Challenges and Solutions for Opening
Small and Medium-Scale Industrial Software Platforms

Christoph Seidl
Technical University of
Braunschweig, Germany

ABSTRACT

Establishing open software platforms is becoming increasingly im-
portant. Many vendors of large and well-known open platforms,
such as Android or i0S, have successfully established huge ecosys-
tems of platform extensions (apps). While such platforms are im-
portant role models, the practices and technologies employed by
their vendors are often not applicable for smaller platform ven-
dors, who have different goals and carry substantial legacy, such
as an existing closed platform. Yet, many vendors start to open
their platforms—for instance, when they alone cannot realize all
incoming requirements anymore. Unfortunately, very few best prac-
tices exist to guide this opening process, especially for small and
medium-scale industrial platforms with their specific solutions. We
present a study of industrial organizations that successfully opened
closed platforms. Using a survey, we identified 18 opened platforms,
providing a broad picture, which is complemented with in-depth,
qualitative insights from a case study of three organizations. We
elicited the platforms’ core characteristics, the organizations’ open-
ing strategies, as well as challenges and solutions. We believe that
our results support practitioners seeking to open platforms, and
researchers striving to build better methods and tools.

CCS CONCEPTS

. Software and its engineering — Software product lines;
Software design tradeoffs; Software architectures;

ACM Reference format:

Christoph Seidl, Thorsten Berger, Christoph Elsner, and Klaus-Benedikt
Schultis. Challenges and Solutions for Opening Small and Medium-Scale
Industrial Software Platforms. In Proceedings of SPLC, Sevilla, Spain, 2017.
DOI: 10.1145/3106195.3106203

1 INTRODUCTION

Software platforms constitute a cornerstone of software develop-
ment by providing reusable core functionality to applications. While
creating platforms has been an essential part of software engineer-
ing for many decades, they become increasingly relevant for estab-
lishing software product lines and software ecosystems [3, 4, 12]—
portfolios of similar products in a particular domain. While product
lines focus on intra-organizational reuse, software ecosystems build

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SPLC’17, Sevilla, Spain

© 2017 ACM. 978-1-4503-5221-5/17/09...$15.00

DOI: 10.1145/3106195.3106203

Thorsten Berger
Chalmers | University of
Gothenburg, Sweden

Christoph Elsner,
Klaus-Benedikt Schultis

Siemens Corporate Technology, Germany

on platforms that are open to third-party contributions, enabling
inter-organizational software development via extensions, to benefit
from an increased innovation potential or larger product portfolios.
Many successful open platforms exist, such as the Android OS
for mobile devices, the Eclipse platform, or the Linux kernel. All
successfully established an ecosystem of third-party platform ex-
tensions, yet rely on different technologies and business models [3].
Many of these well-known open platforms have been studied, often
with a focus on the organizational and business aspects, less on the
technology that can be used [2, 16]. While such platforms are essen-
tial role models, the practices and technologies employed by their
vendors are not necessarily applicable for smaller platform vendors,
who often have different goals and carry substantial legacy, such
as an existing closed platform which results in different solutions.
Opening a closed platform poses technical, social, and organiza-
tional challenges. For instance, new APIs may need to be created or
existing ones exposed to external developers. Companies may also
need to restructure development teams, raise awareness for the
open platform, and improve maintenance strategies. Unfortunately,
there are no best practices to guide this process. Prior research
has mainly focused on the large, well-known platforms with large
ecosystems—such as Android—that have been conceived as open
platforms from the very beginning. Empirical data on opening and
sustaining small and medium-scale industrial platforms is lacking.
We present a study of opening closed industrial software plat-
forms. Our main focus is on technical aspects, largely sidestepping
the organizational and business aspects, yet, reporting those that
are caused by technological changes. Using a survey, we identified
small and medium-scale platforms that have been opened up to
establish an ecosystem, and we elicited core characteristics about
the platforms and the opening processes. To better understand
the challenges that companies face and the solutions they apply,
we conducted an interview-based case study of three platforms
identified in the survey, and then triangulated from both sources.
Our subjects are (i) a systems-engineering platform developed
by a large platform vendor over decades, (ii) a platform for Internet
of Things (IoT) applications that has been conceived only recently,
and (iii) a variability-management platform that can, among others,
be extended with adapters for interfacing with other engineering
tools. The three platforms originate from diverse domains. For in-
stance, the first one stems from a mature domain in a particularly
conservative market, while the second one is from a rapidly chang-
ing market with fast innovation cycles. The individual opening
processes of the platforms serve as landmarks, as they constitute
extremes in platform age and market progressiveness as to which
challenges are encountered and which solutions are deemed vi-
able. For instance, backward compatibility is crucial in conservative
markets and severely restricts the liberty for redesigning APIs.

SPLC’17, September 25-29, 2017, Sevilla, Spain

In summary, we contribute:

e quantitative data about the opening of 18 industrial, small-
and medium-scale platforms;

e qualitative data about three selected platforms;

o synthesized challenges and solutions for opening;

e an online appendix with detailed survey results [1].

We believe that other organizations seeking to open closed plat-
forms can benefit from our results. The synthesized challenges can
be used as a check list of issues to be addressed, and the solutions for
devising strategies to cope with the issues. Among researchers, our
results create awareness of the challenges, encouraging conceiving
better support for opening platforms. Practitioners can learn from
the solutions applied in successfully opened industrial platforms.

2 METHODOLOGY

We conducted a survey with industrial participants and an interview-
based case study of three particularly interesting platforms. We
now describe our methodology.

2.1 Survey

We first conducted a survey to identify industrial companies that
have opened a platform or are currently in the process of opening.
The survey relied on a questionnaire that aimed at giving a broad
overview of the participating companies’ practices in opening their
software platform. We designed the questionnaire to ask for spe-
cific details using closed questions (e.g., using a Likert scale), but
also included open-ended questions whose answers permit further
exploration. We included questions on the reasons, the process, the
technical mechanisms, and the consequences of opening the plat-
form. To assure quality and understandability of the questionnaire,
we asked one of our industry partners to tentatively participate in
the survey and provide feedback, which we then included in the
final version of the questionnaire (cf. online appendix [1]).

To distribute the questionnaire, we assembled a list of potential
participants. We consulted previous editions of established venues
for software platforms, ecosystems, software product lines, and
directly related areas that possess a track with industrial practi-
tioners. In particular, we gathered e-mail addresses of contributors
to previous editions of ICSE-SEIP, SPLC Industry Track, GPCE,
IWSECO, and EWSECO. In summary, the resulting list comprised
e-mail addresses of approximately 300 industry practitioners and
academics with proven industry affiliation in the area of software
platforms. We invited the potential participants with individualized
e-mails and reminded them with a second e-mail.

Note that identifying such opened platforms is challenging. From
the venues and the publications of the authors we invited, it was
not obvious whether the described open platform originated from
an opening process. Thus, despite the relatively high number of
invitations, we did not expect a high response rate.

Responses. We received 22 responses. We filtered out four partial
(i.e., started, but unsubmitted) responses, obtaining 18 complete
ones. We analyzed the participants’ responses to obtain quantitative
data and to establish a first picture of the industrial opening efforts
to select interesting cases for a subsequent case study.

Participants. Most of our participants were software architects
(72 %), followed by developers (44 %), team leaders (33 %), and project

C. Seidl, T. Berger, C. Elsner, K.-B. Schultis

managers (33 %). Note that multiple roles could be selected. We
counted nine other roles (e.g., domain expert, modeler, product
manager), which shows that our participants provide a diverse
view on platform opening. The participants have substantial indus-
trial experience: most (78 %) have more than 10 years, some (17 %)
5-10 years, and only one 3-5 years.

2.2 Case Study

To qualitatively understand the technical aspects of platform open-
ing in more detail, we interviewed three survey participants.
Selection of Interviewees. To assure diversity of our subjects, we
looked for small and medium-scale platforms that stem from differ-
ent domains and where the opening was completed successfully.
We narrowed down the list of survey participants by removing plat-
forms whose opening process was still ongoing, and then invited
the survey participants to a follow-up interview. The selection of
our three case-study subjects matches our initial criteria for having
platforms with a completed opening process from different domains
and companies. The interviewees were knowledgeable employees
who were involved in the platform opening process.

Interview Design. We conducted semi-structured interviews. Our
interview guides focused on the challenges encountered by the
platform vendors during the opening process and on the individual
solutions they found to cope with these challenges. The guides
also comprised specifically interesting answers provided in the
questionnaire as well as areas for clarification. We further explored
challenges mentioned in the questionnaire and allowed room for
interviewees to proactively raise challenges and present solutions
we did not predict. The interviews were recorded and transcribed.
Interviewees. Our interviewees were a senior software architect,
a senior software developer, and a senior software architect who
was also the CTO of the platform vendor. They have been working
for their company for more than ten years, for four years, and
for almost 15 years, respectively. Each interviewee belonged to a
distinct platform vendor. We use quotations from the interviewees
in the remainder, abbreviated with A, B, and C, respectively.

2.3 Data Analysis

We triangulated data from the survey and the case study. In the
survey, we posed questions to confirm or refute challenges we pre-
dicted, such as maintaining backward compatibility. We analyzed
the survey data by creating aggregate statistics for closed questions,
creating violin plots for the Likert-scale questions (interpreting
the levels of agreement as a continuous scale), and inspecting the
responses to the open-ended questions. In the case study, we used
open coding to assign reappearing key phrases related to challenges
and solutions of platform opening to statements in the interview
transcripts. From the full set of challenges and solutions, we cre-
ated clusters to form two categories related to opening the platform
and sustaining the open platform. In a further round, we clarified
individual points with the interviewees, including challenges en-
countered in other platforms but not mentioned in the interview.

3 THE SOFTWARE PLATFORMS

We now introduce the platforms we identified in the survey and
the three of these we focused in the case study.

Opening Industrial Software Platforms: Challenges and Solutions

Table 1: Overview of the case-study platforms

Systems Internet of Variability
Engineering Things Management
Platform Platform Platform
domain computer device mgmt. software
aided eng. and control synthesis
size 5-20 MLOC 1-5 MLOC 1-5 MLOC
languages C, C++, C++, Java Java, C++,
C# C#, Prolog
no. developers 51-100 101-150 5-10
platform age 25 years 2 years 13 years
extension form components services plug-ins,
scripts
no. extensions 350 30-50 25

3.1 Platforms Identified in the Survey

The surveyed platforms stem from diverse domains and companies.
Most frequently, they are used for software development and model-
ing for specific applications, such as web or IoT applications. All of
our 18 respondents also provided the name of their platform. None
is a well-known open-source platform. Instead, all are industrial,
niche platforms. Note that every respondent reported on a unique
platform, so that we identified 18 platforms.

Sizes. The size of the majority of platforms (33 %) lies between
150-500 KLOC. Many are even larger with 1-5 MLOC (28 %) or
ultra-large with 5-20 MLOC (17 %). Furthermore, we identified two
platforms (17 %) each with a size between 500 KLOC and 1 MLOC,
and one particularly small platform with 50-150 KLOC.
Programming Languages. The most frequent programming lan-
guage mentioned by our participants is C++ (50 %), followed by
C and Java (39 % each), C# (28 %), as well as JavaScript (11 %). Sin-
gle participants also mentioned Ruby, HTML, Prolog, Python, and
“various scripting languages.”

Developers. Most participants (33 %) stated moderate team sizes of
5-15 people. The team sizes went up via 16-50 (17 %), 51-100 (22 %),
and 101-250 (6 %) to 251-500 (17 %) people. Only one participant
(6 %) mentioned a team size of less than five people.

Users. Interestingly, the users of all identified platforms are not
primarily end-users, but other developers, other departments in the
same company, or other companies. Furthermore, the users of all
platforms were described as technically skilled.

Extensions. Most frequently, the platform extensions are called
components (42 %), followed by plugins (33 %), scripts (25 %), applica-
tions (22 %), and packages (11 %). Single participants also mentioned
drivers, snap-ins, features, GUI widgets, services, and droplets (used
in Cloud Foundry). Based on participants’ estimates, seven plat-
forms (39 %) have 26-100 extensions, followed by five platforms
(28 %) with less than five extensions, four platforms (22 %) with
6-25 extensions, and two platforms (11 %) with 101-500 extensions.

3.2 Platforms Examined in the Case Study

The three selected case-study platforms represent a range of plat-
form sizes, companies, and domains as summarized in Table 2. We
now briefly describe each platform.

SPLC’17, September 25-29, 2017, Sevilla, Spain

3.2.1 The Systems Engineering Platform (SE Platform). Our first
subject is a platform for the companies’ own engineering appli-
cations as well as for over 350 engineering applications of about
150 independent software companies. It is delivered with a compre-
hensive development kit including tools, developer resources, and
documentation for integration into new and existing applications.
Specifically, the platform provides over 800 C/C++ and C# API func-
tions for developing comprehensive and robust system engineering
applications. The platform has been sold for over 25 years.

3.2.2 The Internet of Things Platform (loT Platform). Our second
subject is a platform for developing applications for the innovation-
driven IoT market—for instance, to manage devices in a manufactur-
ing plant. For IoT development, the platform offers a wide variety
of functionality, including business-rule and business-process man-
agement, or data processing and analysis.

3.2.3 The Variability Management Platform (VM Platform). Our
third subject is a feature-modeling and software-synthesis tool. It
supports customers in adopting and maintaining a software product
line strategy, where a variable software system has to be managed
in terms of features (modeled in a feature model). The tool needs to
read and modify different kinds of implementation artifacts, includ-
ing source code and design models. It also needs to be integrated
into existing workflows of customers, interfacing with software
development tools for the implementation artifacts, such as Sparx
Enterprise Architect for design models or Doors for requirements.

4 OPENING THE PLATFORMS

In this section, we discuss the platform openings as experienced by
the 18 survey and three case-study participants. We first present
the intentions associated with the opening, including any specific
problems that the preceding closed platforms faced, followed by
the procedures for opening. Finally, we synthesize challenges and
solutions we elicited in the survey and case study results.

It is worth noting that none of the 18 survey participants reported
a failure of platform opening. The majority (72 %) either agreed
or strongly agreed, and only less than a third (28 %) were neutral,
with the statement that the opening was successful. Hence, we
describe the results in terms of how to cope with challenges and not
whether the platform vendors could cope with them. Identifying
and studying failed attempts would be valuable future work.

4.1 Reasons for Opening

To understand the intentions behind platform opening, we discuss
any potential problems that might have existed for the preceding
closed platform (if it existed) and the explicit goals the platform
vendors pursued for the opening.

4.1.1 Problems with Preceding Closed Platform. The majority
(56 %) of participants stated that a previously closed platform existed.
Two of the open platforms (20 %) are a complete re-implementation
of the respective closed platform. Interestingly, 31 % of the open
platforms we identified were conceived and developed as open
platforms from their inception.

We asked whether there were any specific problems with the
closed platform. Most participants stated too many new require-
ments (44 %), followed by strong competition in the market (39 %).

SPLC’17, September 25-29, 2017, Sevilla, Spain

Interestingly, many (22 %) faced no problems before opening. Fur-
ther problems mentioned include maintenance difficulties (17 %),
lack of compatibility with other platforms (17 %), and difficult in-
tegration of extensions. Single participants expressed conflicting
requirements and development scale effects.

The SE Platform was initially designed to be supplied to one
specific customer. During the course of platform development, po-
tential for opening was identified and it was incrementally opened
to other customers. A specific problem to be addressed was the
usability of existing APIs in the closed platform.

For the IoT Platform, the preceding closed platform consisted of
a collection of tools connected via technology bridges to form a tool
chain. These tools were acquired by the platform vendor by buying
other enterprises. However, this integrated tool suite was difficult to
evolve and extend due to different technologies of individual tools:
B: They are not that comfortable as they should be so we took several
means to connect them together. But in the end it was quite hard to do
so. Furthermore, the applications created by customers are relatively
distinct, which was hard to accommodate for, due to coarse-grained
and inflexible functionality of individual tools: B: Another big issue
was that the old tools were monolithic in their architecture. Finally,
customers requested additional, specialized functionality, which
was inefficient to realize with the old infrastructure.

For the VM Platform, before opening, a challenge was that it
needed to interface with a large number of external tools. Thus,
the platform vendor was faced with substantial efforts for acquir-
ing knowledge about the tools in order to develop and maintain
respective tool adapters. Consequently, the platform vendor de-
cided to open up the platform to allow external developers (usually
developers of external tools) to create adapters themselves.

4.1.2 Pursued Opening Goals. We first asked about any business
intentions associated with the opening. Most frequently, respon-
dents mentioned fostering innovation (61 %) and sharing cost of
innovation (50 %), followed by increasing the number of users (39 %),
establishing a value chain (33 %), and increasing platform attractive-
ness for new users (33 %). Many other business intentions were also
given, such as increasing the value for existing users, increasing the
user binding, and establishing a unique selling point (28 % each).

We also asked about any technical intentions that were associ-
ated with the platform opening. Our participants most frequently
mentioned the external realization of requirements beyond the
company’s capacity (83 %) and of specialized requirements (78 %).
Platform modernization was also mentioned by five participants
(28 %). More intentions, including facilitating (6 %) and improving
(11 %) platform compatibility, improving development efficiency
(6 %), and “adapting to future open-source components” (6 %), were
given, but do not seem to be general intentions associated with
platform opening among our participants.

For the SE Platform, one of the main objectives of open platform
design was increased revenue generation by leveraging cooperative
business models. Moreover, the platform organization pursued the
objective to increase domain knowledge by close relationships to
external customers, which resulted in improved architecture and
functionality for the internal customers.

For the IoT Platform, the overall goal of the opening was to
allow customers to develop extensions for all areas required to

C. Seidl, T. Berger, C. Elsner, K.-B. Schultis

build IoT applications. On a technical level, the interoperability of
the functionalities provided by the platform should be increased.
The existing monolithic tools should be re-engineered into smaller
micro-services and then be lifted to the cloud environment so that
they can be used to compose complex IoT applications.

For the VM Platform, opening aimed at two goals: allowing the
integration of external-tool adapters as plugins, and incorporating
a scripting mechanism (using JavaScript) to allow adding smaller
functionality, such as specific Ul actions. The business intent was
to shift efforts from platform developers to its users.

4.2 Opening Procedure

From the 13 participants who provided details on the opening pro-
cedure they applied, the majority (54 %) stated that they used an
incremental strategy. The more general steps consisted of scop-
ing functionality provided via APIs (62 %) and implementing the
respective APIs (46 %). However, some specifics of the opening pro-
cedure differed so that specialized steps were also mentioned, such
as getting an overview of existing functionality (15 %), acquiring
funding (8 %) or reducing expectations for features to be realized
(8 %). In this same line, the case-study subjects had individually
distinct opening procedures as follows.

SE Platform. Initially, the platform only was opened to few lead
customers to receive early feedback on platform concepts and in-
terfaces. Afterwards, the platform was opened to a wider group of
external software vendors, including “off-the-shelf” customers. A:
Since then, the platform organization constantly built up better do-
main knowledge by close contact to customers. This was considered as
critical for constant improvement and success. Based on additional
customer requirements and constant feedback, platform interfaces
were redesigned following two basic design principles: First, make
APIs more easy to find, understand, and use (especially by exter-
nals). Second, make APIs evolution-ready and backward compatible.
A: A new platform version must be always binary-compatible to the
previous version for plug-and-play upgrades on customer sites.

IoT Platform. First, the vendor re-engineered the individual mono-
lithic tools into micro-services relying on the Spring framework:
B: So now we split them up into smaller pieces and these are much
easier to use than before. While the application logic could largely
be reused, code needed to be written for handling the lifecycle
of the services. In addition, interfaces for the services were im-
plemented as language-independent REST APIs. The APIs were
defined with potential external developers in mind, for instance,
by repeatedly developing plausible mock applications for the ser-
vices. The functionality of the services was determined from the
acquired tools, and the APIs were created mostly anew instead of
re-engineering existing ones. Second, the services were lifted into
a cloud infrastructure relying on Cloud Foundry. The latter also
offers a marketplace (similar to Google Play), allowing external
customers to distribute their developed third-party services: B: In
this market place, you have your service, then someone can buy this
service and then the service is copied into the organizational space of
the person who has bought the service. Focus teams were formed for
functionalities that were identified to be useful in the new cloud-
based platform. The overall process was iterative so that both steps
were performed multiple times.

opening the platform

sustaining the platform

Opening Industrial Software Platforms: Challenges and Solutions

Table 2: Overview of challenges and solutions

Challenge Solutions

1: Assure Backward ~ Version Option Structures, Functionality Depre-

Compeatibility cation, Immutable Interfaces

2: Incorporate New Generative Technologies, Micro-Services, Script-
Technology ing Engine

3: Alter Organiza- Level Playing Field, DevOps Teams, Support for

tional Structure External Developers

4:Restructure Soft- Interface Redesign, Refactoring to Cloud Micro-
ware Architecture Services, JavaScript-Based Extension Engine

5: Interface with Long-term Stability and Legacy Support, Design
Extensions of New Interfaces, Standardization of Interfaces

B

Assure Quality Capture-and-Replay Mechanism, Proactive Er-

ror Avoidance, Automated Test Cases

7: Manage Releases ~ Maintenance Plan for Multiple Releases, Decou-
pled Releases of Micro-Services, API Compati-
bility for Service Releases

8: Protect Intellect- Vendor-Private Extensions, Customer-Private

ual Property (IP) Extensions, Only Public Extensions

9: Determine New Extensions Through Community Request, Exten-

Extensions sions Through Prototype Feedback, Extensions
Through Customer Request
Focus on Stability, Focus on Variety, Focus on

Openness

10: Sustain Strategic
Advantage

VM Platform. First, as a preliminary activity, the platform vendor
participated in a research project to determine requirements for an
exchange format to interface with external tools. The result was
a file format, commands, and a specific protocol applicable by the
platform and the interfacing tools. Platform developers then created
exporters and importers to integrate this standardized format into
the platform. Second, platform developers devised Java APIs for
use by the prospective plug-ins. The following implementation of
the plug-in mechanism benefited greatly from the platform’s under-
lying Eclipse framework, which already provides extension mecha-
nisms relying on OSGi. Third, to create support for the scripting
mechanism, the vendor incorporated a JavaScript engine to parse
and execute scripts. To also make functionality for interfacing with
other tools available to the scripting mechanism, platform develop-
ers created a dedicated data binding of the interfaces devised for
the Java APIs to make them available in JavaScript.

4.3 Opening Challenges and Solutions

We identified the following challenges and solutions related to
opening the platforms, as summarized in the upper half of Table 2.
In the survey, our participants most frequently (67 %) pointed
out that backward compatibility was difficult to maintain, directly
followed by challenges with introducing new technologies (56 %)
and restructuring the architecture (50 %). Restructuring the teams
was also seen as a challenge, but only by less than a third of the
participants (28 %). Interestingly, modeling of the ecosystem and
user acceptance were infrequent challenges (17 % each). The former
could be attributed to insufficient support of existing approaches for
interpreting and leveraging such models. We can also assume that
the structure of the ecosystems is less complex for our small and
medium-scale platforms, since their users are technically skilled.
These challenges are supported by the results of a survey Likert-
scale question where we asked whether any of the following four

SPLC’17, September 25-29, 2017, Sevilla, Spain

aspects—business model, platform architecture, development pro-
cess, and organization of the development—had to be changed
during opening. As can be seen in Fig. 1, for all aspects, the ten-
dency was clearly on the change side, whereas we see some small
differences. For the platform development process, we see the
strongest agreement (67 % of our participants either agreed or
strongly agreed), whereas for the other aspects, the agreement
is a bit less dominant (56 % agreed or strongly agreed). The weakest
agreement can be seen for the business model, where 22 % of our
participants either disagreed or strongly disagreed that it changed.
Yet, the differences are small among the four aspects.

4.3.1 Challenge 1: Assure Backward Compatibility. The API is
the interface for extension developers to communicate with the
platform. As this creates dependencies from the extension to the
platform, software evolution that modifies the API becomes a major
challenge when backward compatibility is an essential concern to
permit extensions to remain functional with new platform versions.
Version Option Structures (VOS): For the SE Platform, which
operates in a market aimed at longevity, backward compatibility is
imperative. In consequence, the vendor chose an upgrade strategy
that guarantees binary compatibility to the last revision: Every func-
tion of the C interface has as last parameter a struct representing
the currently handled “object”, called version option structure (VOS).
When the API evolves, instead of changing the function’s signature,
platform developers create a new version of the VOS. It carries
members that represent the intended parameters of the API at that
version and can only be created via a specific macro. Furthermore,
the implementation of the functions can handle VOS of arbitrary
versions. In case they are outdated, the version is automatically up-
graded on first use in a function. This ensures binary compatibility
of the application with any future version of the platform.
Functionality Deprecation: The IoT Platform operates in an
innovation-driven domain, which allows a more liberal approach to
API evolution. During the inception of new platform functionality,
interfaces are generally considered unstable and may change with-
out notice. During production use of an API, outdated functionality
in the interfaces may be marked as deprecated, and then removed
in later releases. This practice gives extension developers time to
adapt to API changes, but delegates the burden of maintaining
compatibility between platform and extensions to them.
Immutable Interfaces: The VM Platform operates in a domain
that equally values innovation and stability so that the platform ven-
dor strives for a balanced approach to API backward compatibility.
The general guideline is to not remove but only add functionality to
APIs during evolution. If a certain functionality of the API is truly
outdated, it may be marked as deprecated. In this case, it is not

°

[}

o

& platform architecture - |

<

S

> organization - |<:>

£

[+

L development process -

=

S

{=2]

B business model- [.]

[}

s ' ' ' ' |
1 2 3 4 5

Likert-scale response

1: strongly agree, 2: agree, 3: neutral, 4: disagree, 5: strongly disagree

Figure 1: Aspects that needed to be changed during opening

SPLC’17, September 25-29, 2017, Sevilla, Spain

developed further, but remains a part of the API, as the platform
vendor yet has to remove the first deprecated API method.

4.3.2 Challenge 2: Incorporate New Technology. With the open-
ing, all survey and case-study subjects needed to incorporate new
technology. This new technology primarily centered around the
realization of APIs. In fact, the majority of our survey participants
(77 %) stated that an API was incorporated. Yet, the actual API
technologies were diverse, ranging from C-based APIs via object-
oriented APIs (in Java, C#, and C++) to REST and JavaScript-based
APIs. Half of the platforms (47 %) also introduced a plug-in system,
e.g., relying on Eclipse (two platforms) or on a home-grown system.
The others did not specify the plug-in technology further but re-
ported the use cases of their plug-in system: drivers, user-interface
elements, and human-machine interaction components.

Other common technologies, each mentioned by almost a third
of our participants (29 %), are isolated runtime containers (i.e.,
sandboxes; examples mentioned are Docker, PikeOS, and Cloud
Foundry), web services, and Domain-Specific Languages (examples
mentioned are XML-based configuration files, scripts, and macros).
Explicitly formulated conventions also play a role for four (24 %) of
the platforms. Finally, we asked for the use of conditional compila-
tion (e.g., #IFDEF) but it was not mentioned by any participant and
does not seem to be practical for their platforms.

Interestingly, for almost all (88 %) of the 18 surveyed platforms,
the platform opening had no significant impact on the code size,
which is a promising insight. Only two participants (12 %) reported
an increase; one estimated a code-size increase by 30 %.

Our case-study subjects incorporated diverse new technologies
during the platform opening process. Despite the introduction effort,
all three subjects benefited from the new technology and used this
opportunity to reduce the amount of legacy accumulated over time,
which also reduced maintenance burdens.

Generative Technologies: For the SE Platform, the introduction
of new technology was problematic, given its domain, which values
stability and backward compatibility. The platform APIs were orig-
inally written exclusively in C/C++, but new customers urgently
demanded C# interfaces. To avoid duplicate development and the
burden of maintaining both C/C++ and C# interfaces manually,
the platform vendor decided to employ generative technologies to
automatically create C# interfaces from C/C++ ones. Furthermore,
to test the C# interfaces with the existing C/C++ test suite, the ven-
dor created a generator for inverse interfaces that are specified in
C/C++ but forward calls to the C# interfaces. Due to the complexity
of the generative procedures, incorporating this new technology
into the platform entailed substantial effort. However, according to
our interviewee, this cost was soon amortized by avoiding ongoing
cost for manually maintaining the API in multiple languages.

Micro-Services: During opening, the IoT Platform and its exten-
sions were structured into micro-services that can be composed to
applications. To realize the services, the vendor incorporated the
Spring component framework (which manages the service lifecy-
cles), integrated the Cloud Foundry technology for cloud deploy-
ment, and adopted various NoSQL databases (MongoDB, among
others). While proving to be an aid in handling services in the long
term, the infrastructure required writing significant amounts of
boilerplate code for each service to utilize lifecycle management,

C. Seidl, T. Berger, C. Elsner, K.-B. Schultis

which yielded substantial cost in the short term. B: You have the
old code base, then you take that and rewrite it a bit and then you
remove parts of it, but then you have to write new parts like this Cloud
Foundry related stuff; and then all this Spring lifecycle-management
thing [...] I think in the end it is not less code than before. Our intervie-
wee also stated that they had expected the infrastructure to provide
further functionality that would better justify adoption efforts.
Scripting Engine: For the VM Platform, one of the two cre-
ated extension mechanisms, the scripting, required incorporating
a JavaScript engine, used for parsing and interpreting JavaScript
code. To this end, the created Java APIs also needed to be made
available to the JavaScript extensions via data bindings.

4.3.3 Challenge 3: Alter Organizational Structure. Opening the
platforms did not only affect technology, but also the organizational
structures, especially for development teams.

Level Playing Field: The SE Platform vendor operates a so-called
level playing field business model offering exactly the same plat-
form capabilities to external and internal customers. Nevertheless,
internal customers developed functionality containing reusable
business knowledge that should not be shared. Consequently, this
functionality was not made part of the platform but of the internal
applications. The organizational structure had to be changed in
a way that development teams aligned with these architectural
boundaries dividing them into developers of applications for inter-
nal use and developers of extensions for external use. Furthermore,
our interviewee suggested to A: Make sure to get a clear interaction
model in place, which captures and makes apparent the value chains
in the ecosystem. Its prior lack was reflected in some problematic
platform adoptions by internal customers.

DevOps Teams: When the IoT Platform vendor re-engineered
the tools of the closed platform into micro-services, development
teams were restructured from teams focusing on the tools to teams
around the prospective services to better align with the overall
restructuring. This yielded smaller teams with new combinations
of team members. Each team, in addition to the service developers,
was joined by an operator designated to administer the service in
the future. These so-called DevOps Teams created short feedback
loops between development and usage of a service, which fostered
rapid improvement of each service’s capabilities and interfaces.
Support for External Developers: The VM Platform vendor
aimed at reducing own development efforts for adapters that inter-
face with external engineering tools. This shift toward the external
developers in fact freed resources at the vendor side, but created
a need to cope with an increase in support requests. As a conse-
quence, the platform vendor reassigned roles of their employees to
have fewer in-house developers and more employees supporting
extension developers through seminars, workshops or live support.

Finally, an interesting challenge reported in the survey is the
organization and maturity of remote development teams who real-
ize extensions. For a monitoring platform, the opening consisted
of allowing regional development teams to realize local monitor-
ing solutions (using concepts of the platform, including alarms,
points, drivers). While it could technically be supported, our par-
ticipant reported process immaturity of the regional teams, which
appears to be difficult to realize. Although the platform uses various
extension-mechanism technologies (e.g., API into processes and

Opening Industrial Software Platforms: Challenges and Solutions

drivers, ability to run custom scripts), we can speculate that it does
not use strict encapsulation mechanisms (e.g., interaction binding,
strong interface definition facilities) [3] of large open platforms
such as Android, which are hard to implement when many and
diverse extension mechanisms are offered.

4.3.4 Challenge 4: Restructure Software Architecture. Recall that
the median of our 18 surveyed platforms agreed that the platform
needed to be changed (cf. Fig. 1). Our case study revealed that
substantial architectural changes (i.e., changing how the platform
is decomposed) were only required for the IoT Platform, where
tools had to be restructured completely to realize micro-services.
For the SE Platform and the VM Platform, which were already based
on extensible frameworks, some re-engineering was required, but
no further restructuring.

Interface Redesign: For the SE Platform, even the initial plat-
form, designed for only one customer, had a clearly separated ex-
ternal interface. There was no need for fundamental architecture
restructure; each customer is running a dedicated platform instance.
However, based on customer feedback, platform interfaces were
redesigned to increase interface quality, to simplify interface usage
and reduce integration costs of customers. To obtain requirements
for the architecture, our interviewee explained that the vendor ex-
tensively tries to negotiate requirements but that this depends on
the clients. A: We have some customers with very good relationships.
Here we can perform a full architectural analysis what could be the
best overall solution for all participants. However, there are also cus-
tomers that just try to put requirements into the platform, whether or
not it makes sense. We [...] try to develop “champions” [...] who act as
hubs and contact persons at the client.

Refactoring to Cloud-Based Micro-Services: For the IoT Plat-
form, recall that the closed platform’s architecture consisted of a
set of tools loosely connected via technology bridges. Due to the
insufficient extensibility and interoperability, the platform vendor
fundamentally changed the architecture to a cloud-based micro-
service architecture. In this process, the individual tools were re-
engineered into services comprising the essential business logic of
the tools. To this end, a pragmatic scoping was applied: B: I mean the
old tools are capable of much more than what the micro-services [...]
can do. But we decided to open up this functionality exactly [because
we think those are] the things people need to buy to create [oT appli-
cations. While performing these architectural changes resulted in
an increase in code size (recall the boilerplate code from Sec. 4.3.2),
the re-engineering of the monolithic tools reduced redundancy
stemming from overlapping functionality.

JavaScript-Based Extension Engine: The VM Platform’s archi-
tecture is heavily influenced by the underlying Eclipse/OSGi frame-
work, which already provides expressive extensibility. Thus, the
opening (i.e., adding a plugin mechanism for tool adapters) did not
jeopardize the original platform architecture. However, in addition
to dedicated plugins, the platform vendors intended to allow light-
weight extensions in an ad hoc manner (e.g., for customers to add
individual Ul elements). For this extension mechanism, a JavaScript
engine was incorporated into the platform to process JavaScript
scripts of a specific format to incorporate UI elements with respec-
tive actions assigned to them. This, however, did not require any
significant architecture changes according to the interviewee.

SPLC’17, September 25-29, 2017, Sevilla, Spain

4.3.5 Challenge 5: Interface with Extensions. The survey showed
that adding or modifying APIs is the most essential activity during
platform opening. Our three subjects struggled to varying extents.
Long-term Stability and Legacy Support: For the SE Platform,
existing APIs needed to be redesigned. The goal was to reduce inte-
gration cost for extension developers by increasing API usability.
When initially opening the platform, the platform vendor had de-
vised an interface for extensions. Over the course of time, this
interface had to be re-engineered to uphold quality standards and
to adopt new technology. In consequence, the platform vendor de-
signed a C interface that utilized object-based principles where
instructions of a procedural language are used to largely emulate
structures known from object-oriented languages. To this day, this
C API (or its generated C# counterpart) is used for extensions to in-
terface with the platform. However, the platform vendor still offers
the previous API, which is almost 20 years old, to satisfy needs of
long-term customers.

Design of New Interfaces: For the IoT Platform, APIs were de-
signed completely anew, as the platform consisted of multiple tools
before the opening. While this procedure provided more liberty in
API design, it was complicated, as no prospective users existed who
could provide concrete requirements. The engineers addressed this
challenge by taking on the role of platform users themselves to de-
velop mock-up applications upon the platform. During this process,
benefits and shortcomings of the current iteration of tentative APIs
were collected to form the basis for further development. After the
opening, a similar process was employed, where external users of
the platform developed products and provided feedback regarding
benefits and shortcomings of the interfaces, which could then be
used for further development of the APIs.

Standardization of Interfaces: For the VM Platform, the ven-
dor’s research project elicited requirements for a data exchange
format. This format largely guided the design of APIs for assem-
bling, modifying, and processing information of engineering arti-
facts (e.g., requirements, design models, code) in the external tools.
In addition, the platform vendor also applied an iterative design
procedure where, after internal revisions, earlier versions of APIs
were provided in a beta phase to customers, who could suggest
changes until the interfaces reached a stable state.

5 SUSTAINING THE OPEN PLATFORMS

We identified the following challenges and solutions for sustaining
the opened platforms, as summarized in the lower half of Table 2.

5.1 Essential Aspects for Sustaining

In the survey, we asked about aspects our participants consider
essential for sustaining the open platform. As shown in Fig. 2, the
strongest agreement with the seven aspects we suggested in the
question can be seen for stable extension mechanisms and the
platform quality, where 83 % and 67 % of our participants strongly
agreed. These two aspects are followed by the extension quality
and the extension quality assurance, where 67 % and 56 % agreed.
For community management (e.g., forum, blog, social channels),
we still see more agreement than disagreement. In contrast, while
the medium of participants expressed a neutral agreement, the
distribution is skewed toward disagreement with the two aspects

SPLC’17, September 25-29, 2017, Sevilla, Spain

stable extension mechanisms - {\/—\f‘l

platform quality - {>—<:I

market place - -

large number of extensions - .

extension quality assurance - =———___ e

extension quality - ===+ ==

community management -

important for sustaining the platform

Likert-scale response

1: strongly agree, 2: agree, 3: neutral, 4: disagree, 5: strongly disagree

Figure 2: Aspects for sustaining the open platform

large number of extensions and availability of a market place. This
attitude toward “quality over quantity” for their extensions confirms
the overall characteristics and goals of our subject platforms, which
are different from the large platforms, such as Android [3], which
strongly encourage large numbers of extensions to further their
platforms’ successes, specifically, they foster community innovation
and let the community define the scope of extensions.

5.2 Sustaining Challenges and Solutions

Our case-study participants expressed challenges related to quality
assurance, release management, protection of intellectual property
(IP), and how to scope future extensions and exceeding competitors.

5.2.1 Challenge 6: Assure Quality. Recall that quality assurance
of the platform and of the extensions (yet, with a stronger focus on
the former) were among the most essential aspects for sustaining
the open platform. Our survey shows a high diversity of quality-
assurance techniques. Interestingly, the most frequent technique
(28 %) is the manual review of extensions (mentioned both for the
smaller and larger platforms), followed by certification of exten-
sions (17 %), of the contributors (11 %), and of the development pro-
cess (11 %). Some participants (17 %) also pointed out that contracts
are made that oblige contributors to use certain quality-assurance
mechanisms. In only one platform (6 %), which also uses extension
certification, the extensions are reviewed automatically. Interest-
ingly, four participants explained that no specific quality-assurance
mechanisms are used and three participants that extension devel-
opers assure quality themselves. Our three case-study platforms
employ different quality-assurance mechanisms as follows.
Capture-and-Replay Mechanism: For the SE Platform, in ad-
dition to a platform test suite, an elaborate capture-and-replay
mechanism was created. If components expose faulty behavior, a
recording mechanism logs the conditions under which the behavior
appeared and retraces the calls that led to the behavior. The log
is sent to the platform developers for inspection. If the cause lies
within the platform, it is addressed directly; otherwise, extension
developers are informed. In either case, the captured error provides
the basis for new test cases to assure an improved error handling
of functionality within platform or extensions.

Proactive Error Avoidance: In the IoT Platform, multiple mech-
anisms to proactively avoid extension errors were realized (as op-
posed to detecting and fixing errors retroactively) as part of the
contribution process for the market place: For one, checklists assure

C. Seidl, T. Berger, C. Elsner, K.-B. Schultis

compliance of extensions with technical requirements. Furthermore,
extensions are checked for resource consumption especially when
using other extensions. Finally, a procedure to certify extension
developers was established to give them an increased level of auton-
omy in contributing to the market place when they apply adequate
development procedures.

Automated Test Cases: For the VM Platform, an existing plat-
form test suite was extended to cover extensions. This is possible
due to the standard interface used by all extensions. Test cases are
integrated in an automated build process yielding nightly or release
builds after all tests passed.

5.2.2 Challenge 7: Manage Releases. With existing applications
and extensions built upon the platform, our subjects face potentially
negative impacts (e.g., incompatibilities) on existing applications
during platform evolution. Our vendors carefully devised a release
strategy for new platform versions as follows.

Maintenance Plan for Multiple Releases: The SE Platform
uses one single release strategy for internal and external customers,
given its level playing field (cf. Sec. 4.3.3) business model. A full
release with major changes is rolled out every six months. In addi-
tion, the vendor actively maintains the last three major platform
versions, for each of which a maintenance patch is provided every
three weeks. The patch supply date is staggered, so that one patch
is released every week.

Decoupled Releases of Micro-Services: The IoT Platform has
a special situation regarding platform upgrades. The platform is
comprised solely of a collection of services that may be combined
freely, so only the applications connect the services, not the plat-
form itself. Consequently, there are no distinct releases of the plat-
form. Instead, individual services are constantly updated to new
versions to upgrade the platform incrementally.

API Compatibility for Service Releases: The VM Platform has
a major release cycle of 1.5-2 years. During major releases, exist-
ing functionality may be deprecated and previously deprecated
functionality may be removed from the platform. As this can cause
incompatibilities, four service releases are provided per year, which
are guaranteed to maintain API compatibility and only fix existing
or add new functionality.

5.2.3 Challenge 8: Protect Intellectual Property (IP). For our plat-
forms, many customers are direct competitors in the market. This
leads to challenges when innovative new functionality needs to be
protected against competitors use.

Vendor-Private Extensions: The SE Platform has a significant
number of company-internal customers. When new, innovative
functionality is devised within the company, it is tempting to pro-
vide it in the platform in a reusable way. However, the functionality
may be of substantial business value that should not be shared with
competitors. As a result, the vendor tends to place such innovative
code in extensions even when it complicates the overall architecture
of applications built upon the platform.

Customer-Private Extensions: The IoT Platform offers exten-
sions in the form of services potentially available to all customers
to build applications. The vendor’s extensions are generally made
public, unless they are developed on customer request, where cus-
tomers can choose whether to make them public. If customers
decide otherwise, the extension is run for their exclusive use. Apart

Opening Industrial Software Platforms: Challenges and Solutions

from prototypes, only third parties — not the vendor itself - develop
applications based on the platform.

Only Public Extensions: The VM Platform is not challenged by
IP issues. Extensions are made available for public use. Recall that
the platform is extensible with adapters for external engineering
tools. While the extension developers may be competitors, the
actual intellectual property is in the engineering tools, not the
adapters. So there are no benefits in protecting the extensions
against a competitor.

5.2.4 Challenge 9: Determine New Extensions. Especially with
the smaller scales of our subjects, driving innovation is still the
responsibility of platform vendors. Our subjects devise and develop
new extensions as follows.

Extensions Through Community Request: The SE Platform
collects extension requests from customers. If a request suits the
platform evolution plans, the vendor creates and offers the respec-
tive extensions to all customers. However, the platform vendor
explicitly refuses to develop extensions that are specific to individ-
ual customers and delegates these efforts back to the customers.
Our interviewee also emphasized that a clear expectation manage-
ment is needed: A: clear communication what [the customer] need[s],
what the platform can deliver, and how much effort it would be to
match the needs with what the platform can provide [is required].
Extensions Through Prototype Feedback: The IoT Platform
also collects user requests, but has a strong focus on proactively
developing extensions: The vendor performs a prototypical devel-
opment of extensions and examines their adoption potential. Upon
sufficient interest, the prototype is developed into a full extension;
otherwise development is discontinued.

Extensions Through Customer Request: The VM Platform
creates new extensions for interfacing with other tools exclusively
on request. However, platform customers are proactively inquired
about their development practices in order to determine external
engineering tools that are prospective candidates for interfacing.
Furthermore, the need for creating full-fledged extensions is re-
duced by providing the scripting mechanism for smaller (mainly
Ul-related) extensions.

5.2.5 Challenge 10: Sustain Strategic Advantage. In the case study,
we identified various, technology-related strategies how our plat-
forms strive to exceed competitors.

Focus on Stability: The SE Platform vendor accumulated signif-
icant expert knowledge by engineering and operating the platform.
This knowledge helps to constantly improve platform capabilities
but also poses an entry barrier to competitors that consider launch-
ing competing platforms. In addition, the platform’s strong focus
on stability and reliability through automated test suites, failure
capture-and-replay mechanisms (with resulting regression tests),
and backward binary compatibility are strong advantages over com-
peting platforms in the stability-focused domain. The decisions to
maintain the existing test suite even with the new C# interfaces
through generative procedures and to handle API evolution through
version-option structures respect this focus on stability (cf. Sec. 4.3.1).
Focus on Variety: For the IoT Platform, the wide variety of IoT-
related functionality is perceived as a significant advantage over
competitors. Furthermore, the structuring into services allows free-
dom in composing the offered functionality, which is essential for

SPLC’17, September 25-29, 2017, Sevilla, Spain

the IoT domain where any prescribed general control flow would
limit the application development. The re-engineering of the tools
into micro-services when opening the platform further supported
these advantages.

Focus on Openness: The VM Platform has a general policy of
being open with respect to the information they provide. This is
perceived as an essential success criterion for their stable market
position: C: I think a large part of acceptance [of the platform] is
due to the possibility for individual extensions. The platform open-
ing further strengthened this advantage over competitors, easing
the interoperability of external engineering tools with the plat-
form. As further advantage for the platform vendor, it empowers
external tool developers to proactively connect their tools without
depending on the platform vendor.

6 THREATS TO VALIDITY

External Validity. Our survey participants cover a wide range of
domains and companies; the interviews have been conducted on
successfully opened platforms of different domains, technologies,
and maturity levels. Each challenge is confirmed by data of multiple
companies. The reported solutions are more individual and vary
depending on the opened-up systems and their technologies.
Internal Validity. Participants might have given answers that do
not fully reflect reality as they were recorded. To address this, we
guaranteed anonymity and assured the interviewees that we will
seek for feedback on conclusions to avoid misunderstandings. The
survey also covers a broad range of roles, which avoids that drawn
conclusions are limited to the participants’ particular perspectives.
The interviews were performed with participants having a strong
technical background and substantial industrial experience. Thus,
our work provides both a general perspective on platform opening
as well as in-depth insights with respect to technical issues.
Construct Validity. To limit the effect of potentially subjective
statements by participants, the reported challenges are based ex-
clusively on statements affirmed by more than one interviewee
and by several survey responses. Furthermore, to mitigate different
interpretation of questions by researchers and participants, survey
and interviews started with introductory explanations about the
notions of platform and platform opening. Regarding completeness,
survey and interview participants were provided the opportunity to
add challenges and solutions not covered by the devised questions.
Finally, we used violin plots to analyze the Likert-scale questions by
interpreting the Likert scale as a continuous scale, which is possible
due to equal value distances.

Conclusion Validity. Our qualitative data analysis depends on our
interpretation. The main classification was performed by one author,
but results were cross-checked by at least two others. As described
in Sec. 2, we used recommended methods to improve validity, such
as triangulation and carefully formulating conclusions.

7 RELATED WORK

Many studies on open software platforms and their surrounding
software ecosystems exist. However, to our best knowledge, none
focuses on opening of small and medium-scale industrial platforms.

Anvaari et al. [2] investigate to what extent mobile-app plat-
forms allow extensions to interact with the platform. Their work is

SPLC’17, September 25-29, 2017, Sevilla, Spain

orthogonal to ours: they focus on extension mechanisms in large
mobile-app platforms; we focus on the opening process (how mech-
anisms are introduced) in smaller platforms from various domains.

Bosch [4] describes the general procedure of migrating a closed
product line to an open ecosystem. He emphasizes that the opening
process has to be managed. We complement his work by providing
insight into detailed challenges and solutions for technical aspects
of the opening. Bosch also provides a classification of ecosystems
according to which all our platforms are application-centric.

Jansen [13] describes the centrally steered process of a single
company for opening eleven of their product lines for extensions.
We extend upon this work, as we investigate platforms of different
vendors, from different domains and with different characteristics
regarding challenges to overcome and liberty for solutions to apply.

Schultis et al. [15] study modes of collaboration among partners
and resulting architecture challenges for internal software ecosys-
tems. They focus challenges that arise in ecosystems within large-
scale organizations, while we complement their work by focusing
challenges that arise in ecosystems involving external partners.

Bosch [5] discusses architectural challenges for opening plat-
forms (which form an ecosystem) and provides basic hints how to
deal with them. We provide concrete practical solutions for these
challenges and extend his list of challenges with many more.

Bosch et al. [6-8] analyze collaboration practices within software
ecosystems forming around an open platform. Yet, they are not
concerned with the process of platform opening.

Jansen et al. [14] conduct a case study to evaluate their open soft-
ware enterprise model to assess the degree of openness of software
platforms. They strive for encouraging platform vendors to open
their platforms, which is complementary to our work where we
elicit challenges and solutions in the process of platform opening.

Wnuk et al. [17] conducted a case study identifying bridges and
barriers to engage in an ecosystem around a video surveillance
systems. While it analyzes the success and blocking factors for
further engagement of ecosystem partners, it does not explicitly
address the process of opening up the platform.

Dal Bianco et al. [9] conduct an industrial case study on third-
party developer experience, particularly on the role of “platform
boundary resources” in exposing the platform architecture. Their
work emphasizes the need for a platform to interface with its exten-
sions through specific APIs as presented in our list of challenges.

Hanssen [11] studies a product-line organization and its transi-
tion towards an ecosystem. He focuses on change in collaboration
practices and partner relationships as a consequence of an emerging
ecosystem, while we focus on technical challenges and solutions.

Espinha et al. [10] investigate challenges for migrating applica-
tions to new versions of web APIs, commonalities in the evolution
policies for web APIs, and the impact on the applications’ source
code when APIs start to evolve, which complements our insights
for the backward-compatibility challenge and its solutions.

8 CONCLUSION

We presented a survey and a case study on the platform-opening
process in small and medium-scale industrial platforms. We iden-
tified a range of successfully opened platforms that exhibit char-
acteristics and goals that are different from those of the large and

C. Seidl, T. Berger, C. Elsner, K.-B. Schultis

well-known platforms typically studied in the literature, such as
Android, Eclipse, or the Linux kernel. By triangulating results from
a questionnaire and interviews, we elicited ten challenges together
with individual solutions related to the opening process and the
longer-term endeavor of sustaining an open platform.

We learned that the inspected platforms put primary emphasis
on the platform and extension quality. Large numbers of contri-
butions are considered lower in priority. Specifically, an attitude
towards “quality over quantity” for their extensions confirms the
overall characteristics and goals of the subject platforms, which are
different from the large platforms, which strongly encourage large
numbers of extensions to foster their platforms’ success [3].

The opening processes seemed diverse, but we found similar ac-
tivities reflected in the five challenges related to opening, including
API (re-)engineering or providing techniques for backward com-
patibility (or not allowing breaking changes at all). The solutions
were mostly pragmatic, such as the version-option structures of
the SE Platform to cope with backward compatibility. Interestingly,
challenges such as modeling the ecosystem were less relevant.

In the future, we plan to assemble process templates from the
identified common procedures to guide the opening processes ac-
cording to clear engineering principles. In fact, we believe that the
majority of the differences in the opening strategies results from
the lack of such templates.

REFERENCES

[1] Online Appendix. http://gsd.uwaterloo.ca/openPlatformStudy.

[2] M. Anvaari and S. Jansen. Evaluating Architectural Openness in Mobile Software
Platforms. ECSA, 2010.

[3] T. Berger, R.-H. Pfeiffer, R. Tartler, S. Dienst, K. Czarnecki, A. Wasowski, and
S. She. Variability Mechanisms in Software Ecosystems. Information and Software
Technology, 56(11):1520-1535, 2014.

[4] J. Bosch. From Software Product Lines to Software Ecosystems. In SPLC, 2009.

[5] J.Bosch. Architecture Challenges for Software Ecosystems. In ECSA, 2010.

[6] J.Bosch and P. Bosch-Sijtsema. Coordination Between Global Agile Teams: From
Process to Architecture. In D. Emite, N. Moe, and P. Agerfalk, editors, Agility
Across Time and Space. Springer, 2010.

[7] J. Bosch and P. Bosch-Sijtsema. From Integration to Composition: On the Impact
of Software Product Lines, Global Development and Ecosystems. Journal of
Systems and Software, 83(1):67-76, Jan. 2010.

[8] J. Bosch and P. Bosch-Sijtsema. Softwares Product Lines, Global Development
and Ecosystems: Collaboration in Software Engineering. In L. Mistrik, J. Grundy,
A. Hoek, and J. Whitehead, editors, Collaborative Software Engineering. Springer,
2010.

[9] V. Dal Bianco, V. Myllarniemi, M. Komssi, and M. Raatikainen. The Role of
Platform Boundary Resources in Software Ecosystems: A Case Study. In WICSA,
2014.

[10] T.Espinha, A. Zaidman, and H. G. Gross. Web API Growing Pains: Stories from
Client Developers and their Code. In CSMR-WCRE, 2014.

[11] G.K. Hanssen. A Longitudinal Case Study of an Emerging Software Ecosystem:
Implications for Practice and Theory. Journal of Systems and Software, 85(7):1455-
1466, July 2012.

[12] G.K. Hanssen and T. Dyba. Theoretical Foundations of Software Ecosystems. In
IWSECO, 2012.

[13] S.Jansen. Opening the Ecosystem Flood Gates: Architecture Challenges of

Opening Interfaces Within a Product Portfolio. In ECSA, 2015.

S. Jansen, S. Brinkkemper, J. Souer, and L. Luinenburg. Shades of Gray: Opening

up a Software Producing Organization with the Open Software Enterprise Model.

Journal of Systems and Software, 85(7):1495-1510, July 2012.

[15] K.-B. Schultis, C. Elsner, and D. Lohmann. Architecture Challenges for Internal

Software Ecosystems: A Large-Scale Industry Case Study. In FSE, 2014.

C. Seidl and U. Aimann. Towards Modeling and Analyzing Variability in Evolv-

ing Software Ecosystems. In Proceedings of the 7th International Workshop on

Variability Modelling of Software-intensive Systems (VaMoS), VaMoS’13, 2013.

[17] K. Wnuk, P. Runeson, M. Lantz, and O. Weijden. Bridges and Barriers to
Hardware-dependent Software Ecosystem Participation - A Case Study. In-
formation and Software Technology, 56(11):1493-1507, Nov. 2014.

(14

(16

http://gsd.uwaterloo.ca/openPlatformStudy

	Abstract
	1 Introduction
	2 Methodology
	2.1 Survey
	2.2 Case Study
	2.3 Data Analysis

	3 The Software Platforms
	3.1 Platforms Identified in the Survey
	3.2 Platforms Examined in the Case Study

	4 Opening the Platforms
	4.1 Reasons for Opening
	4.2 Opening Procedure
	4.3 Opening Challenges and Solutions

	5 Sustaining the Open Platforms
	5.1 Essential Aspects for Sustaining
	5.2 Sustaining Challenges and Solutions

	6 Threats to Validity
	7 Related Work
	8 Conclusion
	References

