
Variability Mechanisms in Software Ecosystems

Thorsten Bergera, Rolf-Helge Pfeifferb, Reinhard Tartlerc, Steffen Dienstd,
Krzysztof Czarneckia, Andrzej Wąsowskib, Steven Shea

aUniversity of Waterloo, Canada
bITU Copenhagen, Denmark

cUniversity of Erlangen-Nuremberg, Germany
dUniversity of Leipzig, Germany

Abstract

Context: Software ecosystems are increasingly popular for their economic, strategic, and technical advantages. Applica-
tion platforms such as Android or iOS allow users to highly customize a system by selecting desired functionality from a
large variety of assets. This customization is achieved using variability mechanisms.
Objective: Variability mechanisms are well-researched in the context of software product lines. Although software
ecosystems are often seen as conceptual successors, the technology that sustains their success and growth is much less
understood. Our objective is to improve the empirical understanding of variability mechanisms used in successful software
ecosystems.
Method: We analyze five ecosystems, ranging from the Linux kernel through Eclipse to Android. A qualitative analysis
identifies and characterizes variability mechanisms together with their organizational context. This analysis leads to
a conceptual framework that unifies ecosystem-specific aspects using a common terminology. A quantitative analysis
investigates scales, growth rates, and—most importantly—dependency structures of the ecosystems.
Results: In all the studied ecosystems, we identify rich dependency languages and variability descriptions that declare
many direct and indirect dependencies. Indirect dependencies to abstract capabilities, as opposed to concrete variability
units, are used predominantly in fast-growing ecosystems. We also find that variability models—while providing system-
wide abstractions over code—work best in centralized variability management and are, thus, absent in ecosystems with
large free markets. These latter ecosystems tend to emphasize maintaining capabilities and common vocabularies, dynamic
discovery, and binding with strong encapsulation of contributions, together with uniform distribution channels.
Conclusion: The use of specialized mechanisms in software ecosystems with large free markets, as opposed to software
product lines, calls for recognition of a new discipline—variability encouragement.

Keywords: software ecosystems, empirical software engineering, software product lines, variability management, mining
software repositories

1. Introduction

Large software ecosystems implement variability—the
diversity of systems they offer—using radically different
implementation techniques, also known as variability mech-
anisms. Consider the Linux kernel and the Android ap-
plication platform for mobile devices. The former is a
highly configurable system that implements variability in
the source code, by conditionally compiling the desired func-
tionality. The latter is a service-oriented architecture that
encourages variability by letting users easily install new
extensions (apps). Yet, both successfully facilitate, man-
age, and technically support a high degree of customization
freedom for the intended recipients of the systems.

The Linux kernel and Android are examples of two ma-
jor classes of large, highly successful software ecosystems.
Linux manages variability centrally, carefully controlling
the admission of new features into its official release. An-

droid manages variability decentrally, embracing and en-
couraging variability within a free market of apps. Both
systems rely on different mechanisms to achieve their goals.

The Linux kernel uses mechanisms known from soft-
ware product line engineering (SPLE) [1, 2]. SPLE allows
companies to efficiently create portfolios of systems in an
application domain by leveraging the commonalities and
carefully managing the variabilities among the systems [3].
For instance, the Linux kernel supplements conditional
compilation with a variability model, which abstractly rep-
resents thousands of variabilities, such as drivers and pro-
cessor architectures. Such models are popular means to
manage variability. Despite using mechanisms of SPLE, the
Linux kernel is more than a product line—it is a software
ecosystem [4]. Around 7,800 developers from 800 companies
have helped to more than double the code base from 6.6M
to 15M lines of code (LOC) within seven years [5].

Android also manages huge variability, but in a more

Preprint submitted to Information and Software Technology August 16, 2016

compositional and open way. Users derive a concrete sys-
tem by selecting apps from online repositories using an
installer tool—in effect, composing their system from third-
party components (apps). In contrast to Linux, Android
has no centralized and integrated variability model, but
describes variability information decentralized within each
app. Android is also an ecosystem, but unlike Linux’s
respectable, yet controlled growth, Android has virtually
exploded with tremendous growth rates, offering over one
million apps today.

Research has addressed software ecosystems, but fo-
cused on economic, strategic, and organizational aspects [6,
7, 8], less on technology [9]. What mechanisms are effec-
tive in practice, and in what context? What are their
core characteristics? While variability mechanisms in soft-
ware product lines are reasonably well researched [10, 11],
their role in supporting a software ecosystem is much less
understood [9]. In fact, developing models that describe
ecosystems [12] and defining theories that explain concepts
and causalities [13], are key research challenges in this field.

We address this gap with an exploratory study of the
solutions to variability in software ecosystems. We analyze
five software platforms and their surrounding ecosystems:
the eCos operating system (OS), the Linux kernel project,
the Debian Linux distribution, the Eclipse Integrated De-
velopment Environment (IDE), and the Android OS. Some
of these are among the largest and fastest-growing ecosys-
tems in existence today. All successfully facilitate massive
variability, while approaching variability from different or-
ganizational and business perspectives and using different
variability mechanisms.

Our research objectives are (O1) to identify and analyze
variability mechanisms in ecosystem platforms, and (O2) to
discover relationships and potential causalities among the
mechanisms. We strive to understand how software ecosys-
tems technically facilitate variability. Our study involves a
qualitative analysis of the variability mechanisms used in
the platforms and of the organization of their development
and variability management. A quantitative analysis inves-
tigates scales, growth rates, and—most importantly—the
structure of the dependencies among the variabilities in
the ecosystems. We describe observed phenomena and
core differences discovered through our analyses, develop
hypotheses, and raise questions for future research.

We contribute: (C1) a conceptual framework defining
key characteristics of variability mechanisms and their
organizational context within and across the ecosystems;
(C2) an instantiation of the framework with empirical data
for each ecosystem; (C3) a set of core differences across the
subjects, and hypotheses as proposed explanations; and
(C4) static analysis tools and extracted datasets about all
ecosystems for reproducibility and future research. These
and more details are available in our online Appendix [14].

Our work represents the exploratory phase in the long-
term process of theory building. We discover phenom-
ena and develop hypotheses based on empirical evidence,
widening our understanding of variability mechanisms from

product lines to ecosystems. We hypothesize that if we
understand the causalities of using a mechanism, we will
be (i) able to predict how it sustains success and growth of
an ecosystem, and eventually (ii) guide development and
management. Our findings also generate requirements for
tools, and our datasets can serve as realistic benchmarks.

We proceed with background information Section 2. We
detail our study design in Section 3. We introduce our con-
ceptual framework in Section 4, followed by instantiations
of the framework with qualitative and quantitative empiri-
cal data in Sections 5–7. Thereafter, we synthesize results
of our cross-case analysis and develop hypotheses in Sec-
tion 8. Finally, we discuss threats to validity in Section 9,
related work in Section 10, and conclude in Section 11.

2. Background

Software ecosystems is an emergent field of research
that has been addressed from various perspectives. So
far, researchers have not agreed on a common definition
from the perspective of technology. Yet, ecosystems are
often considered as technical constructs [15, 16], arguably
with fluid boundaries to related paradigms, such as dis-
tributed systems or componentware [17]. We take the view
of ecosystems being extensions of product lines of sub-
stantial size [4, 12, 18, 19]. We consider the following two
characteristics of an ecosystem, as defined by Hanssen [20],
as central to our study: (i) a network of organizations, and
(ii) a common interest in central software technology.

We focus on ecosystems that rely on a common techno-
logical platform, in contrast to those that are purely social,
strategic, or economic constructs of loosely related software
assets or projects. A platform provides the basis for mass-
customization. It allows consumers to derive an individual
instance, such as a phone (Android) or an IDE (Eclipse),
using an automated, tool-supported process. An instance
is derived from a universe of compositional assets—the
ecosystem.

2.1. Architectural Openness
Ecosystem platforms have different degrees of open-

ness [9]. We define openness as the extent of technical
support for consumers to freely use assets from an ecosys-
tem in their instances—that is, their product instances
or installations. Openness ranges between two extremes:
closed (no support) to open (full support). In both cases,
users can use assets from the ecosystem; however, in closed
platforms, these must be integrated into the platform first.
In other words, openness “is the degree to which a plat-
form supplier allows [and supports] the platform users
to interact with the platform, view, extend or change its
components” [9].

Openness is a core distinguishing characteristic of our
subjects. As we will see, eCos and the Linux kernel can be
classified as predominantly closed. Their focus is on manag-
ing variability by carefully controlling contributions to the

2

Legend:

Feature

Optional
Feature

Mandatory
Feature

Alternative
Features

Cross-
Tree-
Constraints

a →b ∧
c ≥ d

Figure 1: Feature model example (adapted from [2])

platform and by avoiding complexity through unnecessary
variability. Still, eCos and the Linux kernel have a free mar-
ket of third-party solutions, but their use requires highly
technical skills from users. In contrast, Debian, Eclipse,
and Android focus on encouraging variability. They are
open by design and offer convenient facilities for users to
easily extend their instances with free market assets.

Consequently, our study carefully considers the open-
ness of the studied subjects and investigates the technical
differences between the closed and open platforms.

2.2. Variability Mechanisms
A variability mechanism is an implementation technique

to delay design decisions about functionalities and qualities
of a software system [21, 10]. To flexibly adapt software to
user requirements at later stages—such as build-, startup-
or run-time—variation points are introduced into a software
platform, using an architecture that supports variability.
Variability mechanisms are used to implement variation
points, which are locations in assets where variability oc-
curs. Variation points are bound with concrete variants,
which are either known (closed platform) or unknown (open
platform) during platform development.

A range of static and dynamic variability mechanisms
exists. In static configuration, all variation points are
bound at build-time. The whole configuration of the sys-
tem has to be decided before and cannot be changed at
run-time. A common static mechanism is conditional com-
pilation [10, 22], which is often realized with a build system
that selectively compiles source files, and with a preproces-
sor (such as the C preprocessor) that cuts out irrelevant
parts of the source file before compilation. In dynamic
mechanisms, variation points are bound much later, and
can usually be changed at run-time. Commonly, config-
uration parameters are loaded at startup and influence
the run-time of the system. Thus, dynamic configuration
trades static optimization of systems (e.g., memory foot-
print) for flexibility. Further mechanisms comprise code
generators (static) and component-oriented architectures
(usually dynamic), which load components according to
a specific configuration. Even more dynamic are service-
oriented systems, where components offer services for in-
teraction. Loading and configuring such components and
their interactions is usually fully dynamic.

To handle large numbers of variation points, product
lines commonly use variability models, such as feature [23]
or decision models [24]. Variability models abstractly de-
scribe and organize the variabilities at a central place, and
are input to configurator tools, which help users resolving

1 Package: gawk
2 Version: 1:3.1.7.dfsg-5
3 Maintainer: Arthur Loiret <aloiret@debian.org>
4 Depends: libc6 (>= 2.3)
5 Provides: awk
6 Section: interpreters
7 Priority: optional
8 Description: a pattern scanning and processing language
9 Architecture: i386

Figure 2: Excerpt of the manifest of the Debian gawk package

variabilities [25]. Consequently, we classify the techniques
for variability models as variability mechanisms, too.

In addition to variability models, another approach is
used in our ecosystems to represent variability information:
manifests. To set the stage for our analysis, we briefly
introduce these two ways of describing variability.

Figure 1 shows a feature model—a popular variability
modeling language and notation. Our example describes
the variability of the Journalling Flash File System supported
in eCos and the Linux kernel. Feature models express the
commonality and variability of a product line as features
organized in a hierarchy. Constraints restrict their valid
combinations and values. In our example, the feature De-
bug Level is mandatory (solid circle), whereas the ability
to Compress Data is optional (hollow circle). Default Com-
pression is a feature group that allows selecting exactly one
child feature. Additional constraints are listed to the right.
In contrast to a variability model, which describes the whole
variability of a system centrally, manifest files can be used
when variability should be described in a distributed way.
A manifest file declaratively describes metadata and vari-
ability information (e.g., dependencies) of one asset, and
is packaged and maintained together with it. Similar to
variability models which are declared in a formal language,
manifest files adhere to a schema, which can be a grammar
for textual manifests, or an XML Schema for XML-based
manifests. Figure 2 shows the excerpt of a (textual) De-
bian manifest of the GNU/awk interpreter package. It
contains naming (l. 1), versioning (l. 2), dependency (l. 4–
5), and categorization (l. 6–7) information. These are the
typical contents of a manifest file; however, more complex
descriptions of components (as in Android manifests) also
occur.

Variability models and manifests are two core variability
mechanisms found in our five subjects. In our study, we
identify further mechanisms and their characteristics, and
explore the relationship to their organizational context.

2.3. Dependencies
Interactions between assets introduce dependencies that

are declared in variability models (eCos, Linux kernel) or
manifests (Debian, Eclipse), or are hidden in code (An-
droid). They are core characteristics of variability mecha-
nisms. They complicate development and maintenance, but
also challenge tools. We study dependencies to learn how
our subjects cope with this complexity. We analyze how de-
pendencies are expressed and what dependency structures

3

exist that tools and consumers have to manage. Specifi-
cally, analyzing Android helps to understand how one of the
largest and fastest-growing ecosystems tackles complexity.

3. Methodology

We perform case study research [26, 27, 28] with five
cases—our subject ecosystems. The goal is to discover
real-world phenomena and generate hypotheses from em-
pirical evidence, which is the exploratory phase of theory
building [26]. Generating hypotheses by analysis of case
studies is a highly qualitative and interpretive process.
These hypotheses need to be refuted or confirmed using
other methods, such as experiments and simulations, and
confronted with further data, which is future work.

3.1. Case Study Selection
Our selection of subjects strives for broad applicability

of the resulting conceptual framework. We chose five suc-
cessful ecosystems spanning diverse domains and approach-
ing variability in different ways. They range from systems
with central variability models and static configuration us-
ing conditional compilation, through component-oriented
architectures specifying variability in separate manifest files
associated with assets, to highly dynamic service-oriented
systems with dynamic configuration of assets at run-time.
Since our subjects and most of their assets are open source,
we can study significant subsets of their ecosystem.

Each of our subjects is an ecosystem on its own, al-
though overlaps and interactions among them exist. Each
subject spans a universe of assets that is conceived or
managed as an ecosystem, with individual organizational
structures and communities. For instance, the Debian
ecosystem consists of software packages managed by the
Debian community, even though it also contains packages
of Eclipse and the Linux kernel. Since the latter have their
own ecosystems with dedicated communities, we clearly
distinguish among them.

3.2. Qualitative Analysis
The major part of our analysis is qualitative. It focuses

on identifying mechanisms and organizational structures
in the studied ecosystems and relationships among them.

We followed recommended practices of case study re-
search [28]. We first performed within-case analyses, by
creating in-depth write-ups of each ecosystem. These write-
ups are part of our online Appendix [14] (cf., Section 3.4).
During analysis, we iteratively built a conceptual framework
of the variability mechanisms and organizational structures.
The framework is instrumental to compare our subjects
and to unify ecosystem-specific aspects using a common
terminology. The framework is summarized in Figure 3
and in the concept hierarchy shown in the left-most column
in Tables 1–4. We seeded the framework with characteris-
tics of mechanisms known from SPLE and then expanded
to those specific to ecosystems. Many are inspired from

literature, such as [2] (variability models, dependencies),
[29] (binding time/mode, openness), and [17] (interaction,
encapsulation); others were added as discovered.

Thereafter, we performed a cross-case analysis to iden-
tify the major differences across our subjects. Finally,
we developed testable hypotheses to explain the observed
phenomena and differences.

Our sources are referenced as we use them in the text.
In the qualitative analysis, we relied on official documents,
such as the Debian Policy [30] and the Eclipse Develop-
ment Process description [31]. We also examined tools and
languages used in the ecosystems.

3.3. Quantitative Analysis
Quantitative analyses allow us to ask questions about

occurrence and frequency of identified mechanisms. It
is instrumental to identify potential correlations between
qualitative concepts and quantitative measures, such as
growth rate of an ecosystem or dependency structures.

For the quantitative analysis, we used statically ex-
tracted data. Since analyzing whole ecosystems is infeasible
given their open and uncontrolled nature, we mined sub-
stantial subsets from the most vibrant parts—the respective
major distribution sources of the ecosystems. For eCos, we
analyzed all i386-specific and hardware-independent pack-
ages from the repository (v. 3.0). For Linux, we studied the
x86 architecture from the 2.6.32 codebase. Debian’s subset
are all binary i386 packages from the main component of
the 6.0 distribution. For Eclipse, we analyzed the Helios
3.6 modeling distribution together with bundles from the
associated repository. For Android, we gathered nearly all
available free apps from Google Play over a period of 14
months in 2011 and 2012. The exact sizes of our analyzed
ecosystem subsets are listed in Table 5 (first row).

We developed analysis tools for each ecosystem. For
eCos and Linux, we reused and extended our previously
developed infrastructure [2]. For Debian, we analyzed the
package indices that are intended to be used with the
native Debian package manager, and parsed manifests with
a software package (python-apt) commonly used for that
purpose. For Eclipse, we installed all bundles in a running
system and used the platform API to query information.
Analyzing Android was by far the most challenging, since
dependencies are not explicitly declared. We implemented
static analysis techniques for identifying Intent calls and
their parameters from Android (Dalvik) bytecode.

3.4. Reproducibility
For further research, and for reproducibility of our study,

we provide an online Appendix in a repository [14]. It con-
tains the detailed within-case write-ups for each subject,
our developed analysis tools, and datasets. Further statis-
tics, diagrams, and details about all estimations (e.g., scale
and growth rate of ecosystems) are available in Appendix B
of [32], including details on the Android bytecode analysis.

4

Main Platform Free Market

Feature Dependency
Variability Model

abstraction

Unit Parameter

Asset
configures

Asset Base

Suppliers

Developers

Consumers

End-Users

Configurator

derive

reconfigure

develop

Instance

Installer

make decision

make decision

Tools

Decisions

Decision Lifecycle

Ecosystem

Variability Representation

Legend:

Concept

Optional
Concept

Action

Tool

Actor

Inheritance
Relation

Containment
Relation

Binary
Relation

Content
Flow

Action
Invocation

Basic Unit Composite Unit

Dependency
Manifest

Figure 3: Illustration of the conceptual framework

4. Conceptual Framework

We describe our conceptual framework in this section,
and later use it to characterize and compare the five ecosys-
tems. In the description, general framework concepts are
typeset in sans-serif, and ecosystem-specific instantiations
in cursive. Figure 3 illustrates core parts of the framework.

A software ecosystem is a universe of shared assets cen-
tered around a common technical platform. In this universe,
various roles, mainly suppliers and consumers, interact in
order to develop, manage, and consume assets. More roles
exist, but modeling them is out of our scope. A platform
denotes the technical aspects of an ecosystem: a variability-
enabled architecture, a set of shared core assets, tools,
frameworks, and patterns, together with organizational
and process-related concerns. Every vital ecosystem has a
controlled central part, the main platform, which is managed
by the platform supplier. Free market is the less-controlled,
complementary part of the ecosystem that provides third-
party assets extending the main platform. Alternative
platforms may exist as derivatives of the main platform for
specific needs. For example, Ubuntu is a Debian derivative
derived from the Debian main platform for desktop and lap-
top users. Since derivatives do not belong to the free market,
we decided to ignore them in this study.

Assets are any artifacts, such as source code, binaries,
media files, or documentation. Each of the studied plat-
forms packages assets into basic units, such as Debian pack-
ages or Eclipse bundles. Composite units, such as Debian
meta packages, aggregate sets of basic units.

Variability in the platforms has two forms: basic units
can be optional, or vary inside, or both. Unit parameters,
such as properties in Eclipse, describe variability within
basic units.

An instance (e.g. a customized Linux kernel or a partic-
ular installation of an Android system) is a concrete system
derived from the main platform and the free market by mak-
ing decisions—more precisely, by selecting and configuring

assets, thus, resolving variability. Usually, an instance can
be re-configured later.

Variability information (dependencies and unit parame-
ters) is specified either within a variability model or in dis-
tributed manifests. Variability models are system-wide and
integrated abstractions over the concrete assets and declare
features and dependencies using a dedicated language [2].
Features are abstract entities that are mapped to units and
unit parameters. Instead of making decisions directly on the
assets, derivation is based on deciding features. Manifests
directly reflect variability information of the assets, without
the ability to introduce abstractions. Such abstraction is
only partially possible by using empty assets whose mani-
fests aggregate dependencies, like Debian virtual packages.

Each ecosystem supports derivation and re-configuration
by automated tools: configurators for the variability model-
based platforms (eCos, Linux) and installers for manifest-
based platforms (Debian, Eclipse, Android). Such auto-
mated tools assist consumers with intelligent choice propa-
gation, conflict resolution, and optimization based on the
dependencies. The latter are declared either among features
within the variability model, or among basic or composite units
within manifests.

5. Context of Mechanisms

Our ecosystems span fairly different domains, organiza-
tional structures, and achieved different scales over time.
We discuss these aspects to put the variability mechanisms
into context. Tables 1 and 2 summarize our observations.

5.1. Platform Domain and Target Audience
eCos is a free real-time OS for deeply embedded appli-

cations—a domain that requires high portability, low mem-
ory usage, and small binary images. With a market share
of 5–6%, it powers, among others, multimedia, network-
ing and automotive devices [33]. Consumers of eCos are
highly specialized developers of embedded systems. eCos
maintains advanced tools, such as a configurator with a
reasoning engine.

The Linux kernel is a free general OS kernel target-
ing a much broader range of hardware than eCos. Its
consumers include Linux distributors, who customize and
release specialized kernels, and technically skilled end users,
who sometimes also configure, compile, and install a cus-
tom kernel. The Linux kernel also provides a configurator,
but much less advanced [2] than the one of eCos.

Debian is a complete OS with a large selection of ap-
plications. It is available for many hardware architectures,
ranging from embedded systems to high performance com-
puters. Its consumers are both non-technical end users and
system administrators with deep expertise. Debian pro-
vides suitable installers and configurators for beginners and
experts. We chose Debian as it is one of the most popular,
established, and accessible Linux distributions [34].

5

Table 1: Ecosystem domains and organization

eCos Linux kernel Debian Eclipse Android

D
om

ai
n Software domain embedded OS general-purpose

OS kernel
OS & application software software development

tools
OS & applications for
mobile devices

Consumer skills highly technical highly technical technical and non-technical technical non-technical

O
rg

an
iz

at
io

n

Main Platform free eCos
edition

mainline kernel Debian Archive
(’main’ section)

yearly official platform
release

Android OS and
Google Apps

Development centralized distributed distributed distributed distributed
Variability mgmt. centralized centralized distributed distributed centralized

Contribution filtering strong filtering strong filtering little filtering strong filtering strong filtering
Free market packages kernel modules

(drivers), patches
mostly commercial
packages

bundles on update
sites/market places

apps on market places

Distribution channel none none marginal third-party repos. Eclipse Marketplace Google Play store
Role of contributions marginal complementary complementary complementary essential

The Eclipse IDE is a foundation for highly customiz-
able development tools.1 Eclipse was explicitly conceived
as an ecosystem [35] and advertised as such by the Eclipse
Foundation [36]. Although users of the Eclipse IDE are
technically skilled developers, extending the system is sup-
ported by a convenient installer.

Android is a free OS for mobile devices, including
smartphones, tablets, and netbooks, which can be extended
with third party apps. The target consumers of Android are
non-technical end users, deriving their system by installing
apps with a user-friendly installer.

5.2. Organization
We identified the following organizational structures of

development and variability management (see Table 1).
eCos’ main platform is its free edition, maintained and

developed by the main supplier eCosCentric and external
contributors [37]. Both development and variability man-
agement are centralized in the main platform. We have not
found reliable information about the process used for con-
tributions (eCos packages and patches). However, the main
platform is controlled by a group of currently ten main-
tainers, which indicates that contributions have to pass
their reviews. Only a marginal free market emerged on
the fringe of the main platform, although eCos’ packaging
mechanism and its modular variability language were de-
signed to encourage contributions. No uniform distribution
channel exists for the free market.

Linux’ main platform is the mainline kernel. The vari-
ability management is centralized, with only a few maintain-
ers controlling the variability model [38]. In contrast, the
development is highly distributed, comprising thousands
of developers and maintainers. However, contributions
(patches, usually with new features) have to pass thorough
reviews through the maintainer hierarchy. Although no uni-
form distribution channel (beyond mailing lists, such as the
official Linux Kernel Mailing List) outside the main plat-
form exists, an unorganized free market with third-party
modules (mostly drivers) emerged.

1Eclipse also provides the Rich Client Platform for building arbi-
trary GUI software, but we focus on the IDE ecosystem.

Debian’s main platform is the central repository con-
taining the official distribution. Both development and
variability management are distributed, comprising over
thousand package maintainers, who maintain packages
that are sourced from free and open source software [39].
The main platform tries to be as inclusive as possible, with
little restrictions to contributions (Debian packages), while
reviews still assure quality [30]. A free market with mostly
commercial and non-free packages in scattered third-party
repositories complements the main platform.

Eclipse’s main platform is represented by the yearly
releases of the IDE. It consists of independently managed
projects following the Eclipse Development Process [31] and
is controlled by its supplier, the Eclipse Foundation. Con-
tributions (new projects) undergo thorough reviews. Both
the development and variability management is distributed
in the main platform. Eclipse has a complementary free
market, mainly represented by the Eclipse Marketplace [40]
and further repositories, such as Yoxos [41] and smaller
update sites for Eclipse’s installer.

Android’s main platform comprises the OS and pre-
installed apps. While the development is distributed, the
variability management of the main platform is centralized
and fully controlled by Android’s supplier, the Google-led
Open Handset Alliance. Individual sub-projects exist, each
having a project lead (typically a Google employee [42]).
Contributions (patches, possibly also apps) to the main
platform are possible, but with thorough reviews. A free
market is an essential goal of Android. The main dis-
tribution channel (Google Play store) is widely open for
third-party contributions of arbitrary applications.

5.3. Scale and Growth
We conservatively estimated main platform and free

market sizes (see Table 2). We chose LOC as our primary
measure to account for the different granularities of assets in
the ecosystems. LOC is also known to be highly correlated
with complexity, development, and maintenance effort [43].

eCos has the smallest main platform, comprising only
502 packages and a marginal free market. Linux is much
larger, given its support of a much wider variety of hard-
ware. We could not estimate the possibly large, but unor-

6

Table 2: Estimated Scales and Growth Rates

eCos Linux Debian Eclipse Android

Main platform scale7

Basic Units 39481 25,8611 28,2322 5,7873 834

Features 2,859 10,415 N/A N/A N/A
LOC 0.9M 7.9M 762M 21.2M 1M

Free market scale7

Basic Units >1,5301 — >15,1792 >1,8973 >651K4

Features >315 — N/A N/A N/A
LOC >279K — >410M >6.9M >1G

Growth rates7

Inception year 1999(v1.1) 1991(v0.01)1996(v1.1) 2001(v1.0) 2008
Inception LOC 76k 10k 13M 141k 1.128M5

Current LOC6 1.2M 7.9M 1.2G 28.1M 1G
Growth per year 32% 39% 35% 80% 353%

1 Files 2 Packages 3 Bundles 4 Apps 5 Android OS and apps
6 Of considered version 6 As of 03/2012 N/A Not applicable
— Data not available LOC Lines of Code

ganized free market. Debian has the most inclusive and
largest main platform in our study. It is relatively easy
to contribute new packages. As a result, the free mar-
ket [44] is comparatively small, half the size of the main
platform. Eclipse’s main platform and free market are
both of medium size, compared to the others. The main
platform (Helios 3.6) is three times larger than the two
main free market repositories [40, 41]. However, the whole
free market may be significantly larger, as the ecosystem
is heavily scattered with smaller update sites. Android
has a free market that is over 1,000 times larger than the
main platform [45]. The main platform, which is relatively
closed and strongly filters outside contributions, is very
small with 83 apps (Android 2.3.4).

Finally, we estimated yearly growth rates of our sub-
jects by fitting an exponential growth function to the size
difference between initial release and current state. As
shown in Table 2, Eclipse and Android, which strategically
foster a free market, grew considerably faster than the
others, which focus on the main platform.

6. Variability Mechanisms

In our study, we identified and characterized variability
mechanisms both from a technical (how instances vary) and
a consumer perspective (how and when consumers make
decisions). Table 3 summarizes our observations.

6.1. Variability Representation
Asset Base. In eCos, basic units are source files with in-
ternal variability controlled by preprocessor symbols (unit
parameters) and realized via #ifdef statements. Composite
units are packages, which are aggregations of source files,
test cases, or other resources, together with a variability
model of the package. eCos’ configurator aggregates partial
models into a single whole, depending on the set of loaded
packages. A feature-to-code mapping (declared in the
model) connects features with implementation assets; it is

used to derive a concrete instance. Linux has two types of
basic units: (i) source files with preprocessor symbols (unit
parameters) as in eCos, and (ii) loadable kernel modules
that extend Linux at run-time. No concept for composite
units exists. The feature-to-code mapping resides in the
build system [46, 47]. Debian’s basic units are packages—
file archives with helper scripts and a manifest. Composite
units are realized by meta packages, whose purpose is to ag-
gregate other packages via dependencies. The tool debconf
realizes unit parameters and is used by scripts to configure
the packaged software. It prompts users to make configu-
ration choices during package installation. Eclipse’s basic
units are OSGI bundles—dynamically loadable modules
tying together artifacts such as Java classes, images, con-
figuration files, and metadata. Bundles run in a virtual
machine. Unit parameters are provided by several mech-
anisms, including the preference store and configuration
admin service. Composite units called “features” aggregate
multiple bundles with branding and update information.
Android is composed of apps—individual application pro-
grams representing basic units. Most apps run in a virtual
machine (Dalvik). All apps are treated equally by the
virtual machine, which allows alternative implementations
even for pre-installed (main platform) apps. Android has no
concept of composite units, but has a dedicated mechanism
for unit parameters (preferences). Android offers API sup-
port to create a unified user interface for app preferences,
and to store and load them.
Variability Model. eCos and the Linux kernel come
with feature-model-like variability models declared in their
respective languages CDL and Kconfig. Interestingly, while
Kconfig has no modularization support beyond a simple file
include statement (source), CDL was designed to encourage
contributions and allows a modularized specification of
models, distributed over individual eCos packages.
Manifest. Debian, Eclipse, and Android have no variabil-
ity model. Variability information is declared in a text- or
XML-based manifest file inside a packaged basic unit, and
maintained together with it.

For further details on the modeling languages and man-
ifests, we refer to [2, 48, 49] (eCos and Linux kernel), [50]
(Debian), [51] (Eclipse), and [52] (Android), in addition to
our within-case write-ups (cf., Section 3.4).
Grouping and Categorization. To be usable by con-
sumers, units and features need to be organized in some
form. eCos and Linux organize features hierarchically
in variability models [2], whereas units are organized in
diverse, often informal, ways in the other systems. Vari-
ability models use the hierarchy to group and categorize
features. Abstract features, which are not mapped to code,
improve the structure, but can also be used to optimize
dependencies [53]. In the other subjects, public repositories,
such as the Eclipse Marketplace [40] and Google Play [54],
have their own categorization systems. Debian also offers
community-driven categorizations using Debtags [55].

7

Table 3: Variability mechanisms
eCos Linux kernel Debian Eclipse Android

Va
ri

ab
ili

ty
R

ep
re

se
nt

at
io

n

Asset Base
Basic units files files, kernel modules packages bundles apps
Composite units packages N/A meta packages features N/A
Unit parameters preproc. symbols preproc. symbols debconf options properties/

preferences
preferences

Variability model feature-model-like feature-model-like N/A N/A N/A
Features packages, components,

options, interfaces
configs, choices,
menuconfigs, menus

N/A N/A N/A

Language CDL Kconfig N/A N/A N/A
Manifest (Schema) N/A N/A y (textual DSL) y (OSGI manifest) y (XML-based DSL)
Grouping and categorization variability model variability model tasks, sections,

debtags
market place
categories

app store categories

D
ec

is
io

ns

Decision lifecycle derivation derivation, re-config. re-configuration re-configuration re-configuration
Decision binding static static & dynamic dynamic dynamic dynamic
Derivation/re-config. tools configurator

(ConfigTool), build
system

configurator
(Kconfig), build
system (Kbuild)

installers (apt,
dpkg)

installer, market
place client (P2)

installer app (e.g.,
Market)

E
nc

ap
su

la
tio

n

Interface mechanisms C header files C header files package-specific Java interfaces and
OSGI manifest

explicit public
components, predef.
data formats

Interface specification documented
interfaces for
components,
e.g., drivers

documented
interfaces for
components,
e.g., drivers

package-specific,
documented
policies for some
domains

explicit public
interfaces defined
by OSGI manifest

explicit public
components, predef.
data formats

In
te

ra
ct

io
ns Managed by run-time system N/A N/A N/A Equinox OSGI Dalvik VM

Interaction mechanisms static linking static & dynamic
linking

dpkg-triggers,
documented
policies

class reference,
services, extension
points

intent mechanism

Interaction binding early static early static & dynamic not specified late static & dynamic late dynamic

Platform openness predominantly closed predominantly closed open open open

N/A Not applicable

6.2. Decisions
The most distinguishing characteristics of decisions we

identified are their lifecycle, binding, and tool support.
Decision Lifecycle. The decision lifecycle characterizes
when and how end users decide the presence or absence
of units—whether they derive an instance from scratch,
or only re-configure one. In eCos and Linux, users derive
an instance. In the others, users normally re-configure an
initial instance provided by the supplier. Eclipse comes
in one of eleven pre-instantiated editions. An Android
instance is delivered with the mobile device. A Debian
user usually installs a minimal system before it can be
re-configured by installing and removing packages.
Decision Binding. Decisions can have different bind-
ing mode and binding time. Binding mode characterizes
whether a decision can be changed. For eCos and Linux,
it is static, since these systems require to re-derive the
instance for changes. However, Linux also allows late dy-
namic decision binding by means of loadable kernel modules.
Debian, Eclipse, and Android are dynamic as they allow
basic units or composite units to be installed and removed
at run-time.
Tools. Our closed platforms, which are mostly statically
configured, provide configurators to support the derivation
process. Our open platforms include an installer that allows
end users to extend their instance. Both configurators

and installers, except the one of Android, offer choice
propagation support and reasoners to resolve dependencies
between features or basic units. Android’s installer does
not enforce dependencies statically. Instead, apps have to
handle unsatisfied dependencies at run-time.

6.3. Encapsulation
Our closed platforms offer no encapsulation concepts

beyond C header files; only implementation guidelines for
interfaces of loadable kernel modules exist in Linux. In
Debian, interfaces are solely package-specific; however, De-
bian has policies for some domains, such as Java libraries
or Emacs extensions. Eclipse encapsulates all classes and
resources in the bundle; public functionality (Java pack-
ages, OSGi service interfaces, extension points) must be
declared in the manifest. Android apps can provide public
components that are described and advertised to other
apps with intent filters (explained shortly in Section 7.1).

6.4. Interactions
Interactions among basic units require identifying and

binding the concrete target. We identified the following
interaction binding mechanisms.

eCos and Linux use static interaction binding: all
selected basic units are linked into a single binary im-
age. Linux also supports late dynamic interaction binding

8

Table 4: Dependencies

eCos Linux kernel Debian Eclipse Android

D
ep

en
de

nc
ie

s

Direct dependency
Target features features basic units basic units basic units
Types (hard/soft) hierarchy, requires,

active_if, default,
calculated

selects, prompt
condition, default

depends, pre-depends,
recommends, breaks, con-
flicts, suggests, enhances

Require-Bundle explicit
intent

Capability-based dependency
Target CDL interfaces N/A virtual packages Java packages, services intent filters
Types same as direct dep. N/A same as direct dep. Import-Package, dyna-

mic service lookup
implicit
intent

Common vocabulary N/A N/A N/A via API via API

Provide capabilities implements N/A provides Export-Package via intent
filter

Expressiveness any Boolean;
arithmetic & string
operations

any Boolean;
number/string
equality

any Boolean; version
comparison

conjunction &
implication; version
comparison

N/A

N/A Not applicable

through kernel modules. In Debian, interaction binding is
mostly package-specific, however, several policy documents
prescribe guidelines for interaction in some domains. In
contrast, the open platforms Eclipse and Android both
provide a virtual machine that has full control over interac-
tions. Eclipse offers three facilities: direct class referencing,
extension points, and services. Except for services (using
the Service Activation Toolkit or declarative services), in-
teraction targets are bound late but statically—due to Java
classloader restrictions. Android provides a purely dynamic
facility for interaction with its intent mechanism. The
interaction target—specified by parameters of an intent—
is continuously reevaluated at run-time and could easily
change when apps are exchanged or reinstalled.

6.5. Openness
Our analysis of mechanisms so far allows us to detail

our characterization of the subjects’ openness. We can see
that openness is primarily reflected in the decision lifecycles
(derivation and reconfiguration) and tools. We classify the
platforms of the Linux kernel and of eCos only as predom-
inantly closed. In the Linux kernel, additions need to be
applied to the source tree, for example, as git branches
or patch sets. This “out-of-tree” development is actively
discouraged [56], and deriving such an instance is not sup-
ported by the configurator. Exceptions are loadable kernel
modules from commercial vendors, and kernel derivatives
offered by official Linux distributions. In eCos, although
openness was a primary goal of its packaging mechanism,
adding third-party functionality to an instance still requires
programming effort. The variability mechanisms of Debian,
Eclipse, and Android are intentionally open, with installer
tools supporting free markets of assets.

7. Dependencies

In our study, we identified the following mechanisms to
express dependencies in the platforms, and the resulting
dependency structures in the ecosystems.

7.1. Specification, Semantics & Expressiveness
Our ecosystems approach specifying dependencies in

diverse ways. Table 4 summarizes the core characteristics.
We now discuss the declaration of dependencies, their target
(units, features, or capabilities), their semantics (modality),
and the corresponding constraint languages.

eCos and Linux declare dependencies among features
in their variability models. Due to their high level of ab-
straction, variability models allow flexible specification of
intricate dependency structures. This flexibility comes at
the cost of maintaining additional artifacts—variability
model [57] and feature-to-code mapping [46], which need
to be coordinated. Debian’s and Eclipse’s specification
of dependencies among basic units in manifests is more
direct, but less flexible. Android approaches the problem
entirely dynamically. No static specifications of dependen-
cies among apps are used. Apps can only declare to be open
for interaction by setting a flag, or defining an intent filter,
stating that the app can handle specific service requests.

We identified a special class of dependencies in each
ecosystem: dependencies on capabilities, as opposed to
direct dependencies. Capabilities are abstractions over
functionality provided by one or more units or features.
For example, the capability to open URLs of a specific
format (starting with “http://”) is provided by multiple
web browsers. All platforms except the Linux kernel provide
explicit capability constructs. As can be seen in Table 4,
capabilities are features in eCos and the Linux kernel,
labels in Debian (such as in l. 5 of Figure 2), and mainly
labels in Eclipse (with the exception of rarely used services).
Android provides the richest specification via intent filter.

Intent filter can be characterized as follows. They form
a simple Domain-Specific Language (DSL) or an ontology,
which can be used by contributors to increase reuse. The
main elements of an intent filter are action keys, category
keys, and data specifications (in a URI format [58]). To
interact with functionality described by an intent filter,
apps throw an implicit intent by instantiating an Intent

9

capabili'es
provided
by a unit

capabili'es
a unit

depends on

Capability
dependency on capability

provide capabili0es

units
a unit

depends on

units 
providing
a capability

units 
depending on
a capability

units
depending
on a unit

direct
dependency

Basic Unit /
Feature

②
④ ③

⑤⑥
①

Figure 4: Dependency metamodel

object parameterized with an action key, category key, and
a data field (URI). The intent is matched against intent
filters of installed apps, which generally succeeds when
an intent’s parameters are a subset of the information
specific in an intent filter. Thus, intents can be seen as a
minimal, and intent filters as a maximal specification of
functionality. A core aspect of the intent mechanism is
its vocabulary. Action and category keys are provided by
the Android API, but every app can introduce their own.
Such third-party vocabulary needs to be documented and
published for other apps to use functionality described by
the vocabulary. Interestingly, the Android community has
launched repositories with additional vocabularies, such as
OpenIntents [59].

To abstract the dependency types we found in the lan-
guages, we created a metamodel that details the roles that
units, features, and capabilities can play in dependencies.
It is shown in Figure 4. A unit or a feature can directly
depend on other units or features (1©), or it can depend on
capabilities (3©). The metamodel also captures the reverse
directions of these two dependency types (2© and 4©). The
relationship that capabilities are provided by basic units or
features (5©), and its reverse (6©), are likewise captured.

We also classified the dependencies by their semantics
(modality). Hard dependencies must always be satisfied.
Soft dependencies represent suggestions or defaults. We
even observed conditionally hard or soft dependencies (de-
faults in Kconfig) that assume a different modality depend-
ing on a side condition. Table 4 (rows “Types”) shows the
keywords in the variability languages/schemas declaring a
certain type of dependency. Notably, Debian provides the
richest set of modalities, mainly to drive its sophisticated
package update, replacement, and removal processes.

The constraint languages for declaring dependencies dif-
fer in expressiveness. eCos’ CDL supports most operators
of a modern programming language [2]. Kconfig supports
any Boolean dependencies and equality on strings and num-
bers. Notably, it uses three-state logic for dealing with
loadable kernel modules [2]. Debian supports any Boolean
dependencies among packages and comparisons on version
ranges. Exclusions are specified via the modalities conflicts
and breaks, and defaults via recommends. Eclipse supports
implications, conjunctions, and version comparisons, but
lacks negations and disjunctions. It is not easily possible
to exclude bundles or declare alternatives.

Table 5: Dependency Statistics

eCos Linux Debian Eclipse Android

Ecosystem subset
Basic units 10231 10,3261

2,8142
28,2323 2,1054 281,0795

Features 1,244 6,308 N/A N/A N/A
LOC 302K 4,3M 782M 7,8M 433M
LOC per basic unit† 295 416 27,699 3,705 1,539

Basic units/features
With dependencies 99% 100% 96% 89% 69%
direct 1© 99% 100% 95% 81% 14%
to capability 3© 8% — 24% 27% 68%
With depending units 2© 42% 31% 62% 57% —
Providing capability 5© 10% — 13% 80% 100%

Dependencies 1© 3©
per basic unit/feature‡ 1 2 4 6 1

Capabilities
With depending units 4© 44% — 54% 11% —

1 Files 2 Loadable modules 3 Packages 4 Bundles 5 Apps
† Average ‡ Median © Numbers refer to metamodel (Figure 4)
N/A Not applicable — Data not available (limitation of analysis)

7.2. Dependency Structures
We now quantitatively analyze the occurrence of the

identified types of dependencies in substantial subsets of the
ecosystems. To study dependency structures, we computed
cardinalities for all association ends in our dependency
metamodel shown in Figure 4. Table 5 shows detailed
numbers. We cannot give reliable numbers on capability-
based dependencies for Kconfig, since the language lacks a
concept for capabilities. For Android, due to limitations of
our analysis (cf., Section 9.2), we cannot reliably calculate
the reverse directions (2© and 4©) of dependencies. In
the following, we discuss the connectivity (the extent to
which units or features are connected) and the density (to
how many others units or features are connected) of an
abstracted dependency graph.

7.2.1. Connectivity
The connectivity of the dependency graph indicates

the proportion of units and features for which dependency
information has to be maintained. The number of units
or features having direct (1© in Figure 4) and capability-
based (3©) dependencies is surprisingly high, regardless
of platform openness and existence of variability models.
The highest is observed in Linux, where almost all features
reference others, and in eCos, where it reaches 99%. These
numbers are high, partly because every non-root feature im-
plies its parent in the model hierarchy. Still, many features
(30% in eCos, 85% in Linux) declare cross-hierarchy depen-
dencies. These are known to critically influence hardness
of reasoning both for configuration tools [60] and for users,
by introducing intricate implications of choices. Finally,
in the open systems, most basic units also participate in
many dependencies: Debian has the highest amount with
96%, followed by Eclipse with 89%, and Android with 69%.

10

Ecosystem

N
um

be
r

of
 D

ep
en

de
nc

ie
s

0

5

10

15

20

25

eCos Linux Debian Eclipse Android

(a
xi

s
cu

t o
ff)

Figure 5: Dependencies per feature or basic unit

In summary, across all systems, tools supporting variabil-
ity, including configuration, derivation, and analysis, must
handle large numbers of dependencies.

7.2.2. Density
The density of the dependency graph indicates how

much dependency information needs to be maintained per
unit or feature. To assess it, we considered the number
of dependencies of unit/features and of capabilities—that
is, cardinalities of all association ends in the metamodel.
We now discuss these numbers in general, and at the end
provide a separate discussion on the extent of capability-
based dependencies.
Overall Density. We first considered the number of de-
pendencies per unit or feature in the forward direction (1©
and 3©). Figure 5 shows the distribution of these num-
bers across our subjects. Surprisingly, except Android,
the open platforms have in average more dependencies per
unit than the others per feature. However, we also find
many outliers, such as an Android app with 96 depen-
dencies, a Debian package with 323 dependencies, and an
Eclipse bundle with 419 dependencies. Some Debian out-
liers have many soft dependencies (modalities like suggests
and recommends), indicating their importance for package
installation and update processes. Still, this only happens
for outliers; the majority of dependencies is hard in Debian.
Finally, while many Eclipse outliers, such as the one with
419 dependencies, are caused by many Java package im-
ports (capability-based dependencies), most dependencies
are direct ones on bundles.

We also investigated the reverse direction of dependen-
cies (2© and 4© in Figure 4). If units have many, they are
particularly hard to evolve, since dependencies on them are
not specified directly together with the unit, but are scat-
tered over the whole ecosystem. A developer has to know all
depending units and carefully evolve it. Evolution of such
units can break dependencies easily. We obtained numbers
for all systems except Android, given our analysis limita-
tions. We find that the open ecosystems have higher propor-
tions of units being referenced (Debian: 62%, Eclipse: 57%)
than the others for features (eCos: 42%, Linux: 31%). We
further notice that in Debian, 44% of packages depend on
one single package, libc6, and in Eclipse, 58% of bundles
depend on org.eclipse.core.runtime. In the other sub-
jects, we could not observe such an outstanding central unit
or feature (maximums are 4% and 8% of features depending
on a specific feature in eCos and Linux kernel).

Capability-based Dependencies. All ecosystems use
capability-based dependencies. Interestingly, as can be
see in Table 5, the percentage of units or features with
direct dependencies drops significantly from eCos with 99%
to Android with only 14%. The opposite is observed for
capability-based dependencies, which rise from 8% in eCos
to 68% in Android. Recall that we have no numbers for the
Linux kernel, since the Kconfig language has no explicit
capability construct. However, we found that some features
in the Linux model play this role, using the convention to
prefix them with HAVE_ (e.g., HAVE_IDE).

8. Phenomena and Hypotheses

Having analyzed our subjects in-depth, we now summa-
rize their core differences related to variability mechanisms.
For each difference, we propose explanations and develop
hypotheses. We also identify open research issues. Accord-
ing to our conceptual framework, we begin with the con-
texts in which the mechanisms are used. We then compare
characteristics of the mechanisms, including dependency
declaration facilities and actual dependency structures. As
architectural openness is a core distinguishing characteristic
of our subjects, our comparison focuses on this aspect.

8.1. Context of Variability Mechanisms
The domains range from systems software (eCos, Linux

kernel), which requires highly technical skills from users, to
consumer-oriented mobile apps (Android). We learn that
the organizational structures of variability management
and development are independent. While all ecosystems
foster distributed development, the variability management
activities are performed centrally in the closed, and in a
distributed way in the open platforms. We identify different
processes for contributions to the ecosystems. The closed
platforms strongly filter contributions using heavyweight
processes including manual reviews; the open platforms use
lightweight processes (little filtering of outside contribu-
tions) in uniform distribution channels. We observe highly
diverse growth rates, with a clear gradation from eCos
to Android. This illustrates the significance of variability
encouragement in the open platforms.

8.2. Variability Mechanisms
8.2.1. Variability Representation
Differences. Variability is represented differently across
the closed and open platforms. The core differences lie in
the abstraction of variability and the distribution of variabil-
ity information. Our closed platforms rely on centralized
variability models expressed in rich languages, while our
open platforms use distributed manifest files. We found
that a clear difference between manifests and variability
models is that manifests are always fully distributed, cre-
ated as individual units with bilateral relations to other
manifests, and used and evolved as individual units. In con-
trast, variability models, even if split over multiple files, are

11

created around a central hierarchy, and used and evolved
as an integrated whole. Furthermore, the granularity of
variability differs. The ecosystem tends to comprise very
fine-grained basic units in the closed, and rather coarse-
grained ones in the open platforms.
Proposed explanation. Variability models are effective
in centralized variability management. Features abstract
over codebases and variation points. Their rich languages
and the arbitrary asset mapping enables fine-grained vari-
ability and almost arbitrary cross-cutting contributions,
which occur in the closed platforms. Consider CONFIG_SMP,
a Linux feature that enables the kernel to operate on mul-
tiprocessor machines. The implementation of CONFIG_SMP
cross-cuts the kernel code, affecting central design aspects
such as handling locks, or interrupt and trap handlers.

On the other hand, variability models are ineffective in
a distributed setting. Fine-grained variability and cross-
cutting features requires thorough and centralized gover-
nance of the model to prevent corruption. Changes to
cross-cutting features have far-reaching implications due to
complex dependencies. Thus, they should be done carefully.
The advantage of a variability model is that it creates a
shared vocabulary to express cross-cutting properties. How-
ever, standardization of names is harder to achieve in a
distributed setting. Similarly, the feature hierarchy requires
more coordination than changing flat distributed variability
descriptions, like in manifests. We also find very expressive
constraint declaration facilities in variability models, as
opposed to manifest files. These findings together indicate:
Hypothesis 1. A centralized variability model is too fragile
for distributed variability management.

Many developers can contribute code and changes to
the variability model. However, a small team has to watch
the impact of changes to prevent corruption.

To facilitate distributed variability management, our
findings indicate that platforms need to rely on manifest
files, which usually have less-expressive dependency facili-
ties describing coarse-grained, non-cross-cutting variability:
Hypothesis 2. Distributed variability management relies
on distributed variability information via manifests.

The opposite direction of this hypothesis does not have
to hold. eCos has a centrally managed, but distributed
variability model (via eCos packages). Since eCos failed
to create a vibrant free market, there is so far no evidence
that distributed variability management could work when
variability is described in a distributed variability model,
richer than simple manifest files.

8.2.2. Decisions
Differences. The decision binding focuses on early static
binding in the closed platforms, and tends towards late
dynamic binding in the open ones. Eclipse and Android are
most dynamic, realizing the binding in virtual machines
controlling the run-time of basic units. The decision lifecy-
cle also differs. The closed platforms focus on derivation

of complete instances using configurator tools, while re-
configuration is the typical approach in the open platforms
using installer tools. Tools differ in their support for de-
pendency resolution. All tools support choice propagation
and conflict resolution, except Android’s installer.
Proposed explanation. We discuss the decision binding
in the next two subsections. The other differences can be
explained by the target audience of the platforms. Full
derivation of instances is problematic for the less techni-
cal users of open platforms, which therefore focus on re-
configuration. Missing dependency resolution in Android
can be explained by missing constraint declaration facili-
ties in the manifests—currently, the Google Play installer
would have to implement (unreliable) dataflow analyses.

8.2.3. Encapsulation
Differences. We have not observed any encapsulation
concepts—such as interfaces (beyond header files)—in the
closed platforms. In contrast, Android and Eclipse pro-
vide strong interface definition facilities. Debian also lacks
strong encapsulation concepts, but provides policies (con-
ventions) for some package domains.
Proposed explanation. Variability mechanisms with
late dynamic decision binding require encapsulation con-
cepts, which provide run-time guarantees about the be-
havior of basic units. Such guarantees cannot be assured
earlier, as in the closed platforms. In turn, encapsulation
concepts are not applicable in our closed platforms, due to
the fine-grained variability and the cross-cutting nature of
features. Instead, we can see that the run-time guarantees
of encapsulation concepts are compensated by the rather
heavyweight contribution processes in the closed platforms.

8.2.4. Interactions
Differences. Similar to the decision binding, the interac-
tion binding differs across the closed and open platforms.
The former have less dynamic interactions between basic
units than the open ones, with a few exceptions (loadable
kernel modules in Linux). Further, interactions in Eclipse
and Android are controlled by a virtual machine.
Proposed explanation. The need for dynamic adapta-
tions can be explained by the ecosystem domains. However,
we can also see that the increased degree of controlled inter-
actions at run-time (Eclipse, Android) is counter-balanced
by heavyweigt contribution processes to assure quality in
the other platforms (eCos, Linux kernel, Debian). To-
gether with our insights from the decision binding and the
encapsulation concepts, we hypothesize:
Hypothesis 3. Missing encapsulation and interface con-
cepts need to be compensated with heavyweight contribution
processes to assure run-time guarantees.

On the other hand, heavyweight contribution processes
would negatively impact the goal of encouraging variability
in the open platforms.

12

8.3. Dependencies
Differences. The variability mechanisms in our subjects
encompass diverse facilities to express dependencies. We
found very expressive constraint languages in the closed,
and relatively simple ones in the open platforms. Debian
is again in the middle of this spectrum.

One of our most interesting findings are capability-based
dependencies, which target abstractions of functionalities—
capabilities—instead of basic units or features. Contrary to
the expressiveness of dependencies, the facilities to describe
capabilities and capability-based dependencies increase in
their expressiveness towards Android. An important aspect
of capabilities is their vocabulary. The main vocabulary is
always controlled within the main platform; however, our
open platforms also support third-party vocabularies in
the free market.
Proposed explanation. We see a relation of the expres-
sive constraint languages to the granularity of variability
and the early static decision binding, as identified before.
These are typical requirements of a technical domain:
Hypothesis 4. In systems software, dependencies need to
be more expressive than in end-user applications due to the
need for low-level, fine-grained, and static configuration.

We are, however, unaware of any study that explains
this complexity by performing a systematic requirements
analysis and linking the requirements to dependencies.

Fast-growing and large-scale ecosystems require con-
structs that can precisely describe the semantics of a
capability. Labels are too ambiguous for this purpose—
although they can be constructed to be unique, as seen
by Debian capabilities. These range from simple (e.g.,
x-window-manager) to intricate (e.g., libghc6-agda-dev-
2.2.6-8c324) labels. DSLs like Android’s intent filter are
a more accurate and viable description of abstracted func-
tionality. However, what language constructs in capability
DSLs are suited for software ecosystems, beyond Android’s
intent mechanism, remains a research question.

8.4. Dependency Structures
Differences. The median of declared dependencies per ba-
sic unit is higher in the open systems than the dependencies
per feature in the closed systems. This phenomenon is seen
across the subject spectrum except Android, which does
not declare dependencies. Capability-based dependencies
are essential and used in all ecosystems to varying extents,
even if the platform has no explicit concept for capabilities.
Our open and dynamic subjects have a significantly higher
proportion of capability-based dependencies.
Proposed explanation. Variability models impact de-
pendency structures, since dependencies are specified over
abstract entities (features) mapped to the physical assets
(basic units). Variability models let developers optimize
and collapse implementation-level dependencies, while the
coordination cost for these activities in a distributed setting
may be too high. This characteristic of variability models
leads to a lower density of dependencies:

Hypothesis 5. Centrally managed variability using vari-
ability models facilitates sparse dependency structures.

Still, there can be other reasons for the lower number of
dependencies in the systems with variability models. Thus,
this possibly controversial hypothesis requires confirmation.

The higher ratio of capability-based dependencies in the
open platforms can be explained by their ability to reduce
coupling (targets can be exchanged easily). They also
improve flexibility and communication among developers,
as they indicate that specific functionality is available.
Capabilities are also abstractions over functionality that
will be contributed in the future. Thus, we conjecture that
capabilities are essential for sustained growth. Although
there are many reasons for high growth, such as the business
context, a vibrant community, or a huge market demand
(especially for mobile phones), we hypothesize that:
Hypothesis 6. Capability-based dependencies sustain
the growth of an ecosystem.

However, although capabilities foster decentralized vari-
ability, they rely on a stable and centralized vocabulary.
Yet, investigating dynamics of vocabulary creation and
reuse in an ecosystem, remains an interesting research ques-
tion. Understanding this aspect could enhance facilities to
support app interactions and reuse.

9. Threats to Validity

9.1. External Validity
To enhance external validity, we selected large, substan-

tial cases of ecosystems covering fairly diverse domains,
technologies, and organizational structures. Although rep-
resentativeness of subjects is not required for theory build-
ing from cases, our selection can be seen as theoretic sam-
pling [61]. Still, smaller ecosystems controlled by special-
ized companies in a narrow market segment (niche players)
might have different characteristics not covered by our con-
ceptual framework. We mitigate this threat by using an
exploratory research method: instead of testing hypotheses,
we record phenomena and carefully develop hypotheses.

We analyzed the subjects as they are. A limitation
is that we did not systematically elicit goals and require-
ments that led to the choice of mechanisms. Although the
identified mechanisms are clearly driven by requirements
of the domain (c.f., Hypothesis 4), performing a goal and
requirements analysis, and linking the requirements to char-
acteristics of the mechanisms, would be valuable future
work, but would require interviewing platform suppliers.

For the quantitative analysis, we rely on subsets of the
ecosystem, which might not be representative. Thus, we
considered the main distribution channels. Tables 5 and 2
show that we covered significant parts of the ecosystems.

9.2. Internal Validity.
To enhance internal validity, we limited our data sources

to reliable documents, freely available source code, and

13

tools. Our observations were triangulated from these
sources. This strategy aimed at reducing bias due to inap-
propriate sources. We also assigned one author as an expert
to each subject, who deeply analyzed it. We cross-checked
the within-case write-ups (further field notes are available
from us on request). This strategy aimed at reducing in-
terpretation bias of mechanism characteristics. To develop
hypotheses, we followed a systematic approach. According
to the conceptual framework, we performed a cross-case
analysis, which identified major differences. We propose
explanations for these, and formulate the most significant
relationships as hypotheses. We provide datasets, details
on data sources, additional diagrams, and our analysis tools
in an online repository. This strategy makes our calcula-
tions transparent, to mitigate bias from incorrect statistics.
In fact, some numbers are estimated using interpolations
and safe assumptions (lower bounds).

Recall that all ecosystems except Android declare depen-
dencies. It is not clear whether our extracted dependencies
for Android are comparable to declared dependencies. In
fact, it is subject of ongoing research, whether actual and
declared dependencies are generally comparable or not.
Furthermore, we could not analyze reverse directions of
direct and capability-based dependencies in Android, given
the intricate intent matching algorithm which we could
not emulate. Therefore, we avoid comparing dependency
numbers for Android to other systems. Still, all numbers
indicate scalability requirements for tools. In this sense
(algorithmic hardness), they are useful standalone and, to
a large extent, comparable.

9.3. Construct Validity
In the qualitative analysis, the selection of dimensions

for the conceptual framework was driven by our subjects.
For different ecosystems, we could have potentially pro-
duced a different taxonomy. To mitigate the risk of in-
completeness, we performed a detailed domain analysis
of this space, covering the last three areas of the BAPO
taxonomy [62]. The results were rich enough to create a con-
sistent conceptual framework describing the five subjects
by means of the dimensions.

Eclipse has recently introduced the generic provisioning
system p2 [63], which abstracts over OSGi bundles and
replaces Eclipse’s bundle-based installer tool. However, our
qualitative and quantitative analysis only analyzes bundles.
This limitation is acceptable, since bundles are the primary
building blocks of the main platform, and since the main
free market repository (Eclipse Marketplace) still refers to
bundles in individual update sites, which we mined.

To analyze dependencies, we constructed measures for
specific types of dependencies, which was also driven by
our subjects. However, dependency types might not be
well enough defined to precisely construct platform-specific
analyses. We mitigate this threat by creating a dependency
metamodel in a bottom-up way, providing further details
in an Appendix [14]. But the expressive facilities required
some abstractions. The Debian and Eclipse dependency

statistics disregard version numbers. This limitation is
acceptable—both datasets have no packages in different
versions. For Eclipse, we also disregard services. This
limitation has (if any) only minor impact, as services are
rarely used by the Eclipse community [64]. Future work
might investigate these service-based interactions, but since
they are codified in the program logic, that would likely
require a static analysis as complex as our Android analysis.

10. Related Work

In the field of software ecosystems, our work contributes
to research on theory building, architectural openness, vari-
ability mechanisms, and dependencies.

10.1. Software Ecosystem Theory Building
Barbosa et al. [15] review publications on software ecosys-

tems using a mapping study. They identify ecosystem
modeling, ecosystem architectures, licensing, and software
evolution as main challenges. In addition to many the-
oretical works, the study discovers ten qualitative case
studies identifying characteristics of cosystems. Our con-
ceptual framework of technical aspects contributes to these
case studies. Hanssen et al. [13] review literature on soft-
ware ecosystems. They target works about theory building
around the “rather vague and diverse” concept of a software
ecosystem. They emphasize the lack of unified terminol-
ogy and well-defined concepts that characterize ecosystems,
and request theory-building research. Our work contributes
carefully developed hypotheses about technical mechanisms.
Jansen et al. [12] present a research agenda for software
ecosystems, proposing to study ecosystems such as MySQL/
PHP, Microsoft Windows, and iPhone apps. We deliver
on this agenda by investigating similar systems. They an-
nounce the characterization and modeling of ecosystems as
a main challenge, which we address with empirical data.

10.2. Architectural Openness
Anvaari et al. [9] have studied architectural openness

of ecosystem platforms before. They analyze the five mo-
bile application platforms Android, Symbian, Windows
Mobile, Blackberry, and iPhone using a literature review
and developer interviews. They discuss openness strategies,
corresponding platform architectures, and their variabil-
ity mechanisms (“extension mechanisms”). Their results
also indicate that openness is a spectrum, and that non-
technical aspects have a significant impact. For instance,
although Symbian and Android are technically most open,
in practice, other issues hinder contributions, such as a
strict filtering of outside contributions to the main plat-
form or licensing issues. We complement their work with a
qualitative and quantitative analysis of variability mech-
anisms. Interestingly, the authors discuss a three-layered
architecture of mobile application platforms (apps, middle-
ware, kernel). From that perspective, our work investigates
each layer separately, as our subjects cover each of them:

14

Android (app layer), Debian (middleware layer), and Linux
(kernel layer).

10.3. Variability Mechanisms
Variability mechanisms have been discussed from var-

ious perspectives. Schmid et al. [65] discuss variability
(“customization”) mechanisms in service platforms, based
on a literature review and an industry partner’s yard man-
agement system (YMS). They describe various forms of
variability occurring in the platform, and identify static and
dynamic variability mechanisms suited for service-oriented
platforms from the literature. They discuss their short-
comings and propose coarse-grained mechanisms applicable
to the YMS. Their work is related, as service platforms
can be the basis of ecosystems. However, in contrast to a
literature review and theoretical discussion of mechanisms,
we empirically study large-scale platforms, two of which
(Eclipse, Android) have a service-oriented character.

Other works provide transformations between variabil-
ity models and manifests. Cosmo et al. [66] show how
feature models can be encoded as interdependent manifests.
Galindo et al. [67] interpret Debian manifests as one fea-
ture model. In both works, the feature modeling languages
are much simpler than the languages we investigated. An-
other comparative study of Eclipse and Debian manifests
was done by Schmid [68]. He concludes that constraint
declaration facilities of Debian and Eclipse manifests are
comparable in their expressiveness to feature models, with
minor limitations. He also identifies a number of concepts
(e.g., versioning and information hiding) to handle variabil-
ity in a distributed development structure.

We extend the latter three works. Our results challenge
the practicality of transformations between real-world vari-
ability models and manifests, due to the diverse expressive-
ness we observed and Hypothesis 1 that such models are
not applicable in a distributed setting.

10.4. Dependencies
Researchers have studied dependencies in ecosystems.

Lungo et al. [69] recover dependencies between related soft-
ware projects—the main entities in their notion of a soft-
ware ecosystem. They assume that projects are linked
together in some form, and consider dependencies origi-
nating from method calls and class references among the
projects. They propose a metamodel and instantiate it by
mining 211 Smalltalk projects. Robbes et al. [70] present
early results on a study of API ripple effects (forced mainte-
nance of code when a used API changes) in two ecosystems.
They consider structural changes: addition, removal, and
renaming of classes and methods. They observe that ripple
effects can have a long lifecycle (up to four months), during
which assets remain in an inconsistent state.

Both works consider ecosystems as collections of indi-
vidual software projects, managed within their own source
code repositories and having references to each other, not
necessarily relying on a common run-time platform, but

using common programming language mechanisms (e.g.,
class referencing, method calls). This view of ecosystems is
different from ours. In fact, in our three open platforms, the
relationship between basic units and projects is not obvious.
While many basic units might be related to exactly one
software development project, we believe this relationship is
more diverse. Thus, their identified dependency structures
are different; theirs and our work provide complementary
views. Finally, we also contribute a technique to discover
dependencies between Android apps, with a static analysis
of Android (Dalvik) bytecode.

11. Conclusion

With our exploratory study of five successful ecosys-
tems, we took one, but self-contained step towards building
a theory. We explored the spectrum of mechanisms, built
a conceptual framework, and used it to compare the sub-
jects. We propose explanations for the differences and
develop hypotheses with practical implications for project
management, architecture, and tool support.
Conceptual Framework. The conceptual framework
was instrumental to compare our subjects. Beyond being a
helper construct, it also aims at understanding variability
mechanisms, their characteristics and relationships. For
instance, it relates variability models, manifests, and types
of assets. It allows reasoning about ecosystems with a
common terminology. Characteristics in the framework
reflect important design decisions that platform providers
have to make. Instantiations of the framework for each of
the studied ecosystems provide insight into the concrete
solutions to variability, and the organizational contexts
in which they are used. The framework can be extended
or refined by other researchers when conducting further
studies of ecosystem technology. It can also be related to
other frameworks addressing non-technical aspects.
Variability Mechanisms. We learn that variability mod-
els are effective in centralized variability management sce-
narios, and particularly for systems software. It is not clear
whether they would be beneficial in a distributed variability
management scenario. In all the studied ecosystems, we
find rich dependency languages and variability descriptions
comprising many direct and indirect (capability-based) de-
pendencies. Indirect dependencies to abstract capabilities,
as opposed to concrete units, are used intensively in highly
growing ecosystems. Ecosystems with large free markets
of assets available for end users offer much simpler depen-
dency languages, respecting the less technical nature of the
consumers of their product. On the other hand, they rely
on more expressive capabilities, which should not just be
labels, but DSLs with an extensive vocabulary.
Variability Encouragement. Recall that variability
management in closed platforms, such as software product
lines, aims at taming variability, to avoid diversity that
has no business advantage. This objective is supported by
activities such as variability modeling, scoping (controlling
and restricting contributions), and maintaining variability

15

information of basic units (unit parameters, dependencies,
versioning). The involved variability mechanisms are rather
heavyweight and require advanced technical skills, which
hinders contributions. The mechanisms used by open plat-
forms target a different set of activities. Among others,
these comprise maintaining capabilities and common vo-
cabularies, establishing uniform distribution channels, and
lowering the entry barriers for contributions while assuring
their quality using technical mechanisms. The identified
mechanism of very different nature in open ecosystem plat-
forms calls for recognition of a new discipline in variability
research: Variability Encouragement. Analyzing the ac-
tivities behind it and relating them to known software
engineering processes and practices is an agenda for future
research.

Acknowledgements

We would like to thank Sven Apel, Bram Adams, Chris-
tian Kästner, and Klaus Schmid for discussions on earlier
versions of this article, as well as the anonymous reviewers
for constructive feedback. This work was supported by
the German National Academic Foundation, the German
Research Foundation (LO 1719/3-1), the German Federal
Ministry of Education and Research (01IS10033D), and
the Ontario Research Fund.

References

[1] J. Sincero, H. Schirmeier, W. Schröder-Preikschat, O. Spinczyk,
Is the Linux Kernel a Software Product Line?, in: SPLC-OSSPL,
2007.

[2] T. Berger, S. She, R. Lotufo, A. Wasowski, K. Czarnecki, A
study of variability models and languages in the systems software
domain, IEEE Transactions on Software Engineering 39 (12)
(2013) 1611–1640.

[3] P. Clements, L. Northrop, Software Product Lines: Practices
and Patterns, Addison-Wesley, 2001.

[4] J. Bosch, From software product lines to software ecosystems,
in: SPLC, 2009.

[5] J. Corbet, G. Kroah-Hartman, A. McPherson, Linux kernel
development, http://go.linuxfoundation.org/who-writes-linux-2012 (2012).

[6] C. Burkard, T. Widjaja, P. Buxmann, Software ecosystems,
Wirtschaftsinformatik 54.

[7] J. D. McGregor, Ecosystems continued, Journal of Object Tech-
nology 8 (7).

[8] J. van Gurp, C. Prehofer, J. Bosch, Comparing practices for
reuse in integration-oriented software product lines and large
open source software projects, Software: Practice and Experience
40 (4) (2010) 285–312.

[9] M. Anvaari, S. Jansen, Evaluating architectural openness in
mobile software platforms, in: ECSA, 2010.

[10] J. V. Gurp, J. Bosch, M. Svahnberg, On the notion of variability
in software product lines, in: WICSA, 2001.

[11] M. Svahnberg, J. van Gurp, J. Bosch, A taxonomy of variability
realization techniques, Software: Practice and Experience 35 (8)
(2005) 705–754.

[12] S. Jansen, A. Finkelstein, S. Brinkkemper, A sense of community:
A research agenda for software ecosystems, in: ICSE, 2009.

[13] G. K. Hanssen, T. Dybå, Theoretical foundations of software
ecosystems, in: IWSECO, 2012.

[14] Online Appendix, http://bitbucket.org/tberger/ecosystem_mining.
[15] O. Barbosa, C. Alves, A systematic mapping study on software

ecosystems, in: IWSECO, 2011.

[16] D. G. Messerschmitt, C. Szyperski, Software Ecosystem: Under-
standing an Indispensable Technology and Industry, MIT Press,
2003.

[17] C. Szyperski, Component Software: Beyond Object-Oriented
Programming, Addison-Wesley, 2002.

[18] IT Radar, Software ecosystems - interview with Slinger Jansen,
http://www.it-radar.org/serendipity/uploads/transkripte/SECO-Transcript_I.
pdf (2012).

[19] C. Seidl, U. Assmann, Towards modeling and analyzing variabil-
ity in evolving software ecosystems, in: VaMoS, 2013.

[20] G. K. Hanssen, A longitudinal case study of an emerging software
ecosystem: Implications for practice and theory, J. Syst. Softw.
85 (7) (2012) 1455–1466.

[21] M. Svahnberg, J. van Gurp, J. Bosch, On the notion of variability
in software product lines, Tech. Rep. Research Report No. 02/01,
Blekinge Institute of Technology (2001).

[22] D. Muthig, T. Patzke, Generic implementation of product line
components, in: NetObjectDays, 2002.

[23] K. Kang, S. Cohen, J. Hess, W. Nowak, S. Peterson, Feature-
oriented domain analysis (FODA) feasibility study, Tech. Rep.
SEI-90-TR-21, CMU-SEI (1990).

[24] K. Schmid, R. Rabiser, P. Grünbacher, A comparison of decision
modeling approaches in product lines, in: VaMoS, 2011.

[25] A. Hubaux, Y. Xiong, K. Czarnecki, A user survey of configura-
tion challenges in Linux and eCos, in: VaMoS, 2012.

[26] S. Easterbrook, J. Singer, M.-A. Storey, D. Damian, Selecting
empirical methods for software engineering research, in: Guide
to Advanced Empirical Software Engineering, Springer, 2008.

[27] M. Jørgensen, D. Sjøberg, Generalization and theory-building
in software engineering research, in: EASE, 2004.

[28] K. M. Eisenhardt, Building theories from case study research,
The Academy of Management Review 14 (4) (1989) 532–550.

[29] K. Czarnecki, U. W. Eisenecker, Generative Programming,
Addison-Wesley, 2000.

[30] Debian policy, http://debian.org/doc/debian-policy, accessed 06/2013.
[31] Eclipse Development Process, http://eclipse.org/projects/dev_process/

development_process_2010.pdf, accessed 06/2013.
[32] T. Berger, Variability modeling in the real, Ph.D. thesis, Faculty

of Mathematics and Computer Science, University of Leipzig,
available at http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-113623
(May 2013).

[33] eCos and RedBoot based products showcase, http://ecoscentric.com/
ecos/examples.shtml, accessed 06/2013.

[34] J. M. Gonzalez-Barahona, G. Robles, M. Michlmayr, J. J. Amor,
D. M. German, Macro-level software evolution: a case study of
a large software compilation, Empirical Software Engineering
14 (3) (2009) 262–285.

[35] J. D. McGregor, J. Y. Monteith, Eclipse: An ecosystem case
study, SPLC’12 tutorial on Supporting Strategic Software Engi-
neering Decision Making through Ecosystems (2012).

[36] M. Milinkovich, Eclipse: The open innovation network,
Presentation at Open Source Meets Business. Slides avail-
able at http://www.heise.de/events/2007/open_source_meets_business/
keynotes/vortrag117.pdf (2007).

[37] eCos, http://ecos.sourceware.org/, accessed 06/2013.
[38] J. Corbet, G. Kroah-Hartman, A. McPherson, Linux kernel de-

velopment, https://www.linuxfoundation.org/sites/main/files/lf_linux_kernel_
development_2010.pdf (2010).

[39] M. Krafft, TheDebian System, Open SourcePress, 2005.
[40] Eclipse marketplace, http://marketplace.eclipse.org, accessed 06/2013.
[41] Yoxos on Demand, http://ondemand.yoxos.com, accessed 06/2013.
[42] Android Open Source Project – People and Roles, http://source.

android.com/source/roles.html, accessed 06/2013.
[43] I. Herraiz, A. E. Hassan, Beyond lines of code: Do we need more

complexity metrics?, in: A. Oram, G. Wilson (Eds.), Making
Software: What Really Works, and Why We Believe It, O’Reilly
Media, 2010, pp. 125–141.

[44] Unofficial Debian Repositories, http://apt-get.org, accessed 06/2013.
[45] Number of available Android applications, http://appbrain.com/stats/

number-of-android-apps, accessed 06/2013.
[46] T. Berger, S. She, K. Czarnecki, A. Wąsowski, Feature-to-Code

16

http://go.linuxfoundation.org/who-writes-linux-2012
http://bitbucket.org/tberger/ecosystem_mining
http://www.it-radar.org/serendipity/uploads/transkripte/SECO-Transcript_I.pdf
http://www.it-radar.org/serendipity/uploads/transkripte/SECO-Transcript_I.pdf
http://debian.org/doc/debian-policy
http://eclipse.org/projects/dev_process/development_process_2010.pdf
http://eclipse.org/projects/dev_process/development_process_2010.pdf
http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-113623
http://ecoscentric.com/ecos/examples.shtml
http://ecoscentric.com/ecos/examples.shtml
http://www.heise.de/events/2007/open_source_meets_business/keynotes/vortrag117.pdf
http://www.heise.de/events/2007/open_source_meets_business/keynotes/vortrag117.pdf
http://ecos.sourceware.org/
https://www.linuxfoundation.org/sites/main/files/lf_linux_kernel_development_2010.pdf
https://www.linuxfoundation.org/sites/main/files/lf_linux_kernel_development_2010.pdf
http://marketplace.eclipse.org
http://ondemand.yoxos.com
http://source.android.com/source/roles.html
http://source.android.com/source/roles.html
http://apt-get.org
http://appbrain.com/stats/number-of-android-apps
http://appbrain.com/stats/number-of-android-apps

mapping in two large product lines, in: SPLC, 2010.
[47] S. Nadi, R. Holt, The linux kernel: A case study of build system

variability, Journal of Software: Evolution and Process.
[48] T. Berger, S. She, Formal semantics of theCDL language, http:

//informatik.uni-leipzig.de/~berger/cdl_semantics.pdf (2010).
[49] S. She, T. Berger, Formal semantics of the Kconfig language,

http://eng.uwaterloo.ca/~shshe/kconfig_semantics.pdf (2010).
[50] F. Mancinelli, J. Boender, R. di Cosmo, J. Vouillon, B. Durak,

X. Leroy, R. Treinen, Managing the complexity of large free
and open source package-based software distributions, in: ASE,
2006.

[51] J. McAffer, P. VanderLei, S. Archer, OSGi and Equinox: Creat-
ing Highly Modular Java Systems, 1st Edition, Addison-Wesley
Professional, 2010.

[52] Android Devolper Guide – App Manifest, http://developer.android.
com/guide/topics/manifest/manifest-intro.html, accessed 01/2014.

[53] T. Thüm, C. Kästner, S. Erdweg, N. Siegmund, Abstract features
in feature modeling, in: SPLC, 2011.

[54] Google Play, http://play.google.com, accessed 06/2013.
[55] E. Zini, A cute introduction to debtags, in: 5th annual Debian

Conference, 2005.
[56] Some development model notes, http://lwn.net/Articles/108484, ac-

cessed 06/2013.
[57] R. Lotufo, S. She, T. Berger, K. Czarnecki, A. Wąsowski, Evolu-

tion of the Linux kernel variability model, in: SPLC, 2010.
[58] Android Devoloper Guide – Intents and Intent Filters, http:

//developer.android.com/guide/components/intents-filters.html, accessed
06/2013.

[59] OpenIntents, http://openintents.org, accessed 06/2013.
[60] M. Mendonca, A. Wąsowski, K. Czarnecki, Sat-

based analysis of featuremodels is easy, in: SPLC, 2009.
[61] K. M. Eisenhardt, M. E. Graebner, Theory building from cases:

Opportunities and challenges., Academy of management journal
50 (1) (2007) 25–32.

[62] H. Obbink, J. Müller, P. America, R. van Ommering, G. Muller,
W. van der Sterren, J. Wijnstra, COPA: a component-oriented
platform architecting method for families of software-intensive
electronic products, Tutorial for SPLC.

[63] D. Le Berre, P. Rapicault, Dependency Management for the
Eclipse Ecosystem: Eclipse p2, Metadata and Resolution, in:
IWOCE, 2009.

[64] Refcard Equinox & OSGi, http://cdn.dzone.com/sites/all/files/refcardz/
rc037-010d-equinox.pdf, accessed 12/2013.

[65] K. Schmid, H. Eichelberger, C. Kröher, Domain-oriented cus-
tomization of service platforms: Combining product line engi-
neering and service-oriented computing, Journal of Universal
Computer Science 19 (2) (2013) 233–253.

[66] R. D. Cosmo, S. Zacchiroli, Feature diagrams as package depen-
dencies, in: SPLC, 2010.

[67] J. A. Galindo, D. Benavides, S. Segura, Debian packages reposi-
tories as Software Product Line models., in: ACoTA, 2010.

[68] K. Schmid, Variability modeling for distributed development - a
comparison with established practice, in: SPLC, 2010.

[69] M. Lungu, R. Robbes, M. Lanza, Recovering inter-project de-
pendencies in software ecosystems, in: ASE, 2010.

[70] R. Robbes, M. Lungu, A study of ripple effects in software
ecosystems, in: ICSE, 2011.

17

http://informatik.uni-leipzig.de/~berger/cdl_semantics.pdf
http://informatik.uni-leipzig.de/~berger/cdl_semantics.pdf
http://eng.uwaterloo.ca/~shshe/kconfig_semantics.pdf
http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://play.google.com
http://lwn.net/Articles/108484
http://developer.android.com/guide/components/intents-filters.html
http://developer.android.com/guide/components/intents-filters.html
http://openintents.org
http://cdn.dzone.com/sites/all/files/refcardz/rc037-010d-equinox.pdf
http://cdn.dzone.com/sites/all/files/refcardz/rc037-010d-equinox.pdf

	Introduction
	Background
	Architectural Openness
	Variability Mechanisms
	Dependencies

	Methodology
	Case Study Selection
	Qualitative Analysis
	Quantitative Analysis
	Reproducibility

	Conceptual Framework
	Context of Mechanisms
	Platform Domain and Target Audience
	Organization
	Scale and Growth

	Variability Mechanisms
	Variability Representation
	Decisions
	Encapsulation
	Interactions
	Openness

	Dependencies
	Specification, Semantics & Expressiveness
	Dependency Structures
	Connectivity
	Density

	Phenomena and Hypotheses
	Context of Variability Mechanisms
	Variability Mechanisms
	Variability Representation
	Decisions
	Encapsulation
	Interactions

	Dependencies
	Dependency Structures

	Threats to Validity
	External Validity
	Internal Validity.
	Construct Validity

	Related Work
	Software Ecosystem Theory Building
	Architectural Openness
	Variability Mechanisms
	Dependencies

	Conclusion

