires continuous
updates, we rely on an internal storage strategy.
We adopt embedded feature annotations as proposed by

Ji et al. [15]. Embedding the feature-location information
1https://bitbucket.org/berandam/florida

facilitates keeping it updated when the codebase evolves. A
case study [15] shows that the cost of creating and maintain-
ing the annotations is low to negligible, while the benefit
for feature-related activities is substantial. Specifically, 18%
of the recorded feature locations as annotations saved 90%
of feature-location costs needed for typical feature-related
activities. The study also showed that many of the annota-
tions naturally co-evolved with the artifacts (e.g., when code
is moved), not requiring active annotation maintenance.
Adoption of Software Product Lines. Software product
lines often arise from clone&own-based development [9]. In-
stead, of conceiving a product line as an integrated platform
from the very beginning, with features being modeled in a
feature model and an explicit mapping between optional fea-
tures to source artifacts (e.g., using variability annotations,
such as #IFDEFs), organizations often start with one product
in order to clone and adapt it when new requirements emerge.
Later, when the need arises to consolidate the cloned prod-
ucts into an integrated platform (a.k.a., software product
line), the knowledge about features and their locations needs
to be recovered—a process that can take years [14].
We believe that features and their locations should be

recorded early—when they are implemented—to avoid high
costs for retroactively identifying features and their loca-
tions. Instead of migrating clone-based products in a costly
and risky process, we strive to establish a truly incremental
product-line adoption process—a.k.a., the virtual-platform
approach [2]. This process should support using only a
subset of product-line concepts (e.g., features, traceability,
configurator, preprocessor or build system), allowing a truly
incremental adoption of a product line, where an incremental
investment (e.g., introducing features) provides an incre-
mental benefit (e.g., keeping an overview understanding of
features across cloned products).
Product-Line Engineering Tools. Many product-line en-
gineering and feature-modeling tools, such as pure::variants,
Gears, and FeatureIDE exist. These provide facilities for
modeling features and mapping optional features to code
using variability annotations (e.g., #IFDEFs). However, these
tools require an already established product line with an
integrated platform and focus more on developing variable
software artifacts, less on providing feature-traceability sup-
port. In fact, variability annotations and traceability an-
notations are different. For instance, consider two cloned
features, denoted using traceability annotations. When merg-
ing them into an integrated platform, variability annotations
will only be added around their differences. Furthermore, all
these tools are full-blown IDEs. Instead, our tools strives
to be lightweight, easily usable in addition to existing tools,
support traceability annotations, and focuses on single or
clone-based systems.

3. TOOL OVERVIEW
The tool FLOrIDA aims at encouraging developers to em-
bed feature-location information into source artifacts and
to exploit this information for feature-related engineering
activities. We designed FLOrIDA as a lightweight tool that
comes within one binary without requiring any installation
procedure. It is implemented as a stand-alone Java program,
which allows running it on any Java-supported platform.
Finally, the embedded annotations are independent of the
target programming language, so any kind of artifact can be
annotated as belonging to a feature.

https://bitbucket.org/berandam/florida

Annotated Project Source

Feature Metrics

Graphical Views

adds / edits annotations

Feature-Location Techniques

Lucene

Lucene & PageRank

observes and browses
Developer

identifies feature
locations and
proposes
annotations

Confirm and
edit annotation
proposals

use case 2

Key:

use case 1

done by feature
dashboard

generates views
from annotations

describes features

Annotation
Proposals

Not-Annotated
Project Codebase

annotates source with
features

initiates feature-location technique
use case 1 & 2

input

adds/edits feature model

.cpp

.featuredescription featuremodel.cfr

.feature-file.feature-folder

1

2

3
4

5

6

7

9
8

10

Figure 1: Annotating and displaying feature traces

Figure 1 summarizes FLOrIDA’s two main use cases. For
both, a developer starts the tool and selects the root di-
rectory of the project’s codebase (large, gray folder on the
top-left of Figure 1) that is or should be annotated. It then
builds an (internal) model containing the files in the project,
the declared feature model, and then associates the files to
the features based on the embedded annotations. Using
this model, FLOrIDA generates graphical views and met-
rics (arrow ¶ in Figure 1), which supports developers who
observe (arrow ¿ in Figure 1) these for reasoning about the
system, keeping an overview understanding of the features,
and to browse individual features. In addition, FLOrIDA
provides a feature-location recovery technique to suggest
feature locations in legacy (i.e., not annotated) code.

3.1 Use Case 1: Immediate and Continuous
Recording of Feature Locations

FLOrIDA primarily aims at encouraging and supporting
developers to continuously create and maintain traceability
information (i.e., features and feature annotations) during
development. Immediate and continuous annotation is bene-
ficial as at this point, the knowledge about the feature and
its location is still fresh in the developer’s mind. In Figure 1,
the blue arrows illustrate this use case.
For instance, when adding a feature, the developer records

it in the textual feature model at the respective location
in the feature hierarchy (arrow ¸ in Figure 1) and adds
annotations around the newly added code belonging to the
feature (arrow ¼ in Figure 1). Likewise, when removing
a feature, the respective declaration in the feature model
needs to be removed (arrow ¸ in Figure 1). Code changes
might also require changing the feature declaration and the
annotations (arrow ¼ in Figure 1). A complete list of patterns
on how to create and maintain the annotations is available
by Ji et al. [15].

FLOrIDA observes files in the project in order to track an-
notation changes in the files. To make the process of tracking
files efficient, FLOrIDA hooks into the file system and listens
for changes to files in the project instead of continuously
traversing the files checking for changes. This makes it possi-
ble for a developer to interactively change annotations in the
project from her favorite IDE, with FLOrIDA’s views updat-
ing accordingly. Since only files that change are updated, it
is scalable enough to be used on systems of considerable size
(Evaluated with 3.2 MLoC).

3.2 Use Case 2: Feature-Location Recovery
Alternatively, FLOrIDA can be used to retroactively re-
cover and annotate artifacts with features using a built-in
feature-location technique. This use case applies when fea-
ture locations were not recorded and the original developers
are not (or only limited) available. In Figure 1, this use case
is illustrated by orange arrows.
To use this feature, the developer must first create a

feature-description file (.featuredescription) and place it at
the project-root-directory. In this file, she must provide a
description for each feature of interest using natural language
(arrow » in Figure 1). She can then initiate FLOrIDA’s fea-
ture location (arrow ¹ in Figure 1), which uses the provided
description file (arrow ¾ in Figure 1), to identify and propose
feature locations for each feature (arrow · in Figure 1). The
developer can then confirm, reject or edit the proposed fea-
ture locations (arrow º in Figure 1) before asking FLOrIDA
to annotate the project source with the accepted feature
annotations (arrow ½ in Figure 1).
Recall that feature-location techniques can be very inaccu-

rate [24] and normally require manual work. Thus, FLOrIDA
can be used for reviewing the automatically proposed an-
notations. Specifically, when the feature-location technique
proposes files belonging to a specific feature, developers can

Controller
XOR CPU

Athlon 64
Sempron

Application
Lighting
Heating
Flow Control

Bus Types
BACnet
PROFINET IO

Report Format
CSV
XML

Figure 2: Example feature model in Clafer syntax

confirm the files. If the confirmed files contain in-file annota-
tions, the latter are tagged so that they are distinguishable
from manually created or manually confirmed ones.

3.3 Implementation
The implementation of FLOrIDA is divided into four parts.
The first part, the annotations extractor, recursively tra-

verses files and folders of the codebase to gather embedded
annotations. The parser creates an internal model of the
project that contains nodes for the source artifacts (files
and folders) and the features, which are associated based
on the annotations. For each file, it also checks for embed-
ded (in-file) annotations (e.g., //&line[System Monitor],
see Section 4). If an annotation is found, the file is associ-
ated with the respective feature(s), and the specific lines are
stored in the internal model.
The second part, the metrics calculator, derives met-

rics based on the feature model and the annotations. No
programming-language- or project-specific information is
taken into account, except for the metric NoAu (number
of authors, see Table 1), which is extracted from author
information embedded in comments.
The third part, the visualization module, is responsible for

rendering the graphical views. The graphical visualizations
are done with the help of PLANTUML2, which internally
uses the DOT [12] graphics library.
The fourth part, the feature-location module, relies on the

algorithms PageRank and Vector Space Model implemented
by the Lucene3 search engine. These algorithms have been
used in previous work for feature location [5].

3.4 Example
In the remainder, we will explain the annotation system,
present the views that our tool provides, and discuss the
feature-location technique. Our running example is a com-
mercial, embedded industrial-automation system, which was
used to evaluate FLOrIDA’s views and feature-location tech-
nique. The system was developed by many different teams
over decades, now comprising a codebase with 3.2 MLOC of
C and C++ code. All code excerpts, features, and figures
are anonymized.

4. EMBEDDED ANNOTATIONS
We now explain the use of the embedded annotation system
leveraged by FLOrIDA, illustrated using excerpts from our
running example. First, we explain the feature model, then
how files and folders are mapped to features, finally how
parts of a file are mapped.
2http://plantuml.sourceforge.net/index.html
3https://lucene.apache.org

Athlon	64:	AMDmodelbred.c,
Processorformat.cpp,
Socket751.cpp,
EquivalencControl.cpp;

Sempron:	SempronChipUpdate.c,
FM2Sempron.c,
MemoryManagSemp.c;

(a) .feature-files

Athlon	64:	Firmware,
Cache,
SocketNative,
AthlonSafetyModule,
AnthlonClockWork;

Sempron:		SempronUpdate,
Microprocesses;

(b) .feature-folders

Figure 3: Examples of mapping features to files and folders

Feature Model. To initialize the project, the developer
first creates a simple, textual feature model in the Clafer syn-
tax [1], saved as featuremodel.cfr and stored in the project’s
root folder. Any simple text editor suffices to edit the model.
The top feature should be the name of the project.

Subsequently, for both use cases, features are added to this
model: one feature per line, with the feature hierarchy being
expressed by indentation—a Clafer convention. Figure 2
shows an example of such a Clafer feature model.
Although the Clafer language is much richer, we only

exploit it for creating a feature hierarchy. Yet, developers
could also add domain-specific feature dependencies into the
model (e.g., feature groups, such as the XOR group CPU in
Figure 2), which could be exploited later when propagating
features across cloned variants or merging variants.
To relate parts of an artifact to features, embedded anno-

tations (escaped as comments) are used. To relate a whole
artifact (e.g., source file) or a whole folder to one or more fea-
tures, textual mapping files are added to the folder structure.
These traces relate artifacts to features, which are declared
in a simple, textual feature model in the Clafer syntax [1].
File and Folder Annotations. To associate whole source
artifacts with features in the model, the developer creates
special mapping files. Specifically, to associate files in a folder
with a feature, a simple text file .feature-file has to be created
within the folder. Each line in the file contains a mapping
between one or multiple features and a file using the syn-
tax featureName: fileName(,fileName)*, as shown in Fig-
ure 3a. Mapping whole folders to features is similar. The de-
veloper creates a .feature-folder file in the parent folder. Each
line in the file maps a feature to one or multiple folders us-
ing the syntax featureName: folderName(,folderName)*,
as shown in Figure 3b.
In-File Annotations. Annotating parts of (non-binary)
software artifacts with features is slightly different. To an-
notate multiple lines, the developer simply surrounds them
with a beginning tag //&begin[featureName] and an end-
ing tag //&end[featureName], see line 4 and 10 in Listing 1.
If only one line should be associated to a feature, the de-
veloper can use a single line annotation with the syntax:
//&line[featureName] on top of the line of code as shown
for example in line 1 of Listing 1. Note that in our examples,
the comments (//) are C/C++ specific. For other languages,
the tags should be used within the respective commenting
characters.
Feature References for Ambiguous Feature Names.
In feature annotations, features are referenced using their
least-partially-qualified (LPQ) names. These are usually
just the feature names if they are unique within the feature
model (which is the case for all features in our example).
However, if a name is not unique, then it must be qualified
partially—just enough to make the reference unique.
For example, the feature Sempron has a unique name in

http://plantuml.sourceforge.net/index.html
https://lucene.apache.org

1 ////&line[System Monitor]
2 void HEAPUTILModuleOp(tModOp ModOp)
3 {
4 //&begin[State Visualizer]
5 i f (ModOp == CloseModOp)
6 {
7 //#12024−Remove warnings
8 // f o r GNU compi ler
9 }

10 //&end[State Visualizer]
11 }
12 ////&line[Report Maker]

Listing 1: Annotated source code

the model and can be simply referred to by its name. If this
name occurred twice in the model (e.g., if another feature also
named Sempron occurred under the feature Application),
then both must be qualified to uniquely identify them from
each. Using their LPQ name, features could be referenced as
application::sempron and cpu::sempron. While fully qual-
ified names could also be used (e.g., ::controller::cpu::sempron),
they are much longer and more brittle as compared to the
LPQ names when the feature model evolves.

5. FEATURE-ORIENTED VIEWS
We now present the graphical views and metrics that FLOrIDA
provides for developers.

5.1 Browse Feature View
A developer can select a feature to show the artifacts an-
notated with the feature. She can then select a source file
in order to explore and to analyze the source code. Any
embedded annotations within the source file are highlighted
with the assigned color of the feature. This option helps to
clearly demarcate to the user where the annotated imple-
mentation of a feature begins and ends. Figure 4 shows such
a demarcation.

5.2 Trace Views
A developer can select one or multiple features from FLOrIDA’s
displayed feature tree. Then, it displays the implementing
files of the feature(s) and a graphic visualization of this
relationship. When more than one feature is selected, the
visualization also shows the interaction between features in
terms of shared implementing source artifacts. The visual-
izations can be on the file level or folder level, as shown in
Figures 5 and 6.
FLOrIDA’s file-level-visualization (Figure 5) shows the re-

lationship between a selected feature(s) and its implementing
artifacts. When a feature is selected by a user, a feature
node is created by FLOrIDA for that feature, and a color
is assigned. For each of its implementing artifacts, a source
node is created and an edge between the source and the

Figure 4: Demarcation of feature locations in source code

Figure 5: Feature-file trace view

feature is drawn, using the same color as assigned to the
feature. The colors help to highlight the interactions between
features when they are implemented by the identical source
artifacts.
Developers can also explore a feature implementation on

the folder level (Figure 6). When such a request is made,
FLOrIDA creates a feature node just as in the case of the
file-level visualization. Thereafter, for every folder that is
annotated as implementing the selected feature(s) (in .feature-
folder), or that contains a file implementing the feature (in
.feature-files), a folder node is created. Then just as in the
case of the file-level visualization, an edge is created between
each feature and its associated folders.
In the case of in-file annotations (i.e., annotations on a

lines of code level), FLOrIDA creates an in-file annotation
node for the annotated code. An edge is then drawn from
the feature to the created node using the feature’s assigned
color (Figure 7).

5.3 Metrics Views
To enhance the understanding of feature’s, we provide feature,
folder, and project metrics. We define all the currently
supported metrics in Table 1.
A user can view metrics related to a feature(s) of interest.

The user does this by selecting the said feature(s) and then
selecting the metrics tab. FLOrIDA then displays several
metrics describing the feature and its implementing artifacts

Figure 6: Feature-folder trace view

Figure 7: Visualization of an in-file annotation

and their relationship.
Feature metrics describe each feature’s relationship with

its implementing artifacts, as shown in Figure 8. Some of the
metrics are well-known feature-related metrics, such as those
provided by Liebig et al. [16] and Berger et al. [6]. We use
the established terms, but even though we write “code” as in
LoFC (lines of feature code), we actually count the related
lines in any kind of non-binary artifact. Feature metrics are
also shown directly on each feature node in the trace views,
as shown in Figure 9.
Finally, the folder metrics describe each folder and its

relationship to the features in the system, and the project
metrics provide some aggregate numbers about all features
that exist in the whole project.

6. FEATURE-LOCATION RECOVERY
Feature locations can also be retroactively recovered using
FLOrIDA’s built-in feature-location technique. To use this
functionality, the developer has to, besides defining a feature
model (featuremodel.cfr) of the system, provide a descrip-
tion of each feature defined in the feature model. To do
this, the developer must create a description file .feature-
description in the project’s root folder. Inside this file, a
description for each feature is specified using the syntax
featureName∼featureDescription. When FLOrIDA’s auto-
mated feature-location option is selected, it will process
the project, locate, and automatically create annotations in
the code-base. To distinguish them from manually created
ones, a flag [auto] is appended to each line, for instance
featureName:fileName [auto].
Two choices of feature-location algorithms are provided

from which the developer can select: Lucene and Lucene
combined with PageRank. The choice allows exploring the
accuracy of two different algorithms.
The Lucene algorithm uses the provided feature description

information to automatically retrieve the most semantically
similar source artifacts. Lucene implements the Vector Space
Model algorithm used to calculate similarity of a body of
text to another. Every document (in our case files; support
for the method level is planned) is represented as a vector
where the contents are the words in the document. Similarity
between the feature’s description and each document is then
calculated by comparing how many unique words in the
feature’s description appear in the document. Unique words
are obtained by using the Term Frequency/Inverse Document
Frequency algorithm. Words that appear in all documents
are weighted less than words that appear in a few documents.
A code-file’s similarity to a feature is, thus, the combined
score of each unique word in the code file that also appears
in the features description.
The Lucene with PageRank algorithm first uses Lucene to

calculate each file’s similarity with the feature of interest, but
then further refines this ranked list of similar artifacts using

Table 1: Feature, folder, and project metrics
Metric Description

Feature Metrics
SD Scattering Degree: total number of all annotations

directly referencing the feature (i.e., in-file, folder,
and file annotations referencing it)

NoFiA Number of File Annotations: total number of file
annotations directly referencing the feature

NoFoA Number of Folder Annotations: total number of
folder annotations directly referencing the feature.

TD Tangling Degree: number of other features that
share the same artifacts (or parts of such) with
the feature. Two features share (parts of) artifacts
when the latter is annotated with both features.

LoFC Lines of Feature Code: lines of code belonging to
artifacts, either directly annotated, or indirectly
(when a folder is annotated, all descendants are
taken into account)

ND Nesting depths of annotations: Maximum
(MaxND), Minimum (MinND), and Aver-
age (AvgND) nesting depth the annotations
directly referencing the feature. The project’s root
folder has depth 0 (and so has any file contained
in it). Each sub-folder increases the depth by
one, a file inherits the depth of its containing
folder. The depth of a (top-level, i.e., non-nested)
in-file annotation is the depth of the file increased
by one. Since in-file annotations can be nested,
each nesting increases the depth by one. All
nesting-depth metrics are calculated relative to
the project root folder.

NoAu Number of Authors who contributed to a feature’s
artifact. Author information is automatically ex-
tracted from author tags (format: “Author: first-
name lastname”) in comments wrapped by “/**”
and “*/” in the source code if they exist.

Folder Metrics
NoF Number of Features: total number of features di-

rectly referenced in annotations (folder, file, in-file)
of the folder and any of its descendants

LoFC Lines of Folder Code: total lines in any descendant
file of the folder

NoFi Number of Files: number of all descendant files of
the folder

Project Metrics
NoF Number of features in project
Total LoFC Total Lines of Feature Code: sum of LoFC (all fea-

tures)
Avg. LoFC Average Feature Lines of Code: sum of LoFC (all

features) / NoF
Avg. ND Average Feature Nesting Depth: sum of ND (all

features) / NoF
Avg. SD Average Feature Scattering Degree: sum of SD (all

features) / NoF

PageRank. The latter assesses the originality or importance
of a document by calculating an importance metric based
on how many documents reference a document against how
many documents the document itself references. A higher
score is given to documents that are referenced by others,
but that do not reference others.
The developer can subsequently modify the annotations

done by FLOrIDA by removing some or adding additional
annotations. If a developer accepts one of the suggestions,
FLOrIDA then automatically annotates the newly added
code to reduce the effort required by the developer.

7. EVALUATION AND FEEDBACK
We conducted a preliminary evaluation. Specifically, we
verified the scalability of the annotation extraction, the vi-
sualizations on the codebase, and our feature-location tech-
nique based on the original system of our running example
(industrial automation system, 3.2 MLOC).

As there were no existing feature models of the system,
we created one by analyzing existing user manuals, sales

Figure 8: Feature metrics view

brochures, and system documentation. A total of about 43
features was extracted from the documentation. Feature
descriptions were then written in natural language for each
feature.
Even though the system is considerably large, it took only

about four minutes to run the feature location algorithm
Lucene+PageRank and to annotate the source with the
proposed annotations. Then, it took another 25 seconds to
extract all 6110 embedded annotations and to generate the
views and calculate the metrics.
We also conducted an interview with two experts who

participated in the development of the system. The first
expert, currently an architect, has worked on the system as
a developer since its inception (decades ago). The second
expert, also an architect, has worked on the system for more
than ten years. They expressed their opinions about the
tool and how it is suited for the particular system after a
demonstration of 1.5h.
The experts were positive about the robustness that the

embedded annotation approach could give to the documen-
tation of feature locations, which means that a large amount
of documentation time could be saved as opposed to keeping
documentation externally. They believe this will give a cer-
tain amount of robustness to the documentation which they
do not have currently.
They also stated that the visualization and navigation

that the tool provides is necessary to benefit from the stored
knowledge, which could increase exponentially for very large
systems, such as the case study. They believe that the
additional metrics provided by the tool helps to measure
properties of the system that are useful for making future
decisions about the features, such as refining the feature.
Finally, the experts were confident that the approach will

work well with their currently used agile development method.
A thorough and systematic evaluation together with the
experts, studying the exact usage, benefits, and costs of
using the tool FLOrIDA and the embedded annotations is
part of our future work.

8. RELATED WORK
Product-Line Engineering Tools. Although they focus
on variability and are heavyweight, existing product-line
engineering and feature-modeling tools already provide visu-
alizations of features.
Pure::variants provides some feature-model metrics and

various views and filters to explore features and their relation
to software artifacts. Gears also provides feature-related
metrics to analyze the product line. FeatureIDE provides
filters and views, such as visualizations of the feature-to-code
mapping (e.g., a “collaboration diagram”) and of the classes,
methods, and views implemented by a feature.

Pleuss et al. [20] interactively visualize variability expressed
in feature models of a product line. Similar to us, they present
several abstracted views and filters of the features (which
are configuration options) in the model, such as to illustrate
cross-tree constraints, and to present consequences (with
explanations) of selecting particular features.
Feature-Location Tools. When feature locations are un-
available, these can be recovered with (semi-)automated
feature-location techniques. A wide range of techniques is
available, requiring different kinds of input. Dynamic tech-
niques require exercising the feature at runtime, in order to
analyze call graphs. Static techniques analyze artifacts using
information-retrieval and search-based techniques, among
others. Many tools use a combination [22, 27, 21, 26, 28, 25,
18, 17, 10]. We made a pragmatic choice and implemented
a Lucene- and PageRank-based approach. Our choice was
influenced by (i) the lack of inputs required by most tools
and (ii) the a lack (or unavailability) of tools for the target
programming language of our example system. Dynamic
feature-location techniques typically require two sets of test
cases for each feature of interest, which is problematic, since
most of our test cases exercise more than one feature. Fur-
thermore, we were not able to obtain a static technique that
could be applied to our example system, which was realized
in C/C++. We therefore re-implemented a known technique.
Concern and Topic Visualization. Concerns and topics
can be seen as similar, if not more general, concepts. Concern
location has been studied intensively, and various concern
visualization techniques exist, such as those by Robillard et
al. [23]. Furthermore, the notion of topics is typically used
to characterize developer discussions or comments. Likewise,
topic visualization techniques exist. For instance, Izquierdo
et al. [13] provide graphical visualizations and metrics for
Github issues annotated with labels representing issue topics.
Features could be seen as topics. Their visualizations are

Figure 9: Metrics shown directly in a trace view

network diagrams illustrating the label usage, label timelines,
and user involvements. Our metrics and views also cover
some of their information, such as the number of authors of
a feature (NoAu); yet, we provide additional metrics, such
as feature scattering and tangling degrees.

9. CONCLUSION
We presented a lightweight tool that supports developers
in understanding and maintaining features and their fea-
ture locations, specifically supporting variant-rich systems
that are not consolidated in a software product line with
an integrated platform. Our tool relies on a programming-
language-independent, embedded feature-annotation system.
Feature annotations in a codebase are processed and visual-
ized using different kinds of views and metrics. We used the
tool to locate features and to visualize feature annotations
in a large industrial system with 3.2M lines of code. We also
obtained feedback from experts working on the system.
We plan to extend FLOrIDA with further metrics (e.g.,

process metrics extracted from an underlying version-control
system) and views. Most importantly, we strive to conduct
a thorough evaluation with teams of developers who need
to maintain and evolve a large industrial-automation sys-
tem with many variants, obtaining the developers’ feedback
and further suggestions. Finally, we plan to experiment
with recommender systems to encourage developers to add
annotations (e.g., suggesting annotations for new code).

Acknowledgment
This work is supported by the ITEA project REVaMP2

funded by Vinnova Sweden (2016-02804) and the German
Federal Ministry of Education and Research (01|S16042B).

10. REFERENCES
[1] M. Antkiewicz, K. Bąk, A. Murashkin, R. Olaechea,

J. Liang, and K. Czarnecki. Clafer tools for product
line engineering. In SPLC, 2013.

[2] M. Antkiewicz, W. Ji, T. Berger, K. Czarnecki,
T. Schmorleiz, R. Lämmel, S. Stănciulescu,
A. Wąsowski, and I. Schäfer. Flexible product line
engineering with a virtual platform. In ICSE, 2014.

[3] S. Apel, D. Batory, C. Kästner, and G. Saake. Feature-
Oriented Software Product Lines. Springer, 2013.

[4] S. Apel and C. Kästner. An overview of feature-
oriented software development. Journal of Object
Technology (JOT), 8(5):49–84, 2009.

[5] A. Armaly, J. Klaczynski, and C. McMillan. A case
study of automated feature location techniques for
industrial cost estimation. In ICSME, 2016.

[6] T. Berger and J. Guo. Towards system analysis with
variability model metrics. In VaMoS, 2014.

[7] T. Berger, D. Lettner, J. Rubin, P. Grünbacher,
A. Silva, M. Becker, M. Chechik, and K. Czarnecki.
What is a feature? A qualitative study of features in
industrial software product lines. In SPLC, 2015.

[8] T. Berger, D. Nair, R. Rublack, J. M. Atlee,
K. Czarnecki, and A. Wasowski. Three cases of
feature-based variability modeling in industry. In
MODELS, 2014.

[9] T. Berger, R. Rublack, D. Nair, J. M. Atlee, M. Becker,
K. Czarnecki, and A. Wąsowski. A survey of varia-
bility modeling in industrial practice. In VaMoS, 2013.

[10] T. J. Biggerstaff, B. G. Mitbander, and D. Webster.
The concept assignment problem in program
understanding. In ICSE, 1993.

[11] P. Clements and L. Northrop. Software Product Lines:
Practices and Patterns. Addison-Wesley, 2001.

[12] E. R. Gansner and S. C. North. An open graph
visualization system and its applications to software
engineering. Software – Practice and Experience,
30(11):1203–1233, 2000.

[13] J. L. C. Izquierdo, V. Cosentino, B. Rolandi, A. Bergel,
and J. Cabot. Gila: Github label analyzer. In SANER,
2015.

[14] H. P. Jepsen and D. Beuche. Running a software
product line: standing still is going backwards. In
SPLC, 2009.

[15] W. Ji, T. Berger, M. Antkiewicz, and K. Czarnecki.
Maintaining feature traceability with embedded
annotations. In SPLC, 2015.

[16] J. Liebig, S. Apel, C. Lengauer, C. Kästner, and
M. Schulze. An analysis of the variability in forty
preprocessor-based software product lines. In ICSE,
2010.

[17] A. Marcus. Semantic driven program analysis. In
ICSM, 2004.

[18] A. Marcus, A. Sergeyev, V. Rajlich, and J. I. Maletic.
An information retrieval approach to concept location
in source code. In WCRE, 2004.

[19] L. Passos, K. Czarnecki, S. Apel, A. Wąsowski,
C. Kästner, and J. Guo. Feature-oriented software
evolution. In VaMoS, 2013.

[20] A. Pleuss and G. Botterweck. Visualization of
variability and configuration options. International
Journal on Software Tools for Technology Transfer,
14(5):497–510, 2012.

[21] D. Poshyvanyk, Y.-G. Gueheneuc, A. Marcus,
G. Antoniol, and V. Rajlich. Feature location using
probabilistic ranking of methods based on execution
scenarios and information retrieval. IEEE Transactions
on Software Engineering, 33(6):420–432, June 2007.

[22] D. Poshyvanyk, Y.-G. Gueheneuc, A. Marcus,
G. Antoniol, and V. Rajlich. Feature location using
probabilistic ranking of methods based on execution
scenarios and information retrieval. IEEE Transactions
on Software Engineering, 33(6):420–432, 2007.

[23] M. P. Robillard and G. C. Murphy. Representing
concerns in source code. ACM Trans. Softw. Eng.
Methodol., 16(1), Feb. 2007.

[24] J. Rubin and M. Chechik. A survey of feature location
techniques. In Domain Engineering. 2013.

[25] P. Shao and R. K. Smith. Feature location by ir
modules and call graph. In ACM-SE 47, 2009.

[26] N. Walkinshaw, M. Roper, and M. Wood. Feature
location and extraction using landmarks and barriers.
In ICSM, 2007.

[27] J. Wang, X. Peng, Z. Xing, and W. Zhao. How
developers perform feature location tasks: a
human-centric and process-oriented exploratory study.
Journal of Software: Evolution and Process,
25(11):1193–1224, 2013.

[28] A. Y. Yao. Cvssearch: Searching through source code
using cvs comments. In ICSM, 2001.

	Introduction
	MOTIVATION AND BACKGROUND
	Tool Overview
	Use Case 1: Immediate and Continuous Recording of Feature Locations
	Use Case 2: Feature-Location Recovery
	Implementation
	Example

	Embedded Annotations
	Feature-Oriented Views
	Browse Feature View
	Trace Views
	Metrics Views

	Feature-Location Recovery
	Evaluation and Feedback
	Related Work
	Conclusion
	References

