
Asymmetric Secure Multi-Execution with
Declassification

Iulia Boloşteanu and Deepak Garg

Max Planck Institute for Software Systems, Germany
{iulia mb,dg}@mpi-sws.org

Abstract. Secure multi-execution (SME) is a promising black-box tech-
nique for enforcing information flow properties. Unlike traditional static
or dynamic language-based techniques, SME satisfies noninterference
(soundness) by construction and is also precise. SME executes a given
program twice. In one execution, called the high run, the program re-
ceives all inputs, but the program’s public outputs are suppressed. In
the other execution, called the low run, the program receives only public
inputs and declassified or, in some cases, default inputs as a replacement
for the secret inputs, but its private outputs are suppressed. This ap-
proach works well in theory, but in practice the program might not be
prepared to handle the declassified or default inputs as they may dif-
fer a lot from the regular secret inputs. As a consequence, the program
may produce incorrect outputs or it may crash. To avoid this problem,
existing work makes strong assumptions on the ability of the given pro-
gram to robustly adapt to the declassified inputs, limiting the class of
programs to which SME applies.
To lift this limitation, we present a modification of SME, called asymmet-
ric SME or A-SME. A-SME gives up on the pretense that real programs
are inherently robust to modified inputs. Instead, A-SME requires a vari-
ant of the original program that has been adapted (by the programmer
or automatically) to react properly to declassified or default inputs. This
variant, called the low slice, is used in A-SME as a replacement for the
original program in the low run. The original program and its low slice
must be related by a semantic correctness criteria, but beyond adhering
to this criteria, A-SME offers complete flexibility in the construction of
the low slice. A-SME is provably sound even when the low slice is incor-
rect and when the low slice is correct, A-SME is also precise. Finally, we
show that if the program is policy compliant, then its low slice always
exists, at least in theory. On the side, we also improve the state-of-the-
art in declassification policies by supporting policies that offer controlled
choices to untrustworthy programs.

1 Introduction

Secure systems often rely on information flow control (IFC) to ensure that an
unreliable application cannot leak sensitive data to public outputs. The stan-
dard IFC security policy is noninterference, which says that confidential or high

inputs must not affect public or low outputs. Traditionally, noninterference and
related policies have been enforced using static, dynamic, or hybrid analyses of
programs [3], [7], [9], [10], [11], [16], [17], [23], but it is known that such analyses
cannot be sound (reject all leaky programs) and precise (accept all non-leaky
programs) simultaneously. Secure multi-execution or SME is a promising recent
technique that attains both soundness and precision, at the expense of more
computational power [13]. Additionally, SME is a black-box monitoring tech-
nique that does not require access to the program’s source code or binary.

Briefly, SME runs two copies of the same program, called high and low,
simultaneously. The low run is given only low (public) inputs and its high (secret)
outputs are blocked. The high run is given both low and high inputs, but its
low outputs are blocked. Neither of the two runs can both see high inputs and
produce low outputs, so SME trivially enforces noninterference. Less trivially, it
can be shown that if a program is noninterfering semantically, then SME does not
change its output behavior, so SME is also precise. SME has been implemented
and tested in at least one large application, namely the web browser Firefox [6].
As CPU cores become cheaper, we expect SME to scale better and to be applied
to other applications as well.

Whereas SME may sound like the panacea for enforcing noninterference, its
deployment in practice faces a fundamental issue: Since the low run cannot be
provided high inputs, what must it be provided instead? The original work on
SME [13] proposes providing default values like 0 or null in place of high in-
puts. In their seminal work on enforcing declassification policies with SME [26],
Vanhoef et al. advocate providing policy-declassified values in place of high in-
puts. In either case, the high inputs received by the low run of the program
are different from the actual high inputs and may also have different semantics.
Consequently, the program must be aware of, and robust to, changes in its high
inputs’ semantics, otherwise the low run may crash or produce incorrect outputs.
This is somewhat contrary to the spirit of SME, which aims to be sound and
precise on all (unmodified) programs.

Asymmetric SME (A-SME) The robustness requirement limits the programs
to which SME can be applied in practice. To circumvent the limitation, a better
solution or method is needed. Such a solution is the primary goal of this paper:
We posit a modification of SME, called asymmetric SME or A-SME, that gives
up on the SME design of executing the same program in the high and low runs.
Instead, in A-SME, a second program that has been adapted to use declassified
inputs (or default inputs in the degenerate scenario where no declassification
is allowed) in place of regular high inputs is used for the low run. This second
program, which we call the low slice, may be constructed by the programmer or
by slicing the original program automatically.

In A-SME, the robustness assumption of SME changes to a semantic correct-
ness criteria on the low slice. This correctness criteria takes the declassification
policy into account. We prove three results: (a) Irrespective of the correctness
of the low slice, the declassification policy is always enforced by A-SME, (b) If
the low slice is correct, then A-SME is precise, and (c) If the original program

complies with the declassification policy semantically, then its low slice exists,
at least in theory.

Our focus here is on reactive programs and declassification policies that are
specified separately from the monitored program. The rationale for this focus is
straightforward: Both web and mobile applications are inherently reactive and,
due to the open nature of the two platforms, applications cannot be trusted to
declassify sensitive information correctly in their own code.

Improving expressiveness of policies enforced with SME As a secondary
contribution, we improve the expressiveness of declassification policies in existing
work on SME with declassification. Specifically, we improve upon the work of
Vanhoef et al. [26] (VGDPR in the sequel). First, we allow declassification to
depend on feedback from the program and, second, we allow the sensitivity of an
input’s presence to depend on policy state. We explain these two points below.

Output feedback. We allow policy state to depend on program outputs. This
feedback from the program to the policy permits the policy to offer the program
controlled choices in what is declassified, without having to introspect into the
state of the program. The following examples illustrate this.

Example 1. Consider a data server, which spawns a separate handler process for
every client session. A requirement may be that each handler process declassifies
(across the network) the data of at most one client, but the process may choose
which client that is. With output feedback, the handler process can produce a
special high output, seen only by the SME monitor, to name the client whose
data the process wants to access. Subsequently, the policy will deny the low run
any data not belonging to that client.

Example 2. Consider an outsourced audit process for income tax returns. A sig-
nificant concern may be subject privacy. Suppose that the process initially reads
non-identifying data about all forms (e.g., only gross incomes and pseudonyms
of subjects), and then decides which 1% of the forms it wants to audit in detail.
With output feedback, we may enforce a very strong policy without interfering
with the audit’s functionality: The low run of the audit process can see (and,
hence, leak) the detailed data of only 1% of all audit forms, but it can choose
which forms constitute the 1%.

State-dependent input presence. Like some prior work on SME [6], we consider
a reactive setting, where the program being monitored reacts to inputs provided
externally. In this setting, the mere presence of an input (not just its content)
may be sensitive. SME typically handles sensitive input presence by not invoking
the low run for an input whose presence is high [6], [26]. Generalizing this, our
policies allow the decision of whether an input’s presence is high to depend on
the policy state (i.e., on past inputs and outputs). This is useful in some cases,
as the following example demonstrates.

Example 3. Consider a news website whose landing page allows the visitor to
choose news feeds from topics like politics, sports, and social, and allows the

user to interact with the feed by liking news items. When the user clicks one of
these topics, its feed is displayed using AJAX, without navigating the user to
another page. On the side, untrusted third-party scripts track mouse clicks for
page analytics. A privacy-conscious user may want to hide her interaction with
certain feeds from the tracking scripts. For example, the occurrence of a mouse
click on the politics feed may be sensitive, but a similar click on the sports feed
may not. Thus, the sensitivity of mouse click presence on the page depends on
the topic being browsed, making the sensitivity state-dependent.

Contributions To summarize, we make the following contributions:

– We introduce asymmetric SME (A-SME) that uses a program (the low slice)
adapted to process declassified values in the low run (Section 4). This ex-
pands the set of programs on which declassification policies can be enforced
precisely using SME.

– We increase the expressiveness of declassification policies in SME, by sup-
porting program feedback and state-dependent input presence (Section 3).

– We prove formally that A-SME enforcement is always secure and, given a
correct low slice, also precise (Section 4).

– We show that if the program conforms to the policy then its low slice exists,
at least in theory (Section 5).

Limitations The focus of this paper is on the foundations of A-SME; methods
for constructing the low slice are left for future work. Also, the where dimension
of declassification, which allows a program to internally declassify information
through special declassify actions, is out of the scope of this work. In the context
of SME, the where dimension has been studied by VGDPR and independently
by Rafnsson and Sabelfeld [21,22] (see Section 6).

2 Programming model

We model reactive programs, i.e. programs invoked by the runtime when an input
is available from the program’s environment. In response, the program produces
a list of outputs and this input-output pattern repeats indefinitely. In processing
every input, the program may update its internal memory and during the next
invocation, the runtime passes the updated memory to the program. This allows
past inputs to affect the response to future inputs. Reactive programs are a
ubiquitous model of computing and web browsers, servers and OS shells are all
examples of reactive programs.

Let Input, Output and Memory denote the domains of inputs, outputs and
memories for programs, and let [τ] denote a finite, possibly empty list of elements
of type τ .

Definition 1 (Reactive program). A reactive program p is a function of type
Input×Memory 7→ [Output]×Memory.

[], µ −→p []
R1

p(i, µ) = (O,µ′) I, µ′ −→p E

i :: I, µ −→p (i, O) :: E
R2

Fig. 1: Reactive semantics.

The program p accepts an input and its last memory and produces a list of
outputs and an updated memory. We deliberately avoid introducing a syntax
for reactive programs to emphasize the fact that A-SME is a black-box enforce-
ment technique that does not care about the syntax of the program it monitors.
Concretely, the program p may be written in any programming language with a
distinguished syntax for inputs and outputs.
Semantics We use the letters i, I, O and µ to denote elements of Input, [Input],
[Output] and Memory. p(i, µ) = (O,µ′) means that the program p when given in-
put i in memory µ produces the list of outputs O and the new memory µ′. A run
of the program p, written E, is a finite sequence of the form (i1, O1), . . . , (in, On).
The run means that starting from some initial memory, when the program
is invoked sequentially on the inputs i1, . . . , in, it produces the output lists
O1, . . . , On, respectively. For E = (i1, O1), . . . , (in, On), we define its projection
to inputs E|i = i1, . . . , in and its projection to outputs E|o = O1 ++ . . .++On,
where ++ denotes list concatenation.

Formally, the semantics of a reactive program p are defined by the judgment
I, µ −→p E (Figure 1), which means that program p, when started in initial
memory µ and given the sequence of inputs I, produces the run E. Here, i :: I
denotes the list obtained by adding element i to the beginning of the list I. Note
that if I, µ −→p E, then E|i = I and |E| = |I|.

3 Declassification policies

Our A-SME monitor enforces an application-specific declassification policy. This
policy may represent the requirements of the programmer, the site administra-
tor, and the hosting environment, but it must be trusted. We model the policy
as an abstract stateful program whose state may be updated on every input
and every output. The policy’s state is completely disjoint from the monitored
program’s memory, and is inaccessible to the program directly. In each state the
policy optionally produces a declassified value, which is made available to the
low run of A-SME (the low run does not receive inputs directly). By allowing the
policy state (and, hence, the declassified value) to depend on inputs, we allow
for policies that, for instance, declassify the aggregate of 10 consecutive inputs,
but not the individual inputs, as in the prior work of VGDPR. By additionally
allowing the policy state to depend on program outputs, the policy may offer
the program choices as explained and illustrated in Section 1, Examples 1 and 2.
Finally, as illustrated in Example 3, the policy provides a function to decide
whether an input’s presence is high or low in a given state.

Definition 2 (Policy D). A declassification policy D is a tuple (S, updi, updo, σ, π),
where:

– S is a possibly infinite set of states. Our examples and metatheorems often
specify the initial state separately.

– updi : S × Input → S and updo : S × [Output] → S are functions used to
update the state on program input and output, respectively.

– σ : S → Bool specifies whether the presence of the last input is low or high.
When σ(s) = true, the input that caused the state to transition to s has low
presence, else it has high presence.

– π : S → Declassified is the projection or declassification function that re-
turns the declassified value for a given state. This value is provided as input
to the low run when σ(s) = true. Declassified is the domain of declassified
values.

The model of our declassification policies is inspired by the one of VGDPR,
but our policies are more general because we allow the policy state to depend
on program outputs and to set the input presence sensitivity. While VGDPR
consider two declassification functions, one idempotent function for projecting
every input to an approximate value, and another one for releasing aggregate
information from past inputs, we fold the two into a single function π. See
Section 6 for a detailed comparison of our model to VGDPR’s model.

Example 4 (Declassification of aggregate inputs). Our first example is taken from
VGDPR. A browsing analytics script running on an interactive webpage records
user mouse clicks to help the webpage developer optimize content placement
in the future. A desired policy might be to prevent the script from recording
every individual click and, instead, release the average coordinates of blocks
of 10 mouse clicks. Listing 1 shows an encoding of this policy. The policy’s
internal state records the number of clicks and the sum of click coordinates in
the variables cnt and sum, respectively. The policy’s input update function updi

takes the new coordinate x of a mouse click, and updates both cnt and sum,
except on every 10th click, when the avg (average) is updated and cnt and sum
are reset. The projection function π simply returns the stored avg. Finally, since
the last average can always be declassified, the input presence function σ always
returns true. The output update function updo is irrelevant for this example and
is not shown. (As a writing convention, we do not explicitly pass the internal
state of the policy to the functions updi, updo, σ and π, nor return it from updi

and updo. This state is implicitly accessible in the policy’s state variables.)

Example 5 (State-dependent input presence). This example illustrates the use
of the input presence function σ. The setting is that of Example 3. The policy
applies to a news website where the user can choose to browse one of three
possible topics: politics, sports, or social. The declassification policy for mouse
clicks is the following: On the sports page, mouse clicks are not sensitive; on the
social page, the average of 10 mouse click coordinates can be declassified (as in

Listing 1 Input aggregation
Policy state s (local variables):

cnt : int
sum : int
avg : int

Initialization: cnt = 0; sum = 0; avg = 0;
Update functions:

updi(MouseClick x) =
case cnt of
| 9→ {cnt = 0; avg = (sum + x)/10; sum = 0; }
| → {cnt = cnt + 1; sum = sum + x; }

Presence decision function:
σ() = true.

Projection function:
π() = avg.

Example 4); on the politics page, not even the existence of a mouse click can be
declassified.

Listing 2 shows an encoding of this policy. The policy records the current
topic being browsed by the user in the state variable st, which may take one of
four values: initial, politics, sports and social. Upon an input (function updi), the
policy state update depends on st. For st = sports, the click’s coordinate x is
stored in the variable last click. For st = social, the policy mimics the behavior
of Example 4, updating a click counter cnt, a click coordinate accumulator sum
and the average avg once in every 10 clicks. Importantly, when st = politics, the
policy state is not updated (the input is ignored). A separate component of updi

not shown here changes st when the user clicks on topic change buttons.
The input presence function σ says that the input is high when st ∈ {politics,

initial} (output is false) and low otherwise. Hence, when the user is browsing
politics, not even the presence of inputs is released.

The projection function π declassifies the last click coordinate last click when
the user is browsing sports and the average of the last block of 10 clicks stored in
avg when the user is browsing social topics. The value returned by the projection
function is irrelevant when the user is browsing politics or has not chosen a topic
(because in those states σ returns high), so these cases are not shown.

Example 6 (Output feedback: Data server). This example illustrates policy state
dependence on program output, which allows feedback from the program being
monitored to the policy. The setting is that of Example 1. A data server handles
the data of three clients — Alice, Bob and Charlie. The policy is that the data
of at most one of these clients may be declassified by a server process and the
process may choose this one client. An encoding of the policy is shown in List-
ing 3. The policy tracks the process’ choice in the variable st, which can take one
of the four values: none (choice not yet made), alice, bob or charlie. To make the
choice, the process produces an output specifying a user whose data it wants to
declassify. The function updo records the server’s choice in st if the process has

Listing 2 State-dependent input presence
Policy state s (local variables):

st : {initial, sports, politics, social}
cnt : int
sum : int
last click : int

Initialization: st = initial; cnt = 0; sum = 0; last click = 0;
Update functions:

updi(MouseClick x) =
case st of
| sports→ {last click = x; }
| social→

case cnt of
| 10→ {cnt = 1; sum = x; }
| → {cnt = cnt + 1; sum = sum + x; }

Presence decision function:
σ() =

case st of
| initial→ false
| sports→ true
| politics→ false
| social→ case cnt of | 10→ true | → false.

Projection function:
π() =

case st of
| sports→ last click
| social→ sum/10.

not already made the choice (updo checks that st = none). When user data is
read (i.e., a new input from the file system appears), the input update function
updi compares st to the user whose data is read. If the two match, the read
data d is stored in the policy state variable data, else null is stored in data. The
projection function π simply declassifies the value stored in data.

Example 7 (Output feedback: Audit). This example also illustrates feedback from
the program to the policy. The setting is that of Example 2, where an untrusted
audit process is initially provided with pseudonyms and non-sensitive informa-
tion of several client records, and later it identifies a certain fraction of these
records, which must be declassified in full for further examination. We have sim-
plified the example for exposition: The audit process reads exactly 100 records
and then selects 1 record to be declassified for further examination. Pseudonyms
are simply indices into an array maintained by the policy. An encoding of the
corresponding policy is shown in Listing 4. The policy variable count counts the
number of records fed to the program so far. While count is less than 100, the
input update function updi simply stores each input record i of five fields in the
array records. When count reaches 100, the output update function updo allows

Listing 3 Output feedback: Data server
Policy state s (local variables):

st : {none, alice, bob, charlie}
data : file

Initialization: st = none; data = null;
Update functions:

updo(RestrictAccessTo user) =
if (st = none) then

case user of
| Alice→ {st = alice; }
| Bob→ {st = bob; }
| Charlie→ {st = charlie; }

updi(PrivateData (user, d)) =
if (st = user) then {data = d; } else {data = null; }

Presence decision function:
σ() = true.

Projection function:
π() = data.

the program to provide a single index idx, which identifies the record that must
be declassified in full. The full record stored at this index is transferred to the
variable declassified, the array records is erased and count is set to ∞ to encode
that the process has made its choice.

The projection function π reveals only the index and the gross income of the
last input (at index (count−1) in records) while count is not∞. When count has
been set to∞, the single record chosen by the process is revealed in full through
the variable declassified.

4 Asymmetric SME

We enforce the declassification policies of Section 3 using a new paradigm that
we call asymmetric SME (A-SME). A-SME builds on classic SME, but uses
different programs in the high and low runs (hence the adjective asymmetric).
Classic SME – as described, for example, by VGDPR – enforces a declassification
policy on a reactive program by maintaining two independent runs of the given
program. The first run, called the high run, is invoked on every new input and
is provided the new input as-is. The second run, called the low run, is invoked
for an input only when the input’s presence (as determined by the policy) is
low. Additionally, the low run is not given the original input, but a projected
(declassified) value obtained from the policy after the policy’s state has been
updated with the new input. Only high outputs are retained from the high run
(these are not visible to the adversary) and only low outputs are retained from
the low run (these are visible to the adversary). Since the low run sees only
declassified values and the high run does not produce low outputs, it must be

Listing 4 Output feedback: Audit
Policy state s (local variables):

records : array[100] ∗ array[5]
count : int
declassified : array[5]

Initialization: records = null; count = 0; declassified = null;
Update functions:

updi(i) =
case count of
| 100 = return;
| x = {records[x] = i; count = x+ 1; }

updo(idx) =
case count of
| 100 = {declassified = records[idx]; records = null; count =∞; }
| = return;

Presence decision function:
σ() = true

Projection function:
π() =

case count of
| ∞ = declassified
| = let (idx, name, address, phone, income) = records[count− 1] in (idx, income)

the case that the low outputs depend only on declassified values. This enforces
a form of noninterference.

The problem with classic SME, which we seek to address by moving to A-
SME, is that even though the low and the high runs execute the same program,
they receive completely different inputs — the high run receives raw inputs,
whereas the low runs receives inputs created by the declassification policy. This
leads to two problems. First, if the programmer is not aware that her program
will run with SME, the low run may crash because it may not be prepared to
handle the completely different types of the declassified inputs. Fundamentally, it
seems impossible for the program to automatically adapt to the different inputs
of the high and the low runs, because it gets no indication of which run it is
executing in! Second, if the program tries to enforce the declassification policy
internally (which a non-malicious program will likely do), then in the low run, the
declassification is applied twice — once by the SME monitor and then internally
by the program. In contrast, in a run without SME, the function is applied only
once. As a consequence, one must assume that the function that implements
declassification is idempotent (e.g., in VGDPR, this declassification function is
called “project” and it must be idempotent). These two limitations restrict the
scenarios in which SME can be used to enforce declassification policies.

To broaden the scope of enforcement of declassification policies with SME,
we propose to do away with requirement that the same program be executed in
the high and low runs of SME. Instead, we assume that a variant of the program
that has been carefully crafted to use declassified inputs (not the raw inputs)

[], s, µH , µL Z=⇒Dp, pL
[]

A-SME-1

s′′ = updi(s, i) σ(s′′) = false
p(i, µH) = (O,µ′H) s′ = updo(s′′, O) I, s′, µ′H , µL Z=⇒Dp, pL

E

i :: I, s, µH , µL Z=⇒Dp, pL
(i, O|H) :: E

A-SME-2

s′′ = updi(s, i) σ(s′′) = true pL(π(s′′), µL) = (O′, µ′L)
p(i, µH) = (O,µ′H) s′ = updo(s′′, O) I, s′, µ′H , µ

′
L Z=⇒Dp, pL

E

i :: I, s, µH , µL Z=⇒Dp, pL
(i, O′|L ++O|H) :: E

A-SME-3

Fig. 3: Semantics of A-SME.

exists. This variant, called the low slice, is used in the low run instead of the
original program. The resulting paradigm is what we call asymmetric SME or
A-SME. Before delving into the details of A-SME and its semantics, we give an
intuition for the low slice.

D

pL

π O|L

O|H

p

Fig. 2: Factorization of a
program p into a declas-
sification policy D and a
low slice pL.

Low slice. For a program p : Input ×Memory 7→
[Output] × Memory, the low slice with respect to
policy D is a program pL : Declassified×Memory 7→
[Output] × Memory that produces the program’s
low outputs given as inputs values that have been
declassified in accordance with policy D. In other
words, the low slice is the part of the program that
handles only declassified data.

A question that arises is why this low slice
should even exist? Intuitively, if the program p is
compliant with policy D, then its low outputs de-
pend only on the output of the policy D. Hence,
semantically, p must be equivalent to a program that composes D with some
other function pL to produce low outputs (see Figure 2). It is this pL that we
call p’s low slice. We formalize this intuition in Section 5 by proving that if the
program p conforms to D (in a formal sense) then pL must exist. However, note
that the low slice pL may not be syntactically extractable from the program p
by any automatic transformation, in which case the programmer’s help may be
needed to construct pL.

4.1 Semantics of A-SME

A-SME enforces a declassification policy D over a program p and its low slice
pL, together called an A-SME-aware program, written (p, pL). The semantics of
A-SME are defined by the judgment I, s, µH , µL Z=⇒Dp, pL

E (Figure 3), which
should be read: “Starting in policy state s and initial memories µH (for the high

run) and µL (for the low run), the input sequence I produces the run E under
A-SME and policy D”.

We define the judgment by induction on the input sequence I. Rule A-SME-1
is the base case: When the input sequence I is empty, so is the run E (when
there is no input, a reactive program produces no output). Rules A-SME-2 and
A-SME-3 handle the case where an input is available. In both rules, the first
available input, i, is given to the policy’s input update function updi to obtain a
new policy state s′′. Then, σ(s′′) is evaluated to determine whether the input’s
presence is high or low (rules A-SME-2 and A-SME-3, respectively).

If the input’s presence is high (rule A-SME-2), then only the high run is
executed by invoking p with input i. The outputs O of this high run are used
to update the policy state to s′ (premise s′ = updo(s′′, O)). After this, the rest
of the input sequence is processed inductively (last premise). Importantly, any
low outputs in O are discarded. The notation O|H denotes the subsequence of O
containing all outputs on high (protected, non-public) channels. We assume that
each output carries an internal annotation that specifies whether its channel is
high or low, so O|H is defined.

D

p

pL

i

O

OL

i

π(·)

Fig. 4: Pictorial representa-
tion of A-SME semantics.

If the input’s presence is low (rule A-SME-3),
then in addition to executing the high run and
updating the policy state as described above, the
low slice pL is also invoked with the current de-
classified value π(s′′) to produce outputs O′ and
to update the low memory. Only the low outputs
in O′ (O′|L) are retained. All high outputs in O′
are discarded.

Figure 4 depicts A-SME semantics pictori-
ally. The dashed arrows denote the case where
the input’s presence is low (A-SME-3). In that case, the low slice executes with
the declassified value returned by the policy function π. The arrow from the
output O back to the policy D represents the output feedback.

In the following two subsections we show that A-SME is (1) secure — it
enforces policies correctly and has no false negatives, and (2) precise — if pL is
a correct low slice, then its observable behavior does not change under A-SME.

4.2 Security

We prove the security of A-SME by showing that a program running under
A-SME satisfies a form of noninterference. Roughly, this noninterference says
that if we take two different input sequences that result in the same declassified
values, then the low outputs of the two runs of the program under A-SME
are the same. In other words, the low outputs under A-SME are a function of
the declassified values, so an adversary cannot learn more than the declassified
values by observing the low outputs. Importantly, the security theorem makes
no assumption about the relationship between p and pL, so security holds even if
a leaky program or a program that does not expect declassified values as inputs
is provided as pL.

D∗(s, []) = []
D∗(s, (i, O) :: E) = D∗(updo(s′′, O), E) if s′′ = updi(s, i) and σ(s′′) = false
D∗(s, (i, O) :: E) = π(s′′) :: D∗(updo(s′′, O), E) if s′′ = updi(s, i) and σ(s′′) = true

Fig. 5: Function D∗ returns values declassified by policy D during a run.

To formally specify our security criteria, we first define a function D∗ (Fig-
ure 5) that, given an initial policy state s and a program run E, returns the
sequence of values declassified during that run. This function is defined by in-
duction on E and takes into account the update of the policy state due to both
inputs and outputs in E. It is similar to a homonym in VGDPR but adds policy
state update due to outputs. Note that D∗ adds the declassified value to the
result only when the input presence is low (condition σ(s′′) = true). Equipped
with the function D∗, we state our security theorem.

Theorem 1 (Security, noninterference under D) Suppose I1, µ1 −→p E1
and I2, µ2 −→p E2 and D∗(s1, E1) = D∗(s2, E2). If I1, s1, µ1, µL Z=⇒Dp, pL

E′1
and I2, s2, µ2, µL Z=⇒Dp, pL

E′2, then E′1|o|L = E′2|o|L.

Proof. By induction on the length of I1 ++ I2. See the appendix, Theorem 6.

The theorem says that if for two input sequences I1, I2, the two runs E1,
E2 of a program p result in the same declassified values (condition D∗(s1, E1) =
D∗(s2, E2)), then the A-SME execution of the program on I1, I2 will produce
the same low outputs (E′1|o|L = E′2|o|L) for any low slice pL. Note that the pre-
condition of the theorem is an equivalence on E1 and E2 obtained by execution
under standard (non-A-SME) semantics, but its postcondition is an equivalence
on E′1 and E′2 obtained by execution under A-SME semantics. This may look
a bit odd at first glance, but this is the intended and expected formulation of
the theorem. The intuition is that the theorem relates values declassified by the
standard semantics to the security of the A-SME semantics.

4.3 Precision

In the context of SME, precision means that for a non-leaky program, outputs
produced under SME are equal to the outputs produced without SME. In gen-
eral, SME preserves the order of outputs at a given level, but may reorder outputs
across levels. For instance, the rule A-SME-3 in Figure 3 places the low outputs
O′|L before the high outputs O|H . So, following prior work [26], we prove preci-
sion with respect to each level: We show that the sequence of outputs produced
at any level under A-SME is equal to the sequence of outputs produced at the
same level in the standard (non-A-SME) execution. Proving precision for high
outputs is straightforward for A-SME.

Theorem 2 (Precision for high outputs) For any programs p and pL, de-
classification policy D with initial state s, and input list I, if I, µH −→p E and
I, s, µH , µL Z=⇒Dp, pL

E′, then E|o|H = E′|o|H .

Proof. From the semantics in Figures 1 and 3 it can be observed that the high
run of A-SME mimics (in input, memory and outputs) the execution under −→p.
See the Appendix, Theorem 7 for details.

To show precision for low outputs, we must assume that the low slice pL is
correct with respect to the original program p and policy D. This assumption is
necessary because A-SME uses pL to produce the low outputs, whereas standard
execution uses p to produce them. Recall that the low slice pL is intended to
produce the low outputs of p, given values declassified by policy D. We formalize
this intuition in the following correctness criteria for pL.

Definition 3 (Correct low slice/correct low pair). A program pL of type
Declassified×Memory 7→ [Output]×Memory and an initial memory µL are called
a correct low pair (and pL is called a correct low slice) with respect to policy D,
initial state s, program p and initial memory µ if for all inputs I, if I, µ −→p E
and D∗(s, E) = R and R,µL −→pL

E′, then E|o|L = E′|o|L.

Based on this definition, we can now prove precision for low outputs.

Theorem 3 (Precision for low outputs) For any programs p and pL, de-
classification policy D with initial state s and input list I, if I, µH −→p E and
I, s, µH , µL Z=⇒Dp, pL

E′ and (µL, pL) is a correct low pair with respect to D, s, p
and µH , then E|o|L = E′|o|L.

The proof of this theorem relies on the following easily established lemma.

Lemma 1 (Low simulation). Let I, s, µH , µL Z=⇒Dp, pL
E and D∗(s, E) = R.

If R,µL −→pL
E′, then E|o|L = E′|o|L.

Proof. By induction on I. Intuitively, the low run in A-SME is identical to the
given run under −→pL

and the high run of A-SME does not contribute any low
outputs. See the Appendix, Lemma 4 for details.

Proof (of Theorem 3). Let R = D∗(s, E′) and R,µL −→pL
E′′. By Lemma 1,

E′|o|L = E′′|o|L. From Definition 3, E|o|L = E′′|o|L. By transitivity of equality,
we get that E|o|L = E′|o|L.

Theorem 4 (Precision) For any programs p and pL, declassification policy D
with initial state s and input list I, if I, µH −→p E and I, s, µH , µL Z=⇒Dp, pL

E′,
and (µL, pL) is a correct low pair with respect to D, s, p and µH , then E|o|L =
E′|o|L and E|o|H = E′|o|H .

Proof. Immediate from Theorems 2 and 3.

Remark Rafnsson and Sabelfeld [21,22] show that precision across output levels
can be obtained for SME using barrier synchronization. We speculate that the
method would generalize to A-SME as well.

5 Existence of correct low slices

In this section we show that a correct low slice (more specifically, a correct low
pair) of a program exists if the program does not leak information beyond what
is allowed by the declassification policy.

Definition 4 (No leaks outside declassification). A program p starting
from initial memory µ does not leak outside declassification in policy D and
initial state s if for any two input lists I1, I2: I1, µ −→p E1 and I2, µ −→p E2
and D∗(s, E1) = D∗(s, E2) imply E1|o|L = E2|o|L.

Theorem 5 (Existence of correct low slice) If program p, starting from ini-
tial memory µ, does not leak outside declassification in policy D and initial state
s, then there exist pL and µL such that (µL, pL) is a correct low pair with respect
to D, s, p and µ.

We describe a proof of this theorem. Fix an initial memory µ. Define f, g as
follows: If I, µ −→p E, then f(I) = E|o|L and g(I) = D∗(s, E). Then, Defini-
tion 4 says that f(I) is a function of g(I), meaning that there exists another
function h such that f(I) = h(g(I)). Intuitively, for a given sequence of declas-
sification values R = D∗(s, E), h(R) is the set of low outputs of p.

For lists L1, L2, let L1 ≤ L2 denote that L1 is a prefix of L2.

Lemma 2 (Monotonicity of h). If I1 ≤ I2, then h(g(I1)) ≤ h(g(I2)).

Proof. By definition, h(g(I1)) = f(I1) and h(g(I2)) = f(I2). So, we need to
show that f(I1) ≤ f(I2). Let µ, I1 −→p E1 and µ, I2 −→p E2. Since I1 ≤ I2,
E1|o|L ≤ E2|o|L, i.e., f(I1) ≤ f(I2).

We now construct the low slice pL using h. In the execution of pL, the low
memory µ′L at any point is the list of declassified values R that have been seen
so far. We define:

µL = []
pL(r,R) = (h(R :: r) \ h(R), R :: r)

If R is the set of declassified values seen in the past, to produce the low
output for a new declassified value r, we simply compute h(R :: r) \ h(R). By
Lemma 2, h(R) ≤ h(R :: r) when R and R :: r are declassified value lists from
the same run of p, so h(R :: r)\h(R) is well-defined. We then prove the following
lemma, which completes the proof.

Lemma 3 (Correctness of construction). (µL, pL) defined above is a correct
low pair for D, s, p and µ if p, starting from initial memory µ, does not leak
outside declassification in D and initial state s.

Proof. See the Appendix, Lemma 7.

p

M

d

p
L

(a) Plain SME [13], 2010.

p

H

p
L

(b) Reactive SME [6],
2011.

p

H
M

π + r

d

p
L

D

D

(c) Fine-grained SME
[21], 2013 (RS).

p

H

π

r

p
L

D

D

D

(d) SME with stateful de-
classification policies [26],
2014 (VGDPR).

p

H

π + r

pL

L

D

D

(e) Our A-SME.

Fig. 6: Flavors of SME
from literature. Red
denotes information at
level H, blue denotes
information at level
M, and black denotes
information at level L.
d is a default value
provided to the low
run when it demands
an input of higher
classification.

6 Discussion

In this section, we compare some of the fine points of A-SME and prior work
on SME. We often refer to the schemas of Figure 6, which summarizes several
flavors of SME described in the literature.

Input presence levels SME was initially designed by Devriese et al. [13] to enforce
noninterference on sequential programs, not reactive programs (Figure 6a). They
implicitly assume that all inputs are low presence. Thus, there are only two
kinds of inputs — low content/low presence (denoted L) and high content/low
presence. Following [20], we call the latter “medium”-level or M-level inputs,
reserving high (H) for inputs with high presence.

Bielova et al. [6] adapted SME for enforcing noninterference in a reactive
setting. Though not explicitly mentioned in their paper, their approach assumes
that an input’s presence and content are classified at the same level. Conse-
quently, in their work, inputs only have levels H and L (Figure 6b). Bielova et al.
also introduce the idea that for an input with high presence (level H), the low
run must not be executed at all and we, as well as VGDPR [26] use this idea. In
Bielova et al.’s work, an input’s presence level is fixed by the channel on which

it appears; this static assignment of input presence levels carries into all sub-
sequent work, including that of VGDPR and of Rafnsson and Sabelfeld [21,22]
(RS in the sequel). Our work relaxes this idea and permits input presence to
depend on policy state.

Input totality RS (Figure 6c) consider all three input levels — L, M, and H — for
sequential programs with I/O. In their setup, programs demand inputs and can
time how long they wait before an input is available. This allows a conceptual
distinction between environments that can always provide inputs on demand
and environments that cannot. In an asynchronous reactive setting like ours,
VGDPR’s, or that of Bielova et al., this distinction is not useful.

Declassification and SME Early work on SME, including that of Devriese et
al. and Bielova et al., did not consider declassification. RS and VGDPR added
support for declassification in the non-reactive and reactive setting, respectively.
In RS, declassification policies have two components. A coarse-grained policy, ρ,
specifies the flows allowed between levels statically and is enforced with SME.
A fine-grained mechanism allows the high run of the program to declassify data
to the low run dynamically. This mechanism routes data from a special M-level
output of the high run to an M-level input of the low run. This routing is called
the release channel and is denoted by π + r in Figure 6c. Data on the release
channel is not monitored by SME and the security theorem for such release is
the standard gradual release condition [2], which only says that declassification
happens at explicit declassification points of the high run, without capturing
what is released very precisely. For instance, if Example 4 were implemented in
the framework of RS, the only formal security guarantee we would get is that
any function of the mouse clicks might have been declassified (which is not useful
in this example).

In contrast, the security theorem of VGDPR, like ours, captures the declas-
sified information at fine granularity. In VGDPR, policies declassify high inputs
using two different functions — a stateless projection function project, which
specifies both the presence level of an input and a declassified value, and a state-
ful release function release that can be used to declassify aggregate information
about past inputs. The output of the projection function (denoted π in Figure 6d)
is provided as input to the low run in place of the high input. The decision to
pass a projected value to the low run where a high input is normally expected
results in problems mentioned at the beginning of Section 4, which motivated us
to design A-SME. The output of the release function (denoted r in Figure 6d)
is passed along a release channel similar to the one in RS. We find the use of
two different channels redundant and thus we combine release and project into
a single policy function that we call π. Going beyond VGDPR, in A-SME, the
policy state may depend on program output and the input presence may depend
on policy state. As illustrated in Section 3, this allows for a richer representation
of declassification policies.

Totality of the monitored program Like VGDPR, we assume that the (reactive)
program being monitored is total and terminates in a finite amount of time.
This rules out leaks due to the adversary having the ability to observe lack of
progress, also called progress-sensitivity [1], [18]. In contrast, RS do not make this
termination assumption. Instead, they (meaningfully) prove progress-sensitive
noninterference. This is nontrivial when the adversary has the ability to observe
termination on the low run, as a scheduler must be chosen carefully. We believe
that the same idea can be applied to both VGDPR’s and our work if divergent
behavior is permitted.

7 Related work

(Stateful) Declassification policies Sabelfeld and Sands [24] survey different meth-
ods for representing and enforcing declassification policies and provide a set of
four dimensions for declassification models. These dimensions — what, where,
when, and who — have been investigated significantly in literature. Policies often
encompass a single dimension, such as what in delimited release [23], where in
gradual release [2], or who in the context of faceted values [4], but sometimes
also encompass more than one dimension such as what and where in localized
delimited release [3], or what and who in decentralized delimited release [17].
Our security policies encompass the what and when dimensions of declassifica-
tion. We do not consider programs with explicit declassify commands (in fact,
we do not consider any syntax for programs) and, hence, we do not consider the
where dimension of declassification [21], [23], [26].

In the context of security policies specified separately from code, Li and
Zdancewic [16] propose relaxed non-interference, a security property that ap-
plies to declassification policies written in a separate language. The policies are
treated as security levels and enforced through a type system. Swamy et al. [25]
also define policies separate from the program. They express the policies as se-
curity automata, using a new language called air (automata for information
release). The policies maintain their own state and transition states when a re-
lease obligation is satisfied. When all obligations are fulfilled, the automaton
reaches an accepting state and performs a declassification. These policies are
also enforced using a type system. The language Paralocks [7] also supports
stateful declassification policies enforced by a type system. There, the policies
are represented as sets of Horn clauses, whose antecedents are called locks. Locks
are predicates with zero or more parameters and they exhibit two states: opened
(true) and closed (false). The type system statically tracks which locks are open
and which locks are closed at every program point. Chong and Myers’ condi-
tional declassification policies are similar, but more abstract, and also enforced
using a type system [9,10,11]. In the context of SME, Kashyap et al. [14] sug-
gest, but do not develop, the idea of writing declassification policies as separate
sub-programs. Our work ultimately draws some lineage from this idea.

Secure multi-execution We discussed prior work on SME in Section 6. Here, we
mention some other work on related techniques. Khatiwala et al. [15] propose

data sandboxing, a technique which partitions the program into two slices, a
private slice containing the instructions handling sensitive data, and a public
slice that contains the remaining instructions and uses system call interposition
to control the outputs. The public slice is very similar to our low slice, but
Khatiwala et al. trust the low slice’s correctness for security of enforcement, while
we do not. Nonetheless, we expect that the slicing method used by Khatiwala
et al. to construct the public slice can be adapted to construct low slices for use
with A-SME.

Capizzi et al. [8] introduce shadow executions for controlling information flow
in an operating system. They suggest running two copies of an application with
different sets of inputs: a public copy, with access to the network, that is supplied
dummy values in place of the user’s confidential data, and a private copy, with
no access to the network, that receives all confidential data from the user.

Zanarini et al. [28] introduce multi-execution monitors, a combination of SME
and monitoring, aimed at reporting any actions that violate a security policy.
The multi-execution monitor runs a program in parallel with its SME-enforced
version. If the execution is secure, the two programs will run in sync, otherwise,
when one version performs an action different from the other, the monitor reports
that the program is insecure. No support for declassification is provided.

Faceted and sensitive values Faceted values [4] are a more recent, dynamic mech-
anism for controlling information flow. They are inspired by SME but reduce the
overhead of SME by simulating the effect of multiple runs in a single run. To
do this, they maintain values for different levels (called facets) separately. For a
two-level lattice, a faceted value is a pair of values. Declassification corresponds
to migrating information from the high facet to the low facet. We expect that in
A-SME, the use of the low slice in place of the original program in the low run
will result in a reduction of overhead (over SME), comparable to that attained
by faceted values.

Jeeves [27] is a new programming model that uses sensitive values for encap-
sulating a low- and a high-confidentiality view for a given value. Like faceted
values, sensitive values are pairs of values. They are parameterized with a level
variable which determines the view of the value that should be released to any
given sink. Jeeves’ policies are represented as declarative rules that describe
when a level variable may be set high or low. The policies enforce data confi-
dentiality, but offer no support for declassification. An extension of Jeeves with
faceted values [5] supports more expressive declassification policies, but output
feedback is still not supported.

Generic black-box enforcement Remarkably, Ngo et al. [19] have recently shown
that black-box techniques based on multi-execution can be used to enforce not
just noninterference and declassification policies, but a large subset of what are
called hyperproperties [12]. They present a generic construction for enforcing
any property in this subset. Superficially, their generic construction may look
similar to A-SME, but it is actually quite different. In particular, their method
would enforce noninterference by choosing a second input sequence that results

in the same declassified values as the given input sequence to detect if there is
any discrepancy in low outputs. A-SME does not use such a construction and is
closer in spirit to traditional SME.

8 Conclusion

This paper introduces asymmetric SME (A-SME) that executes a program and
its low slice simultaneously to enforce a broad range of declassification policies.
We prove that A-SME is secure, independent of the semantic correctness of the
low slice, and also precise when the low slice is semantically correct. Moreover
we show that A-SME does not result in loss of expressiveness: If the original
program conforms to the declassification policy, then a correct low slice exists.
Additionally, we improve the expressive power of declassification policies consid-
ered in literature by allowing feedback from the program, and by allowing input
presence sensitivity to depend on the policy state.

Future work A-SME can be generalized to arbitrary security lattices. For each
lattice level `, a separate projection function π` could determine the values de-
classified to the `-run in A-SME. For ` v `′, π` should reveal less information
than π`′ , i.e., there should be some function f such that π` = f◦π`′ . Additionally,
A-SME would require a different slice of the program for every level `.

Another interesting direction for future work would be to develop an analysis
either to verify the correctness of a low slice, or to automatically construct
the low slice from a program and a policy. Verification will involve establishing
semantic similarity of the composition of the low slice and the policy with a part
of the program, which can be accomplished using static methods for relational
verification. Automatic construction of the low slice should be feasible using
program slicing techniques, at least in some cases.

Acknowledgments This work was partially supported by the DFG grant “Infor-
mation Flow Control for Browser Clients” under the priority program “Reliably
Secure Software Systems” (RS3).

References

1. Askarov, A., Hunt, S., Sabelfeld, A., Sands, D.: Termination-insensitive noninter-
ference leaks more than just a bit. In: Proceedings of the European Symposium on
Research in Computer Security (ESORICS). pp. 333–348 (2008)

2. Askarov, A., Sabelfeld, A.: Gradual release: Unifying declassification, encryption
and key release policies. In: 2007 IEEE Symposium on Security and Privacy (S&P
2007), 20-23 May 2007, Oakland, California, USA. pp. 207–221 (2007)

3. Askarov, A., Sabelfeld, A.: Localized delimited release: Combining the what and
where dimensions of information release. In: Proceedings of the 2007 Workshop on
Programming Languages and Analysis for Security. pp. 53–60. PLAS ’07 (2007)

4. Austin, T.H., Flanagan, C.: Multiple facets for dynamic information flow. In: Pro-
ceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. pp. 165–178. POPL ’12 (2012)

5. Austin, T.H., Yang, J., Flanagan, C., Solar-Lezama, A.: Faceted execution of
policy-agnostic programs. In: Proceedings of the Eighth ACM SIGPLAN Work-
shop on Programming Languages and Analysis for Security. pp. 15–26. PLAS ’13
(2013)

6. Bielova, N., Devriese, D., Massacci, F., Piessens, F.: Reactive non-interference for a
browser model. In: 5th International Conference on Network and System Security,
NSS 2011. pp. 97–104 (2011)

7. Broberg, N., Sands, D.: Paralocks: Role-based information flow control and be-
yond. In: Proceedings of the 37th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. pp. 431–444. POPL ’10 (2010)

8. Capizzi, R., Longo, A., Venkatakrishnan, V.N., Sistla, A.P.: Preventing information
leaks through shadow executions. In: Proceedings of the 2008 Annual Computer
Security Applications Conference. pp. 322–331. ACSAC ’08 (2008)

9. Chong, S., Myers, A.C.: Security policies for downgrading. In: Proceedings of the
11th ACM Conference on Computer and Communications Security, CCS 2004. pp.
198–209 (2004)

10. Chong, S., Myers, A.C.: Language-based information erasure. In: 18th IEEE Com-
puter Security Foundations Workshop, (CSFW-18 2005),. pp. 241–254 (2005)

11. Chong, S., Myers, A.C.: End-to-end enforcement of erasure and declassification. In:
Proceedings of the 21st IEEE Computer Security Foundations Symposium, CSF
2008. pp. 98–111 (2008)

12. Clarkson, M.R., Schneider, F.B.: Hyperproperties. In: Proceedings of the 21st IEEE
Computer Security Foundations Symposium, CSF 2008, Pittsburgh, Pennsylvania,
23-25 June 2008. pp. 51–65 (2008)

13. Devriese, D., Piessens, F.: Noninterference through secure multi-execution. In: 31st
IEEE Symposium on Security and Privacy, S&P 2010. pp. 109–124 (2010)

14. Kashyap, V., Wiedermann, B., Hardekopf, B.: Timing- and termination-sensitive
secure information flow: Exploring a new approach. In: 32nd IEEE Symposium on
Security and Privacy, S&P 2011, 22-25 May 2011, Berkeley, California, USA. pp.
413–428 (2011)

15. Khatiwala, T., Swaminathan, R., Venkatakrishnan, V.N.: Data sandboxing: A tech-
nique for enforcing confidentiality policies. In: 22nd Annual Computer Security
Applications Conference (ACSAC 2006),. pp. 223–234 (2006)

16. Li, P., Zdancewic, S.: Downgrading policies and relaxed noninterference. In: Pro-
ceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 2005. pp. 158–170 (2005)

17. Magazinius, J., Askarov, A., Sabelfeld, A.: Decentralized delimited release. In:
Programming Languages and Systems - 9th Asian Symposium, APLAS 2011, .
Proceedings. pp. 220–237 (2011)

18. Moore, S., Askarov, A., Chong, S.: Precise enforcement of progress-sensitive secu-
rity. In: Proceedings of the ACM Conference on Computer and Communications
Security (CCS). pp. 881–893 (2012)

19. Ngo, M., Massacci, F., Milushev, D., Piessens, F.: Runtime enforcement of security
policies on black box reactive programs. In: Proceedings of the 42nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2015. pp. 43–54 (2015)

20. Rafnsson, W., Hedin, D., Sabelfeld, A.: Securing interactive programs. In: 25th
IEEE Computer Security Foundations Symposium, CSF 2012,. pp. 293–307 (2012)

21. Rafnsson, W., Sabelfeld, A.: Secure multi-execution: Fine-grained, declassification-
aware, and transparent. In: 2013 IEEE 26th Computer Security Foundations Sym-
posium, 2013. pp. 33–48 (2013)

22. Rafnsson, W., Sabelfeld, A.: Secure multi-execution: Fine-grained, declassification-
aware, and transparent. Journal of Computer Security (2015), to appear.

23. Sabelfeld, A., Myers, A.C.: A model for delimited information release. In: Software
Security - Theories and Systems, Second Mext-NSF-JSPS International Sympo-
sium, ISSS 2003. pp. 174–191 (2003)

24. Sabelfeld, A., Sands, D.: Dimensions and principles of declassification. In: 18th
IEEE Computer Security Foundations Workshop, (CSFW-18 2005),. pp. 255–269
(2005)

25. Swamy, N., Hicks, M.: Verified enforcement of stateful information release policies.
In: Proceedings of the 2008 Workshop on Programming Languages and Analysis
for Security, PLAS 2008. pp. 21–32 (2008)

26. Vanhoef, M., Groef, W.D., Devriese, D., Piessens, F., Rezk, T.: Stateful declas-
sification policies for event-driven programs. In: IEEE 27th Computer Security
Foundations Symposium, CSF 2014. pp. 293–307 (2014)

27. Yang, J., Yessenov, K., Solar-Lezama, A.: A language for automatically enforcing
privacy policies. In: Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2012. pp. 85–96 (2012)

28. Zanarini, D., Jaskelioff, M., Russo, A.: Precise enforcement of confidentiality for
reactive systems. In: 2013 IEEE 26th Computer Security Foundations Symposium,
2013. pp. 18–32 (2013)

A Security of A-SME

Theorem 6 (Security, noninterference under D) Suppose I1, µ1 −→p E1
and I2, µ2 −→p E2 and D∗(s1, E1) = D∗(s2, E2). If I1, s1, µ1, µL Z=⇒Dp, pL

E′1
and I2, s2, µ2, µL Z=⇒Dp, pL

E′2, then E′1|o|L = E′2|o|L.

Proof. Let n be the length of I1 ++ I2. The proof is by induction on n.

Base case n = 0. Then I1 = I2 = [], which implies E′1 = E′2 = [] and
E′1|o|L = E′2|o|L.

Inductive step n > 0. Then either I1 6= [] or I2 6= []. We assume I1 6= []
(the other case is symmetric). As I1 is not empty, it must contain at least one
element, thus I1 = i1 :: I ′1.

Let s′′1 = updi(s1, i1), b1 = σ(s′′1), (O1, µ
′
1) = p(i1, µ1), s′1 = updo(s′′1 , O1),

and E1 = (i1, O1) :: E′′1 , where I ′1, µ′1 −→p E
′′
1 . We case analyze b1:

• b1 = false.
Then D∗(s1, E1) = D∗(s′1, E′′1) = D∗(s2, E2). E′1 = (i1,

O1|H) :: E′′′1 , where I ′1, s′1, µ′1, µL Z=⇒Dp, pL
E′′′1 . From the i.h., E′′′1 |o|L = E′2|o|L.

Since O1|H |L = [], E′1|o|L = E′2|o|L.
• b1 = true.

Then D∗(s1, E1) = r1 ++D∗(s′1, E′′1) = D∗(s2, E2), where r1 = π(s′′1). This
means that I2 must be non-empty. Let I2 = i2 :: I ′2, s′′2 = updi(s2, i2), b2 =

σ(s′′2), (O2, µ
′
2) = p(i2, µ2), s′2 = updo(s′′2 , O2), and E2 = (i2, O2) :: E′′2 , where

I ′2, µ
′
2 −→p E

′′
2 .

If b2 = false, we apply an argument symmetric to the one for b1 = false. In
the following, we discuss the more interesting case, b2 = true. D∗(s2, E2) = r1 ::
D∗(s′2, E′′2), thus π(s′′2) = r1. Hence (O,µ′L) = pL(π(s′′1), µL) = pL(r1, µL) =
pL(π(s′′2), µL).

For j ∈ {1, 2}, E′j = (ij , O|L :: Oj |H) :: E′′′j , where I ′j , s′j , µ′j , µ′L Z=⇒Dp, pL
E′′′j .

From the i.h., E′′′1 |o|L = E′′′2 |o|L. Thus E′1|o|L = E′2|o|L.

B Precision of A-SME

Theorem 7 (Precision for high outputs) For any programs p and pL, de-
classification policy D with initial state s, and input list I, if I, µH −→p E and
I, s, µH , µL Z=⇒Dp, pL

E′, then E|o|H = E′|o|H .

Proof. The proof is by induction on I.

Base case I = []. Then E = E′ = [], hence E|o|H = E′|o|H = [].

Induction step I = i :: I ′. Let s′′ = updi(s, i), b = σ(s′′), (O,µ′H) = p(i, µH),
and s′ = updo(s′′, O). We case analyze b:
• b = false.

Then E = (i, O) :: E′′, where I ′, µ′H −→p E′′ (from rule R2) and E′ =
(i, O|H) :: E′′′ (from rule A-SME-2), where I ′, s′, µ′H , µL Z=⇒Dp, pL

E′′′.
From the i.h. applied to I ′, we get E′′|o|H = E′′′|o|H . Hence, E|o|H =

((i, O) :: E′′)|o|H = O|H ++E′′|o|H = O|H ++E′′′|o|H = ((i, O|H) :: E′′′)|o|H =
E′|o|H .
• b = true.

Let (O′, µ′L) = pL(r, µL). Then E = (i, O) :: E′′, where I ′, µ′H −→p E′′

(from rule R2) and E′ = (i, O|H ++O′|L) :: E′′′ (from A-SME-3), where
I ′, s′, µ′H , µ

′
L Z=⇒Dp, pL

E′′′.
From the i.h. applied to I ′, we get E′′|o|H = E′′′|o|H . Hence, E|o|H =

((i, O) :: E′′)|o|H = O|H ++E′′|o|H = O|H ++E′′′|o|H = ((i, O|H ++O′|L) ::
E′′′)|o|H = E′|o|H .

Lemma 4 (Low simulation). Let I, s, µH , µL Z=⇒Dp, pL
E and D∗(s, E) = R.

If R,µL −→pL
E′, then E|o|L = E′|o|L.

Proof. By induction on I.

Base case I = []. Then, E = R = E′ = [] and E|o|L = [] = E′|o|L.

Induction step I = i :: I ′. Let s′′ = updi(s, i), b = σ(s′′), (O,µ′H) = p(i, µH)
and s′ = updo(s′′, O). We case analyze b:
• b = false.

Then, from rule A-SME-2, E = (i, O|H) :: E′′, where I ′, s′, µ′H , µL Z=⇒Dp, pL

E′′. From the definition of D∗, R = D∗(s, E) = D∗(s′′, E′′).

Applying the i.h. to I ′/I, s′/s, E′′/E, µ′H/µH but the same E′, R, and µL,
we get E′′|o|L = E′|o|L. Hence, E|o|L = ((i, O|H) :: E′′)|o|L = E′′|o|L = E′|o|L.
• b = true.

Let (O′, µ′L) = pL(r, µL). Then E = (i, O|H ++O′|L) :: E′′ (from rule
A-SME-3), where I ′, s′, µ′H , µ

′
L Z=⇒Dp, pL

E′′. From the definition of D∗, R =
D∗(s, E) = r :: D∗(s′′, E′′) = r :: R′ (where R′ = D∗(s′′, E′′)). From rule R2,
E′ = (r,O′) :: E′′′, where R′, µ′L −→p E

′′′.
Applying the i.h. to I ′/I, s′/s, E′′/E, E′′′/E′, µ′H/µH , R′/R, and µ′L/µL,

we get E′′|o|L = E′′′|o|L. Hence, E|o|L = ((i, O|H ++O′|L) :: E′′)|o|L = O′|L ++
E′′|o|L = O′|L ++E′′′|o|L = ((r,O′) :: E′′′)|o|L = E′|o|L.

Theorem 8 (Precision for low outputs) For any programs p and pL, de-
classification policy D with initial state s and input list I, if I, µH −→p E and
I, s, µH , µL Z=⇒Dp, pL

E′ and (µL, pL) is a correct low pair with respect to D, s, p
and µH , then E|o|L = E′|o|L.

Proof. Let R = D∗(s, E′) and suppose R,µL −→pL
E′′. By Lemma 4, E′|o|L =

E′′|o|L. By Definition 3, E|o|L = E′′|o|L. Therefore, E|o|L = E′′|o|L = E′|o|L.

Theorem 9 (Precision) For any programs p and pL, declassification policy D
with initial state s and input list I, if I, µH −→p E and I, s, µH , µL Z=⇒Dp, pL

E′,
and (µL, pL) is a correct low pair with respect to D, s, p and µH , then E|o|L =
E′|o|L and E|o|H = E′|o|H .

Proof. Immediate from Theorems 7 and 8.

C Existence of correct low slices

Given a program p, we abuse notation and write p(I, µ) to denote the final
memory obtained by executing the input sequence I starting from µ. Formally,

p([], µ) = µ
p(i :: I, µ) = let (, µ′) = p(i, µ) in p(I, µ′).

Similarly, we write upd(s, E) to denote the final state of the policy obtained
by updating s repeatedly with the elements of E. Formally,

upd(s, []) = s

upd(s, (i, O) :: E) = upd(updo(updi(s, i), O), E).

Lemma 5 (Execution factorization). Let I1 and I2 be two input lists such
that I1 ++ I2, µ −→p E and I1, µ −→p E1 and µ1 = p(I1, µ) and I2, µ1 −→p E2.
Then E = E1 ++E2.

Proof. By induction on I1.

Base case I1 = []. Here, E1 = [], I1 ++ I2 = I2 and µ1 = p([], µ) = µ. Hence,
we know that (a) I2, µ −→p E and (b) I2, µ −→p E2. Since evaluation is deter-
ministic, E = E2 = [] ++E2 = E1 ++E2.

Induction step I1 = i1 :: I ′1. Let p(i1, µ) = (O1, µ
′) and suppose that

I ′1 ++ I2, µ
′ −→p E′ and I ′1, µ

′ −→p E′1. Note that µ1 = p(I1, µ) = p(i1 ::
I ′1, µ) = p(I ′1, µ′) by definition of p. Hence, by the i.h. applied to I ′1, we know
that E′ = E′1 ++E2. Further, by definition of −→p, E1 = (i1, O1) :: E′1 and
E = (i1, O1) :: E′. Hence, E1 ++E2 = ((i1, O1) :: E′1) ++E2 = (i1, O1) ::
(E′1 ++E2) = (i1, O1) :: E′ = E.

Lemma 6 (Update factorization). Let I1 and I2 be two input lists such that
I1 ++ I2, µ −→p E and I1, µ −→p E1 and µ1 = p(I1, µ) and I2, µ1 −→p E2.
Then D∗(s, E1 ++E2) = D∗(s, E1) ++D∗(upd(s, E1), E2).

Proof. By induction on E1.

Base case E1 = [].D∗(s, E1 ++E2) = D∗(s, [] ++E2) = D∗(s, E2) = [] ++D∗(s,
E2) = D∗(s, []) ++D∗(upd(s, []), E2) = D∗(s, E1) ++D∗(upd(s, E1), E2).

Induction step E1 = (i, O) :: E′1. Let s′′ = updi(s, i), b = σ(s′′) and s′ =
updo(s′′, O). We case analyze b:
• b = false.
D∗(s, E1 ++E2)

= D∗(s, (i, O) :: (E′1 ++E2))
= D∗(s′, E′1 ++E2) (b = false, definition of D∗)
= D∗(s′, E′1) ++D∗(upd(s′′, E′1), E2) (i.h.)
= D∗(s, (i, O) :: E′1) ++D∗(upd(s′′, E′1), E2) (b = false, definition of D∗)
= D∗(s, E1) ++D∗(upd(s′′, E′1), E2)
= D∗(s, E1) ++D∗(upd(updo(s′, O), E′1), E2)
= D∗(s, E1) ++D∗(upd(updo(updi(s, i), O), E′1), E2)
= D∗(s, E1) ++D∗(upd(s, (i, O) :: E′1), E2) (Definition of upd)
= D∗(s, E1) ++D∗(upd(s, E1), E2).

• b = true.
D∗(s, E1 ++E2)

= D∗(s, (i, O) :: (E′1 ++E2))
= r :: D∗(s′′, E′1 ++E2, s

′′) (b = true, definition of D∗)
= r :: D∗(s′′, E′1) ++D∗(upd(s′′, E′1), E2) (i.h.)
= D∗(s, (i, O) :: E′1) ++D∗(upd(s′′, E′1), E2) (b = true, definition of D∗)
= D∗(s, E1) ++D∗(upd(s′′, E′1), E2)
= D∗(s, E1) ++D∗(upd(updo(s′, O), E′1), E2)
= D∗(s, E1) ++D∗(upd(updo(updi(s, i), O), E′1), E2)
= D∗(s, E1) ++D∗(upd(s, (i, O) :: E′1), E2) (Definition of upd)
= D∗(s, E1) ++D∗(upd(s, E1), E2).

Lemma 7 (Correctness of construction). (µL, pL) as defined in Section 5
is a correct low pair for D, s, p and µ if p, starting from initial memory µ, does
not leak outside declassification in D and initial state s.

Proof. Let I, µ −→p E and D∗(s, E) = R and R,µL −→pL
E′. We need to prove

that E|o|L = E′|o|L. We proceed by induction on I, but in reverse order.

Base case I = []. Then E = R = E′ = [], hence E|o|L = E′|o|L = [].

Induction step I = I1 :: i. Let E1, µ1, and O2 be such that I1, µ −→p E1 (1),
µ1 = p(I1, µ) (2), and i, µ1 −→p (i, O2) (3).

From Lemma 5 applied to I, µ −→p E and statements (1)–(3) above, we get
that E = E1 :: (i, O2) (4).

Let s1 = upd(s, E1) and R1 = D∗(s, E1). From Lemma 6 applied to statement
(4), we get R = D∗(s, E) = R1 ++D∗(s1, (i, O2)) (5).

Let s′1 = updi(s1, i) and b = σ(s′1). We case analyze b:
• b = false.

By definition of D∗, D∗(s1, (i, O2)) = []. Thus, from (5) and the definition of
R1, we get R = D∗(s, E) = R1 ++[] = R1 = D∗(s, E1).

From the i.h. applied to I1/I, E1/E using statement (1) and the assump-
tion R,µL −→pL

E′, we get E1|o|L = E′|o|L. Since (µ, p) does not leak outside
declassification in D and initial state s, and D∗(s, E) = D∗(s, E1), we also get
E1|o|L = E|o|L. Hence, E|o|L = E1|o|L = E′|o|L.
• b = true.

By definition of D∗, D∗(s1, (i, O2)) = [r]. Thus, from (5) and the defini-
tion of R1, we get R = D∗(s, E) = R1 ++[r] = R1 :: r = D∗(s, E1) :: r. We
choose E′1, µL1, O

′
2 such that R1, µL −→pL

E′1 (6), µL1 = pL(R1, µL) (7), and
r, µL1 −→pL

(r,O′2) (8).
Since R = R1 :: r, by Lemma 5 applied to R,µL −→pL

E′ and (6)–(8), we
get that E′ = E′1 :: (r,O′2) (9).

Applying i.h. to (1), (6), and the definition R1 = D∗(s, E1), we get E1|o|L =
E′1|o|L. Hence using (4) and (9) it suffices to prove O2|L = O′2|L. For this, we
first note that pL(R1, µL) = pL(R1, []) = R1 (from definitions of µL and pL).
Hence µL1 = R1 (from (7)) and r,R1 −→pL

(r,O′2) (from (8)). Expanding the
definition of −→pL

, (O′2,) = pL(r,R1) = (h(R1 :: r) \ h(R1), R1 :: r).
Thus,O′2 = h(R1 :: r) \h(R1) = h(R) \h(R1) = h(D∗(s, E)) \h(D∗(s, E1)) =

h(g(I)) \ h(g(I1)) = f(I) \ f(I1) (10).
Further, from (4), O2|L = E|o|L \E1|o|L. From the assumption I, µ −→p E,

E|o|L = f(I) and from (1), E1|o|L = f(I1). Thus O2|L = f(I)\f(I1). Combining
with (10), we get O′2 = O2|L. Hence, O′2|L = O2|L|L = O2|L, as needed.

	Asymmetric Secure Multi-Execution with Declassification

