
Web Application Security using JSFlow

Daniel Hedin

Mälardalen University

Chalmers University of Technology

Andrei Sabelfeld

Chalmers University of Technology

I. INTRODUCTION

This extended abstract accompanies a tutorial on web

application security using JSFlow. The interested reader is

encouraged to try the JSFLow tool [1] and get a full account

of the theory and practice behind JSFlow, as detailed in a

journal article [2], whose exposition we draw on in parts of

this abstract.

Increasingly, web applications combine services from dif-

ferent providers. The script inclusion mechanism routinely

turns barebone web pages into full-fledged services built up

from third-party code. Such code provides a range of facilities

from helper utilities (such as jQuery or Modernizr) to readily

available services (such as analytics or ads). Even stand-alone

services such as Google Docs, Microsoft Office 365, and

DropBox offer integration into other services. Thus, the web

is gradually being transformed into an application platform for

integration of services from different providers.

At the heart of this lies JavaScript. When a user visits a web

page, JavaScript code from different sources is downloaded

into the user’s browser and run with the same privileges as if

the code came from the web page itself. This opens up for

abusing the trust, either by direct attacks from the included

scripts or, perhaps more dangerously, by indirect attacks when

a popular service is compromised and its scripts are replaced

by an attacker. A recent empirical study [3] of script inclusion

reports high reliance on third-party scripts. As an example, the

study shows how easy it is to get code running in thousands

of browsers simply by acquiring some stale or misspelled

domains and publishing the scripts of their choice at the URLs

that are mistakenly used by developers.

One important aspect of many web application is sharing

and collaboration. This is particularly evident in social media

applications, like Facebook and Google+, or web applications

for sharing different types of content, like Youtube, Imgur

and Instagram. In addition, applications like Google docs,

Microsoft 365 and Evernote support collaborative, and even

simultaneous editing of documents. Hence, in addition to the

content provided by the service itself, users will download

and display content generated by other users. This opens up

for direct attacks, where a malicious user actively injects the

payload, as well as indirect attacks, where users are tricked

into injecting malicious payloads — potentially as part of

being subjected to an attack.

Another important component of many web applications is

that many are cost-free. Instead of paying for using a service

like Facebook or Youtube the service is paid for by displaying

ads. In order to be able to create targeted dynamic ads, both

the ad service and the ad itself must be able to inject and run

executable content. This opens up for malicious ad providers

to inject attacks [4].

Traditional protection mechanisms vary depending on the

type of attack. To protect against malicious ads, a suitable tech-

nique is “sandboxing” by language subsetting and/or static and

dynamic checks to create and enforce a sandboxed execution

environment [5], [6], [7], [4]. However, due to the complexity

and dynamism of JavaScript, historically, such sandboxes have

been rather brittle, and there have been numerous reports of

ways to circumvent the protection and escape the sandbox.

To protect against user injected content the most prominent

technique is to sanitize the user input to remove or render

inert any potentially hidden executable code. However, the

abundance of different character encodings in combination

with the best effort nature of browsers make sanitization very

difficult, as indicated by the fact that XSS attacks are still

number three on the OWASP top 10 list from 2013 [8]. When

it comes to abuse of trust or misuse of libraries, the current

protection mechanisms have little to offer.

The traditional security mechanisms are often limited to

some form of access control. The sandbox prevents the in-

jected code from accessing parts of the web application it

should not be able to access, and the sanitization aims at re-

moving executable code — in a sense similar to total isolation.

Similar to the situation with trusted code, if the sandbox or

the sanitization process is bypassed, no security guarantees can

be provided. Thus, in the presence of code injection, access

control is not enough to guarantee information security [9].

Rather, in the presence of code injection, what the application

does with sensitive information after access has been granted

is even more important

Further, even if code injection is prevented, the integration

of untrusted or partly trusted libraries is challenging with

access control for the same reasons as above. Thus, there is a

need for an approach beyond access control to deal with the

root of the problem in malicious code: insecure information
flow.

Information-flow control [10] is at the center of our ap-

proach. Rather than specifying what information an application

or part of application can access, we suggest using security

policies that specify what the application is allowed to do with

the information it accesses. To enforce such security policies,

we suggest the use of information-flow control to guarantee

17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing

978-1-5090-0461-4/16 $31.00 © 2016 IEEE

DOI 10.1109/SYNASC.2015.11

16

that the application does not violate the set security policies.

II. INFORMATION-FLOW CONTROL PRIMER

Traditionally, information-flow control distinguishes be-

tween explicit and implicit flows [11]. Explicit flows amount to

directly copying information, e.g., via an explicit assignment

like l = h;, where the value of a secret variable h is copied into

a public variable l. Tracking only explicit flows is equivalent

to taint tracking [12], a successful technique typically used to

track and limit the propagation of untrusted (tainted) data in,

e.g., web applications. Taint tracking has proved to be useful

when the attacker is not in control of the program, but only of

the input fed into the program. In the presence of malicious

code or code injection in non-malicious code, however, taint

tracking can be circumvented by implicit flows.

Implicit flows may arise when the control flow of the

program is dependent on secrets. Consider, for instance, the

following program:

i f (h) { l = t r u e ; } e l s e { l = f a l s e ; }
Depending on the secret stored in variable h, variable l will

be set to either true or false , reflecting the value of h. There

is an implicit flow from h into l.

In order to handle implicit flows, a security level associated

with the control flow is introduced, called the program counter
level, or pc for short [11]. In the above example, the body

of the conditional is executed in a secret context. The pc

reflects the confidentiality of guard expressions controlling

branch points in the program, and governs side effects in

their branches by preventing modification of less confidential

values.

III. JSFLOW

JSFlow is an information-flow aware interpreter for full non-

strict ECMA-262(v.5) [13], including information-flow models

for the standard API. JSFlow is available online [1]. JSFlow

is itself implemented in JavaScript. The choice of language

allows for flexibility in the deployment. We have explored the

possibility of deploying the interpreter via browser extension,

via proxy, via suffix proxy, and as a security library [14]. It

is also possible to use JSFlow on the server side by running

on top of, e.g., node.js [15].

JSflow allows for the definition of policies that specify what

information is allowed to flow where. The policies are formed

by labeling information sources and sinks. One one hand,

a security label on an information source, e.g., a password

field, classifies the information originating from the source.

On the other hand, a security label on an information sink,

e.g., issuing a command to post information to a specific URL,

classifies the maximum label of information that is allowed to

flow to the sink.

Once the policies have been set, JSFlow monitors how

information flows during the execution of the program and

disallows flows that violate the security policy. In the current

JSFlow Firefox extension, this is manifested by halting the

Fig. 1. The Hrafn application.

execution and presenting a security alert to the user as illus-

trated in Figure 3. The user can then chose to allow the policy

violation or terminate the execution.

IV. WEB APPLICATIONS SECURITY USING JSFLOW

Driven by the architecture of a typical web application, we

focus on the scenario, where the attacker is able to inject

malicious code into the application. By injecting code into

the application it is possible for the attacker to access and

steal all data the application has access to, unless additional

security mechanisms are put into place.

As a basis for experimentation we have created an example

web application, Hrafn, depicted in Figure 1. The application

is constructed to be open for various code injection attacks,

e.g., via buggy or compromised 3rd party services or via

malicious user content.

Hrafn is an ad-financed lightweight forum. Users can view

and post articles either anonymously or under their own

identity, after having logged on their own account. When a

user logs in, the credentials — the username and the password

— are sent to the server, which, if correct, establishes an

authenticated session. Hrafn has been built using the well

know lightweight web application framework express.js [16]

together with the industrial strength authentication middleware

passport.js [17]. Thus, the flaws of the application do not

originate from improper authentication and session handling.

Rather, the flaws of the application come from the lack of

proper sanitization of user input, and trusting a flawed ad-

service. The flaws open up for two code injection attacks: 1)

code injection via malicious ads, planted by customers of the

ad service, and 2) code injection attacks via cross-site scripting

(XSS), where a user crafts and posts a malicious article.

We have implemented two attacks — one for each category

— that harvest user credentials as the user logs into the

application. The first attack has the form of a specially crafted

ad. The ad injects code that sends the username and password

17

Fig. 2. A successful XSS attack.

to an attacker controlled server using XMLHttpRequests when

the users log in. This models the scenario, where an attacker

uses an ad service to serve malicious ads to harvest user

information. The second attack is an XSS attack, where a

specially crafted article is posted to the forum. The article

displays as an ordinary article, but also injects code that makes

users post their credentials to the forum when logging in.

Figure 2 depicts the XSS attack. In the figure the attack article

posted by an anonymous user with the title Attack! is visible

as are the credentials of the recently logged in user.

Without information-flow control, both attacks successfully

steal user credentials as unknowing users log into the applica-

tion. To illustrate the power of information-flow control, we

attach a natural security policy: that the password of the user

should only be allowed to flow to the login url of Hrafn,

hrafn.org/login1. In both cases, the attacks are thwarted by

JSFlow under this intuitive security policy. In the first attack,

an attempt is made to send the password to the attacker

supplied URL. This violates the security policy and JSFlow

prevents the information leak by halting the execution. In the

second attack, an attempt is made to send the password to

the Hrafn server, but not to the login URL. Rather, it is sent

to hrafn.org/post. Again, this violates the security policy and

JSFlow halts the execution as depicted in Figure 3. The latter

attack illustrates the need for fine-grained security policies. To

stop this attack it is necessary to distinguish between different

URL on the same domain. Stating that passwords are allowed

to flow back to the Hrafn domain is not sufficient. The Hrafn

application, the attacks and the JSFlow Firefox extension are

all available online [18].

V. RELATED WORK

We discuss the most closely related work, referring the

reader to a survey on language-based Information-flow se-

curity [10] for related work on information flow in genera

and to the journal article [2] for related work on JSFlow

1Under the assumption that the domain of Hrafn is hrafn.org. It is not.
For obvious reasons it would be a bad idea to make an intentionally flawed
application available online.

Fig. 3. The XSS attack prevented by JSFlow.

in particular. Other surveys of relevance include overview of

dynamic information-flow mechanisms by Le Guernic [19],

a uniform presentation of information-flow security for a

succession of increasingly powerful attackers by Hedin and

Sabelfeld [20], and a survey on JavaScript-based security

policies and enforcement by Bielova [21].

Vogt et al. [22] modify the source code of the Firefox

browser to implement a flow-sensitive information-flow anal-

ysis to crawl around 1,000,000 popular web sites and, after

white/black-listing 30 web sites, detect suspected attempts for

cross-domain communication in 1,35% of the sites.

Mozilla’s ongoing project FlowSafe [23] aims at giv-

ing Firefox runtime information-flow tracking, with dynamic

information-flow reference monitoring [24] at its core. Our

coverage of JavaScript and its APIs provides a base for

fulfilling the promise of FlowSafe in practice.

Yip et al. [25] present a security system, BFlow, which

tracks information flow within the browser between frames.

In order to protect confidential data in a frame, the frame

cannot simultaneously hold data marked as confidential and

data marked as public. BFlow not only focuses on the client-

side but also on the server-side in order to prevent attacks that

move data back and forth between client and server.

Mash-IF, by Li et al. [26], is an information-flow tracker for

client-side mashups. With policies defined in terms of DOM

objects, the enforcement mechanism is a static analysis for

a subset of JavaScript and treats as blackboxes the language

constructs outside this subset. Executions are monitored by a

reference monitor that allows deriving declassification rules

from detected information flows. An advantage of this ap-

proach is fine-grained control at the level of individual DOM

objects. At the same time, the imprecision of the static analysis

leads to both false positives and negatives, opening up for

attackers to bypass the security mechanism.

De Groef et al. [27] present FlowFox, a Firefox extension

based on secure multi-execution and perform practical evalua-

tion of user experience when simpler policies (such as labeling

the cookie as sensitive) are enforced.

18

Bichhawat et al. [28] present an information-flow analysis

for JavaScript bytecode. The analysis is implemented as in-

strumented runtime system for the WebKit JavaScript engine.

Finally, an interested reader might benefit from trying out

practical challenges on breaking and fixing information-flow

protection for a succession of simple imperative languages [29]

and a challenge that is based on JSFlow itself [30].

VI. CONCLUSION

Based on two practical attacks against the example applica-

tion Hrafn, we have illustrated the power of code injection

attacks. The attacks model the scenario, where the current

standards protection mechanism are bypassed or not appli-

cable. By using a simple and natural security policy we have

shown how both attacks are stopped by JSFlow, an information

flow aware interpreter for full non-strict ECMA-262(v.5) [13].

It is worthwhile to notice that, even though information-flow

control has not been tailor made to stop this kind of attacks,

it offers a uniform line of defense against the attacks, both in

theory and in practice. This is in stark contrast to the current

state of the art, which is based on numerous approaches to

protection, one for each type of attack. This illustrates that

shifting the focus from who can access what information to

what is allowed to do with different pieces of information

is not only fruitful, but effective, to ensure confidentiality of

sensitive data.

Acknowledgments This work was funded by the European

Community under the ProSecuToR and WebSand projects, and

the Swedish agencies SSF and VR.

REFERENCES

[1] D. Hedin, L. Bello, A. Birgisson, and A. Sabelfeld, “JSFlow,” Sep. 2013,
the JSFlow project, located at www.jsflow.net.

[2] D. Hedin, L. Bello, and A. Sabelfeld, “JSFlow: Tracking information
flow in javascript and its APIs,” JCS, 2015, To appear.

[3] N. Nikiforakis, L. Invernizzi, A. Kapravelos, S. Van Acker, W. Joosen,
C. Kruegel, F. Piessens, and G. Vigna, “You are what you include: large-
scale evaluation of remote JavaScript inclusions,” in CCS, Oct. 2012.

[4] J. Gibbs Politz, A. Guha, and S. Krishnamurthi, “Typed-based
verification of web sandboxes,” J. Comput. Secur., vol. 22, no. 4, pp.
511–565, Jul. 2014. [Online]. Available: http://dl.acm.org/citation.cfm?
id=2699784.2699787

[5] M. S. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay, “Caja -
safe active content in sanitized JavaScript,” http://code.google.com/p/
google-caja/downloads/detail?name=caja-spec-2008-06-07.pdf, Google
Inc., Tech. Rep., Jun. 2008.

[6] M. Ter Louw, K. T. Ganesh, and V. Venkatakrishnan, “AdJail: Practical
Enforcement of Confidentiality and Integrity Policies on Web Adver-
tisements,” in Proceedings of the 19th USENIX Security, 2010.

[7] L. Meyerovich and B. Livshits, “ConScript: Specifying and enforcing
fine-grained security policies for Javascript in the browser,” in Proc. of
SP’10, 2010.

[8] A. van der Stock, J. Williams, and D. Wichers, “OWASP Top 10 2013,”
http://www.owasp.org/index.php/Top 10 2013, 2013.

[9] D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld, “JSFlow: Tracking
information flow in javascript and its APIs,” in SAC, 2014.

[10] A. Sabelfeld and A. C. Myers, “Language-based information-flow se-
curity,” IEEE J. Selected Areas in Communications, vol. 21, no. 1, pp.
5–19, Jan. 2003.

[11] D. E. Denning and P. J. Denning, “Certification of programs for secure
information flow,” CACM, vol. 20, no. 7, pp. 504–513, Jul. 1977.

[12] D. Schoepe, M. Balliu, B. C. Pierce, and A. Sabelfeld, “Explicit secrecy:
A policy for taint tracking,” in EuroS&P, 2016.

[13] ECMA International, “ECMAScript Language Specification,” 2009,
version 5.

[14] J. Magazinius, D. Hedin, and A. Sabelfeld, “Architectures for inlining
security monitors in web applications,” in ESSoS, 2014.

[15] Joyent, Inc., “Node.js,” http://nodejs.org/.
[16] StrongLoop, Inc., “Express,” http://expressjs.com/.
[17] Jared Hanson, “Passport,” http://passportjs.org/.
[18] D. Hedin, “SYNASC’15 tutorial,” Sep. 2015, tutorial, located at www.

jsflow.net/SYNASC-2015.html.
[19] G. Le Guernic, “Confidentiality enforcement using dynamic information

flow analyses,” Ph.D. dissertation, Kansas State University, 2007.
[20] D. Hedin and A. Sabelfeld, “A perspective on information-flow control.”

in Software Safety and Security, 2012, pp. 319–347.
[21] N. Bielova, “Survey on javascript security policies and their enforcement

mechanisms in a web browser.” J. Log. Algebr. Program., pp. 243–262,
2013.

[22] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vigna,
“Cross-site scripting prevention with dynamic data tainting and static
analysis,” in NDSS, Feb. 2007.

[23] B. Eich, “Flowsafe: Information flow security for the browser,” https:
//wiki.mozilla.org/FlowSafe, Oct. 2009.

[24] T. H. Austin and C. Flanagan, “Efficient purely-dynamic information
flow analysis,” in Proc. ACM Workshop on Programming Languages
and Analysis for Security (PLAS), Jun. 2009.

[25] A. Yip, N. Narula, M. Krohn, and R. Morris, “Privacy-preserving
browser-side scripting with bflow,” in EuroSys. USA: ACM, 2009,
pp. 233–246.

[26] Z. Li, K. Zhang, and X. Wang, “Mash-IF: Practical information-flow
control within client-side mashups,” in DSN, 2010, pp. 251–260.

[27] W. D. Groef, D. Devriese, N. Nikiforakis, and F. Piessens, “FlowFox:
a web browser with flexible and precise information flow control,” in
CCS, 2012.

[28] A. Bichhawat, V. Rajani, D. Garg, and C. Hammer, “Information flow
control in webkit’s javascript bytecode.” in POST, 2014, pp. 159–178.

[29] A. Birgisson and A. Sabelfeld, “Information Flow Challenge,” Sep.
2012, located at http://ifc-challenge.appspot.com/.

[30] D. Hedin, L. Bello, A. Birgisson, and A. Sabelfeld, “JSFlow Challenge,”
Sep. 2013, located at http://www.jsflow.net/jsflow-challenge.html.

19

