
A Chrestomathy of DSL Implementations

Simon Schauss Ralf Lämmel Johannes Härtel
Marcel Heinz Kevin Klein Lukas Härtel

Software Languages Team, University of Koblenz-Landau
Germany

Thorsten Berger
Chalmers | University of Gothenburg

Sweden

Abstract

Selecting and properly using approaches for DSL implemen-
tation can be challenging, given their variety and complexity.
To support developers, we present the software chrestomathy
MetaLib, a well-organized and well-documented collection
of DSL implementations useful for learning. We focus on
basic metaprogramming techniques for implementing DSL
syntax and semantics. The DSL implementations are orga-
nized and enhanced by feature modeling, semantic annota-
tion, and model-based documentation. The chrestomathy
enables side-by-side exploration of different implementation
approaches for DSLs. Source code, feature model, feature
configurations, semantic annotations, and documentation
are publicly available online, explorable through a web ap-
plication, and maintained by a collaborative process.

CCS Concepts • Software and its engineering → Ab-
straction, modeling and modularity; Syntax; Semantics; Soft-
ware libraries and repositories;

Keywords DSL implementation. Metaprogramming. Soft-
ware chrestomathy. Learning. MetaLib. Feature modeling.
Model-based documentation.

ACM Reference Format:

Simon Schauss, Ralf Lämmel, Johannes Härtel, Marcel Heinz, Kevin
Klein, Lukas Härtel, and Thorsten Berger. 2017. A Chrestomathy
of DSL Implementations. In Proceedings of 2017 ACM SIGPLAN
International Conference on Software Language Engineering (SLE’17).
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3136014.
3136038

1 Introduction

Research context: Learning DSL implementation Over
the last decades, many different languages and technologies
for the implementation of DSLs have been introduced. We

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SLE’17, October 23–24, 2017, Vancouver, Canada
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5525-4/17/10. . . $15.00
https://doi.org/10.1145/3136014.3136038

view DSL implementation here as a metaprogramming sce-
nario. Developers—as well as students or course staff—who
need to learn metaprogramming or understand the domain
overall, are confronted with a myriad of often complex op-
tions [11, 12, 28, 31]. Indeed, each relevant language and
technology for DSL implementation comes with its specifics
and idiosyncrasies.
Our research is based on the hypothesis that learning

in this domain can be supported by a so-called software
chrestomathy, which generally refers to a collection of pro-
grams or systems useful for learning (by definition) [14, 24].
We describe the chrestomathy MetaLib as a collection of
DSL implementations that exercise metaprogramming in an
illustrative manner, while covering a space of options, and
using structured and explorable documentation for the bene-
fit of learners. All collected DSL implementations implement
the same DSL—a language for finite state machines (FSML).

Research scope: Basics of DSL implementation We fo-
cus on metaprogramming techniques for implementing the
syntax and semantics of a DSL. At this point, we are not
concerned with IDE-oriented aspects [12]. We are also not
concerned with ‘secondary’ language implementation as-
pects, such as components for software reverse engineering,
metrics, re-engineering (e.g., refactoring), and software com-
position. The scope could be possibly extended in future
work. We do not limit ourselves to designated metaprogram-
ming systems or language workbenches, such as Rascal [21]
or MPS [38]; we also consider general purpose programming
languages, possibly with appropriate extensions or libraries,
such as Java and Python with ANTLR [30], and Haskell with
template metaprogramming [34] and quasi-quotation [27].
Section 2 describes the sampling of approaches we study.

Contributions of the paper TheMetaLib chrestomathy
comprises a well-organized and well-documented collection
of DSL implementations. We organize the implementations
and underlying metaprogramming approaches in terms of
features—important design options that DSL developers need
to take into account. We organize the identified features in
a feature model [6, 18], an intuitive, tree-like notation com-
monly used to describe the optional and mandatory features
of a software product line [2]. The DSL implementations are
described with the help of a model-based documentation ap-
proach that integrates feature tagging, explanatory portions
(headlines or captions), and semantic annotations for the

https://doi.org/10.1145/3136014.3136038
https://doi.org/10.1145/3136014.3136038
https://doi.org/10.1145/3136014.3136038

SLE’17, October 23–24, 2017, Vancouver, Canada Schauss, Lämmel, Härtel, Heinz, Klein, Härtel, and Berger

used languages, technologies, and concepts of metaprogram-
ming. Such a documentation directly enables exploration by
learners.
To systematically create the chrestomathy, we started

with a basic feature model of DSL implementations (inspired
by existing literature) and a sampling of different metapro-
gramming approaches. We then implemented our language—
FSML—using each approach by following best practices. We
analyzed each implementation, thereby refining our feature
model, tagging the realization of the features in code, and
recording important design decisions and experiences.
Our work is publicly available online as the MetaLib

chrestomathy.1 It includes source code, feature model, fea-
ture configurations, semantic annotations, and documenta-
tion;MetaLib is explorable through a web application and
maintained by a collaborative process.
Our work supplements prior DSL surveys in that theo-

retical aspects are mapped to idiomatic implementations
facilitating end-to-end comparison taking advantage of fea-
ture modeling and model-based documentation (including
semantic annotation).

Roadmap of the paper Section 2 summarizes the method-
ology underlying this research. Section 3 introduces our
simple DSL for finite state machines (FSML). Section 4 an-
alyzes FSML implementations to derive a refined feature
model of DSL implementation. Section 5 presentsMetaLib’s
model-based approach to documentation. Section 6 discusses
threats to validity. Section 7 discusses related work. Section 8
concludes.

2 Methodology

The methodology for developing theMetaLib chrestomathy
of DSL implementations is summarized in Fig. 1. We now
describe each intermediate result (see legend) and how it
was obtained.

2.1 Domain Analysis

We aimed at a set of most basic and common features of
DSL implementation so that we could provide scope to our
implementation efforts and have a starting point for feature
modeling. To this end, we performed a simple domain anal-
ysis based on scholarly work on DSL implementation. In
fact, we focused on work that surveys approaches. We con-
sulted two PhD theses in the field of DSL [11, 31], as we were
readily familiar with these (one of the authors was on the
committees for the theses). We also consulted a paper on the
evaluation and comparison of language workbenches [12],
as it readily discusses features of DSL implementation ap-
proaches; we focus on non-IDE related aspects, that is, basic
aspects of language implementation and metaprogramming,

1http://www.softlang.org/metalib

Domain analysis

Implementation
analysis

Semantic
annotation

Basic
feature model

Refined
feature model

DSL
implementations

Model-based
documentation

Annotated DSL
implementations

Selected DSL
implementation approaches

Theoretical
sampling

Implementation
development

Technical
documentation

Scholarly
work

Online
resources

Explorable
chrestomathy

Intermediate
result

Data
sourcesFinal result

Research activity Use of data source

Legend

Figure 1.Methodology for the development of theMetaLib
chrestomathy.

as noted in Section 1. We also consulted the Software Lan-
guages Book [25], as it discusses various DSL implementa-
tions in a relatively systematic manner and is in itself based
on an extensive domain analysis of software language engi-
neering.
In this manner, we observed (obviously) that DSL imple-

mentation is concerned with i) syntax, ii) typing or well-
formedness or semantic analysis, referred to as static se-
mantics by us, iii) execution or evaluation or interpretation,
referred to as dynamic semantics by us, iv) as well as opti-
mization or code generation or translation, referred to as
translation semantics by us. These key features are also em-
phasized by the resources mentioned above–in particular:
one of the PhD theses [31, Fig. 3.1] (an architectural descrip-
tion) and the language-workbench comparison [12, Fig. 1]
(the major non-IDE-related group features).

There is also the established dichotomy of concrete ver-
sus abstract syntax, which we thus incorporated into the
basic feature model. When it comes to concrete syntax, an
existing feature model [12] readily provides a very general
classification: textual versus graphical syntax, which we thus
incorporated into the basic feature model. As far as textual
syntax is concerned, we also observed the dichotomy of
projectional editing versus parsing.

http://www.softlang.org/metalib

A Chrestomathy of DSL Implementations SLE’17, October 23–24, 2017, Vancouver, Canada

Language implementation

Syntax

Abstract
syntax

Concrete
syntax

Textual
syntax

Parsing
Projectional

editing

Graphical
syntax

Semantics

Dynamic
semantics

Static
semantics

Translation
semantics

Legend

Mandatory

Optional

Or

Alternative

Abstract

Concrete

Figure 2. The basic feature model for DSL implementations. (When we use the terms Syntax, Semantics, etc. as feature names,
we mean implementation (executable specification) of syntax, semantics, etc.)

There are many different ways in which abstract and con-
crete syntax can be supported, beyond parsing or projec-
tional editing, but we defer the discovery of designated fea-
tures to the implementation analysis phase (Sec. 4), which is
driven by the concrete realizations. Hence, none of the fea-
tures is assumed to be ‘concrete’ at this point, as we assume
that the analysis of particular implementation approaches
and actual implementations may reveal more variability.

The resulting basic feature model is summarized in Fig. 2.
Syntax is a mandatory feature, because any sort of DSL im-
plementation must implement syntax. Semantics is optional;
for instance, if the goal is to provide a basic, graphical editor
for a DSL, then this would be a syntax-only implementation.
Yet, most implementations in the MetaLib chrestomathy
implement (sub-features of) Semantics.

2.2 Theoretical Sampling

As there are many implementation approaches, related tech-
nologies, and applicable languages, we decided to perform
theoretical sampling [10] to help with developing a manage-
able but representative suite of DSL implementations. We
apply the following sampling criteria for identifying tech-
nologies and approaches:
Coverage ofmainstream languages While DSL research
often focuses on designated systems or technologies for DSL
implementation, ‘general purpose programming languages’
may also serve as the host language for DSL implementa-
tion. We exercise Java (as a statically typed object-oriented
programming language) and Python (as a dynamically typed
multi-paradigm programming language) therefore.
Coverage of programming paradigms Thanks to the pre-
vious criterion, we readily cover imperative, object-oriented,
and bits of functional programming. Additionally, we exer-
cise Haskell, Scala, and Racket as representatives of statically
and dynamically typed functional and functional-object ori-
ented programming with well-known capabilities for DSL
implementation.

Coverage of DSL implementation styles [11, 17, 25, 31]
In external style, the syntax of the DSL is not tied to the host
language and the language user may be largely oblivious to
the host language; in internal style, the DSL is implemented
essentially as a library in the meta- or host language; in a
strong form of ‘internal’, the DSL’s syntax and semantics is
implemented and integrated into a host language [25, 31].
We exercise ANTLR for external style on top of Java and
Python; we exercise Java and Python for internal style; as
to the ‘strong form’, we exercise Haskell, Scala, and Racket
with metaprogramming extensions for quasi-quotation or
syntax macros.

Coverage of technological spaces We submit the hypoth-
esis that DSLs may be implemented differently depending
on the technological space [23] at hand. We exercise EMF
and Sirius for modelware (or MDEware); we exercise ANTLR,
Rascal, and Spoofax for grammarware. These seem to be the
two most relevant technological spaces for DSL implemen-
tation. In particular, SQLware, XMLware, and RDFware are
considered less relevant.

Coverage of the basic feature model Clearly, we should
exercise all options of the basic feature model. This implies
that we need to exercise parsing, which we cover, for ex-
ample, by ANTLR-based implementations, graphical syntax,
which we cover, for example, by a Sirius-based implementa-
tion, and projectional editing, which we cover specifically
by an MPS-based implementation. The semantics-related
features are covered by several implementations.

2.3 Implementation Development

We developed at least one DSL implementation for each
identified technology and approach.
In addition to the technical documentation for exercised

languages or technologies, we also consulted key publica-
tions about them: ANTLR [30]; EMF [35]; Haskell [17, 27, 34];

SLE’17, October 23–24, 2017, Vancouver, Canada Schauss, Lämmel, Härtel, Heinz, Klein, Härtel, and Berger

Figure 3. Snapshot of web-based view for MetaLib.

Racket [15]; MPS [38]; Rascal [21]; Scala [4, 33]; Sirius [37],
Spoofax [19], Xtext [9].

The DSL implementations were meant to implement best
practices for the languages or technologies, but there is
clearly variability that we may have missed which we con-
sider as a threat to validity and a future work topic.

2.4 Implementation Analysis

We analyzed the implementations to distinguish them from
each other and to capture these differences as a refinement of
the basic feature model. We will present the refined feature
model in Sec. 4. In addition to identifying features we also
identified metaprogramming-related concepts (e.g., quasi-
quotation or fluent API). In this manner, we mean to connect
the chrestomathy to the vocabularies of DSL implementation
and specific approaches, languages, and technologies.
The identification process was supported by data min-

ing techniques. That is, we processed the language- and
technology-specific resources (Sec. 2.3) as follows. We per-
formed PDF stripping, camel-case splitting, stop-word re-
moval, stemming, changing every char to lower case and
filtering all word smaller than two chars. Stemmed words
were mapped back to the most prominent occurrence before
stemming. Two ranks were computed: one for basic term
frequency (TF) for each resource, another one for inverse doc-
ument frequency (TF-IDF) with the collection of resources as
documents. The authors then examined the top 50 for each
resource and both ranks to identify potential features and
concepts. (See the MetaLib website for the data set.)
We had to decide for each identified concept whether to

promote it to a feature. In the pilot for this research, we as-
sumed that we wanted to have features such as Internal DSL,
Fluent API, External DSL, Pidgin (‘a grammatically simpli-
fied form of a language’ [31]), or Creole (‘a mother tongue
formed from the contact of two languages’ [31]). Later, we

Figure 4. Word cloud of annotated concepts.

decided that examples like those given correspond to im-
plementation ‘patterns’ or ‘qualities’ as opposed to features;
such concepts still serve semantic annotation (see Sec. 2.5).

We also had to be careful not to designate features to each
and every technique of a particular approach because we
would otherwise end up with poor abstraction. For instance,
the ANTLR technology supports parse-tree listeners, but we
identified a more general feature, Abstraction, which covers
the essential use case of parse-tree listeners: to map parse
trees to abstract syntax trees (ASTs).

2.5 Semantic Annotation

We annotated the implementations with the used languages,
technologies, and concepts. To this end, we used a semantic
web approach such that we located the relevant entities on
appropriate platforms, e.g., Wikipedia, and we documented
these entities on a semantic wiki.2 See Fig. 4 for an indication
of tagged concepts.

2https://101wiki.softlang.org/

https://101wiki.softlang.org/

A Chrestomathy of DSL Implementations SLE’17, October 23–24, 2017, Vancouver, Canada

2.6 Model-based Documentation

We will present the documentation model in Sec. 5. The idea
is that the DSL implementations with the attached docu-
mentation can be directly used for exploring approaches
for DSL implementations. In Fig. 3, we show a snapshot of
a web-based view for MetaLib for one particular DSL im-
plementation; at the top, there is a summary of features,
languages, technologies, and concepts; below, there is the
first annotated code section with a DSL sample.

3 The DSL Implemented inMetaLib

We use a very simple finite-state machine language (FSML)
as the DSL for implementation in theMetaLib chrestomathy.

3.1 Rationale for Choosing the DSL

FSML was chosen based on the following rationale:
i) The implementation of the language must involve aspects
of textual and graphical syntax as well as static, dynamic, and
translational semantics. This is, however, not a challenge, as
pretty much any domain-specific modeling or programming
language could be implemented in such a manner.
ii) We want the language to be very simple so that the result-
ing implementations are concise, which we assume, helps
both implementors and learners.
iii) We want the underlying domain to be familiar to and
readily used by the relevant research community. This is
certainly the case for the domain of behavioral modeling
with finite state machines.

We note that the chosen language and the underlying fea-
ture model are very simple, when compared to related com-
parison efforts, including the transformation-tool contest3 or
the language-workbench challenge4. This is a consequence
of our focus on basic metaprogramming techniques for DSL
implementation, as opposed to a technology- or tool-focused
comparison.

3.2 Language Reference

As a semi-normative reference, we specify and illustrate the
FSML syntax and semantics in the sequel.

3.2.1 Concrete Syntax

We begin with an illustration of graphical syntax:

exception

ticket/eject

pass

mute

lockedrelease
pass/alarm

unlockedticket/collect
pass

ticket/eject

3http://www.transformation-tool-contest.eu/
4http://www.languageworkbenches.net/

The example is concerned with a turnstile (a revolving
door) as it may be used in a metro system.5 An implemen-
tation of graphical syntax may deviate from presentational
details, but it is expected that any implementation repre-
sents states (nodes), transitions (edges), and includes details
for state ids, event ids, and action ids. Also, the initial state
should be marked (in our illustration, the node ‘locked’ is
filled to designate it as the initial state). Furthermore, it is as-
sumed that the turnstile example is a normative DSL example
that should be exercised by any FSML implementation.

Here is the turnstile example in textual syntax:
initial state locked {
ticket/collect −> unlocked;
pass/alarm −> exception;

}
state unlocked {
ticket/eject;
pass −> locked;

}
state exception { ... }

An implementation of textual syntax should implement
the textual syntax as shown. Thus, we define the syntax by
a normative context-free grammar; we use the EBNF-like
grammar notation of the Software Languages Book [25]:
fsm : {state}∗ ;
state : {'initial'}? 'state' stateid '{' {transition}∗ '}' ;
transition : event {'/' action}? {'−>' stateid}? ';' ;
stateid : name ;
event : name ;
action : name ;
// Lexical syntax
name : { alpha }+ ; // alpha proxies for letters
layout : { space }+ ; // To be skipped along parsing

3.2.2 Abstract Syntax

The abstract syntax of FSML could be defined in different
ways, also depending on the actual definition formalism and
the general choice between trees versus graphs. Here is an
illustrative definition for the tree-based abstract syntax of
FSML; we use the Haskell-/ML-like signature notation of the
Software Languages Book [25]:
// Sequences of state declarations
type fsm = state∗ ;
// State declarations with all transitions
type state = initial× stateid× transition∗ ;
type initial = boolean ;
// Transitions for a given source state
type transition = event× action?× stateid ;
type stateid = string ;
type event = string ;
type action = string ;

5There are states for the door to be locked or unlocked or to be in an
exceptional state, when a person was trying to pass without inserting a
ticket. A transition between the states is labeled by an event that triggers
the transition, possibly based on a sensor in the real system and an optional
action that corresponds to some observable behavior based on an actor in
the real system.

http://www.transformation-tool-contest.eu/
http://www.languageworkbenches.net/

SLE’17, October 23–24, 2017, Vancouver, Canada Schauss, Lämmel, Härtel, Heinz, Klein, Härtel, and Berger

Here is also an illustrative definition for the graph-based
abstract syntax of FSML; we use the EMF-like metamodeling
notation of the Software Languages Book [25]:
class fsm { part states : state∗ ; }
class state {
value initial : boolean ;
value stateid : string ;
part transitions : transition∗ ;

}
class transition {
value event : string ;
value action : string? ;
reference target : state ;

}

An instance of the signature is also referred to as AST
(Abstract Syntax Tree). An instance of the metamodel is
referred to as ASG (Abstract Syntax Graph). We also speak
of ‘model’ in both cases.

3.2.3 Dynamic Semantics

We sketch an operational semantics (small-step style) on top
of the tree-based abstract syntax shown earlier. There is this
small-step judgment with appropriate metavariables for the
earlier types:

f ⊢ ⟨x , e⟩ #‰ ⟨x ′, out⟩
That is, the finite state machine (FSM) f is interpreted (‘sim-
ulated’) to make a transition from a state with id x to a state
with id x ′ while handling an event e , and producing pos-
sibly some output out (zero or one actions). The reflexive,
transitive closure requires a similar judgment:

f ⊢ ⟨in⟩ #‰
∗ ⟨x , out⟩

That is, the FSM f starting from the initial state and an input
in, the complete input is consumed ending in a state with
id x and the complete output out with the actions for the
transitions.

We specify the one-step relation.
⟨. . . , ⟨b,x , ⟨. . . , ⟨e, ⟨a⟩,x ′⟩, . . .⟩⟩, . . .⟩

⊢ ⟨x , e⟩ #‰ ⟨x ′, ⟨a⟩⟩
[action]

⟨. . . , ⟨b,x , ⟨. . . , ⟨e, ⟨⟩,x ′⟩, . . .⟩⟩, . . .⟩
⊢ ⟨x , e⟩ #‰ ⟨x ′, ⟨⟩⟩

[no−action]

That is, there are only two axioms: one for the case of
an applicable transition with an action, another one for an
applicable transition without action. In both axioms, we
simply decompose the FSM from the context to locate a
suitable transition (i.e., one with event e within a suitable
state declaration (i.e., the one for the current state x). The
located transition provides the new state id x ′ and optionally
an action a.

3.2.4 Static Semantics

The static semantics (well-formedness of FSMs) could also
be specified by a deductive system like the one for dynamic
semantics, but we omit such a specification here for brevity.

Overall there are constraints described informally as fol-
lows: i) the ids of the declared states need to be distinct; ii)
there must be exactly one initial state; iii) the events must
be distinct for each state’s transitions. iv) the target state of
each transition must be declared; v) all states must be reach-
able from the initial state. For instance, here is an example
violating the last constraint:
initial state stateA { eventI/actionI −> stateB; }
state stateB { }
state stateC { }

3.2.5 Translation Semantics

We decide to approach the feature of translation semantics
in a less normative manner because we noted up-front that
some metaprogramming approaches target translation or
code generation in the context of DSL implementation in a
specific manner, as we will substantiate in Section 4.

As one approach to translation, we assume that FSMs are
translated to C code with some dispatching logic for state
transition. This is illustrated here for the turnstile FSM:
enum State {LOCKED,UNLOCKED,EXCEPTION,UNDEFINED};
enum State initial = LOCKED;
enum Event {TICKET,RELEASE,MUTE,PASS};
void alarm() { }
void eject() { }
void collect() { }
enum State next(enum State s, enum Event e) {

switch(s) {
case LOCKED:

switch(e) {
case TICKET: collect(); return UNLOCKED;
case PASS: alarm(); return EXCEPTION;
default: return UNDEFINED;

}
case UNLOCKED: ...
case EXCEPTION: ...
default: return UNDEFINED;

}
}

That is, there are enum types for the states and the events;
there are functions for the actions; state transition is mod-
eled by a function next which uses switch/case -statements to
map the current state and a given event to a new state ac-
companied by a call of the function for an action, if specified.

4 Implementation Analysis

Based on the sampling of Section 2, we implemented FSML
with the identified languages, technologies, and approaches;
see Fig. 5. We consulted technical documentation and schol-
arly work, as identified earlier (Section 2.3). Within the au-
thor team, we held code review meetings where the primary
developer of an implementation would need to explain the
implementation overall and defend made choices to reason-
ably conform to best practices. Eventually, the discussion
would aim at the identification of sub-features as described
below.

A Chrestomathy of DSL Implementations SLE’17, October 23–24, 2017, Vancouver, Canada

Chrestomathy member Languages & technologies

javaInfluentInternal Java
javaFluentInternal Java
javaExternal Java, ANTLR
pythonInternal Python, Graphviz
pythonExternal Python, ANTLR
haskellQuasiQuotation Haskell (+TH+QQ)
scalaEmbedded Scala
mps MPS
spoofax Spoofax
racket Racket
rascal Rascal
emfXMI EMF
emfSirius EMF, Sirius
emfXtext EMF, Xtext

Figure 5. FSML implementations inMetaLib.

4.1 Refinement of the Basic Feature Model

We refine the model as of Fig. 2.

4.1.1 Abstract Syntax

Here is the corresponding refinement:

Abstract syntax

Model

AST ASG
Semantic
domain

API
Model
editing

Serialization Resolution

By exercising pure functional programming (in Haskell)
and metamodeling (with EMF specifically), we encountered
the obvious AST versus ASG (i.e., tree versus graph) di-
chotomy, thereby suggesting corresponding subfeatures. We
observed that our internal DSL style implementations in Java
(javaInfluentInternal) preferred trees over graphs despite the
availability of reference semantics because, in this manner,
the resulting API was more convenient (think of using a
target state in a transition before declaring the state).

The object-oriented implementations with their different
object models also made us realize that an important aspect
of abstract syntax, especially in internal DSL-style imple-
mentation, is the actual API and thus we started separating
Model (representation) versus API in the feature model.
In one internal DSL-style implementation (javaFluentIn-

ternal), we encountered a model that was closer to a ‘se-
mantic domain’ (in the sense of semantics) than a tree- or
graph-like structure (in the sense of syntax); we show Java
code for illustration:
private HashMap<

String,
HashMap<String, ActionStatePair>

> fsm = new HashMap<>();

That is, the model is a cascaded map for maintaining states
and transitions; lookup directly models the semantics of state
transition. We determined that it is not uncommon that a

DSL implementation may designate a model which captures
already semantics, to some extent, and thus, we created the
feature Semantic domain as a subfeature ofModel–next to
AST and ASG.Model is an or-feature because, in principle,
a DSL implementation may use different representations.
Most clearly in the context of the EMF-based implemen-

tation (emfXMI), we observed that abstract syntax-based
(model-based) serialization is an important concern and thus,
we created the subfeature Serialization.

Models (instances of abstract syntax) are editable, more or
less, as is—that is, subject to a generic projection, which how-
ever may be customized to some extent. For instance, EMF’s
possibly customized model editor (emfXMI) supports such
model projection. Therefore, we added the Model editing
feature as an optional extension to Abstract syntax.

Finally, we also experimented with implementations that
used both ASTs and ASGs (emfXtext)—the former for initial
construction, e.g., by means of a fluent API and the latter
as the ultimate representation. We created the subfeature
Resolution for such a mapping from ASTs and to ASGs.

4.1.2 Textual Syntax

We expected to encounter many different kinds of parsers in
the context of the implementation of textual syntax or pro-
jectional editing; we decided not to consider text formatting
(pretty printing) for the DSL. When it comes to parsing, one
could end up re-capturing classifications of grammar-class
restrictions and parsing algorithms. Instead, we aimed at
a high level of abstraction focusing on the I/O behavior of
parsing. We observed that some implementations exposed
a concrete syntax tree (CSTs), others went right away to
ASTs, yet others to ASGs. Thus, we created the features
Text-to-CST, Text-to-AST, and Text-to-ASG as subfeatures of
Parsing. Some parsers are scannerfull (i.e., they implement a
scanner and expose a token stream), others are scannerless,
and thus, we created the optional subfeature Scanning.
There exists much variation on projectional editing [3,

12] from which however we aggressively abstract to only
one feature already identified in the domain analysis. Thus,
Projectional editing is turned into a concrete feature. (Spe-
cializations are conceivable, e.g., tabular versus template-
based text formats.) MPS (mps) supports such projectional
(text) editing.

We also observed that implementations may designate
functionality to the actual mapping from CSTs to ASTs or
ASGs and thus, we created the subfeature Abstraction. For
instance, use of ANTLR (e.g., javaExternal) would qualify for
Text-to-CST because ANTLR builds parse trees anyway. We
may then use ANTLR’s parse-tree listeners for Abstraction.

Some implementations (racket, scalaEmbedded) use tech-
niques other than classic parsing to implement the textual
syntax, e.g., macros (syntax rules) or parse-tree rewriting,
and thus, we created the subfeature Replacement next to
Parsing and Projectional editing. Thus:

SLE’17, October 23–24, 2017, Vancouver, Canada Schauss, Lämmel, Härtel, Heinz, Klein, Härtel, and Berger

Textual syntax

Parsing

Text-to-model

Text-to-
CST

Text-to-
AST

Text-to-
ASG

Scanning Abstraction

Projectional
editing

Replacement

We use alternative features: a parser either maps text to
CSTs, ASTs, or ASGs; also, concrete syntax is implemented
by either parsing, projectional editing, or replacement.

4.1.3 Graphical Syntax

Clearly, there is large scale on its own, how exactly graphical
syntax can be implemented, what flexibility is provided in
affecting details of the graphical representation. We limit
ourselves here to two major options; exploration of graphical
editor frameworks is not our goal.

Graph rendering Graphical syntax is only implemented
up to the point that a DSL program can be rendered as
a graph according to the visual syntax. For instance, a
DSL implementation (e.g., pythonInternal) may target
Graphviz’ DOT6 for rendering.

Graph editing There is also editing support for the vi-
sual syntax. For instance, Sirius (or GMF or Graphiti)
may be used on top of EMF (emfSirius) to achieve
graph editing.

Graphical syntax

Graph
rendering

Graph
editing

4.1.4 Dynamic Semantics

We did not exercise any interesting variation for dynamic
semantics. The implementations were straightforward inter-
preters. No special run-time system or library support was
required. We simply use the concrete feature Interpretation
in all these cases.

4.1.5 Static Semantics

There are two features:
Analysis A metaprogram implements the static seman-

tics as a type or well-formedness checker on top of the
object-program representation for DSL programs (e.g.,
spoofax).

6http://www.graphviz.org/

Piggyback By translating object programs according to
the translation semantics—the target language of trans-
lation, in particular, its type system—may cover some
or all aspects of the DSL’s static semantics (haskel-
lQuasiQuotation, scalaEmbedded, racket).

For instance, assume that an FSM is not deterministic
(Sec. 3.2.4), that is, in a given state StateX, there is more than
one transition with a given event, EventY. When generating
C code, this would lead to dispatching code like this:

switch(e) {
case EventY: ...;
case EventY: ...;
default: return UNDEFINED;

}

The compilation of the generated code would catch the
violation of the constraint for deterministic FSMs.

Static
semantics

Analysis Piggyback

The features Analysis and Piggyback may also be com-
bined because the intrinsic checks of generated code may
need to be complemented by a partial analysis prior to trans-
lation.

4.1.6 Translation Semantics

There are two features:
Compilation A compiler-like metaprogram maps DSL

programs to programs in another language. For in-
stance, a Java-based implementation (javaInfluentIn-
ternal) may use template processing to generate C-
code.

Staging A meta-program uses language concepts for
program generation in the sense of staged compu-
tation [36] to translate DSL programs to phrases of
the metalanguage—typically at compile time (haskel-
lQuasiQuotation, scalaEmbedded).

Translation
semantics

Compilation Staging

4.2 Feature Dependencies

There are a few constraints on the refined feature model:

Text-to-AST ⇒ AST (1)
Text-to-ASG ⇒ ASG (2)

Resolution ⇒ AST ∧ ASG (3)
Piggyback ⇒ Translation semantics (4)

Abstraction ⇒ Text-to-CST ∧ Abstract syntax (5)

http://www.graphviz.org/

A Chrestomathy of DSL Implementations SLE’17, October 23–24, 2017, Vancouver, Canada

em
fS

ir
iu

s

em
fX

M
I

em
fX

te
x
t

h
a
sk

el
lQ

u
a
si

Q
u
o
ta

ti
o
n

ja
va

E
x
te

rn
a
l

ja
va

F
lu

en
tI

n
te

rn
a
l

ja
va

In
fl
u
en

tI
n
te

rn
a
l

m
p
s

p
y
th

o
n
E

x
te

rn
a
l

p
y
th

o
n
In

te
rn

a
l

ra
ck

et

ra
sc

a
l

sc
a
la

E
m

b
ed

d
ed

sp
o
o
fa

x

Abstract syntax × × × × × × × × × × × × ×
AST × × × × × × × × × × × ×
ASG × × ×
Semantic domain ×
Model editing × ×
API × × × × × × × ×
Serialization × × ×
Resolution × × ×
Textual syntax × × × × × × × × ×
Text-to-CST × × ×
Text-to-AST × × × × ×
Text-to-ASG ×
Projectional editing ×
Scanning × × × ×
Abstraction ×
Replacement × × ×
Graphical syntax × × × × ×
Graph rendering × × × ×
Graph editing × ×
Dynamic semantics × × × ×
Interpretation × × × ×
Static semantics × × × × × × × × ×
Analysis × × × × × × × × ×
Piggyback × × ×
Translation semantics × × × × × × × ×
Compilation × × × × × ×
Staging × ×

Figure 6. Coverage of features by implementations.

That is, Parsing can only target ASTs or ASGs, if the corre-
sponding subfeatures ofModel are selected (1 and 2). Further,
we assume feature Resolution to correspond to a mapping
from ASTs to ASGs (3). Arguably, one could also speak of
resolution when ASTs are navigated and subtrees are looked
up, e.g., within the implementation of semantics. Further, we
clarifiy that piggybacking for the static semantics requires
that a translation semantics is implemented (4). Finally, we
clarify that abstraction, per our definition, involves CSTs and
abstract syntax (5).

4.3 Coverage of Feature Model

Fig. 6 captures the feature configurations for the implemen-
tations fitting the theoretical sampling of Section 2.2.

5 Model-based Documentation

As illustrated in Fig. 7,MetaLib assumes two fundamental
roles (‘hats’): the development role (‘code’ in the figure) in
which to implement FSML with a given approach; the docu-
mentation role (‘models’ in the figure) in which to analyse
the implementation, tag features, languages, technologies,
and concepts, and possibly make suggestions towards the
revision of the feature model.MetaLib’s infrastructure au-
tomatically composes code and documentation (‘models’) to
check ‘well-formedness’ of documentation and to publish a
web-explorable view (Fig. 3).

Code

Web-explorable view

Well-formedness checking
& Web publishing

Models

wiki

WIKIPEDIA

Figure 7.MetaLib’s documentation approach.

5.1 Rationale for Documentation Approach

i) In the developer role, there should be no burden regard-
ing MetaLib-specific documentation. The developer should
focus on implementing FSML adhering to best practices for
the approach at hand.
ii) In the documentation role, there should be guidance on
what and how to document. The author should focus on
adding documentation elements that directly or indirectly
connect the given implementationwith other resources (other
implementations, semantic wiki 101wiki, Wikipedia).
iii) Collaborative development and documentation leverages
distributed version control and source code management
(GitHub). New or revised models are pushed to the central
MetaLib repository or pull-request are used. The code (but
not the model) can be outside the MetaLib repository.
iv) Prior to publishing a model (i.e., a contribution toMet-
aLib), well-formedness checking is applied.
v) All the semantic entities of MetaLib (features, languages,
technologies, and concepts) are hosted on the semantic wiki
101wiki, which in turn references other knowledge resources,
e.g., Wikipedia.

5.2 A Sample Model

The following JSON-based model illustrates the part that is
shown in Fig. 3:
{ "name": "javaFluentInternal",
"baseuri": "https://github.com/softlang/yas/tree/master/languages/FSML/Java/org/

softlang",
"headline": "Internal DSL style with Java with a fluent API",
"sections": [
{ "features": ["API"],
"perspectives": ["data"],
"languages": ["Java"],
"concepts": ["Fluent API"],
"technologies": [],
"artifacts": [{ "type": "all", "link": "fsml/fluent/Sample.java"}]

},
...

]
}

SLE’17, October 23–24, 2017, Vancouver, Canada Schauss, Lämmel, Härtel, Heinz, Klein, Härtel, and Berger

// Documentation of contributions
class document {
value name : string; // The name of the contribution
value headline : string; // A one−liner explanation
value baseuri : string; // Base URI for links
part sections : section+; // Sections of the documentation

}

// Sections in a documentation
class section {
value headline : string?; // Optional one−liner explanation
part perspectives : perspective+; // Perspective of section
value features : string+; // Features addressed by section
value languages : string∗; // Languages used
value technologies : string∗; // Technologies used
value concepts : string∗; // Concepts used
part artifacts : artifact+; // Artifacts to be shown

}

// Perspectives of documentation
enum perspective {
implementation, // i.e., feature implementation
data, // e.g., instance of grammar or metamodel
test, // i.e., application of implementation
build, // e.g., code generator application
capture // e.g., screenshot or session log

}

// Artifacts for projected by section
abstract class artifact {
value link : string; // A relative URI
value format : string; // MIME−like format type

}
class none extends artifact { } // Nothing to show
class all extends artifact { } // All to show
class some extends artifact { // A specific line range to show
value from : integer;
value to : integer;

}

Figure 8. Metamodel of MetaLib Documentation Format.

That is, a name is attached to the contribution, a headline
(a short summary) is provided, the GitHub base URI is iden-
tified and one of several sections (i.e., projections into code
of the contribution) is shown. The section is concerned with
a Java file which illustrates the use of a fluent API for FSML.

5.3 The Documentation Metamodel

Fig. 8 shows an EMF-like metamodel for documentation
(with a straightforward mapping to JSON). A chrestomathy
member is documented by a sequence of ‘sections’. Each
section projects some‘artifacts’: source code, data, or even
screenshots. Each section relates to a set of ‘features’—just
one feature in the case of modular implementations. Each
section takes a certain ‘perspective’.
There are the following perspectives. First, we are con-

cerned with actual feature ‘implementation’. Second, we may
be concerned with ‘data’ to exercise the implementation. In
the case of metaprogramming, ‘implementation’ proxies for
metaprogram functionality whereas ‘data’ proxies for object
programs or other data consumed or produced by metapro-
grams. When projecting any sort of code, a ‘selection’ is
attached to specify whether and, if so, how much code is to

be shown. Some artifacts (such as blobs of XML) should not
be shown; other artifacts should not be shown in full, but
only an excerpt thereof because of their size.
The use of perspectives is a key property of MetaLib’s

documentation approach; perspectives could be useful for
any sort of documentation relative to a feature model. That
is, perspectives allow to document artifacts other than just
implementations of features because we may also tag and
document artifacts that are related to features in other ways.

6 Threats to Validity

To enhance external validity—that is, the applicability of
our feature model to annotate new implementations for the
chrestomathy—we systematically selected DSL implementa-
tion technologies that are well-known and used in practice.
These also cover different technological spaces (e.g., pro-
gramming languages such as Java and Python, and editor
technologies such as parser-based and projectional editing).
This selection of approaches can be seen as theoretical sam-
pling [10], commonly used in case-study research, where a
representativeness of cases can usually not be established
(since the whole population of cases is unknown), but where
the coverage of certain criteria (cf. Section 2.2) is desired.
To enhance internal validity—that is, that the DSLs were

implemented and annotated correctly—the four authors who
implemented the DSLs had extensive (yet, academic) expe-
rience in model-driven and software language engineering,
at least at a Master’s level (one conducted his Bachelor’s
thesis as a preparation for this work). All have either taught
or attended a software-language engineering (SLE) course.
Extensive experience existed for all technologies; experi-
ence was more limited for Rascal, Racket, MPS, and Spoofax.
For the latter, the implementers studied documentation and
cross-checked even more carefully (in addition to the general
cross-check as described in Section 4) their implementations.
However, the existing experience with SLE concepts helped
significantly. We discuss directions for additional validations
of our chrestomathy as future work in Section 8.

7 Related Work

The broader related work scope is some form of comparison
of software languages, technologies, or approaches using
those. For each entry of related work, it makes sense to
examine three points:

• What are the subjects of comparison? (‘What’)
• What is the method of comparison? (‘How’)
• What is the purpose of comparison? (‘Why’)

As a point of reference, the research of the present paper
compares DSL implementations (‘what’), on the grounds of
a feature model derived by domain analysis and implemen-
tation analysis (‘how’) for the purpose of a chrestomathy for
DSL implementation to be useful for learning while relying
on model-based documentation to this end (‘why’).

A Chrestomathy of DSL Implementations SLE’17, October 23–24, 2017, Vancouver, Canada

The work the most closely related to ours is on the eval-
uation and comparison of language workbenches [12]. The
subjects of comparison are actual workbenches (‘what’). The
method comparison involves agreement on challenges (com-
plex tasks), the attempted implementation of the challenges
with the various workbenches, and the related definition of
a feature model covering both options and capabilities of
workbenches (‘how’). The purpose is essentially understand-
ing the different workbenches and contrasting them, but
also making suggestions for future research on workbenches
(‘why’). In addition to these different positions on all three
points, there is also a major difference regarding the involved
feature model. In the case of the workbench research, the
model focuses on ‘services’ and IDE-related aspects, whereas,
in our research, the model focuses on metaprogramming.

There is a string of related work on essentially surveying
approaches (‘what’) in domains related to metaprogramming
for DSL implementation: model transformation [7], genera-
tive programming [8], generic functional programming [32],
and DSL implementation [22]. A more or less formal feature
model is used in such work to summarize or organize the sur-
vey (‘how’). In the latter, arguably most closely related case,
as it also addresses DSL implementation, comparison is con-
cerned with DSL implementor and end-user effort (‘why’);
see also [20] for a similar what/how/why.

There exist various program or software chrestomathies;
see [24] for a survey and characteristics of chrestomathies.
In the broader area of programming, Rosetta Code7 is a well-
known and advanced example of a chrestomathy. Rosetta
Code collects programming tasks and task solutions in dif-
ferent programming languages (‘what’); we quote from the
website (as of 11 May 2017): “Rosetta Code is a programming
chrestomathy site. The idea is to present solutions to the same
task in as many different languages as possible, to demonstrate
how languages are similar and different, and to aid a person
with a grounding in one approach to a problem in learning
another. Rosetta Code currently has 847 tasks, 198 draft tasks,
and is aware of 650 languages, though we do not (and cannot)
have solutions to every task in every language.” The under-
lying method is thus to administrate the inclusion of new
tasks and groups thereof as well as compliant task solutions
to be presented next to each other (‘how’). As evident from
the quote, comparison is meant here to be useful for learn-
ing (‘why’). The metaprogramming domain is only touched
upon on Rosetta Code.8
In fact, there exists research on top of Rosetta Code [29]

such that the collection is used to compare programming lan-
guages in terms of a number of criteria, such as conciseness.

7http://rosettacode.org/wiki/Rosetta_Code
8https://rosettacode.org/wiki/Metaprogramming
https://rosettacode.org/wiki/Extend_your_language

Such secondary uses (‘why’) of chrestomathies may eventu-
ally happen once those collections of artefacts become ‘in-
teresting enough’. For instance, the ‘101’ chrestomathy [14]
which collects implementations of small information systems
(‘what’) was also eventually used beyond ‘learning’ (‘why’).
That is, ‘101’ served as the corpus in comparing languages
and technologies in terms of basic code metrics [26] and it
provided a code base for studying product line engineering
in the context of clone management [1]. It remains to be seen
whetherMetaLib supports secondary uses.

We are not aware of related work on the specific subject
of how to make chrestomathies more useful for the assumed
user (the learner), other than perhaps our previous work
linking documentation and source code [13]. In actual ‘im-
plementations’ such as Rosetta Code, as discussed above, this
subject is addressed in a pragmatic manner. In the present
paper, we aimed at designing a documentation model that
supports the learner’s experience in an explainable manner;
validation is pending. Clearly, there are approaches other
than ‘collections of systems’ to convey domain knowledge
in programming. For instance, Günther and Fischer [16]
develop a pattern catalog to communicate (Ruby’s) metapro-
gramming features.

8 Conclusion

Mastering the metaprogramming domain in a teaching con-
text entails considerable effort on the side of both teacher and
student because of the high level of abstraction in metapro-
gramming and the myriad of options (languages, technolo-
gies, and approaches). On one side, one would like to cover
several options (e.g., different systems such as EMF, Rascal,
and Haskell with quasi-quotation), as each option makes
valuable contributions to the overall domain. On the other
side, coverage of multiple options is nearly impractical be-
cause of the involved notations and idiosyncratic techniques.
Thus, the challenge is to arrive at a knowledge resource
that is palatable—this can be compared to teaching program-
ming paradigms, which clearly aims at conveying conceptual
knowledge as opposed to making students fluent in a range
of programming languages. We have designedMetaLib as
a knowledge resource that operates at the conceptual level
of metaprogramming and DSL implementation. We have
started to useMetaLib in teaching.9 We plan to evolveMet-
aLib in future SLE courses and hope to getmore collaborators
involved eventually.

Future work Validation of a chrestomathy likeMetaLib
is a challenging topic. Here are some suggestions: 1) Al-
though the implementations including their documentation
are relatively simple, we plan to have them reviewed by ex-
perts on the technologies. 2) The contributions should be

929/30 May, PhD course by Ralf Lämmel, GSSI, l’Aquila, http://www.softlang.org/
course:gssi17; 6 June, Lecture in Master-level lecture series by Ralf Lämmel, Univer-
sity of l’Aquila, l’Aquila, http://www.softlang.org/course:univaq17.

http://rosettacode.org/wiki/Rosetta_Code
https://rosettacode.org/wiki/Metaprogramming
https://rosettacode.org/wiki/Extend_your_language
http://www.softlang.org/course:gssi17
http://www.softlang.org/course:gssi17
http://www.softlang.org/course:univaq17

SLE’17, October 23–24, 2017, Vancouver, Canada Schauss, Lämmel, Härtel, Heinz, Klein, Härtel, and Berger

re-implemented for means of cross-validation and agreement
with best practices. 3) We plan to investigate whether the
chrestomathy assists effectively in learning SLE technolo-
gies. Thus, we may compare how students perform at similar
programming tasks while having access to the chrestomathy
versus a control group without such access.

References

[1] Michal Antkiewicz, Wenbin Ji, Thorsten Berger, Krzysztof Czarnecki,
Thomas Schmorleiz, Ralf Lämmel, Stefan Stanciulescu, Andrzej Wa-
sowski, and Ina Schaefer. 2014. Flexible product line engineering with
a virtual platform. In Proc. ICSE 2014. ACM, 532–535.

[2] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. 2013.
Feature-Oriented Software Product Lines: Concepts and Implementation.
Springer.

[3] T Berger, M. Voelter, H. P. Jensen, T Dangprasert, and J. Siegmund.
2016. Efficiency of Projectional Editing: A Controlled Experiment. In
Proc. FSE 2016. ACM.

[4] Eugene Burmako. 2013. Scala macros: let our powers combine!: on
how rich syntax and static types work with metaprogramming. In
Proc. 4th Workshop on Scala, SCALA@ECOOP 2013. ACM, 3:1–3:10.

[5] Walter Cazzola and Edoardo Vacchi. 2016. Language Components for
Modular DSLs using Traits. Computer Languages, Systems & Structures
45 (2016), 16–34.

[6] Krysztof Czarnecki and Ulrich Eisenecker. 2000. Generative Program-
ming: Methods, Tools, and Applications. Addison-Wesley Professional.
1st Edition.

[7] Krzysztof Czarnecki and Simon Helsen. 2006. Feature-based survey of
model transformation approaches. IBM Systems Journal 45, 3 (2006),
621–646.

[8] Krzysztof Czarnecki, John T. O’Donnell, Jörg Striegnitz, and Walid
Taha. 2003. DSL Implementation in MetaOCaml, Template Haskell,
and C++. In Domain-Specific Program Generation (LNCS), Vol. 3016.
Springer, 51–72.

[9] Sven Efftinge and Markus Völter. 2006. oAW xText: A framework for
textual DSLs. In Workshop on Modeling Symposium at Eclipse Summit,
Vol. 32. 118.

[10] Kathleen M Eisenhardt and Melissa E Graebner. 2007. Theory building
from cases: Opportunities and challenges. Academy of management
journal 50, 1 (2007), 25–32.

[11] Sebastian Erdweg. 2013. Extensible Languages for Flexible and Principled
Domain Abstraction. Ph.D. Dissertation. Philipps-Universität Marburg.

[12] Sebastian Erdweg, Tijs van der Storm, Markus Völter, Laurence Tratt,
Remi Bosman, William R. Cook, Albert Gerritsen, Angelo Hulshout,
Steven Kelly, Alex Loh, Gabriël D. P. Konat, Pedro J. Molina, Martin
Palatnik, Risto Pohjonen, Eugen Schindler, Klemens Schindler, Ric-
cardo Solmi, Vlad A. Vergu, Eelco Visser, Kevin van der Vlist, Guido
Wachsmuth, and Jimi van der Woning. 2015. Evaluating and compar-
ing language workbenches: Existing results and benchmarks for the
future. Computer Languages, Systems & Structures 44 (2015), 24–47.

[13] Jean-Marie Favre, Ralf Lämmel, Martin Leinberger, Thomas Schmor-
leiz, and Andrei Varanovich. 2012. Linking Documentation and Source
Code in a Software Chrestomathy. In Proc. WCRE 2012. IEEE, 335–344.

[14] Jean-Marie Favre, Ralf Lämmel, Thomas Schmorleiz, and Andrei Vara-
novich. 2012. 101companies: A Community Project on Software
Technologies and Software Languages. In Proc. TOOLS 2012 (LNCS),
Vol. 7304. Springer, 58–74.

[15] Matthew Flatt. 2012. Creating languages in Racket. Commun. ACM
55, 1 (2012), 48–56.

[16] Sebastian Günther and Marco Fischer. 2010. Metaprogramming in
Ruby: a pattern catalog. In Proc. PLoP 2010. ACM, 1:1–1:35.

[17] P. Hudak. 1998. Modular Domain Specific Languages and Tools. In
Proc. ICSR 1998. IEEE, 134–142.

[18] K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson. 1990. Feature-
Oriented Domain Analysis (FODA) Feasibility Study. Technical Report
CMU/SEI-90-TR-21. CMU.

[19] Lennart C. L. Kats and Eelco Visser. 2010. The Spoofax language
workbench: rules for declarative specification of languages and IDEs.
In Proc. OOPSLA 2010. ACM, 444–463.

[20] Paul Klint, Tijs van der Storm, and Jurgen J. Vinju. 2010. On the impact
of DSL tools on the maintainability of language implementations. In
Proc. LDTA 2010. ACM, 10.

[21] Paul Klint, Tijs van der Storm, and Jurgen J. Vinju. 2011. EASY Meta-
programming with Rascal. In GTTSE 2009, Revised Papers (LNCS),
Vol. 6491. Springer, 222–289.

[22] Toma Kosar, Pablo E. Martínez López, Pablo A. Barrientos, and Mar-
jan Mernik. 2008. A preliminary study on various implementation
approaches of domain-specific language. Information and Software
Technology 50, 5 (2008), 390–405.

[23] Ivan Kurtev, Jean Bézivin, and Mehmet Akşit. 2002. Technological
Spaces: an Initial Appraisal. In Proc. of CoopIS, DOA 2002, Industrial
track.

[24] Ralf Lämmel. 2015. Software chrestomathies. Sci. Comput. Program.
97 (2015), 98–104.

[25] R. Lämmel. 2017. Software languages: Syntax, semantics, and metapro-
gramming. Springer. To appear. See http://www.softlang.org/book.

[26] Ralf Lämmel, Martin Leinberger, Thomas Schmorleiz, and Andrei
Varanovich. 2014. Comparison of feature implementations across
languages, technologies, and styles. In Proc. CSMR-WCRE 2014. IEEE,
333–337.

[27] Geoffrey Mainland. 2007. Why it’s nice to be quoted: quasiquoting for
Haskell. In Proc. Haskell 2007. ACM, 73–82.

[28] Marjan Mernik, Jan Heering, and Anthony M. Sloane. 2005. When and
how to develop domain-specific languages. ACM Comput. Surv. 37, 4
(2005), 316–344.

[29] Sebastian Nanz and Carlo A. Furia. 2015. A Comparative Study of
Programming Languages in Rosetta Code. In Proc. ICSE 2015. IEEE
Computer Society, 778–788.

[30] Terence Parr. 2013. The Definitive ANTLR 4 Reference (2nd ed.). Prag-
matic Bookshelf.

[31] Lukas Renggli. 2010. Dynamic Language EmbeddingWith Homogeneous
Tool Support. Ph.D. Dissertation. Universität Bern.

[32] Alexey Rodriguez, Johan Jeuring, Patrik Jansson, Alex Gerdes, Oleg
Kiselyov, and Bruno C. d. S. Oliveira. 2008. Comparing libraries for
generic programming in Haskell. In Proc. of Haskell 2008. ACM, 111–
122.

[33] Tiark Rompf, Nada Amin, Adriaan Moors, Philipp Haller, and Martin
Odersky. 2012. Scala-Virtualized: linguistic reuse for deep embeddings.
Higher-Order and Symbolic Computation 25, 1 (2012), 165–207.

[34] Tim Sheard and Simon L. Peyton Jones. 2002. Template meta-
programming for Haskell. SIGPLAN Notices 37, 12 (2002), 60–75.

[35] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks.
2008. EMF: Eclipse Modeling Framework (2 ed.). Pearson Education.

[36] Walid Taha. 2008. A Gentle Introduction to Multi-stage Programming,
Part II. In GTTSE 2007, Revised Papers (LNCS), Vol. 5235. Springer,
260–290.

[37] V. Viyović, M. Maksimović, and B. Perisić. 2014. Sirius: A rapid devel-
opment of DSM graphical editor. In Proc. INES 2014. IEEE, 233–238.

[38] Markus Voelter. 2013. Language and IDE Modularization and Com-
position with MPS. In GTTSE 2011, Revised Papers (LNCS), Vol. 7680.
Springer, 383–430.

http://www.softlang.org/book

	Abstract
	1 Introduction
	2 Methodology
	2.1 Domain Analysis
	2.2 Theoretical Sampling
	2.3 Implementation Development
	2.4 Implementation Analysis
	2.5 Semantic Annotation
	2.6 Model-based Documentation

	3 The DSL Implemented in MetaLib
	3.1 Rationale for Choosing the DSL
	3.2 Language Reference

	4 Implementation Analysis
	4.1 Refinement of the Basic Feature Model
	4.2 Feature Dependencies
	4.3 Coverage of Feature Model

	5 Model-based Documentation
	5.1 Rationale for Documentation Approach
	5.2 A Sample Model
	5.3 The Documentation Metamodel

	6 Threats to Validity
	7 Related Work
	8 Conclusion
	References

