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ABSTRACT
We present a case study of migrating a legacy language
infrastructure and its codebase to a projectional language
workbench. Our subject is the generator tool ADS used for
generating COBOL code for critical software systems. We de-
compose the ADS language into smaller sub-languages, which
we implement as individual DSLs in the projectional language
workbench JetBrains Meta Programming System (MPS). Our
focus is on ADS’ preprocessor sub-language, used to realize
static variability by conditionally including or parameterizing
target code. The modularization of ADS supports future
extensions and tailoring the language infrastructure to the
needs of individual customers. We re-implement the genera-
tion process of target code as chained model-to-model and
model-to-text transformations. For migrating existing ADS
code, we implement an importer relying on a parser in order
to create a model in MPS. We validate the approach using an
ADS codebase for handling car registrations in the Nether-
lands. Our case study shows the feasibility and benefits (e.g.,
language extensibility and modern editors) of the migration,
but also smaller caveats (e.g., small syntax adaptations, the
necessity of import tools, and providing training to develop-
ers). Our experiences are useful for practitioners attempting
a similar migration of legacy generators to a projectional
language workbench.

CCS Concepts
•Software and its engineering → Extensible languages;
Source code generation; Maintaining software;

1. INTRODUCTION
Preprocessors are common and established tools to extend
existing programming languages. They can be found for
many programming languages, either as part of the com-
piler infrastructure (e.g., the C preprocessor) or as a stand-
alone tool (e.g., Antenna, M4). Among others, they are a
popular mechanism to implement compile-time variability.
Together with other features that enhance the capabilities
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of their underlying target languages with commonly needed
functionality—such as modularization, control-flow or I/O
statements—they provide the basis for comprehensive soft-
ware generators.

In some domains, such generators have become almost as
important as the target language. Consider the banking and
insurance domain, which relies largely on COBOL or PL/I1,
but has developed comprehensive generators for coping with
the various shortcomings of COBOL. One such generator
is the preprocessor-based Application Development System
(ADS)—the subject of our case study.

While there is a strong need to maintain systems devel-
oped with these legacy generators, there is also a need for
modernization of these systems and, as a consequence, for
modernizing the generator itself. Traditional modernization
scenarios, such as those described by the OMG [1], focus
on the platform, architecture or programming language of
a single system. The existence of legacy generators leads
to additional modernization goals: (i) improving the modu-
larization and extensibility of software generators, and (ii)
handling variability—expressed in the preprocessor language—
more explicitly, in order to enable a combination with more
modern variability implementation and analysis techniques.
In fact, improving modularization also facilitates a later mod-
ernization of the underlying target language (e.g., COBOL).
Yet, migrating such legacy language infrastructures is a com-
plex task for companies, requiring incremental approaches
starting with modernizing the generator. Unfortunately, only
few empirical data and experience reports are available about
the migration of such language infrastructures [2, 7].

We present a case study of modernizing the legacy genera-
tor tool ADS. It has roots in the 1970s, but is still used today
by many companies in the banking and insurance domain,
to construct large (more than a million lines of code) and
critical systems. We migrate a part of a large generator
system for creating a COBOL application that is used to
manage Dutch car registrations. ADS consists of a complex
preprocessor language and more than 20 sub-generators. The
former is important for variability—to generate variants for
different users or target platforms by conditionally including
or parameterizing code. The latter provide commonly needed
functionality lacking in COBOL, such as program structuring,
I/O functionality, and database access. Other sub-generators
help to design screens and reports or to create documentation.
The preprocessor and the various sub-generators can be seen
as different languages, but all are mingled together in ADS.

We conduct the case study in close cooperation with the

1Another legacy language used in the banking domain.
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provider of ADS Delta Software Technology2 and two large
industrial ADS users. We gather information about the
existing ADS systems and discuss requirements with the
tool provider. The latter has additional expectations to
the modernization: obtaining slight improvements of ADS’
syntax; having the ability to later complement (or completely
substitute) the generation of COBOL with other languages,
such as Java or C#; and to get better tooling—including
debugging and better editor support (e.g., code completion).

We show how the ADS infrastructure can be migrated to
a modern language workbench [6, 8, 15]. Language work-
benches are tools for engineering and using (domain-specific)
languages. We chose JetBrains Meta Programming System
(MPS) [17], which relies on a projectional editor [3, 19] offer-
ing powerful facilities for language composition and flexible
notations, and is therefore well-suited for realizing a mod-
ularization of ADS into sub-languages and later extending
and replacing them. Our strategy is to decompose ADS into
smaller DSLs and to re-implement ADS’ program-generation
logic as modular model transformations.

We evaluate the feasibility and potential benefits of using
MPS, by realizing a tool to transform existing ADS code into
MPS, and by validating the transformation. In summary, we
contribute:

• Challenges and requirements for migrating ADS.
• A migration approach to MPS, including: (i) an im-

plementation of a subset of the ADS languages, (ii) a
transformation of ADS source files into MPS’ represen-
tation, and (iii) a validation of the approach.
• A set of lessons learned.

By reporting our experiences and compiling a list of lessons
learned, we aim at supporting similar migration approaches
and help researchers and practitioners develop better mi-
gration techniques. As we will show, MPS can be used to
re-create ADS in an efficient way, and the result is a suitable
base for future maintenance as well as further modernization
steps, such as replacing COBOL as the target language.

2. BACKGROUND
We now briefly introduce the software generator ADS and
our target language workbench JetBrains MPS.

2.1 ADS
Fig. 1 shows a small example of ADS. To the left, we see a
source file. Lines 1 and 4, as well as the variable reference
#01 in Line 6, are part of the preprocessor language, which
is executed at generation time. Lines 2–3 contain embedded
target language code (COBOL), which is directly generated
into the output file. Lines 5–9 show a sub-generator for
program logic. From the input of this sub-generator, source
code is generated into the output file.

The code in the middle and on the right-hand side of Fig. 1
illustrates the two phases of the generator—preprocessing
and applying the sub-generators. Thus, to replace this legacy
generator infrastructure, it is necessary to create a tool that
supports ADS’ two phases of generation.

Before the migration of the generator, we already built
tools to analyze existing ADS code, which helped us under-
standing the use of ADS. Based on these previous analyses,
we can decide which sub-generators of the legacy generator

2http://delta-software.com

are still in use and therefore need to be supported by the new
generator. Specifically, we identify code where new languages
features, such as logical operators, could be used (cf. Sec. 5).

2.2 Language Workbenches
Language workbenches provide two main functionalities, both
needed for our migration. First, they support the design of
(mostly textual) DSLs, including the definition of concrete
and abstract syntax, together with the static and dynamic
(execution) semantics [15]. Second, they support the use
of DSLs for software development [5], including navigating,
editing, debugging, and executing DSLs.

From the perspective of the generator tool vendor, the
projectional language workbench makes it easy to create and
integrate new sub-generators (new DSLs). For the users
who use the generator tool to generate different variants
of COBOL or PL/I source code, the language workbench
provides full IDE support to develop programs.

The advantage of using a language workbench is that we
can rely on existing and proven tools. Additional function-
ality can be realized using extension mechanisms, such as
MPS’ function hooks and plug-ins. Any improvement to
the language workbench can be used immediately for the
generator, and any documentation and teaching material can
be reused.

2.3 JetBrains MPS
MPS is a language workbench that relies on a projectional
editor—both for designing and for using DSLs. Such an
editor allows users to directly work on the abstract syntax
tree of a domain-specific model or program. No parsing is in-
volved. While users still see the concrete syntax, their editing
activities directly change the tree by adding, moving, or re-
moving nodes among other. This allows unlimited language
composition (no grammar disambiguation is needed) and
the use of different syntaxes, such as textual and graphical
ones, in the same file. For one abstract syntax of a language,
multiple so-called projection rules can be defined for showing
the language’s concrete syntax in the editor.

The usability of projectional editors, providing a different
editing experience, has long been questioned, but recent
improvements in MPS show that users can efficiently write
code in it [3, 19].

To define languages, MPS provides a multitude of options.
These are grouped as aspects, whereas some are optional (e.g.,
refactorings) and some are mandatory (e.g., the definition of
statement types). For us, the following four aspects are es-
sential: The Structure aspect describes a language’s possible
elements (called concepts) and their relation. This aspect is
commonly known as the metamodel or abstract syntax, as it
describes the tree structure of a valid program, but not the
syntax of the elements. The Editor describes the concrete
syntax(es)—views rendered by the editor—of the language.
That is, this aspect is used to define projection rules for
the language concepts. Finally, the semantics of a language
is defined in the Generator aspect using model-to-model
transformations and the textGen aspect using model-to-text
transformations. MPS supports nine more aspects for defin-
ing languages, but these were not necessary for our migration.

3. CHALLENGES AND REQUIREMENTS
We identify the following four challenges based on our own
experiences and those of our three partner companies. We
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.IF-01.EQ.X
    MOVE 1 TO XYZ-1
    MOVE 1 TO XYZ-2
.IFEND
.SPP
   DO LOOP-TRT VARY I1 FROM 1 TO #01.
       MOVE 1 TO XYZ-I1
   END LOOP-TRT
.END

01
02
03
04
05
06
07
08
09

Preprocessor language

Embedded target language

Sub-Generator language

    MOVE 1 TO XYZ-1
    MOVE 1 TO XYZ-2

.SPP
   DO LOOP-TRT VARY I1 FROM 1 TO X.
       MOVE 1 TO XYZ-I1
   END LOOP-TRT
.END

    MOVE 1 TO XYZ-1
    MOVE 1 TO XYZ-2

    MOVE X TO DX-3.                 
    MOVE 1 TO I1.                       
    GO TO DX-5-1T.                      
DX-5-1.                                 
    ADD 1 TO I1.                        
DX-5-1T.                                
    IF I1 GREATER DX-3 GO TO DX-7.
      MOVE 1 TO XYZ-I1                  
    GO TO DX-5-1.                       
DX-7.                                 

Original File Preprocessed File Result

Figure 1: A small ADS example: original file (left), file after preprocessing (middle), and file after running
the sub-generators (right)

formulate requirements based on the challenges and will get
back to them in the discussion of our solution in Sec. 5.

3.1 Incremental Modernization
Legacy systems are a known problem for development and
maintenance, but are also a reliable foundation for business’s
functionality and many surrounding systems [10]. Legacy
systems typically consist of multiple technologies and tools.
Besides the generator tool, there are middleware systems,
compilers, user interfaces, and interfaces to other systems.
Each of these components could benefit from a modernization,
but replacing all parts at once was not a viable option for
our partners:
R1. Conduct an incremental modernization.

In fact, a focused modernization project is more consistent
with typical requirements for software projects (time, budget,
acceptance) even if this limits the potentials benefits. For
instance, users keep their existing COBOL code base, but
make changes to the environment: they may run this code on
.NET rather than mainframe or may exchange the database.

3.2 Legacy Assets
Our partner companies are very sensitive to changes in core
applications. Such changes can be risky and costly and need
to be balanced with the potential benefits. Users of ADS
spent years developing and testing their applications. To
keep this investment, we need to provide an automated way
to tranform existing code-bases:
R2. Reuse legacy assets. Re-writing existing code in the
new technology is too risky and expensive.

For any such transformation of legacy assets we need to:
R3. Ensure the correctness of the transformation.

Although a modernization based on the generated source
code seems possible, it is much more desirable to keep the
variability and the design encoded in the generators:
R4. Maintain existing variability. Users need to be able to
generate the same variants that could be generated before.

Finally, we need to address shortcomings of the existing
tools or languages. The legacy editor only supports syntax
highlighting for the preprocessor and some keywords of the
sub-generator languages:
R5. Provide modern editor support for the sub-generators.

The ADS language has some technical limitations—for
instance, missing logical operators or strict naming schemes,
which sometimes prevent meaningful variable names:
R6. Allow new language features to remove existing language
limitations.

3.3 Acceptance
Besides technical challenges, organizational factors influence
the success of a modernization project. One such factor is
the availability of developers for the legacy technology. Since
the companies want to keep such developers with experience
in the legacy system, we need to create a solution that
will be accepted both by developers with a background in
legacy technologies and developers experienced with modern
technology. Documentation should help to understand the
structure of the new system:
R7. Automatically generate documentation about the source
files and their key properties (e.g., their interfaces).

3.4 Flexibility
The generator tool supports many sub-generators, but cus-
tomers typically use only a subset:
R8. Modularize the ADS language to provide tailored sub-
sets of its sub-generators to customers.

Finally, it is difficult to foresee the next steps in the overall
modernization process—for instance, whether COBOL will
be replaced with Java or C#. The modernized generator
should be a useful intermediate step and still be flexible
enough to enable more modernization steps later:
R9. Choose a language implementation that can be used to
generate arbitrary target languages.

4. APPROACH
Our migration approach comprises the following steps as
summarized in Fig. 2.

First, we re-engineer the legacy generator tool, includ-
ing the preprocessor DSL and the various sub-generator
DSLs, in MPS. We design the languages (step Language
Design) including their abstract and concrete syntax, and
then implement the actual functionality of the generator:
pre-processing, executing the sub-generators, and generating
HTML documentation files (step Transformations).

Second, we migrate existing code to the target platform
MPS. We implement an import tool relying on parsing exist-

Language Design
Metamodel + Editor

Transformations

Importer ValidationPreprocessing

Sub-generators

Documentation

Figure 2: Steps of the approach to setup the new
generator and migrate existing programs



Figure 3: Screenshot of the resulting editor

ing code (step Importer) and creating instances of the new
DSLs using MPS’ API. Recall that projectional editing does
not rely on parsing: user’s editing action directly change
a rich AST, which is not serialized/deserialized using the
concrete syntax anymore, but in an XML format, so dedi-
cated importers need to be written. We then validate the
tranformation of existing code (step Validation).

4.1 Realization of the Generator
Fig. 3 shows a screenshot of the new generator tool. To the
left, it shows the different projects to define the languages,
the import plugin and a project with the imported files. To
the right, we see the projectional editor showing the use of
the preprocessor language. In the following, we present our
implementation in detail.

4.1.1 Language Design
We define ADS’ preprocessor language and legacy sub-generators
as individual languages (DSLs) in MPS. The preprocessor
language is our main focus, since it is one of the most impor-
tant parts of ADS and used for handling variability, among
other uses. It is also more complex than the C preproces-
sor (22 types of statements instead of 10, explained shortly)
and rather similar to a procedural programming language.
The sub-generator languages cover domain-specific function-
ality. We implemented features from SPP, a sub-generator
to perform structured programming, providing higher-level
control structures missing in COBOL (e.g., loops and switch
statements) that are transformed into lower-level COBOL
statements. The other sub-generator we implemented is PSD,
with which a developer can generate a data-driven program
skeleton based on a data specification.

We do not implement the target language (COBOL) as a
DSL. It is instead represented as lines of text (using a simple
concept holding the text value)—so COBOL is plain text and
no improved editor support is available. In Sec. 5 we discuss
efforts and benefits of realizing COBOL in MPS, which is
subject to future work.

We use multiple sources to learn about the languages.
First, the user manual describes names and syntax of all
language features. Second, we run an existing parser for the
preprocessor language on small code examples and inspect
its parse tree. After getting an initial set of statements,
we iteratively check with a larger sample that we use for

the actual migration (see Sec. 4.2.2). We obtain 22 different
statement types for the preprocessor language, which also
includes typical library functions (e.g., substring). In con-
trast, CPP with about ten statement types is much simpler.
These parse tree elements constitute language concepts to be
defined in MPS. Finally, for the sub-generator SPP we obtain
seven statements, and only one for the sub-generator PSD—
implementing this subset of the sub-generators sufficed for
transforming our existing ADS code (see Sec. 4.2).
Abstract Syntax. We create the metamodels (MPS’ Struc-
ture aspect) manually, but mostly as a mechanical trans-
formation based on the insights from the parser and the
user manual, keeping concept names and the language struc-
ture. For instance, the preprocessor language has a root,
which contains a set of statements, and statements may be
assignments, loops, and so on.

For the generation process, where we needed to save the
preprocessed model in an intermediate model, we extended
the preprocessor metamodel with five more concepts (e.g.,
the location concept, explained in Sec. 4.1.2).
Concrete Syntax. We design the concrete syntax (MPS’
Editor aspect) similar to the legacy syntax to gain a level of
familiarity for existing developers. Using the existing syntax
as a start makes it easy to visually assess the migration,
because we can easily view legacy and new source next to
each other. Later, the syntax can be changed without any
influence on other aspects of the language (e.g., metamodel).

Fig. 4 shows an excerpt of a generator file using the original
source code (left) and as seen in MPS after the migration
(right). The abstract syntax is clearly the same, so it is easy
to see how statements are mapped to the new system. If
we compare the snippets in more detail, we see some subtle
changes in the syntax, however. Some changes (e.g., the >>)
will be explained in Sec. 6, others are just a matter of taste.

MPS supports the creation of multiple views for the same
model. This way, we could define different concrete syntaxes
for developers. For example, the legacy syntax of the com-
parison operator uses EQ, while some developers might prefer
==. Developers could select the view they prefer.

4.1.2 Transformations
The generation process defines the semantics of the languages.
Using MPS’ aspects Generator and TextGen we define model-
to-model and model-to-text transformations. The model-to-
model transformations execute the preprocessor and create
an intermediate model. The model-to-text transformations
generate the output from the sub-generators and create the
final output file.
Preprocessor. We implement the preprocessor as a custom
in-place model-to-model transformation of the ADS model.

Figure 4: Example of legacy (left) and migrated
(right) syntax
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Figure 5: Overview of the migration and execution of the new generator

For instance, all preprocessor variable references are resolved
to their actual values, and conditionals are resolved (e.g.,
the AST sub-tree “if x then COBOL-A else COBOL-B” is
replaced with a “COBOL-A” node if x is true). This trans-
formation belongs to MPS’ Generator aspect and is called
when a generation process is started.

The implementation (slightly more than 1,000 lines of Java
code) relies on the standard Java library as much as possible—
for instance, ADS’ substring function is simply implemented
by calling Java’s String.substring().

The preprocessing does not change the structure of the
model, only replaces nodes in the AST. This modified model
is then passed to a further model-to-model transformation.
Intermediate Model. We create an intermediate model
with a different order of the model elements. Often, the
target language prescribes a certain layout of the source
code, which is often not consistent with the design in the
generator. For instance, a COBOL file contains a dedicated
header area in which variable declarations need to be put. To
declare and use variables at the same place, the preprocessor
language provides the concept of locations. A location can
be declared—denoting where code belonging to it should be
generated—and referenced throughout the ADS file. The
latter wraps code, which is then moved (generated) into the
declared target location.
Sub-Generators. For the sub-generator languages, we im-
plement model-to-text transformation to generate COBOL
source code from their abstract input (the intermediate
model). In the example from Fig. 1 a DO loop from the
SPP sub-generator is transformed into COBOL code using
only IF and GOTO. Finally, the model-to-text transformation
will create the final output file from the intermediate model
and the results from the sub-generators.
Documentation. Generating documentation similar to
Javadoc—listing all available migrated ADS modules and
their API in an HTML file—was simple, since the required
information can easily be extracted from the MPS model.
So we added another model-to-model transformation for the
same modules. MPS already provides a DSL for XML, which
we use as the target metamodel for this transformation in
order to obtain an XHTML file.

4.2 Migration of Existing ADS Code
In this subsection, we present an importer we wrote for
migrating existing ADS code, and show the actual migration
including a validation of it. Fig. 5 shows an overview of
the final result, starting with the migration, then the new
generator and the validation.

4.2.1 Import
Importing legacy assets into the language workbench is not
a prominent feature of MPS. MPS usually persists models
in its own XML format, which should not be changed by
external tools. Similar migration projects needed to create
custom importers [18].

There are two ways to design an import of legacy source
code to MPS. First, custom persistence allows overriding the
default persistence logic for our own format, such as ADS’
legacy syntax. Second, we could programmatically create
the models within MPS using its API.

We follow the second approach, since we only need to
import the existing code once. Furthermore, any future
language changes do not require adapting the persistence
logic. For our importer we use an existing parser from our
industry partner, which creates an XML-based parse tree.
We traverse this parse tree and create a corresponding MPS
node for each visited entity.

Recall that the generator uses a two-stage generation pro-
cess. The preprocessor language in the first stage can be
used to manipulate the input of the sub-generators in the
second stage. This creates the problem of parsing unprepro-
cessed code [9]. Technically, the preprocessor language could
be used to arbitrarily construct inputs for the second stage.
Especially undisciplined annotations [12], where the prepro-
cessor language is used to optionally include fine-grained
source code that cross-cutts statements of the sub-generator
inputs, are a problem for parsing. In practice, however, ADS’
preprocessor statements are mostly used to parameterize
identifiers or to optionally include complete statements. This
disciplined usage allows us to rely on a simple parser for the
unpreprocessed code.

4.2.2 Validation
We apply the migration to two kinds of systems: (i) library
files that are implemented and delivered from the company
providing the generator and (ii) systems that are imple-
mented by users/customers.

We validate our approach to ensure the correctness of the
new tool. To test the preprocessor language, we use the
library files because they heavily use the preprocessor. We
import all the existing files, generate them using the de-
fault configuration, and compare the results with the version
generated by the original tool for the same input.
Library Files. ADS internally uses a set of macro files
written almost exclusively using the preprocessor language.
These are part of the implementation of a sub-generator, but
can also be used by developers as a library for commonly



Table 1: Use of statement types in library and user
files

Type of Statements Library User

Preprocessor 11,971 (56 %) 834 (16 %)
FGEN sub-generator 169 (1 %) 1,837 (34 %)
SPP sub-generator 489 (2 %) 1,455 (27 %)
PSD sub-generator 0 (0 %) 86 (2 %)
FILE sub-generator 17 (0 %) 70 (1 %)
Target language 8,846 (41 %) 1,071 (20 %)

Number of Files 222 68
Lines of Code 24,413 5,866

needed functionality. In total, there are 228 library files3

with more than 24,000 lines of code (excluding comments).
These library files are a good benchmark, as they use almost
every feature of the preprocessor language.
User Files. User files include all the inputs for the gen-
erators created by the developers using ADS. We obtained
files from one of our partner companies developing a large
car-registration system used by the Dutch authorities. The
complete system consists of thousands of programs, each of
which are generated with ADS and use multiple files dur-
ing generation. Of all these programs, our partner selected
a representative, but relatively small set of programs and
corresponding macro files we could use.
Summary of Migrated Files. Table 1 summarizes the lan-
guage use in our two validation samples. It shows the number
of statements written using the preprocessor language and
the number of lines written in each of the sub-generator
languages. The files only use the sub-generators FGEN, SPP,
PSD and FILE. The row Target language shows the number
of lines that are written into the output file: these lines may
be parameterized with variables from the preprocessor lan-
guage. The total file count is not representative, the actual
number of files in the user system is much larger but our
study contains only a sample of them.

The library files consist almost only of the preprocessor lan-
guage (56 %) and embedded target language (41 %). There
are only few instances where sub-generators are used. On the
other side, user files make heavy use of the sub-generators,
only (20 %) of the code is embedded target language code,
and everything else is code written in a sub-generator lan-
guage or the preprocessor language. Even though the sub-
generator PSD is only used in a few lines, it is still important
because it is used in almost every generator run once. Cur-
rently, we only import the parts of the sub-generators PSD
and SPP we implemented in MPS.

5. DISCUSSION
We now briefly discuss our solution with respect to the key
requirements collected from the different stakeholders.
R1 (Incremental Modernization). Our solution is de-
signed as a drop-in replacement for the legacy generator
tool, so it requires no changes in any connected system. A
necessary one-time migration is fully automatic and requires
no effort.

3We could not analyze six of the library files due to parsing
errors.

R2 (Legacy Assets). With our implementation of an
importer we are able to transform existing source code to
the new tool and keep its functionality. We implemented all
features of the preprocessor language and parts of two often
used sub-generator languages: SPP and PSD.
R4 (Variability). As a consequence from R2, we keep the
variability implemented with the preprocessor language. The
modular design of the language workbench makes it possible
to introduce a more explicit handling of variability, such as
using a variability DSL as demonstrated in mbeddr[18]. Such
a variability language enables the creation of editor views
for specific configurations.
R3 (Validation). We use default configurations to execute
the new generator on existing ADS code in order to ensure
that it produces the same output as the legacy generator.

To increase the test coverage, we currently experiment
with symbolic execution [4] on the preprocessor language to
identify test inputs that trigger more program paths.

For the symbolic analysis, we declare the parameters of a
generator as symbolic. The analysis searches feasible paths
through the generator and provides corresponding concrete
parameter values which will trigger this path. These val-
ues are the test input we run on both the legacy and the
modernized tool and compare their results. Unfortunately,
symbolic execution tools only exist for common program-
ming languages like C. To build a custom analysis for the
preprocessor language, we have to address specific challenges,
such as dynamic typing and the strong reliance on string
operations.

Currently, we have an incomplete implementation that,
however, can already provide valid test inputs for many
generators. We can measure the test coverage achieved by
the generated test inputs and use this as a benchmark for
the analysis.
R5 (Editor). With the use of different DSLs to implement
the sub-generators, it is easy to create individual syntax
highlighting and other editor features for each DSL.

The projectional editor in MPS requires a different in-
teraction with the IDE than developers are used to, which
may challenge acceptance of such a solution. Existing stud-
ies show that developers can use a projectional editor at
least as efficient as a normal editor after an initial training
phase [3, 19]. As a consequence, the migration will need to
be complemented by sufficient training for developers.
R6 (Language Extensions). MPS enables even non-
experts to make changes to the languages. Any change
in the semantics of the preprocessor language will require
a corresponding change in the preprocessor, which is not
very complicated. For example, during the case study an
undergraduate student developed parts of the preprocessor
transformation.

Any addition to the language—for example adding logical
operators—will only be useful if they are actually used. De-
velopers could use new features for newly developed code or
when refactoring old code. Additionally, we can automati-
cally refactor the old codebase during import to make use of
the new features. For example, we implemented an analysis
to identify places where nested if statements can be merged
into a single condition combined with &&.

Making changes to the new generator—for instance, to
increase readability—is also easy. For example, the sub-
generator SPP generates loop functionality using goto state-
ments, which used to increase compatibility with older com-



Figure 6: Added symbols (>> and ;) to support edit-
ing in the projectional editor

pilers. With a few changes in the TextGen aspect we modern-
ized the generated output to emit the same functionality with
a native COBOL loop statement, which nowadays supported
by every compiler in use.
R7 (Documentation). We created a simple generator for
HTML documentation. The resulting documentation is not
really useful yet, because it only contains a few pieces of
information from the nodes, but it demonstrates that it is
easy to generate documentation.
R8 (Modularization). Our solution is modular, because
the features (preprocessing and sub-generators) of the legacy
generator are mapped to individual languages. Each language
can be developed independently.

The key advantage of a projectional editor is the ability to
compose DSLs—we compose the preprocessor language and
the languages for the sub-generators. An obvious extension is
to implement the target language, which is currently COBOL
as a DSL in MPS as well. This will enable much more
support in the editor, including syntax highlighting and auto-
completion, for the embedded target language fragments.
R9 (Target Language). In the long term, a change of
the embedded target language could be fully based on MPS,
which provides dedicated tools for language migrations. To
this end, both the current and the future target language
need to be DSLs in MPS, which in our case would require
designing the language in MPS and building an importer.
Unlike the ADS languages we migrated, COBOL is a more
complex general-purpose language whose migration will be
more expensive.

6. LESSONS LEARNED
We synthesize our lessons learned to support practitioners
who plan a similar migration of a language infrastructure.
Trade-off between Preserving Syntax and Using a
Projectional Editor. The projectional editor in MPS al-
lows for much flexibility in the language syntax. As a start,
we targeted to recreate the syntax from the legacy language.
This approach makes it easy to visually compare the original
code with the new code to manually validate the import step.
Furthermore, it helps developers of legacy systems to cope
with the change of the generator.

However, the resulting syntax is not necessarily optimal
for use with the projectional editor. For example, we had
to cope with a case of ambiguity in the user interaction:
we defined code of the embedded target language to be a
list of simple text pieces (COBOL code) or a reference to
a variable. However, this way it could not be distinguished
whether the user intents to add a new item or to create a line
break, when she presses Enter with the cursor at the end of
such a list. Fig. 6 shows how we mitigated this ambiguity by
introducing a semicolon as the end-of-line character, which
did not exist in the legacy language. Now, with a cursor

positioned before the semicolon a user will add new items
to the list. A cursor position after the semicolon allows the
creation of the elements after the list.

A known problem with model-based editing is that users
can no longer use custom formatting of their source code
[5]. In our case, the preprocessor language contains decision
tables as a special control structure, which were often format-
ted using white spaces. This formatting will be lost during
import: instead we need to explicitly model the indented
layout, such as using tables in the editor.
Create MPS-independent Libraries. To ease and de-
couple the re-implementation of library code that is not
directly part of the generator language, it turned out useful
to develop some components independently from MPS and
just integrate them as a JAR library.
Use MPS to Create Debuggers. MPS provides an API
to create custom debuggers for a DSL. The idea is to build
a debugger with a front-end showing the DSL and a back-
end connected to a standard debugger. This approach is
used by MPS itself, which uses the Java debugger in the
backend, and by the mbeddr project, which connects to gdb
for debugging [14]. We evaluated the debugger API for our
preprocessor with a small prototype but have yet to build a
working debugger for the generator DSLs.

The execution of MPS itself, including our importer and
the transformations, can be debugged with a breakpoint
debugger in MPS. To debug the model-to-model generation,
MPS provides two instruments. First, the generation plan
shows the order in which model transformations are executed.
Second, transient models can be used to show intermediate
steps in the model transformation.
Limitations. The original implementation of the prepro-
cessor language is purely text-based, similar to CPP, which
therefore supports both disciplined and undisciplined annota-
tions [12]. Our solution only supports disciplined annotations.
That is, the preprocessor is integrated with the AST—among
others, the two different branches of a preprocessor IF state-
ment need to be of the same AST type. CPP does not have
this limitation, and IF statements can cross-cut any text
token of the target language. However, in our sample of AST
code we used to validate the migration, undisciplined anno-
tations were rare, and in fact our solution, which prevents
undisciplined annotations, led to a better DSL design.

7. RELATED WORK
Related work comprises existing case studies on migrating
language infrastructures and approaches to improve the han-
dling of variability annotations.

Voelter et al. present a case study of a forward-engineering
project using mbeddr [16]. Our case study has a re-engineering
background, we therefore focus on the migration to a lan-
guage workbench. Recently, Méndez-Acuña et al. introduced
Puzzle to enable reuse between similar legacy DSLs, which
in turn should reduce the effort necessary to implement DSLs
[13]. While their approach assumes specifications of existing
DSLs, we started by decomposing an existing system into
DSLs.

Many works on migrating COBOL systems to a modern
platform exist, including tools and experience reports. Some
also consider the presence of COBOL generators. Fleurey
et al. present a model-driven software migration approach
and a case study on migrating a banking application using



COOL:Gen (another COBOL generator) to Java [7]. Similar
to our approach, they define a target model and correspond-
ing transformations to build a scalable migration. Unlike
our approach, they remove the generator and directly mod-
ernize the application, which would not fit our requirements
on improving the variability handling and the incremental
modernization.

Another idea is to base the migration on the generated
COBOL code [2], evading the need to re-implement the
generator language. This approach has the disadvantage that
such a migration will be only valid for a single configuration—
the code will no longer contain any variability. Furthermore,
generated code is harder to understand, since the generator’s
abstractions are lost, as well as the original design of the
developers and additional information, such as comments.

Finally, there are multiple approaches to move legacy sys-
tems to a software product line approach [11]. Our case
study differs from these, since we do not just focus on the
migration of a single legacy system, but on the migration of
the language infrastructure to handle variability.

8. CONCLUSION
We presented a case study of migrating the legacy genera-
tor tool ADS and a substantial codebase of ADS code to a
modern language workbench. Our focus was on ADS’ pre-
processor sub-language, mainly used to realize variants for
individual customers. The case study showed the feasibil-
ity of conducting such a migration. The main benefits are
an increased maintainability and extensibility of the gen-
erator languages in order to support future changes in the
(sub-)languages, but also modern editor support. MPS’ pro-
jectional editor even allows having different concrete syntaxes
(which could also include graphical elements, such as tables),
which does not require changing the abstract syntax or the
existing code, which is always saved as a model in abstract
syntax. One of the major strengths of a projectional editor
is the support for integrating sub-languages with overlapping
keywords, which parsers could not easily disambiguate. This
strength was not necessary (since the decomposed languages
were already integrated before), but could also allow future
integrations of languages with ambiguous concrete syntax.
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