
To Connect or Not to Connect:
Experiences from Modeling Topological Variability

Thorsten Berger
University of Waterloo

IT University of Copenhagen
tberger@gsd.uwaterloo.ca

S, tefan Stănciulescu
IT University of Copenhagen

scas@itu.dk

Ommund Øgård
Autronica Trondheim

ommund.ogaard@
autronicafire.no

Øystein Haugen
SINTEF Oslo

oystein.haugen@sintef.no

Bo Larsen
IT University of Copenhagen

brla@itu.dk

Andrzej Wąsowski
IT University of Copenhagen

wasowski@itu.dk

ABSTRACT
Variability management aims at taming variability in large
and complex software product lines. To efficiently manage
variability, it has to be modeled using formal representations,
such as feature or decision models. Such models are efficient
in many domains, where variability is about switching on
and off features, or using parameters to customize products
of the product line. However, variability can be represented
in the form of a topology in domains where variability is
about connecting components in a certain order, in specific
interconnected hierarchies, or in different quantities.

In this experience report, we explore topological variability
within a case study of large-scale fire alarm systems. We
identify core characteristics of the variability, derive mod-
eling requirements, model the variability using UML2 class
diagrams, and discuss the applicability of further variability
modeling languages. We show that, although challenging,
class diagrams can suffice to represent topological variabil-
ity in order to generate a configurator tool. In contrast,
modeling parallel and recursive structures, cycles, informal
constraints, and orthogonal hierarchies were among the main
experienced challenges that require further research.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques; D.2.13 [Software Engineering]: Reusable Software

General Terms
Design, Languages

Keywords
software product lines, variability modeling, topology, con-
figuration, class diagrams, experience report

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SPLC ’14, September 15 - 19 2014, Florence, Italy
Copyright 2014 ACM 978-1-4503-2740-4/14/09 ...$15.00.
http://dx.doi.org/10.1145/2648511.2648549.

1. INTRODUCTION
Many companies adopt software product line engineering
(SPLE) practices to manage a portfolio of products. Large
product lines can have complex variability that needs to be
managed. A common technique is to model variability in
formal representations—variability models. Popular nota-
tions are feature [19, 6, 7] and decision [22, 28] models, which
describe the variable and common aspects of products in
terms of features or decisions, together with the constraints
among them. Variability models are commonly used as input
to a configurator tool, which helps users to derive a product
by making configuration decisions in an interactive process.

While feature and decision models are effective in a large
range of product lines, where variability is concerned with
switching features on and off, or with setting parameter val-
ues, many domains require richer representations. Consider
a fire alarm system, such as the one shown in Fig. 1. It is
deployed in a building with three rooms, each representing a
so-called fire detection zone. The system is further divided
into two alarm zones—the first covering Room 1 and Room
2, and the second covering Room 3. Physical devices (alarms
and different type of detectors) are connected to a controller
or to a fire alarm control panel. When a detection zone is
activated by an event, it further notifies the alarm zone that
contains that detection zone. Alarm zones can be defined

Figure 1: Example of a fire alarm system



as neighbors, which enables an alarm zone to send alarm
notifications to its neighbors.

In our example, we can differentiate between a physical
layer and a logical layer. The physical layer is driven by
the layout of cables in the building, representing the system
structure: different components (detectors, alarms, panels)
are wired together in a loop. The logical structure is driven
by the building geometry and its use patterns: it is defined
as a hierarchy of interconnected detection zones and alarm
zones that together specify how alarm detection information
is propagated to the users of the building.

Systems with similar topological configuration properties
are found in many domains; for example in heating, ventila-
tion, and air conditioning (HVAC) systems, construction of
data centers, production lines, and even oil rigs [4]. Complex
configurators are built for these systems, such as Novenco
Airbox1, which is a generic configurator for Novenco’s HVAC
products, or APC’s DataCenter Configuration Suite2, which
is used to configure the StruxureWare Data Center’s parts.

In general, variability can be modeled with one of many
common variability modeling languages, or with a custom
domain-specific language (DSL). However, pure feature and
decision models, and their corresponding tools (e.g., config-
urators), are typically not applicable to model topological
variability, as they lack concepts to express orders and have
multiple instantiations (cloned features or feature cardinal-
ities [8, 9]) of features or decisions. Topological variability
cannot be modeled with a fixed number of features, but
rather requires entities that can be instantiated and built
up inductively during the configuration process. Systems
like a fire alarm installation are configured by connecting
components in a certain way—variability is represented by a
graph instead of a tree.

While there have been comparisons of variability modeling
languages and tools, including many variants of feature and
decision models, and approaches to develop individual DSLs
for variability, only few works have investigated topological
variability [12, 11, 3, 24, 16, 4]. The understanding of char-
acteristics and challenges of topological variability is low.
There is also very little guidance on modeling, while SPLE
practices, such as scoping and core asset development, have
been extensively studied and reported by industry.

We believe that commonality in the structure of configura-
tions in the systems considered is significant across vertical
domains. This commonality warrants development of horizon-
tal domain-independent methods and tools that are reusable
for the entire class of systems. Industries that develop these
systems should be able to describe complexity of their in-
stallations without hiring language design experts to create
domain-specific solutions. Our objective in this paper is to
advance this cause by providing a detailed description of an
industrial topological variability case, which can be used by
researchers to develop such domain-independent solutions.

Our subject is Autronica Fire & Security AS3, a medium-
sized company producing fire alarm systems for almost 50
years. We explore the domain, their existing product lines,
characterize topological variability, and model variability
using UML2 class diagrams and two off-the-shelf variability
modeling languages. Based on the modeling experience, we

1http://airbox.novencogroup.com
2http://www.apc.com/products/family/index.cfm?id=
444&tab=models#specs
3http://www.autronicafire.com

synthesize a list of experiences about important modeling de-
cisions and a collection of obstacles in modeling such systems
using existing technologies. We contribute:

• A description of the fire alarm domain model, including
the core concepts and structures in the model, and a
set of metrics characterizing the model as a whole.

• Discussion of the major decisions taken, the major diffi-
culties experienced, and the main patterns used during
modeling the problem with UML2 class diagrams, the
Common Variability Language (CVL), and Clafer.

The paper is focused on the Autronica case, and not on the
languages used. We do not attempt an empirical comparison
of the languages. The languages have been used as a vehicle
to explore the case, and not the other way around. We hope
that language designers, configurator designers, and system
architecture researchers can use the case in order to provide
more robust solutions for this class of problems.

We proceed by summarizing related work in Section 2. Sec-
tion 3 describes the case company and its system. Section 4
shows the domain model created in collaboration between
Autronica, SINTEF, and IT University. Section 5 synthe-
sizes our main observed challenges. Section 6 reports our
experiences from using CVL and Clafer. Section 7 concludes.

2. STATE OF THE ART
Haugen et al. [16] use UML2 class diagrams to model config-
urations of an access control system. Such a system controls
user access to a set of access zones, which are controlled
by various types of physical access points, which encompass
different functionality, communicate with each other, and are
organized into logical security levels (e.g., for different floors).
Class diagrams are used to model configurations, since con-
figuration is a continuation of the design, so it should use the
same concepts. A specific system (a configuration) is mod-
eled based on an architecture diagram using generalization
(which allows further specialization, as opposed to instanti-
ation), redefinition (allows specializing the type of a class
attribute), subsetting (allows to specialize associations), OCL
constraints, and roles (act like subsetting, but appear more
readable). We consider this work an important conceptual
contribution to the understanding of topological variability,
unfortunately so far, no generic tooling has emerged from it.

Svendsen et al. [24] develop a product line of train stations
using CVL. Stations are modeled using TCL (Train Control
Language), a domain-specific language that is also used to
generate interlocking source code for programmable logic
circuits [23]. The language controls signals, switches, track
circuits, and can allocate different routes for trains. To
reduce the manual effort of modeling each station separately
in TCL, the authors reverse-engineer a product line for a set
of similar stations, which are then controlled using a single
CVL model. As such, they show how to effectively manage a
selected set of structures, but not how to arrive at a holistic
model of a topological configuration space.

Fantechi [12] formulates a general definition of topologically
configurable systems, based on the case study of a railway
interlocking system. The topology is defined by the layout
of tracks, points, and signals in a station or a railway yard.
Different interlocking systems, which control the routing of
trains, are deployed for different stations according to the
defined topology. It appears though that his models are
concerned with verification of given station topologies of

http://airbox.novencogroup.com
http://www.apc.com/products/family/index.cfm?id=444&tab=models#specs
http://www.apc.com/products/family/index.cfm?id=444&tab=models#specs
http://www.autronicafire.com


finite size (and connections in them), not with modeling an
infinite family of possible topologies, and not with supporting
engineers in deriving correct instances.

Newer works [4, 3, 11] are perhaps closest to ours consider-
ing the objectives. Dhungana et al. [11] discuss topological
variability in an industrial logistics system for steel plants.
A stockyard contains different types of operational devices,
such as cranes, transportation vehicles, and physical spaces
for loading and unloading goods, and other areas for different
purposes. A hierarchy of stockyards can be created. From
a modeling perspective, multiple instantiation and creating
(containment) hierarchies is required. Hence, the authors ex-
tend their modeling and configuration tool DOPLER [10] to
support modeling components with their variability, which is
classified into configurable attribute, configurable cardinality,
configurable type, and configurable topology. Interestingly,
cyclic dependencies are not allowed in the topology (a restric-
tion on instances similar to the one seen in [25]). In contrast,
cycles are necessary in our case to realize redundancy as an
important safety criteria for fire alarm systems.

Behjati et al. [4, 3] investigate variability in families of
integrated control systems (ICS) in the subsea oil produc-
tion domain. ICS are large-scale systems containing many
mechanical, hardware, and software parts. Variability in
the considered domain is characterized by instantiation of
different types of devices (sensors and valves) organized in
a logical (containment) hierarchy, and connected in a topol-
ogy. Furthermore, tens of thousands of parameters exist,
and hardware variability affects software variability, with
constraints that cross-cut both spaces. The codebase of an
ICS in the domain is typically configured manually in an
error-prone process. Further identified challenges in the con-
figuration process are, for instance, configuration guidance as
well as the reuse, debugging, and evolution of configurations.
To address these challenges, the authors model the domain
using a UML profile and propose semi-automatic configura-
tion algorithms, which is a welcomed development in this
space. However, their algorithms are limited in the sense
that sometimes, these arrive at an inconsistent state and the
process needs to backtrack, restarting the configuration at
an earlier choice. Also, multiple inheritance is not supported
in their method, while it has played a crucial role in our case.

Völter et al. [26] discuss variability in similar domains—
water fountains and alarm systems. They argue for DSLs
instead of feature models, as the latter are not sufficient to
express variability in these domains, which require references
and multiple instantiation of features. Furthermore, the mod-
els are supposed to express algorithmic logic to some extent,
so the ability to write expressions is necessary. Interestingly,
the alarm system case study is similar to our domain; un-
fortunately, no further details and modeling challenges are
given; it is not clear whether a topology has to be expressed.

In summary, while solutions for modeling and configuring
topological variability are available, there is no in-depth
analysis of the variability in the domain of embedded, safety-
critical systems. We can see that the ability to model types
(to realize multiple instances), hierarchies, and constraints is
often reported, but so far the research community has not
arrived at robust domain-independent modeling languages
and rich off-the shelf interactive configurators for structures.

On a final note, related configuration problems were con-
sidered in the area of knowledge-based configuration (KBC).
For instance, Felfernig et al. [13] developed an approach to

Figure 2: AutroConf configurator

configure UML component diagrams. It supports connecting
components in a certain order and types with inheritance;
however, cycles and multiple inheritance are not allowed, and
the applicability for class diagrams is not evaluated. With
recent work [17] that attempts to explore synergies between
SPLE and KBC, we see our work as a contribution of a
substantial case and requirements to the field of KBC.

3. CASE STUDY
Autronica Fire & Security AS is an international manufac-
turer of safety and emergency management systems, including
fire and gas detection, fire suppression, and emergency light
systems. Autronica makes and deploys fire alarm systems
in a wide range of markets—from small public buildings
such as kindergartens, apartment buildings, and others to
large-scale industrial installations in the onshore, maritime,
petrochemical, oil and gas industry, in buildings and in ships.
Manufactured components comprise fire detectors, I/O units,
fire panels, and supervisory monitors.

3.1 Subject
Autronica has three main product lines. AutroSafe targets
large-scale fire-alarm installations with up to 15,000 units.
AutroSafe further comprises advanced features, such as self
verification and a dual-path transmission network (AutroNet)
for increased reliability. AutroPrime aims at smaller installa-
tions in buildings; it has a capacity of 250 units. AutroMaster
is a top-level graphical representation system running on one
or more PCs. In this paper, we primarily report our experi-
ences from modeling AutroSafe’s variability.

3.2 Use Cases and Perspective
Autronica strives for checking rules, regulations, and system
constraints at an early stage of the engineering process, well
before the delivery starts for each new installation. In the
case of fire alarm systems, the configurator not only war-
rants obtaining the right functionality, but is responsible
for enforcing rules required by functional safety certification.
Therefore, designing a new AutroSafe installation always
involves creating its model. Field equipment is configured by
setting various parameters in production and during startup
of a panel. In the following, we discuss opportunities and
challenges of standardized domain modeling in Autronica.

Modeling configurations using a custom modeling tool. Today,
Autronica is handling the configuration data systematically
and through proprietary configuration tools. The installation
configuration model is built by consultants using a custom
configurator tool, which was developed around 15 years ago
(see screenshot in Fig. 2). The tool relies on a meta-model



expressed in the Entity-Relationship (E/R) notation. The
model has evolved over its lifetime, mainly through additions
of new physical devices and relationships. The configurator
is used to create one central configuration of the complete
installation, which is used to generate C-like data structures
for each (display and operation) panel.

Unfortunately, the AutroSafe configuration tool is difficult
to maintain, partly because it has been tailor-made and does
not rely on any modeling or configuration frameworks. Thus,
evolving the tool is a burden. It has served well for years,
but the infrastructure provides little overview, and requires
complex input. UML modeling tools are much easier to use;
they are standardized and maintained. The output from these
tools can drive more applications than just configuration, and
it is accepted by many other tools thanks to standardization.

Capturing topological properties in domain models. In the
legacy E/R model, domain properties were described in a very
tight way with a high degree of coupling. Hopefully, using
a more developed domain modeling language will enable a
clear separation between the logical and physical topologies,
yet still allow describing the constraints relating the two.

Maintaining configurators and meta-models for similar prod-
uct families. Presently, configurators for several products
exist, but they are independently built and rely on different
technologies. Some of the input files use XML, others have
a C-like syntax. Even though, the overall configuration pro-
cedures are similar for the products families, Autronica does
not handle them in a uniform manner.

Since different products have different, yet similar domain
models, Autronica needs an effective way to manage a fam-
ily of related meta-models, and a unified way of deriving
topological configurators from them. This requires both a
mechanism to derive different meta-model variants from the
same base, and/or a suitable structuring approach for the
domain model so that commonality and variability between
concepts in different product families are organized in a man-
ageable manner. Autronica hopes that standardized domain
modeling can decrease cost and increase maintainability of
their domain models by managing both in the same process.

AutroSafe and AutroPrime are maintained and further
developed in parallel, without a consolidated codebase. Yet,
they share a significant amount of concepts common to both;
once this commonality is consolidated to unify the configura-
tion, it should eventually lead to merging the codebases.

Exploiting domain models for other applications than con-
figuration. A uniform way of domain modeling for different
products will help reusing the same automated test infras-
tructure across families. Autronica currently develops a
simulator, AutroSim, for field equipment that will also have
scripting facilities. This opens up possibilities for more auto-
matic testing, which will reduce test time and also enables
more extensive regression testing. However, the strong de-
pendency between test procedures and configuration makes
it very tedious to write and maintain automatic test scripts.
A change in the configuration will also easily lead to a change
in both the activation and assessment part of a test script.
Autronica’s goal is to create a system that decouples test
procedures from the actual test rig and configuration.

4. DOMAIN ANALYSIS & MODELING
We performed a domain analysis using action research and
focus groups. We collaborated with domain experts and

PowerLoopDriverAL_ComInterface

ExternalComs

IO_Module

OperationPanel AutroFieldBus

OperationZoneDomain Group

AutroSafePanel

AFB_PowerControl

Installation

AFB_Unit

AlarmZone DetectionZone

  [1]

  [*]

  [1]

  [*]

  [1]

  [*]

  [1]

  [1]

  [1]

  [1..*]

  [1]

  [1]

  [1]

  [1..32]

  [1]

  [*]

  [1]

  [1..*]

  [1]

  [0..7]   [1]

  [1..32]

physical
structure

logical structure

Figure 3: Core parts of physical and logical structures in
AutroSafe’s meta-model

developers, and also investigated the existing configurator to
understand the domain and the variability in the product
lines of Autronica. The modeling was done collaboratively
in a mixture of local and online meetings.

The primary notation we used was UML2 class diagrams [21]
modeled in Eclipse Papyrus. To investigate the feasibility
of using variability modeling languages, we also model core
parts of the domain in the two languages Clafer and CVL
(we report more on these efforts in Section 6). The modeling
started in October 2012 and can be divided into four phases:

1. Capture the big picture and the topology of loop units.
Followed by a review leading to smaller revisions.

2. Supplement the model with more detailed information,
such as attributes and classes to represent concrete
devices not used in phase 1. The model was also sepa-
rated into three packages AutroSafe, AutroPrime, and
AutroCommon; the latter by extracting the common
concepts of both systems.

3. Verify the model against requirements of processing
frameworks, to make it executable for generating an
EMF/GEF-based configurator tool.

4. Creation of a new XML format for AutroSafe derived
from the domain model (this led to minor changes and
adaptations).

4.1 Domain Overview for AutroSafe
A typical AutroSafe installation contains 5–15 panels (the
number of panels is limited to 64, most of these are infor-
mation panels). Detectors and other units are connected
in communication loops, of up to 127 (typically about 50).
The largest installations in practice reach 10,000 detectors,
distributed over one or more detection zones. In extreme
cases there are thousands of detection zones, for example one
per room or a cabin on a ship. A loop does not have to be
contained in one zone (individual devices can be configured
to belong to different zones).

The topology is also split into larger alarm zones—areas



where alarms are communicated. There are usually much
fewer alarm zones than detection zones, but may exist up to
hundreds in the worst case. The partitioning of the system
into alarm zones is not necessarily compatible with the (finer)
partitioning in the detection zones.

To illustrate the domain, we show the core part of the de-
veloped domain model in Fig. 3. Its main class is Installation,
which represents an AutroSafe deployment. It is composed
of multiple Domains, which are meant to separate the fire
alarm system into parts that should be independent. That
is the case when the parts reside in different buildings, or
in installations without any central control or monitoring
across buildings.

The remainder of the variability in an AutroSafe system
can be classified into a logical and a physical structure. The
former aims at organizing devices logically into the zones (e.g.,
operation zone, detection zone, alarm zone), for instance, to
control the activation of alarms or combine fire detectors
into groups. The latter comprises the physical layout of
devices, such as (control and display) panels, fire detectors
and alarms, on the loops.

4.2 Logical Structure
Domains are logically divided into OperationZones. An Opera-
tionZone can contain one or more OperationZones itself, which
makes it possible to divide a zone into sub-zones, allowing
an arbitrarily deep hierarchy of zones.

An OperationZone contains a number of Groups, which are
various kinds of collections. The most common groups are
DetectionZone and AlarmZone, which can be seen in Fig. 4.
Detection zones and alarm zones allow to further divide
an operation zone into smaller sections, independent of the
actual layout of the installation. For instance, in a building,
each room (or groups of rooms) can be a detection zone, and
the building could be split up in different alarm zones if only
parts of the building should be notified in case of an incident.

Physical detection units are connected to a detection zone.
When a detection zone is activated by an event (smoke,
flame, fire or gas), it notifies the alarm zones it is connected
to (cf., Fig. 4), which will trigger the sound alarm. Two
alarm zones that are neighbors can be explicitly configured
as neighbors. When an alarm zone starts the alarm, it will
notify its neighbors to also trigger the alarm, but with a
slightly different sound (to help identify the alarm source).

4.3 Physical Structure
An OperationZone is controlled by one or more Panels. A
panel can be either a DisplayPanel or an OperationPanel.
While the former just displays information about an opera-
tion zone, the latter can both display information and control
the fire alarm system. An OperationPanel has modules con-
nected to it, which it controls. An OperationPanel has two
categories of modules, external and internal. External mod-
ules are used to communicate with components that are not
made by Autronica. In the model in Fig. 3, they are rep-
resented by ExternalComs and IOModule. Internal modules
are used to communicate with components that are made
by Autronica, and they are connected using a loop, so it
requires a LoopDriver module. The reason for using loops is
in case a wire breaks somewhere, the loop driver will still
receive information from all the nodes in the loop.

In general redundancy, like in using a looped wire instead
of a simple one, is a typical design practice in these kinds

Figure 4: Relationship between detection and alarm zones

of systems—it is enforced by functional safety certification
requirements. Redundant components and connections sig-
nificantly decrease the probability of failure for the entire
system (even if individual components are allowed to fail).
For the same reason, a LoopDriver has two references to
Node, one called primaryNodes and one called secondaryNodes.
Thus, for each loop, two loop drivers exist: one primary
which only contains primary nodes, and one secondary which
only contains secondary nodes. The secondary driver takes
over, if the primary one fails.

A Node can then either be a LoopUnit or a Branch. Loop-
Units are the physical devices connected to the fire alarm
system, such as smoke detectors, alarm sirens, sprinklers, etc.
A Node can also be a Branch, which contains loop units itself,
but only up to a certain limit since those loop units are not
part of the loop so they are more vulnerable if a wire fails.

4.4 Configuration and Deployment Process
AutroSafe is deployed as follows. After the system consisting
of detectors, panels, and other components is installed at
the customer’s location, a static configuration has to be
created. This configuration is done by Autronica consultants
using the AutroConf configurator (c.f., Fig. 2). One central
configuration comprising all operation zones is created. The
logical layer is set up by creating zones and establishing
relations between them, enabling and configuring physical
devices present in the installation The tool then automatically
creates a configuration for every panel. After uploading the
configurations into the target panels, the system is delivered.

AutroPrime has been developed more recently and shares
some of the components and code base with AutroSafe.
AutroPrime caters for smaller installations and brings some
additional features, such as auto-configuration of the topology.
Once the loop units are attached to the system, AutroPrime
can provide full functionality at the first initialization. The
system auto-configures itself at start-up, creating a configu-
ration based on information from each of the loop units. Its
main limitation is that it does not support intricate speci-
fications of logical structures, such as operation zones that
can be created in AutroSafe.

4.5 Quantitative Domain Data
We report the main quantitative characteristics of our model,
in order to give an overall impression of it, and to explain
size requirements for tool builders.

In order to obtain reuse in modeling the two product
lines we divided the model into three packages: AutroSafe,
AutroPrime and AutroCommon.



AutroSafe. The AutroSafe model consists of 88 classes and
over 60 associations between them, including 26 containment
relations. The remaining associations are simple references
(uni- and bi-directional). The depth of the containment
hierarchy reaches up to six levels of classes, including some
cycles, so the actual object hierarchies can be deeper.

The model has a very developed generalization hierarchy
with 87 relations of this kind (see Section 5.2 for a discussion
of this fact). The depth of the generalization hierarchy
reaches 3–4 classes, with 11 classes having more than one
super-class (multiple inheritance).

In the physical structure, most associations have cardinal-
ity constraint of 1 (singleton), but some associations enforce
a higher number of possible instantiations (up to 32 or even
100). At the logical layer, most associations do not restrict
the number of related objects.

AutroPrime. The AutroPrime model comprises only 69
classes with 54 associations, including 21 containment rela-
tions. The containment hierarchy is more shallow, up to 4
classes. AutroSafe generalization is more sparse (64 relations)
and its remaining properties are similar to AutroSafe.

AutroCommon. The core part of both systems lies in the
AutroCommon package. It consists of 62 classes, and encom-
passes a total of 9 containment relations and 33 references,
plus 60 generalization relations.

The two systems reuse most of the components from the
AutroCommon package. The numbers reported for AutroSafe
and AutroPrime above have both included the counts of
model elements of AutroCommon. As we can see, the amount
of reuse is quite substantial. AutroPrime adds very few
classes of itself. Furthermore, there is close coupling between
the common package and AutroSafe and AutroPrime. Al-
most half of the AustroSafe system classes have a relation to
classes from AutroCommon (either generalization or composi-
tion). The same is the case with AutroPrime, exhibiting high
coupling between classes of AutroPrime and AutroCommon.

It should be remarked that all above numbers are reported
for the model of the core abstract structure of the systems,
without classes modeling concrete devices in sale. Adding
them would roughly double the size of the models.

4.6 Variability
We can summarize that variability in AutroSafe comprises
the following aspects. We distinguish between variability that
can be captured by typical feature- and decision modeling
languages, and topological variability which requires further
modeling concepts.

Feature- and decision-like variability:

• System-wide defaults (e.g., detector and sound defaults,
various display options).

• System-wide meta information (e.g., ID number, site
name, configuration date).

• Parameters (e.g., texts and identifiers) of concrete phys-
ical devices, such as panels. Performance parameters
for detectors and detection zones, and timeouts con-
trolling propagation of alarms.

• Sound and pulse patterns for alarm devices, which are
saved as 16bit vectors.

Topological variability:

• The connection of LoopUnits (alarms and detectors)
to the fire panel.

• The order of loop units on the loop. The panel uses this

order to verify that the real and configured topology
match;

• The hierarchical organization of operation zones.
• The relationships between alarm zones, detection zones,

and operation zones; also the neighbor relationship
between alarm zones.

• How sounders and outputs shall be activated in case of
an alarm.

• The topology of panels connected via the AutroNet.

5. MAJOR DECISIONS & CHALLENGES
We now discuss the major decision points and major chal-
lenges in building our models.

5.1 Relationships
Class diagrams offer three fundamental kinds of relations:
containment, generalization, and associations. We used them
mostly as prescribed by object-oriented analysis and design,
with generalization taking a bit special role of mitigating
between logical and physical structures in the model.

Containment. The containment relationships were created
to reflect actual physical connections (mostly physical con-
tainment). In our model, the contained part does not work
if the container is defunct (very close to the UML definition).
For example, if you power off the LoopDriver, then its nodes
(e.g., LoopUnits such as detectors) stop functioning as well.

However, most modeling tools require a proper contain-
ment hierarchy for all objects in the model (not only for
objects representing the physical part). Thus, we had to in-
troduce containment relations also in the logical parts, where
the choices where much less clear. For instance, AlarmZones
hierarchy has not been modeled as a containment hierarchy,
but using regular associations (cf. Fig. 4) and all AlarmZones
are simply owned by their operation zone (Fig. 3). Such
design decisions, caused by technicalities of the modeling
language, might be hard to explain to domain experts, who
are not language experts.

Associations. We used non-containment associations to
model logical dependencies, for example, defining which detec-
tion zones trigger alarms in what alarm zones (Fig. 4). Some
physical connections could not be mapped to containment,
so we used regular associations for them (see Section 5.3).

Generalization is used to classify different kinds of units in
the system, both with respect to their physical connectiv-
ity and with respect to their logical functions (see below).
Generalization diagrams (like Fig. 8) have been used a lot to
aggregate information about different kinds of units available.

5.2 Separating Logical & Physical Structures
We quickly realized that it is beneficial to separate logical
and physical structures in the model. The challenge was
though, that these two structures are defined over the same
objects. Since an object can only have one container, it was
clear that separation of logical and physical structures also
requires separation of the two containment hierarchies—only
one of them can actually contain the concrete classes. We
decided to place them in the physical structure hierarchy.

In Fig. 5, the classes representing different kinds of devices
are placed in the bottom, in a fragment of a generalization hi-
erarchy. Classes representing concepts of physical and logical
structures are placed at the very top. Observe now that the
class ExternalFAD comprises objects that are contained by



Figure 5: Inheritance hierarchy inflation due to separate
logical and physical containment hierarchies

OutputModule, whereas all subclasses of Node are contained
by a LoopDriver. Both OutputModule and LoopDriver are con-
cepts from the physical topology. At the same time, there is
no containment (no black diamond) from classes representing
logical concepts (AlarmZone and DetectionZone).

Furthermore, the same object can enter different kinds
of relations in the two structures. This requires a more
intricate generalization hierarchy if we want to use types to
restrict legal connections: one collection of types decides what
relations one can enter in the physical layer, and another
does this for the logical structure. These two collections
are related tightly using multiple inheritance in a single
generalization graph.

In our example, the class LogicalFAD comprises devices
that can be connected to alarm zones (sounders and alike),
and LogicalPoints comprise devices that can be connected to
detection zones (fire detectors and alike). These two classes
partition the set of nodes correspondingly into LoopFADs
and LoopPoints (Fig. 5). Even though, objects of the two
classes can be connected to the same place in the physical
topology (to a LoopDriver), they are different with respect
to their functions in the logical structure.

Using this modeling pattern multiplies the number of
classes quite significantly. If we need to distinguish n types in
one layer, and m types in another layer, we might need n×m
types in the worst case. Clearly, this would not scale well if
more than 2–3 structures need to be imposed in the same sys-
tem. The pattern is also quite complex, even though the use
case of several structures over the same sets of components
is quite common for topological systems.

5.3 Loop Topology
The central part of the physical structure is the loop topology
of the main communication network: a cyclic communica-
tion wire is connected to a controller (called a driver here).
Individual devices can be put on the wire, as well as a cer-
tain amount of limited length branches (which are not loops,
but spikes). Controllers are duplicated to increase fault tol-
erance and switched automatically by a watchdog device
(AutroKeper). This topology is representative of a fail-safe
communication sub-system in safety-critical installations [18].

Refer to Fig. 6 for our modeling. A LoopDriver owns a

Figure 6: Loop topology

Node, which can be a LoopUnit (a fire detector or an alarm
device), a Branch, or a so-called AutroKeeper. The latter, as
part of the fail-safe system, allows the loop to be controlled
(and powered) by two LoopDrivers—a primary (active) and
a secondary (inactive) one. This topology induces complex
constraints (discussed further in Section 5.4).

Observe that in our model, the loops are actually not
modeled as cycles, but as ordered collections (the primaryNode
and secondaryNode properties of the LoopDriver). The order
of the components in the loop is important, as the panel
checks that the topology of the physical installation and the
loaded configuration’s topology are the same.

Finally, the nodes are contained in the primary LoopDriver
and not in the secondary one (similarly for the AutroKeeper).
This is a certain asymmetry, caused by the limitation of
class diagrams that each object only has one owner. We
observe that parallel structures are quite typical in safety-
critical systems to support redundancy, yet there is no specific
support for them in the class diagram language, nor in the
variability modeling languages known to us.

5.4 Constraints
Most of the domain constraints are represented by cardinali-
ties in the model. The remainder of the constraints are either
simple cardinality constraints that cannot be expressed in
the structure (e.g., at most eight MimicPanels in AutroPrime,
see Fig. 7), simple physical constraints (e.g., maximum use of
power or cable length), or more complex constraints. Model-
ing them is necessary and desired by Autronica to provide
proper configurator support. So far, many constraints are
hard-coded in the legacy configurator tool.

Our experience with defining constraints was ambivalent.
Formulating them in a precise textual form was difficult.
Therefore, we did not use any formal notation to capture the
constraints. Consider these examples:

• The Nodes are either owned by one LoopDriver and not
referenced by any other LoopDriver, or owned by a pri-



mary LoopDriver and referenced by a secondary Loop-
Driver. The primary and secondary LoopDrivers are
owned by different OperationPanels. All nodes owned by
one primary LoopDriver are also referenced by the same
secondary LoopDriver. The Node ordering is different
for primary and secondary LoopDrivers.

• ExternalOutput/Input: Cardinality is 4 if module type
is BSB-310 or BSE-310, and 8 for BSJ-310 and BSE-
320.

• ExternalOutput of type FWRE or CommonTrouble shall
be at position 4 if moduleType is BSB-310.

The first constraint defines the fail-safe functionality of
the loop topology. The second and the third are imposed by
concrete physical devices. The latter case is very frequent.

In our experience, formulating constraints during an inten-
sive high-level modeling session is a very disruptive activity.
Writing them in a formal language is essentially impossible
in such a setting. Thus, any proper modeling tool should
facilitate capturing constraints in natural language, as an
exact and complete formulation for all constraints is un-
likely. It should be later possible to refine them into formal
statements outside the main modeling meetings. A formal
modeling language that mixes informal and formal specifica-
tions for structural and behavioral models is Buiness Object
Notation (BON) [27]; it would be interesting to try these
kind of languages in modeling experiments.

Further, investigating the expressiveness, conciseness, and
reasoning support of appropriate constraint languages (such
as OCL) for this domain would be an interesting future work.
We conjecture that, given that redundancy is a very common
requirement in safety-critical systems, at least quantifiers
should be supported.

5.5 Physical Device Library
Recall that the concrete physical devices (around 50) are
not modeled in the domain model. In our figures, we stop
at the level of their direct super-classes, as shown in Fig. 8.
Conceptually, classes representing concrete devices should be
part of an external library, which is maintained separately,
perhaps even outside the model, in a database. If such sepa-
ration was successful, it would allow adding new devices to
the portfolio without involving modeling experts. This vision
might be not realistic, though. While putting configuration
parameters for each device into the library is simple, many
devices have constraints that cross-cut the model. Autronica
has experienced the need to define new constraints in the
system, when just one new device was added for a specific
market. Moreover, adding new devices can change the logical
structure, for instance, the way how inputs and outputs are
related could introduce new groups, including different rules
for calculating outputs depending on the inputs. It is not

Figure 7: Simple cardinality constraint not expressible in
structure: at most eight MimicPanels in AutroPrime

Figure 8: Physical device super-classes

clear then how to handle such changes without further mod-
eling sessions, and whether lightweight portfolio extensions
are at all possible.

5.6 Specialized Configurators
Generating domain-specific configurators for AutroSafe and
AutroPrime is one prospective benefit of having an integrated
domain model. Having specific sub-configurators for parts
of the domain model is another challenge. Specifically, a
tool to configure the complex (and often large-scale) loop
topology would be beneficial. It could rely on a graphical
representation, instead of a tree-based visualization used for
the logical structures also in the legacy tool. Each of these
configurators would have to create a partial configuration,
which would need to be integrated into a complete configura-
tion. Research on this topic exists for feature- and decision
models [5, 9], but realizing such an approach for topologi-
cal variability, potentially in combination with a variability
model layer that is used to generate dedicated configurators,
has not been done so far.

6. OTHER MODELING LANGUAGES
To broaden our experience with modeling the case, we ex-
perimented with domain modeling in two further languages,
Clafer [2] and the Common Variability Language (CVL) [1].
We chose them for two reasons. First, they offer concepts
required for the topological variability, such as multiple in-
stantiations (feature cardinalities [8]), polymorphism, and
references. Second, we had the necessary expertise in the
team, as two of the authors were involved in the development
of these languages. Both languages support modeling of the
problem space, the solution space, and the mapping between
both. In Clafer, all three components are defined using the
same textual syntax, and usually in one model. CVL offers
a feature-models-like problem space language (called VSpec
tree) and a mapping language that allows to define variation
points over any MOF-based model [20], representing the so-
lution space (called base model). We used both languages
to model core parts of our domain. In the following, we
discuss the main experiences. We refrain from giving Clafer
examples, which would require explaining the textual syntax
and semantics. For CVL, as a visual language, we provide
figures for illustration.

The main difference in modeling topological variability
between Clafer and CVL lies in the choice of the deductive
or inductive paradigm of describing the instances. Clafer
follows the same principle as class diagrams: the entire family
of topologies is captured in one model, from which instances
can be deductively derived by constraining the properties
of the entire family. In such a language, the domain model



Figure 9: Operation zone hierarchy

represents the variants implicitly, in an aggregate form. CVL
belongs to a family of languages that capture the variants
explicitly (other examples are [15, 14]). In such languages,
the family is based around a central instance and a number
of variations that inductively derive variants from these in-
stances (so the instances are specified explicitly, while there
is no aggregate explicit representation of the solution space).
This distinction is interesting, as we find that engineers often
find it easy to point out differences between variants explic-
itly (inductively), however, it seems that modeling this way
is often more cumbersome for modeling experts.

6.1 Clafer
As Clafer is a mixture of class and feature models with a
unified semantics, modeling most classes and relationships
was straightforward with it. Clafer allows to naturally mix-
in feature-modeling style variability directly into the class
model, which we consider a significant advantage. Clafer can
also use syntactic nesting to represent containment, which
creates much more concise models than class diagrams.

Unfortunately, in our case, the contained classes participate
in inheritance hierarchies (see for example LoopUnit in Fig. 6).
Presently, Clafer does not allow inheritance from nested
classes. This forces flattening of the models and looses one
of the major advantages of the language.

Another challenge is that Clafer does not support multiple
inheritance, so using the pattern of Section 5.2 to overlay
two different structures over the same set of classes is not
possible. One needs to resort to more cumbersome patterns,
like replacing inheritance with aggregation and proxy objects:
instead of having a complex generalization hierarchy that
precisely describes the roles of types in the structures, one
can represent roles by objects that serve as references to the
right types using multiple associations (and then constrain
them to only refer to one object at a time). This would lead
to a much higher number of references in the model.

6.2 CVL
For CVL, we created a minimal variability abstraction model
(problem space) together with a mapping and a minimal
base model inspired by our domain model. As indicated
above, an important difference with modeling using CVL, as
opposed to class diagrams or Clafer, is that the base model
is not a representation of a domain, but a representation of
a reference instance, so it is an object model capturing an
initial installation. This can be seen in CVL examples: in

Figure 10: Operation zone hierarchy in CVL

:Domain :OZ

:OZ

Object Existence
Domain

Base Model VSpec
Domain = True

Resolution Model

Fragment 
Substitution

:OZ
Fragment

Substitution

OZ

OZ[0..*]

OZ[0..*]

OZ=True

oz1:OZ oz2:OZ

oz3:OZ Oz4:OZ oz5:OZ

:Domain

FragmentSubstitution

Domain

Base Model VSpec

OperationPanel
[1..*]

Resolution Model

:OperationPanel

ParametricObjectSubstitution

Domain
=True

op1:OperationPanel

OperationPanel

BS310 BS320 BS330

Physical components library
Device: OperationPanel Device = new BS310

Resolved Model

d1:Domain bs1:BS310

Figure 11: Separated library of physical devices in CVL

Fig. 10 (top-left) and in Fig. 11 (left), the base models are
object diagrams, not class diagrams.

Our first observation was that using a minimal installation
and growing it with variation points is very difficult for base
models that contain a lot of references (like our topologies).
It leads to models that are very abstract, programmatic in
nature, and lack the simplicity of just indicating differences
appreciated by domain experts. This was an interesting
experience, as little is known about good base models for
inductive variability modeling languages.

Second, modeling arbitrary depth hierarchies was hindered
by lack of recursive constructs in the feature modeling part of
CVL. Fig. 9 recalls the class diagram of OperationZone hierar-
chy. While modeling this hierarchy is simple in class models,
it is not possible in common feature modeling languages.
CVL suffers from the same limitation, since its iteration
constructs only allow creation of flat lists. We had to limit
the depth of systems to a constant size and explicitly unroll
the hierarchy to this depth. Fig. 10 shows an example of this
approach. The central part (VSpec) shows a feature model
with nesting of operation zones (OZ) up to three levels. Note
that there may be arbitrary many operation zones in this
model, but they can only be nested in the predefined depths.
A resolution representing a particular installation is shown
to the right (with five operation zones). In the left part of
the figure, fragment substitution variation points are used
to instantiate an operation zone object for each configured
operation zone in the feature (VSpec) hierarchy. The base
model would be able to accommodate arbitrary nesting, but
the VSpec hierarchy limits the practically available depth.

In contrast to this experience, CVL has easily supported
a separated concrete device library, although the challenge
with cross-cutting constraints (cf., Section 5.4) is not solved.
Fig. 11 shows the CVL model for replacing abstract objects
with concrete physical device objects. In the base model
(left), the OperationPanel will be replaced (variation points
FragmentSubstitution and ParametricObjectSubstitution) by
objects corresponding to the concrete physical devices (BS310,
BS320, and BS330).

7. CONCLUSION
We have presented an experience report on modeling topo-
logical variability in the safety-critical domain of fire alarm
systems. Our aim was to contribute requirements, struc-
tures, and challenges in a kind of variability that cannot be
modeled using off-the-shelf feature- and decision-modeling
languages. We hope that the quantitative data about the
model, and the detailed excerpts can provide requirements
for tool developers, language designers, and researchers.

Topological variability in our case required the use of



types, multiple inheritance, containment hierarchies, associa-
tions, ordered collections, and cardinality constraints. These
concepts were necessary to model two main structural charac-
teristics of the domain: (i) two orthogonal hierarchies (logical
and physical structure) over the same objects (detectors and
alarms), and (ii) parallel structures and cycles to represent
fail-safe functionality, as common in safety-critical systems.

Our choice of the three very different languages—UML2
class diagrams, Clafer, and CVL—shows that class diagrams
were surprisingly well suited to represent the domain and its
variability, while our experience with the variability modeling
languages Clafer and CVL was mixed.

In summary, we faced the following challenges that are
currently not sufficiently addressed by modeling tools and
languages. To be effective for topological variability, these
should:

• allow more than one containment hierarchy;
• offer natural constructs for expressing redundancy of

structures;
• allow working with formal and informal constraints—

for instance, to capture constraints informally and then
to refine them to a formal notation;

• support recursive structures and multiple inheritance
(our CVL and Clafer models suffered from their lack);

• support a database with elements that change most
often on the lowest abstraction level;

• enable domain-specific configurators that can use suit-
able visualizations for different parts of the model and
manage partial configurations.

8. ACKNOWLEDGEMENTS
Supported by ARTEMIS JU (grant n◦ 295397) and the

Danish Agency for Science, Technology and Innovation.

9. REFERENCES
[1] Common variability language (CVL). OMG revised

submission. 08 2012.

[2] K. Bak, K. Czarnecki, and A. Wasowski. Feature and
meta-models in clafer: Mixed, specialized, and coupled.
In SLE, 2011.

[3] R. Behjati, S. Nejati, and L. C. Briand. Architecture-
level configuration of large-scale embedded software
systems. ACM Trans. Softw. Eng. Methodol.,
23(3):25:1–25:43, June 2014.

[4] R. Behjati, T. Yue, L. Briand, and B. Selic. Simpl: A
product-line modeling methodology for families of
integrated control systems. Inf. Softw. Technol., 2013.

[5] D. Benavides, S. Segura, and A. Ruiz-Cortés.
Automated analysis of feature models 20 years later: A
literature review. Information Systems, 35(6), 2010.

[6] T. Berger, R. Rublack, D. Nair, J. M. Atlee, M. Becker,
K. Czarnecki, and A. Wasowski. A survey of variability
modeling in industrial practice. In VaMoS. 2013.

[7] T. Berger, S. She, R. Lotufo, A. Wasowski, and
K. Czarnecki. A study of variability models and
languages in the systems software domain. IEEE
Transactions on Software Engineering,
39(12):1611–1640, 2013.

[8] K. Czarnecki, S. Helsen, and U. Eisenecker.
Formalizing cardinality-based feature models and their
specialization. Software Process Improvement and
Practice, 10(1), 2005.

[9] K. Czarnecki and C. Kim. Cardinality-based feature
modeling and constraints: A progress report. In
International Workshop on Software Factories, 2005.

[10] D. Dhungana, P. Grünbacher, and R. Rabiser. The
dopler meta-tool for decision-oriented variability
modeling: A multiple case study. ASE, 18(1), 2011.

[11] D. Dhungana, H. Schreiner, M. Lehofer, M. Vierhauser,
R. Rabiser, and P. Grünbacher. Modeling multiplicity
and hierarchy in product line architectures: Extending
a decision-oriented approach. In WICSA, 2014.

[12] A. Fantechi. Topologically configurable systems as
product families. In SPLC, 2013.

[13] A. Felfernig, G. E. Friedrich, and D. Jannach. Uml as
domain specific language for the construction of
knowledge-based configuration systems. International
Journal of Software Engineering and Knowledge
Engineering, 10(04):449–469, 2000.

[14] A. Haber, K. Hölldobler, C. Kolassa, M. Look,
B. Rumpe, K. Müller, and I. Schaefer. Engineering
delta modeling languages. In SPLC, 2013.

[15] A. Haber, C. Kolassa, P. Manhart, P. M. S. Nazari,
B. Rumpe, and I. Schaefer. First-class variability
modeling in matlab/simulink. In VaMoS, 2013.

[16] O. Haugen and B. Møller-Pedersen. Configurations by
UML. In EWSA, 2006.

[17] A. Hubaux, D. Jannach, C. Drescher, L. Murta,
T. Männistö, K. Czarnecki, P. Heymans, T. Nguyen,
and M. Zanker. Unifying software and product
configuration: A research roadmap. 2012.

[18] International Electrotechnical Commission. Functional
safety of electrical/electronic/programmable electronic
safety related systems. IEC 61508, 2000.

[19] K. Kang, S. Cohen, J. Hess, W. Nowak, and
S. Peterson. Feature-Oriented Domain Analysis
(FODA) Feasibility Study. Technical report, 1990.

[20] Object Management Group. Meta-object facility.
http://www.omg.org/spec/MOF/2.0/.

[21] J. Rumbaugh, I. Jacobson, and G. Booch. Unified
Modeling Language Reference Manual, The (2nd
Edition). Pearson Higher Education, 2004.

[22] K. Schmid, R. Rabiser, and P. Grünbacher. A
comparison of decision modeling approaches in product
lines. In VaMoS, 2011.

[23] A. Svendsen, G. K. Olsen, J. Endresen, T. Moen,
E. Carlson, K.-J. Alme, and O. Haugen. The future of
train signaling. In MoDELS, 2008.

[24] A. Svendsen, X. Zhang, R. Lind-Tviberg, F. Fleurey,
Ø. Haugen, B. Møller-Pedersen, and G. K. Olsen.
Developing a software product line for train control: A
case study of CVL. In SPLC, 2010.

[25] E. R. van der Meer, A. Wasowski, and H. R. Andersen.
Efficient interactive configuration of unbounded
modular systems. In SAC, 2006.

[26] M. Völter and E. Visser. Product line engineering using
domain-specific languages. In SPLC, 2011.

[27] K. Walden and J.-M. Nerson. Seamless Object-Oriented
Software Architecture - Analysis and Design of Reliable
Systems. Prentice-Hall, 1994.

[28] D. M. Weiss. Software synthesis: The FAST process. In
CHEP, 1995.

http://www.omg.org/spec/MOF/2.0/

