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Abstract—The features of a software product line—a portfolio
of system variants—can be realized using various implementa-
tion techniques (a.k.a., variability mechanisms). Each technique
represents the software artifacts of features differently, typically
classified into annotative (e.g., C preprocessor) and modular
representations (e.g., feature modules), each with distinct advan-
tages and disadvantages. Annotative representations are easy to
realize, but annotations clutter source code and hinder program
comprehension. Modular representations support comprehension,
but are difficult to realize. Most importantly, to engineer feature
artifacts, developers need to choose one representation and
adhere to it for evolving and maintaining the same artifacts.

We present PEoPL, an approach to combine the advantages
of annotative and modular representations. When engineering
a feature artifact, developers can choose the most-suited rep-
resentation and even use different representations in parallel.
PEoPL relies on separating a product line into an internal and
external representation, the latter by providing editable projec-
tions used by the developers. We contribute a programming-
language-independent internal representation of variability, five
editable projections reflecting different variability representa-
tions, a supporting IDE, and a tailoring of PEoPL to Java.
We evaluate PEoPL’s expressiveness, scalability, and flexibility in
eight Java-based product lines, finding that all can be realized,
that projections are feasible, and that variant computation is fast
(<45ms on average for our largest subject Berkeley DB).

I. INTRODUCTION

A software product line (SPL) is a portfolio of systems
engineered in a specific application domain, such as telecom-
munication, automotive or industrial automation [1], [2]. The
individual systems of an SPL, called variants or products,
share commonalities and variabilities. As such, constructing
an SPL amounts to engineering common and variable software
artifacts, each of which realizing one or several features [3], [4].
Individual variants are derived from the SPL in an automated
process by selecting the desired features of the variant.

Many implementation techniques—so-called variability
mechanisms—have emerged for engineering SPLs, such as
variability annotations [5]–[9], templates [7], deltas [10]–
[12] or feature modules [13]–[16]. These techniques represent
features differently, typically classified into annotative and
modular approaches, each having their own advantages and
disadvantages. Annotative approaches—e.g., the C preprocessor
(CPP)—represent all feature artifacts directly in the codebase by
wrapping them with annotations. Such annotations are easy to
apply, but challenge program comprehension [17] by obscuring
the structure and data-flows of source code [6]—hampering
editing experience and negatively impacting maintenance and
evolution [18]. Moreover, developers always see all possible

variants, many of which might not be relevant for the current
engineering activity. Modular approaches—e.g., AHEAD [14],
and FeatureHouse [16]—represent all of a feature’s artifacts in
one module. They facilitate a clear structure of the system and
allow engineering features without being distracted by irrelevant
ones. Yet, decomposing a system into modules is challenging,
since it requires finding the right decomposition strategy, and
since creating modules imposes substantial overhead.

Although these representations are complementary [19]–
[21], existing SPL engineering approaches typically focus
on one representation. Most importantly, these approaches
force developers to choose one representation for developing a
feature artifact and to adhere to it for evolving and maintaining
this artifact. While refactorings were proposed for switching
between annotative and modular representations [19], such
refactorings are heavyweight and do not allow to quickly switch
the representation for a feature artifact. Ideally, developers could
exploit the benefits of different representations on-demand and
always choose the one that suits the current engineering activity.

We present the approach PEoPL (Projectional Editing of
Product Lines) to realize this flexibility. It allows develop-
ers to flexibly choose the best-suited among very different
representations of feature artifacts. Developers can also use
various representations in parallel (side-by-side) for the same
artifact. The core idea of PEoPL is to establish an internal
representation of the SPL and separate it from the external
representations that developers use. Fig. 1 illustrates this idea.
Internally, the feature artifacts are uniformly represented in
a variational abstract syntax tree (AST), whose nodes are
annotated using concepts from our variability language CoreVar,
which is programming-language-independent. The variational
AST is manipulated using editing operations we conceived upon
CoreVar. For meaningful variational ASTs, CoreVar can easily
be tailored to specific programming languages. We provide such
a tailoring for Java, declaring which of its language concepts
are annotatable. Externally, this variational AST is represented
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Figure 1. PEoPL separates internal and external variability representations



using different editable projections, which developers use to
engineer feature artifacts. Any of their editing activities directly
change the underlying AST, which immediately updates all
projections. We conceive projections showing feature artifacts
as (i) textual annotations (#IFDEF), (ii) visual annotations
(colored bars), (iii) feature modules, (iv) annotations blended
into feature modules, and (v) variants (i.e., hiding artifacts
related to non-selected features).

We show the feasibility of our approach by realizing a
complete IDE built upon the language workbench Jetbrains
Meta Programming System (MPS). It realizes our projections
and operations for engineering feature artifacts, while benefiting
from common program-editing facilities (e.g., for Java) in MPS.

We evaluate PEoPL using eight Java SPLs. Our largest
subject (and running example) is Berkeley DB, an SPL with
70kLOC including 42 features and 218 classes. PEoPL’s
expressiveness suffices to realize all SPLs without workarounds.
The evaluation also shows that it is feasible and practical to
conceive an internal representation that is projected into very
different external representations. Furthermore, our approach
scales: all projections can be rendered and edited without
introducing significant latencies. For instance, variant editing
is smooth, since computing a specific file variant (<1ms on
average for all subjects) and calculating all AST nodes included
in a variant is quick (<45ms for Berkeley DB on average).

We contribute the core variability language CoreVar, a
tailoring of it to Java, five editable projections, an IDE realizing
our approach, evaluation data for eight SPLs, and an online
appendix [22] with a replication package and screencasts.

II. MOTIVATION AND BACKGROUND

We briefly discuss contemporary approaches to engineer SPLs
together with their advantages and disadvantages.
Annotative Representations. Mechanisms such as the CPP
and CIDE [8] represent feature artifacts as annotation markers
embedded into source code. The markers are either textual
[7], [23] (e.g., #IFDEF) or visual [8], [24] (e.g., background
colors), and have a Boolean expression over features. Variants
are derived by removing the annotated code whose expression
evaluates to false for a concrete selection of features.

Fig. 2a shows a CPP-based excerpt from Berkeley DB.
#IFDEFs (e.g., Line 4) and #ENDIFs mark the beginning
and the end of variable source parts belonging to a feature.
Notice Lines 10 and 15 partially annotating the if-statement
(i.e., not the body). Such annotations are called undisciplined.
In Java, annotations on one or a sequence of entire classifiers
(e.g., classes), members (e.g., method declarations) and state-
ments are disciplined, all others are undisciplined. Since in
practice around 16% of all annotations are undisciplined [25],
approaches such as PEoPL need to support them.

Annotations are easy to incorporate and frequently used
in practice [20], [26]. Artifacts can be annotated in an ad
hoc fashion on a very fine-grained level (individual code
lines or AST nodes). For instance, annotations can even wrap
expressions or method parameters. In contrast, annotations
are known to negatively impact program comprehension [6],
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class In { // > 1800 LOC
 void init() {
  //1) more code
  #ifdef Latches
  latch = LS.mkLatch();
  #endif
  //2) more code
 }
 boolean latchNoWait() {
  #ifdef Latches
  if(latch.aquireNoWait()){
  #endif
    //3) more code
    return true; 
  #ifdef Latches
  } else {
    return false;
  }
  #endif
}

a) #ifdef variability b) FeatureHouse modules

Base
public class In {
 void init() {
   //1) more code
   init_latches_hook();
   //2) more code
 }
 void init_latches_hook(){}
 boolean latchNoWait(){
   //3) more code
   return true;
}}
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public class In {
 void init_latches_hook(){
   latch = LS.mkLatch();
 }
 boolean latchNoWait() {
   if(latch.aquireNoWait()){
     original();
   } else { return false; }
}}
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Figure 2. Berkeley DB feature Latches realized in CPP and FeatureHouse

[18], [27] as well as maintenance and evolution [17], [28].
They clutter source code and developers have to work with all
variants at a time, since features cannot be edited in isolation.
Modular Representations. Mechanisms such as AHEAD [14],
FeatureHouse [16], and DeltaJ [10], [12] represent the artifacts
of a feature (and the interaction of features) in a cohesive unit
called composition unit, feature module, delta module, or just
module. The key idea is to start with a common base module
and use other modules to introduce new structural elements,
refine existing elements [14], [29], and even remove elements
[10] step by step. Deriving a variant amounts to composing or
applying the modules in a given ordering [10], [16].

Fig. 2b shows a FeatureHouse realization of the two Berkeley
DB features: Base and Latches. The method latchNoWait
is introduced by the feature Base (Lines 8–11) and refined by
Latches (Lines 5–9). Note FeatureHouse’s keyword original
in Line 7 to call the original implementation of latchNoWait
in Base. Refining the method init requires a hook method in
the Base-code (Line 4), as modular approaches do not support
fine-grained changes [8]. The hook’s declaration is left empty
in Base (Line 7), since it is overridden by Latches (Lines 2–4).

Modularity fosters comprehension [29]–[31]. A module can
be edited without being distracted by irrelevant feature code
[32]. For example, instead of searching for Latches code in
around 1800 LOC (Fig. 2a), developers can just explore the
respective feature module (Fig. 2b), which is less intellectually
challenging [21], [33]. In contrast, the effort to create modules
is typically high, since developers need to find the right
decomposition strategy, which hinders adoption in practice.
It is also difficult to realize fine-grained features, which might
require boilerplate code (e.g., hook methods) or code clones.
Variant Representations. Typically realized upon an anno-
tative representation, so-called variation-control systems or
variant editors allow editing SPL variants in isolation. Some
approaches fold [34] or hide [8], [24] feature code, others
mimic the workflow of version-control systems by allowing to
checkout variants, edit them, and commit the edited variants
[35]–[37]. In Fig. 2a, for instance, we would hide a feature’s
annotations and code if irrelevant for the current code editing
task (e.g., modifying code of the feature Latches).



Variant editors reduce editing complexity, which can posi-
tively impact efficiency (up to 40 % [38]). In contrast, they
do not provide true modularity and easily face code-alignment
issues (with respect to the hidden code). Furthermore, a
checkout-edit-commit workflow imposes an overhead.

III. PEOPL OVERVIEW

We discuss PEoPL’s key benefits and illustrate how developers
can use it. We also provide an overview of its architecture.

Fig. 3 shows an excerpt of our running example Berkeley
DB realized in PEoPL. The upper half of the figure shows the
different projections we explain in this section. The lower part,
illustrating the internal representation, is described in Sec. IV.

A. PEoPL’s Benefits

The benefits of our approach can be summarized as follows.
First, PEoPL has a uniform internal representation (a

variational AST defined by the CoreVar language), designed to
support diverse external variability representations. Uniformity
allows persisting variability in a consistent manner. Using
different (internal) representations for feature modules and
for annotations would break uniformity—for instance, when
adding #IFDEFs into FeatureHouse modules.

Second, developers can switch the external representa-
tion of an artifact (e.g., class) on demand. PEoPL allows a
fluent movement between external representations (e.g., of
DatabaseImpl in Fig. 3) to enable developers to exploit the
distinct advantages of different techniques for a given task.

Third, developers can observe and edit the same artifact
using different external representations in parallel (by showing
them side-by-side), enabling an even faster movement between
representations. Moreover, it helps observing the impact of
changes made in one representation to another in real-time
(e.g., editing a feature module and a variant in parallel).

Fourth, PEoPL mitigates typical shortcomings of modular
representations, imposed by granularity problems, and the
lack of context information (as they are contained in external
modules). By blending annotations into modules on demand,
developers can realize fine-grained changes in feature modules
(without breaking modularity and uniformity), and integrate
context information from other modules on demand (e.g.,
accessible field and method declarations).

Fifth, our uniform internal representation enables plugging
new external representations into PEoPL on demand. Thus,
PEoPL can serve as a framework to evaluate representations.

B. PEoPL in Practice

We conceive, realize, and evaluate five external representations.
Textual Annotation Projection. Reflecting CPP’s popularity,
we provide a projection with CPP annotations, as shown in
Fig. 3a. As most developers are familiar with CPP, yet not with
PEoPL’s other representations, starting by adding and exploring
#IFDEFs is a useful option. Notice that PEoPL also supports
various undisciplined annotations. Lines 4–8, 20, 24 show such
undisciplined annotations on types, method parameters, and
wrappers. The latter are program elements that wrap code

blocks (body). In practice, it is sometimes necessary to only
make the wrapper variable, but not its body (wrappee).
Visual Annotation Projection. When #IFDEFs clutter code
and challenge comprehension, we can switch to visual anno-
tations. The learning curve is low, since #IFDEF directives
and visual annotations can be explored for the same feature
artifact in parallel. Fig. 3c shows a projection of the class
DatabaseImpl with annotations represented as colored bars,
each related to a feature declared in Fig. 3b. For instance, light-
gray bars relate to feature Base. Vertical bars are shown to
the left of the program code and align with its indentation.
Horizontal bars underline fine-grained feature artifacts within
a line of code (e.g., method call parameters in Line 14) and
partially annotated wrappers (e.g., the try/catch statement in
Line 16). The ⊕-sign in Line 9 makes alternatives explicit.
Module Projection. Now, imagine we want to evolve the
Memory_Budget feature or fix a bug in it. Obviously, it is
beneficial to edit the class DatabaseImpl in isolation, and
therefore switch from the annotative projection to the feature
module implementing Memory_Budget. Fig. 3d shows the pro-
jection. Similar to AHEAD, the refines keywords indicate
that the feature module Memory_Budget modifies the class
DatabaseImpl, the inner class PreloadProcessor,
and its method processLSN (Lines 2–8).
Blending Projections. Fig. 3c shows several fine-grained
feature artifacts: scattered base code (Lines 10, 13–15, and
17), alternative return types (Line 9), and parameter variability
(Line 14). These cannot be implemented without workarounds
in classical modular approaches [8]. Although we could explore
the annotative and the modular projection in parallel, it might
be beneficial to allow integrating annotation markers into
feature modules, as shown in Fig. 3d (statement-level markers
in Lines 9–12). To avoid obfuscation, only Memory_Budget
code is shown. All other code is hidden. This way, the
granularity trade-off can be addressed and fine-grained changes
implemented. Yet, the surrounding code might be important for
comprehension. For instance, the variable maxByte in Line
11 of Fig. 3d is declared in the hidden base code from Line
10 of Fig. 3c, which can be shown on demand.
Variant Projection. Now, imagine we want to evolve the
features Base and Memory_Budget or fix a bug that occurs
when both features are enabled. We could show all feature
artifacts of Base by expanding annotation markers in the
module Memory_Budget (Fig. 3d), or switch to a corresponding
variant editor, as shown in Fig. 3e. Among others, this allows
exploring variant-specific code and control flows in isolation.
To understand which code artifact implements which feature,
we can show colored bars (not depicted).

In summary, developers can use the best representation of
feature artifacts for an SPL engineering task and observe the
impact of changes in real-time—supporting the comprehension
of individual features, their combinations, and the whole SPL.

C. PEoPL’s Architecture

We implement the PEoPL approach—that is, its internal
and external representations—upon the language workbench



#ifdef Base 
class DatabaseImpl {
 static class PreloadProcessor {...}
 #ifdef Statistics 
 PreloadStats
 #else 
 void 
 #endif
 preload(PreloadConfig c) {
   long maxByte = c.getmaxByte();//3)
   #ifdef Memory_Budged
   if(maxByte == 0) //4) more code
   #endif
   #ifdef Statistics
   PreloadStats ret = new PreloadStats();
   #endif
   PreloadProcessor cb = new
   PreloadProcessor(envImp, maxByte, tTime 
   #ifdef Statistics
   , ret
   #endif
   ); //5) more code
   #ifdef Statistics
   try {
   #endif
     walker.walk();
   #ifdef Statistics
   } catch (HaltPreloadException HPE) {
     ret.status = HPE.getStatus();    }
   #endif //6) more code
   #ifdef Statistics
    return ret;
    #endif
  }}
#endif

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

class DatabaseImpl { 

}

  long maxByte = c.getmaxByte();//3) more code
  if(maxByte == 0) //4) more code
  PreloadStats ret = new PreloadStats();
  PreloadProcessor cb = new PreloadProcessor(
  envImp, maxByte, tTime, ret);
  //5) more code
  try {
    walker.walk(); 
  } catch (HaltPreloadException HPE) {
      ret.status = HPE.getStatus();
  }
  //6) more code
  return ret;|
}

⊕void   PreloadStats preload(PreloadConfig c) { 

static class PreloadProcessor {
  void processLSN(long c, LogEntTyp t){
    assert c != DbLsn.NULL_LSN
    if(envImp.getMemoryBudget().get())//1)
    if(childType.equals(...)) //2) more code
  }
}
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refines class DatabaseImpl {

refines void preload(PreloadConfig c){ 

1

refines static class PreloadProcessor {
  refines void processLSN(long c, LogEntTyp t){
    original(c, t);
    if(envImp.getMemoryBudget().get())//1)
  }
}

module Memory_Budget

class DatabaseImpl {
 static class PreloadProcessor {
  void processLSN(long c, LogEntTyp t){
     assert c != DbLsn.NULL_LSN
     if(envImp.getMemoryBudget().get())//1)
 }
 void preload(PreloadConfig c) {
   long maxByte = c.getmaxByte();//3) more code
   if(maxByte == 0) //4) more code
   PreloadProcessor cb = new PreloadProcessor(
   envImp, maxByte, tTime);
   //5) more code
   walker.walk();
 }}
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  if(maxByte == 0) //4) more code11
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a) Textual annotation projection

c) Visual annotation projection

d) Module projection with annotation marker blending

e) Variant projection (Base and Memory_Budget selected)
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Figure 3. Excerpt of Berkeley DB in PEoPL. Top: projections used by developers (external representation). Bottom: variational AST (internal representation)

JetBrains MPS [39]. MPS relies on a technology called
projectional editing (a.k.a., structured editing or syntax-directed
editing), which is conceptually different from parser-based
editing [40]. Developers’ editing gestures directly change the
underlying AST, which is rendered into a concrete syntax. No
parsing is involved. While the editing experience is different,
and editing efficiency has long been questioned, modern
projectional editors allow efficient editing [40], [41].

In MPS, a language’s abstract syntax is defined using so-
called language concepts (a.k.a., meta-classes), which define
the structure of their instances (AST nodes). Each concept
has its own concrete syntax defined by rendering rules—a
description of how AST nodes appear in a projectional editor.

We realize the languages CoreVar and JavaVar (both are
explained shortly) in MPS as follows. The concepts of
CoreVar—used to add variability to target languages—are
implemented using MPS’ core meta-modeling facilities for
declaring languages. The JavaVar language—the tailoring of
CoreVar to Java—reuses concepts from CoreVar and extends
MPS’ meta-model of Java. Our five projections are packaged in
MPS also as “languages”, which contain both target-language-
independent and -dependent rendering rules.

IV. PEOPL’S INTERNAL REPRESENTATION

We now present the concepts of PEoPL’s internal representation:
the CoreVar language, operations for editing the AST, variant
derivation, and the tailoring of CoreVar to a target language.

A. The CoreVar Language

Formalism. CoreVar adopts, modifies, and extends the struc-
tured document algebra (SDA) [42]—an abstract formalization
of feature modularity. The SDA enables variability through fea-
ture modules, which assign fragments to variation points (VPs).
Let V = {vp1, vp2, ...} be a set of VPs and F = {f1, f2, ...} a
set of fragments. A module m : V F is an injective partial
function assigning fragments to VPs. In contrast to SDA (not
using an injective function), fragments are unique to a VP,
which is not a limitation, but eases our implementation. The
domain dom(m) of a module m is the set of VPs assigned
by m. The module m assigns a fragment to the VP vp if
vp ∈ dom(m), otherwise vp is not related to m. A module can
assign a VP only once, but multiple modules can assign the
same VP. For a fragment f ∈ F, we define the helper function
VP(f) returning the VP vp associated with f (possible as of



injection). Similarly, let M(f) be the helper function returning
the module m assigning f to VP(f). Both helper functions
return ⊥ if there is no module m assigning f to vp (i.e., before
a developer explicitly chooses m for assigning f to vp).

Example: For the fragment f1 in our running example
Berkeley DB, M(f1) yields the feature module Base and
VP(f1) the VP vp1 (cf. Fig. 3f and Fig. 4). All VPs VBerkeley =
{vp0, vp1, ..., vp12} are associated with fragments via modules,
for instance Base : {vp0 7→ f0, vp1 7→ f1, vp4 7→ f4.1, ...}. In
fact, the feature module Base assigns fragments to the VPs in its
domain dom(Base) = {vp0, vp1, vp4, vp5, vp8, vp11}. Another
example is the feature module Statistics : {vp3 7→ f3, vp4 7→
f4.2, ...} with the domain dom(Statistics) = {vp3, vp4, vp7, ...}.
Note that dom(Base)∩dom(Statistics) = {vp4} and, thus, Base
and Statistics share vp4 (cf. Fig. 3f and Fig. 4).
Variational AST. AST nodes are made variable by annotating
them with fragments from F. Let AST = {n1, n2, ...} be a
set of AST nodes. A variational AST vast : F � AST is
an injective, non-surjective function assigning AST nodes to
fragments from F. The image vast(F) of a variational AST vast
is the set of AST nodes annotated with fragments. An AST
node n is annotated if n ∈ vast(F). The domain dom(vast)
is the set of fragments F (i.e., the AST nodes assigned to
fragments by vast). Due to injection, fragments are unique to
AST nodes. Every fragment annotates exactly one node, but
not every node must be annotated. The helper function FN(n)
either returns the fragment annotating the node n ∈ AST or ⊥
if the node is not annotated (i.e., n /∈ vast(F)).

Example: Fig. 4 shows an excerpt of the mappings in
our running example (Fig. 3f). For instance, vast(FBerkeley) =
{FeatureBlock,ReturnType,NonOptionalAlternative, ... },
FN(ReturnType) = f4.1, M(FN(ReturnType)) = Base, and
VP(FN(ReturnType)) = vp4.

B. Editing Operations

To manipulate the AST, CoreVar provides three basic variability-
related editing operations, which can be refined by its tailoring
extensions (e.g., JavaVar): assign variability, assign wrapper
variability, assign alternative—all available via a menu in the
program (cf. Fig. 3c) or triggered automatically by an editing
gesture (e.g., typing #IFDEF or #ELIF).
Assign Variability Operation. The operation marks an AST
node as variable, such as class DatabaseImpl assigned to
f0 (Fig. 3f). An algorithm creates a new VP vpi ∈ V and
fragment fi ∈ F, and annotates the selected AST node nj with
the fragment such that vast(fi) := nj . Then, the developer
selects the desired feature module mk assigning fi to vpi.
Assign Wrapper Variability Operation. The operation marks
only a wrapping node as variable, not its body (the wrappee).
The idea is to annotate the wrapping node such that its wrappee

V F AST
vp1
vp4

...
f1
f4.1

f4.2
ReturnType

FeatureBlock

NonOptionalAlternative

...
...

Base
Base

Statistics

vast

ClassCreator

Figure 4. Annotating AST nodes as variable

is not removed during variant derivation (explained shortly).
Assigning variability to a wrapping node corresponds to the
assign variability operation. The only difference is that an
additional annotation called wrapper is added to the target
node, which refers to the wrappee (cf. Fig. 3f, vp10).
Assign Alternative Operation. The operation marks an AST
node na as alternative to another AST node no. Let no be
variational with FN(no) 6=⊥, and let its fragment fo :=FN(no)
be assigned to the VP vpo :=VP(fo) with VP(fo) 6=⊥. If
the alternative node na is variational with FN(na) 6=⊥, then
an algorithm changes the alternative node’s feature module
M(FN(na)) such that it assigns the fragment FN(na) to vpo,
which is then associated with fo and FN(na). If the node na is
not variational, an algorithm creates a fragment fa in F, assigns
it to vpo (according to the developer’s module selection), and
annotates na with the fragment such that vast(fa) := na. Fig. 4
gives an example. The fragments FN(ReturnType) = f4.1 and
FN(NonOptionalAlternative) = f4.2 are both assigned to vp4
by their respective feature modules.

Notice that no and na are typically, but not necessarily
siblings in the AST (e.g., statements alternative to each
other). In fact, some non-optional AST nodes cannot have
siblings (e.g., exactly one return type is required in a method
declaration according to Java’s syntax). For such non-optional
nodes, CoreVar provides the concept NonOptionalAlternative,
whose instances are used by the assign-alternative operation
to annotate no, while holding an alternative node na. For
example, the return type of the method preload is annotated
by a NonOptionalAlternative holding an alternative return
type (cf. f4.2 in Fig. 3f). Non-optional language concepts are
declared in CoreVar tailorings (explained shortly in Sec. IV-D).

C. Variant Derivation

The derivation of variants is a two-step process. First, we
calculate the set of fragments contained in the variant by
composing feature modules. Second, we remove any variability
by iterating over all fragments in the tree to either remove the
fragment, to remove the annotated node, or to restructure the
tree (for wrapper and non-optional alternative nodes).
Composition. Composing modules results in a transient vari-
ant set Fvariant containing all fragments of a variant. SDA
provides three operations to compose modules: addition (+),
subtraction (-), and overriding (_), which we adopt in
PEoPL as follows. Let Fm and Fn be the set of fragments
associated with a module m and n, respectively. The addition
of two modules m + n fails if m and n contain conflicting
fragments: dom(m)∩ dom(n) 6= ∅. In Fig. 4, fragments f4.1 and
f4.2 are conflicting, as both assign fragments to the VP vp4.
Without conflicting fragments, addition results in a greater
set of fragments Fm+n = {Fm ∪ Fn} and therefore a larger
module serving as input for further operations. Note that the
fragments of the larger module reflect a preliminary or the
final variant set Fvariant. The subtraction of m − n is the set
Fm−n = {f |f ∈ Fm ∧VP(f) /∈ dom(n)}. In other words, we
remove the fragments of m that share a VP with fragments
of n, so subtraction removes fragments from the variant set.



Table I
EXAMPLE CONFIGURATIONS FOR BERKELEY DB (FIG. 3)

No Module configuration Variant’s fragment set (Fvariant) Valid
(1) Base f0, f1, f4.1, f5, f8, f11 X
(2) Base + Memory_Budget f0, f1, f2, f4.1, f5, f6, f8, f11 X

(3) Base + Statistics f0, f1, f3, , f5, f7, f8, f9,
f10, f11, f12

7

(4) Base − Statistics f0, f1, f3, f5, f7, f8, f9,
f10, f11, f12

7

(5) Base _ Statistics f0, f1, f3, f4.1, f5, f7, ... X
(6) Statistics _ Base f0, f1, f3, f4.2, f5, f7, ... X

Overriding is simply a combination of addition and subtraction:
m _ n =df m+ (n−m) to enable replacement.

Example: Table I shows different compositions for our
running example (Fig. 3). For instance, configuration (2), adding
Base and Memory_Budget, results in a valid set of fragments.
In contrast, configuration (3), adding Base and Statistics, is
erroneous, as fragments f4.1 and f4.2 fill the same VP vp4.

To resolve conflicting fragments, we use subtraction and
overriding. For instance, configuration (4) removes f4.1. The
resulting fragment set is valid, but the AST invalid (both
return types pruned), which is detected during derivation. Type-
checking module composition is part of our future work. Using
overriding, developers decide between conflicting fragments.
For instance, configuration (5) denotes that all fragments of
Base replace those conflicting with Statistics. Note that ordering
matters for overriding, since configuration (6) includes the
fragments of Statistics instead. Moreover, notice that a feature
selection can be realized by overriding modules according to
their declaration order. For instance, configuration (6) reflects
a selection of Base and Statistics based on the ordering defined
in Fig. 3b (i.e., Base has lowest priority).
Remove Variability. Next, we remove any variability from our
AST such that vast(F)= ∅. Fig. 5 shows our algorithm, which
takes the variational AST vast and the variant’s fragment set
Fvariant as input. We iterate over all fragments in the variational
AST (Line 2). If the fragment is in Fvariant, we simply delete
the fragment to remove variability (Line 3). Otherwise, if
the node has a wrapper annotation, we move the wrappee’s
children up in the tree as siblings of the wrapper (Line 7), and
remove the wrapper (Line 15). If the node is non-optional (i.e.,
has NonOptionalAlternatives), we pop the first alternative
and get the node it holds (Line 10), such as the alternative
return type PreloadStats in Fig. 3f. Since a node may
have multiple non-optional alternatives, we must add all of

func removeVariability(func vast, set<fragment> Fvariant) {
 

1
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16

 for each f ∈ dom(vast) { 
   if(f ∈ Fvariant) f.delete; // delete only the fragment
    else {
      if(hasWrapperAnnotation(vast(f)) { // handling the wrapper
        for each n ∈ getWrappee(vast(f)).children {
          vast(f).add prev-sibling(n); // moving the content up
        }
      } else if(hasNonOptionalAlternatives(vast(f))) {
        node a = popFirstAlternative(vast(f)).getTheNodeIHold();
        a.addAll(getNonOptionalAlternatives(vast(f)));
        vast(f).replace with(a); // replace the node
        return;
      }
      vast(f).delete; // delete the node and its fragment
} } }

Figure 5. Algorithm to remove variability from the AST

Can-assign-variability declarations for Java
simple inclusion for concepts: Statement, ParameterDeclaration,...
parameterized inclusion for node: (sourceNode) -> boolean {
  return sourceNode.parent.isInstanceOf(BaseMethodDeclaration)
         && sourceNode.hasRole(BaseMethodDeclaration : throwsItem)
}...
simple exclusion for concepts: PlaceholderMember, ... 

all rules from can-assign-variability: <default: true>
non-optional node concepts: Type, Expression
...

Can-assign-alternative declarations for Java

1
2
3
4
5
6

7
8
9

Figure 6. Annotatable nodes declaration for Java

them to the popped alternative (Line 11). Then, we can safely
replace the non-optional node in the tree with it (Line 12). If
the node neither has a wrapper annotation nor is a non-optional
alternative, we remove the node (Line 15).

D. Target-Language-Specific Tailoring

PEoPL requires tailoring CoreVar to a specific target language.
We now explain the tailoring in general and illustrate it with
our examples from tailoring to Java.
Annotatable Nodes Declaration. Without restriction, the
editing operations of CoreVar allow annotating any AST node
(also non-optional ones) with fragments, which may lead to
syntactically incorrect variants. To declare “annotatable” nodes
and restrict editing operations to a meaningful level, we provide
can-assign-variability and can-assign-alternative declarations.
Fig. 6 shows an example for Java. Can-assign-variability
declarations are either simple or parameterized inclusions
or exclusions of concept instances (and their subconcept
instances due to concept inheritance). For example, fragments
can annotate Statement concept instances (Line 1) and,
thus, all Statement subconcept instances (e.g., IfStatement
instances). Moreover, we declare that throwsItems of method
declarations can be annotated (Lines 3–4). The can-assign-
alternative declaration allows adopting the rules declared in
can-assign-variability (Line 7), add new rules, and declare
non-optional nodes. For instance, JavaVar allows annotating
the language concept instances of Type and Expression with
NonOptionalAlternative instances (cf. Fig. 6, Line 8, and the
NonOptionalAlternative in Fig. 3f).

Due to concept inheritance, not many declarations are needed
for Java. The can-assign-variability declaration has nine simple
and eight parameterized inclusions, as well as one simple
and three parameterized exclusions. The can-assign-alternative
declaration adopts these rules plus two non-optional node
inclusions, one parameterized inclusion and four exclusions.
Wrapper Declaration. Which nodes in the AST can have a
wrapper annotation—where the wrapping node is variable, but
not its subtree (wrapper body)—is target-language-dependent.
A wrapper declaration specifies the wrapper’s language concept
and the corresponding wrappee (child node). Fig. 7 shows the
four wrapper declarations for Java. For instance, a TryState-
ment can be replaced by its body.

Wrappers that can be partially annotated in Java
instance of AbstractLoopStatement replaced by its body;
instance of IfStatement replaced by its trueBody;
instance of SychronizedStatement replaced by its block; 
instance of TryStatement replaced by its body; ...

Figure 7. Wrapper declaration for Java



Further Declarations. JavaVar also declares variability-
specific type-system and data-flow rules (cf. [22]). Moreover,
it extends the Java language with a convenience concept that
eases handling variability. Our FeatureBlock concept groups
statements belonging to the same feature module (cf. Fig. 3f). In
fact, we enforce that any statement (except partially annotated
wrappers) are contained by at least one FeatureBlock (e.g., f1
in Fig. 3f). Otherwise, all individual statements would need to
be annotated (as they are siblings in the AST). In the projections,
the block’s statement list is just rendered without showing
curly braces (cf. statement-level vertical bars in Fig. 3c). A
FeatureBlock also extends its enclosing statement list’s scope
to make the FeatureBlock’s statements visible to its siblings.
During variant derivation, if the FeatureBlock’s module is in
the variant, it is replaced by its statements, otherwise removed.

V. PEOPL’S EXTERNAL REPRESENTATIONS

We use MPS’ projection facilities to realize PEoPL’s external
representations. Each language concept requires a projectional
editor defining the rules for rendering concepts into concrete
syntax. For instance, a BlockStatement editor renders its
StatementList and surrounds it with curly braces. Editors can
accommodate so-called editor hints defining in which context
the rendering rules are to be applied. A language concept can
have different editors through different hints. In PEoPL, the
variability-related language concept is the fragment. For each
of its external representations, we implement a projectional
editor that is oblivious to the target language (e.g., Java).

Next, we explain how we realize our projectional editors.
Rendering Annotations. For most target languages projecting
textual and visual annotations is easy. Fig. 8 shows a visual
annotative editor for our main concept: fragment. Such editor
definitions consist of so-called cells [43]. The [annotated node]
cell embeds the editor of the node annotated with the fragment
(Lines 2, 3, and 5). A fragment can be rendered in three
ways. First, fragments constituting disciplined annotations are
rendered with a vertical bar (Line 2), where #VerticalBar#
and #Module# refer to editor components—editors reusable
among different editors. Second, undisciplined annotations
within a line of code are underlined with a horizontal bar
(Lines 3–4). Third, annotations requiring a more specific
syntax (e.g., partially annotated wrappers, whose body is not
annotated) are propagated to the customized target node’s editor
(Line 5), which targets a target-language-specific concept (e.g.,
Java’s TryStatement) that recognizes a fragment and provides
respective partial coloring. Finally, the textual annotative editor
looks similar and just adds keywords, such as #IFDEF.
Rendering Variants. Projecting variants is simple: the editor
for fragments checks whether the fragment is in the variant’s
fragment set. If so, the annotated node is rendered, otherwise

else if isComplex():     [annotated node]                                                                                                                             

if isDisciplined(): #VerticalBar# #Module# [annotated node]                                                                                                             
else if isWithinLine():  [annotated node] #Module#                                                                                                   
                         #HorizontalBar#

visualAnnotative editor for concept Fragment                                                                                                                                                                                                                                          1
2  
3
4
5

Figure 8. Simplified visual annotative projectional editor for fragments

hidden (for wrappers the wrappee is shown). To provide a
variant-specific file explorer, we simply check for each root
node (e.g., class or interface) if it is in the current variant.
Rendering Feature Modules. Modular projections show the
code of a feature module in isolation (Fig. 3d). In contrast
to projecting annotations and variants, projecting modules
is currently language-dependent, since the editor rendering
fragments cannot simply hide annotated nodes—that is, we need
to show refined structural elements as well (cf. Sec. II). Luckily,
it is still feasible to project Java code as feature modules.
We only need three simple fragment-aware editors defining
how to render the Java language concepts ClassifierMember
(e.g., method declarations), IVisible (e.g., public or private),
and StatementList (e.g., a method declaration’s or a block
statement’s body) in the presence of variability. In other words,
we override these editors (from Java) with editors that can
handle the variability induced by a fragment. We realize these
three editors as follows.

First, a fragment-aware ClassifierMember editor renders
a classifier member conditionally—if the member or one of
its descendants is annotated with a fragment of the module.
For instance, the class PreloadProcessor (a member
of DatabaseImpl) is shown in the modular editor of
Memory_Budget, since a descendant FeatureBlock is annotated
with fragment f2 of Memory_Budget (Fig. 3d, Line 3).

Second, to understand whether classes and members are
introductions or refinements, we render the keywords defines
and refines into the concrete syntax by overriding the IVisible
language concept editor, originally rendering only the member’s
visibility (e.g., public and private keywords). For instance,
Memory_Budget only refines the class DatabaseImpl (i.e.,
in Fig. 3f, f0 is associated with Base) and, thus, the refines
keyword is shown (Fig. 3d, Line 2).

Third, we override the editor of the concept StatementList.
It filters out FeatureBlock nodes whose fragment does not
belong to the current feature module (e.g., the FeatureBlock
in Line 6 in Fig. 3c is not shown below Line 6 in Fig. 3d). In
case of wrappers not belonging to the module, the wrappee’s
statement list is the next level to investigate for FeatureBlocks
and wrappers. Note that the original keyword is a projection
of the base code’s FeatureBlock (Fig. 3d, Line 5 and Fig. 3f,
f1). So it is not a real method call as in classical modular
approaches and currently restricted to the statement level, which
however sufficed in practice. To support the original keyword
on the expression level (i.e., as a real method call), we could
implement further (but likely more complex) on-the-fly tree
transformations and rendering rules.

Finally, note that to provide a module-specific file explorer,
we simply check for each file whether it is introduced or refined
by the selected module (e.g., a Memory_Budget file explorer
would show the DatabaseImpl file, cf. Fig. 3d).
Combining Renderings. Blended projections simply reuse
editor components defined by the projections involved. For
instance, to blend annotations into feature modules, elements of
the annotative and modular fragment editor as well as horizontal
and vertical bars are reused.



Table II
JAVA-BASED PRODUCT LINES ADOPTED IN PEOPL

Size & Complexity Scalability & Latency
SPL LOC CLA MET F FM VP TGV TCV TCF Source Tool Description
Jest 19k 144 1105 22 22 205 2535ms 9ms <1ms From scratch Java ElasticSearch client [44]
Berkeley DB 70k 218 3433 42 83 1373 5153ms 45ms <1ms CIDE Embedded database [8]
GPL 1k 15 125 21 26 105 248ms 2ms <1ms CIDE Graph product line [45]
Java-Chat 0,6k 8 58 9 9 33 260ms <1ms <1ms CIDE Chat client
Lampiro 45k 140 1693 19 19 181 4234ms 7ms <1ms CIDE Instant-messaging client
Prop4J 2k 6 174 14 14 192 249ms 1ms <1ms FeatureHouse Propositional formula libary
Vistex 2k 9 99 16 16 37 287ms <1ms <1ms FeatureHouse Graph visualization and text editor
STE 1k 9 128 10 10 38 259ms <1ms <1ms DeltaJ Simple text editor [12], [46]

LOC: lines of code (source) | CLA: classes | MET: method declarations | F : features | FM : feature modules | VP: variation points
TGV: time to generate a variant | TCV: time to compose a variant | TCF: time to compose a file variant

VI. EVALUATION

We now evaluate PEoPL with three objectives.

A. Objectives and Subjects

Objectives. O1. Analyze expressiveness: We show that PEoPL
can realize SPLs by writing them from scratch or migrating
from common annotative or modular variability representations.
O2. Analyze scalability: We investigate latencies for creating
file-variant projections and for deriving full variants, together
with qualitatively assessing the editing efficiency. O3. Assess
the benefit of multiple projections: We study this benefit
by analyzing the overhead of a pure modular approach by
approximating the boilerplate code it would require to write.
Subjects. Table II shows our SPLs. We migrate seven SPLs
used in previous research [8], [12], [16], [45], [47], [48], and
implement one (Jest) from scratch. All cover different domains
and scales. Most migrations are CIDE projects, for two reasons.
First, it is easy to migrate annotative SPLs to PEoPL. We import
the codebase and manually re-implement annotations. Second,
we aim at using annotative SPLs to evaluate the potential
overhead in a pure modular approach. We also migrate three
projects from DeltaJ and FeatureHouse, which use modular
representations. We import each module as a Java package
into PEoPL and use our modular projection for migrating the
code. The adoption effort for all subjects is moderate. Creating
the subjects takes seven days for Berkeley DB, three days
for Jest, and just a few hours each for the others (including
comprehending the SPLs).

B. Expressiveness (O1)

Although time-consuming and error-prone, and an analytical
approach could have sufficed to evaluate expressiveness, the
manual adoption helps us understanding the usability of our
projections. No subject requires specific workarounds. We
conclude that PEoPL’s expressiveness suffices to handle those
annotative and modular SPLs. To reduce adoption effort, we
plan to write custom importers.

C. Scalability & Latencies (O2)

Metrics. We use the following three metrics (all in millisec-
onds) to evaluate scalability. TCF (time to compose file) is the
time to compose the variant’s set of fragments of a single file.
TCV (time to compose variant) is the time to compose the

variant set of all files (i.e., the complete fragment set). TGV
(time to generate variant) includes TCF plus the time to write
all Java classes of the variant to disk. We use TGV to compare
PEoPL to composition times of other SPL tools.

Methodology. TCV measures the editing latencies of variant
projections, since we compose a full product to update the
variant editor and explorer (i.e., the tree view on a product’s
files). PEoPL caches the current variant’s fragment set until
variability-related operations (e.g., adding a fragment) invalidate
the cache. So we turn off caching to avoid confounding. To
measure TCV, we compose all feature modules included in the
current configuration. TCV is most important, as it excludes the
confounding model-to-text transformation introduced with TGV.
We compare TCV to TCF to determine whether the reduced
set of fragments of TCF improves composition performance
and yields a better efficiency. A drawback of TCF may be that
we need to populate all module-fragment relationships of a file
before the composition, since the reduced set is not persisted.

We conduct all measurements on a standard 2011 iMac
(3,1GHz Intel i5, 16GB, Radeon HD 6970M, OS X 10.10.5,
MPS 3.3.6, Java 1.8) with randomly generated distinct variants.
We then compare the composed variant set to all variant sets
previously generated. If sets are equal, we skip the current set,
otherwise save it for future comparison.

Results. Table II shows all results and Fig. 9 the distribution of
TCV values for Berkeley DB (for the others, the values are too
low to be meaningful). Generating and writing 2000 Berkeley
DB variants to disk is below 5.2 sec. on average (TGV). Using
equivalent product configurations, we compose and write the
same Berkeley DB variant to disk using PEoPL (around 6 sec.),
FeatureHouse (around 18 sec.), and CIDE (around 7 sec.).
Composing a full variant is below 45 ms on average (TCV)
and just a single document below 1 ms (TCF).

In summary, the PEoPL prototype scales well to SPLs of
Berkeley DB size. Latencies to compose the fragments for a
variant projection are efficient according to the TCF and TCV
measures. PEoPL does not introduce any significant overhead.

0 50 100

Berkeley DB

latency in ms

Figure 9. Calculation times for a full variant (TCV)



Table III
METHODS REQUIRING BOILERPLATES IN PURE MODULAR APPROACHES

Berkeley DB Lampiro GPL Java-Chat
FM MET BOIL MET BOIL MET BOIL MET BOIL
1 2813 0% 1567 0% 77 0% 40 0%
2 398 78% 21 86% 12 25% 6 83%
3 82 86% 8 88% 5 40% 5 60%
4 35 91% 2 100% 3 0% 1 0%
5 21 95% 1 100% – – – –
6 5 100% 1 100% 1 100% – –
7 3 100% – – – – – –
8 1 100% – – 2 100% – –

FM: feature modules involved in method body |MET: method declarations
BOIL: method declarations that would require boilerplate code

D. Overhead of Pure Modular Representations (O3)

Metrics. The basic idea of O3 is that a developer uses
feature modules for their advantages. Yet, classical modular
approaches require boilerplate code for fine-grained feature
artifacts, such as hook methods. We aim to show the need for
annotations, providing indirect evidence that PEoPL—which
allows blending annotations into modules and switching to
annotations on demand—is useful. To approximate the potential
interest of these two PEoPL facilities, we measure the number
of methods that would require boilerplate code in a pure
modular projection in correlation to the involved modules.
This shows whether variability in a method’s body introduced
by different modules impacts the number of boilerplates.
Methodology. To determine the required boilerplates of a
method, we search for variability in the middle of a method, and
fine-grained variability (e.g., annotated method-call parameters).
The method requires boilerplates if such variability is found.
Notice that we allow variational method parameters and return-
types in our modular projection. Thus, we do not mark such
methods as demanding boilerplates (although they would
require boilerplates in some classical modular approaches).
Results. It is not surprising that all methods adopted from the
modular FeatureHouse and DeltaJ examples do not require
additional boilerplates in a pure modular projection. Thus, we
concentrate on the CIDE examples. With total numbers of
13% (Berkeley DB), 1% (Lampiro), 6% (GPL), and 15% (Java-
Chat), all tested annotative SPLs contain a relatively small
number of methods requiring boilerplates. However, as soon
as investigating variability in the method’s body, the need for
blended projections and fluent movement between projections
becomes obvious.

Table III shows our boilerplate test results. The majority of
methods not requiring boilerplates in pure modular approaches
are simple introductions (i.e., only one feature module is
involved). The picture changes as soon as a method gets refined
(i.e., at least two feature modules are involved). Especially, the
Berkeley DB methods require a large number of boilerplates.

E. Threats to Validity

Internal Validity. To mitigate the threat that our SPLs are
incorrectly implemented, we cross-checked their implemen-
tations and carefully specified and reviewed our generation
rules. Moreover, in the final Java code-generation, MPS would
have detected invalid ASTs. Furthermore, PEoPL relies heavily

on cross-tree references (e.g., fragment to VP). We carefully
designed CoreVar to maintain these references throughout the
AST editing, as broken references can invalidate a program’s
variability. Finally, to enhance the validity of our scalabil-
ity evaluation (O2), we randomly created compositions and
implemented a checking rule to detect duplicated ones. We
double-checked that tested configurations are not biased (i.e.,
too few or many feature modules over all configurations). For
the modularity overhead (O3), we inspected a sample of nodes
to verify that the boilerplates are actually necessary.
External Validity. To increase external validity, seven of our
eight subjects are publicly available SPLs of different size
and complexity previously used as SPL benchmarks. Among
them is Berkeley DB, a substantial embedded database that
has been decomposed using different techniques before [8],
[16], [48]. Furthermore, although we tested PEoPL only with
Java, it is a mainstream language. Java not only benefits from
PEoPL’s projections, but also from variability support at all.
Still, adapting PEoPL to other languages and larger SPLs
is valuable future work. Finally, although we evaluated only
technical aspects of PEoPL, we can rely on general assumptions
in the literature that combinations of multiple representations,
views allowing real-time editing, and quick feedback loops,
are beneficial. Still, investigating how exactly such views are
used when engineering real-world systems is valuable future
work, but a study on its own.

VII. LESSONS LEARNED

We made the following experiences that are relevant for using
and extending PEoPL in practice.

We found switching representations and using them in par-
allel useful when adopting our subject SPLs. For instance, we
switched the modular to the annotative (or blended) projection
when contextual information was required for comprehension.
We also switched for implementing fine-grained variability or
exploring feature interactions. Using the annotative projection,
we found a behavior-related issue in the STE SPL that was
neither easy to identify in the original DeltaJ implementation
nor in our modular projection [49]. We typically used either the
modular and product projection, when annotative code was too
complex, or we searched for bugs known to occur in a feature.
We also leveraged the locality of the modular projection to
identify how a single feature was implemented.

Tailoring PEoPL to a target language using annotatable nodes
and wrapper declarations is as easy as annotating grammars
[16], [50]. The effort for creating the declarations depends on
the target language’s complexity, but was moderate for Java.
Thanks to concept inheritance, languages building upon MPS’
Java such as MPS’ closure language are inherently supported.
Tailoring is also flexible, since even non-textual languages such
as MPS’ math language with its math symbols are supported.

The realization effort for creating new external representa-
tions (rendering rules) is moderate. For instance, it took us
only two hours to implement the blended projection. However,
implementing, for instance, a modular projection with advanced
editing support from scratch requires more engineering effort



(e.g., restructuring the tree when typing the original keyword).
Likewise, editors that support partially annotated wrappers
require customized target-concept editors (for now). So, gener-
ating projections and editing rules for variability representations,
potentially exploiting the new concept of grammar cells [43]
for defining projectional editors, would be valuable.

Finally, relying on the concept of projectional editing has the
potential of leveraging static analyses that are usually expensive
in parser-based systems. Projectional editors operate on an AST
(which is directly modified by the user’s editing gestures), so
references between AST nodes (e.g., method call to method
declaration) are actively maintained. This AST can be analyzed
for extracting feature constraints. We implemented such a
constraint extraction and a preliminary data-flow analysis [22],
which already helped to resolve issues (e.g., missing feature
dependencies, which would induce deriving invalid variants).
In contrast to expensive static analyses required for parser-
based systems [51], our analysis is quick (<1,8s on average
for Berkeley DB). Using our dependency checker, we in fact
found 57 implementation-specific dependencies [22], which
were not declared in the feature model of the CIDE version of
Berkeley DB. So incorrect variants could have been generated.

VIII. RELATED WORK

Only few approaches exist to integrate annotative and modular
variability mechanisms. We discuss such approaches, distin-
guishing between parser-based and projectional approaches.

The SDA is a formal model of feature modularity [42], [52].
We build upon it, yet use injective partial functions for feature
modules to forbid assigning the same fragment to different
variation points. To model such (rare) homogeneous extensions
[53], [54], we allow variation points to appear multiple times.

The compositional choice calculus is a formal language
combining annotative and modular techniques [55]. It has been
used for a parser-based variant editor [36], which as opposed
to PEoPL only has one representation (choice calculus).

Kästner et al. refactor modular (FeatureHouse) into annota-
tive (CIDE) variability representations and vice versa [19]. Yet,
refactoring does neither support a fluent movement between
techniques nor any other advanced editing support provided by
PEoPL. Moreover, parallel editing of different refactored rep-
resentations can cause inconsistencies, challenging developers.

We previously proposed to integrate variability mechanisms
based on variational graphs and outlined the idea of using
projections [56]. Using snippet graphs [57], [58], we imple-
mented an early version of PEoPL’s meta-model to examine the
variational graph for Java, Haskell, and HTML SPLs [59]. Now,
we present a complete SPL-engineering approach including an
IDE with editable projections, evaluated using eight SPLs.

CIDE is a parser-based, annotative approach sharing some
concepts with PEoPL, such as annotating ASTs and wrappers
[50]. Yet, CIDE only supports an annotative and variant view
on the code. New views cannot be plugged and parallel editing
is not supported. Moreover, some smaller restrictions exist
in the expressiveness (e.g., no mutually exclusive alternative
nodes) requiring workarounds that are not required in PEoPL.

DeltaJ is another related modular approach that allows
developers to add, replace, and remove feature-related elements
by applying deltas [10]–[12]. Instead of incrementally applying
deltas, we embed all variants into a single variational AST.

FeatureIDE [60] is an Eclipse framework that integrates
several approaches, such as FeatureHouse [16], DeltaJ [12], and
tools to cope with variability (e.g., feature-context interfaces
[61]). The key difference is that the very same feature artifact
cannot be explored using different representations.

Outside the SPL context, effective views have been proposed
to extract the code from a database into two different text-
based views (classes and modules) [62]. Changes made to
the concrete syntax can be parsed and merged back into the
database. Thus, editing inconsistencies may appear, which is
not an issue in projectional editors, since any edit is atomic
and directly changes the AST. Moreover, the approach neither
supports editing nor generating variants and is tailored/limited
to two views not reflecting our notion of features.

Finally, a projectional approach to implement SPLs was
proposed before [63], [64]. The language family mbeddr
provides the only other projectional way to implement SPLs
[65], applying C preprocessor concepts to the underlying AST.
mbeddr is also implemented using MPS, but does not focus
on providing multiple external representations.

IX. CONCLUSION

We presented the approach PEoPL, which aims at combining
the distinct advantages of different representations of variability.
It relies on establishing a unified, internal representation that
is separated from multiple external representations. These can
be used in parallel and on demand for engineering the same
variable software artifact. We designed five complementing
representations, allowing developers to edit artifacts using
textual and visual annotations, feature modules, a blending
of annotations into modules, and to edit individual variants.
We realized PEoPL as a full IDE, building upon the projectional
language workbench MPS. By declaring annotatable nodes and
wrappers, we provide an exemplary tailoring of PEoPL to Java
as the target programming language.

We evaluated PEoPL by adopting eight Java SPLs, showing
PEoPL’s expressiveness, scalability, and benefits. Most impor-
tantly, this evaluation shows that it is in fact feasible to separate
internal and external representations, supporting very different
ways of editing feature artifacts. Latencies to calculate variants
are low, which together with our qualitative experiences from
adopting the SPLs, evidences a smooth editing experience.

We plan to extend PEoPL with a variability-aware type-
checker, version-control facilities for collaborative SPL devel-
opment, and tailorings to further languages (one to C is on the
way). We also plan to conduct user studies investigating exact
usage scenarios of multiple projections. Finally, we hope that
language designers and tool vendors create further projections,
and tailorings for more languages, beyond Java and C.
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variability affect bug finding?” in ICSE, 2016.

[18] J. Favre, “Preprocessors from an Abstract Point of View,” in ICSM, 1996.
[19] C. Kästner, S. Apel, and M. Kuhlemann, “A model of refactoring

physically and virtually separated features,” in GPCE, 2009.
[20] C. Kästner and S. Apel, “Integrating compositional and annotative

approaches for product line engineering,” in McGPLE, 2008.
[21] J. Siegmund, C. Kästner, L. Jörg, and S. Apel, “Comparing program

comprehension of physically and virtually separated concerns,” in FOSD,
2012.

[22] “Online appendix,” http://peopl.de/icse2017.
[23] M. Erwig and E. Walkingshaw, “The Choice Calculus: A Representation

for Software Variation,” ACM Transactions on Software Engineering and
Methodology, vol. 21, no. 1, pp. 6:1–6:27, 2011.

[24] N. Singh, C. Gibbs, and Y. Coady, “C-CLR: a tool for navigating highly
configurable system software,” in ACP4IS, 2007.

[25] J. Liebig, C. Kästner, and S. Apel, “Analyzing the discipline of
preprocessor annotations in 30 million lines of C code,” in AOSD, 2011.

[26] P. C. Clements and C. Kreuger, “Point/Counterpoint: Being Proactive
Pays Off - Eliminating the Adoption.” IEEE Software, vol. 19, no. 4, pp.
28–30, 2002.

[27] J. Liebig, S. Apel, C. Lengauer, C. Kästner, and M. Schulze, “An analysis
of the variability in forty preprocessor-based software product lines,” in
ICSE, 2010.

[28] F. Medeiros, C. Kästner, M. Ribeiro, S. Nadi, and R. Gheyi, “The
Love/Hate Relationship with the C Preprocessor - An Interview Study.”
in ECOOP, 2015.

[29] E. W. Dijkstra, A Discipline of Programming. Prentice Hall, 1976.
[30] D. L. Parnas, “On the criteria to be used in decomposing systems into

modules,” Communications of the ACM, vol. 15, no. 12, pp. 1053–1058,
1972.

[31] ——, “Designing Software for Ease of Extension and Contraction.” in
ICSE, 1978.

[32] C. Kästner, S. Apel, and K. Ostermann, “The road to feature modularity?”
in SPLC, 2011.

[33] A. D. Baddeley, “Is working memory still working?” American Psychol-
ogist, vol. 56, no. 11, pp. 851–864, 2001.

[34] B. Kullbach and V. Riediger, “Folding: an approach to enable program
understanding of preprocessed languages,” in WCRE, 2001.
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