
Hardening the Security Analysis of Browser Extensions
Benjamin Eriksson

Chalmers University of Technology
beneri@chalmers.se

Pablo Picazo-Sanchez
Chalmers University of Technology

pablop@chalmers.se

Andrei Sabelfeld
Chalmers University of Technology

andrei@chalmers.se

Abstract
Browser extensions boost the browsing experience by a range of
features from automatic translation and grammar correction to
password management, ad blocking, and remote desktops. Yet the
power of extensions poses significant privacy and security chal-
lenges because extensions can be malicious and/or vulnerable. We
observe that there are gaps in the previous work on analyzing the
security of browser extensions and present a systematic study of
attack entry points in the browser extension ecosystem. Our study
reveals novel password stealing, traffic stealing, and inter-extension
attacks. Based on a combination of static and dynamic analysis we
show how to discover extension attacks, both known and novel
ones, and study their prevalence in the wild. We show that 1,349
extensions are vulnerable to inter-extension attacks leading to XSS.
Our empirical study uncovers a remarkable cluster of “New Tab”
extensions where 4,410 extensions perform traffic stealing attacks.
We suggest several avenues for the countermeasures against the
uncovered attacks, ranging from refining the permission model to
mitigating the attacks by declarations in manifest files.

CCS Concepts
• Security and privacy → Browser security;Web application
security;

Keywords
Web Security; Browser Extensions

ACM Reference Format:
Benjamin Eriksson, Pablo Picazo-Sanchez, and Andrei Sabelfeld. 2022. Hard-
ening the Security Analysis of Browser Extensions. In Proceedings of ACM
SAC Conference (SAC’22). ACM, Brno, Czech Republic, April 25 - April 29,
Article 4, 10 pages. https://doi.org/10.1145/3477314.3507098

1 Introduction
Modern web browsers allow users to customize and improve their
browsing experience by installing browser extensions. The function-
alities of these extensions can range from modifying the aesthetics
of websites to blocking advertisements, adding accessibility fea-
tures, or security and privacy features. Using these functionalities
malicious extensions routinely steal information from unknowing
users [16, 20] and thrive on fake content injection like fake ads [21].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SAC’22, April 25 –April 29, 2022, Brno, Czech Republic
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8713-2/22/04. . . $15.00
https://doi.org/10.1145/3477314.3507098

Similar to mobile apps, the extensions are mainly installed from
app stores, such as the Chrome Web Store. Google is continuously
removing malicious extensions from the Web Store [21]. Yet, new
malicious extensions continue emerging [16, 32]. Although exten-
sions submitted to the Chrome Web Store are subject to analysis
and vetting, the problem with automatically analyzing extensions
is that detecting different threats requires different methods.

Threat Model. The power of extensions poses privacy and secu-
rity challenges. Extensions can both read sensitive information
directly [14, 18] and indirectly by redirecting network traffic. For
example, a malicious extension can use JavaScript to read pass-
words from the DOM or listen to network traffic. There are further
underexplored classes of attacks where malicious extensions can
also attack other extensions, for example, to steal their internal
data, like todo-notes or stored passwords.

The challenge is not only to find malicious extensions but also
vulnerable extensions. For example, an attacker could trick an ex-
tension with access to the user’s cookies to send the cookies to
the attacker. Previous work has uncovered several classes of at-
tacks and vulnerabilities related to browser extensions (discussed
in detail in Section 9). For example, Kapravelos et al. [22] find ma-
licious extensions trying to steal data or modify security headers.
Somé [37] discovers code execution vulnerabilities in extensions
through static and manual analysis. In this scenario, a malicious
website attacks a vulnerable extension. Attacking the implementa-
tion in the browser is also possible. For example, Buyukkayhan et
al. [7] exploit the lack of isolation mechanisms that Firefox used to
implement in its browser extension ecosystem.

Yet there are gaps in the previous work when it comes to ana-
lyzing the security of the entire browser extension ecosystem. Our
paper is a step towards filling the gaps in the security analysis of
extensions. We accomplish this by performing a systematic study
of the extension ecosystem, including extensions’ assets, attackers,
and possible interaction methods. The benefit of our approach is
the wider threat model.
Approach. We propose a systematic approach to hardening the
security analysis of browser extensions. The main thrust of our
systematization is a systematic study of attack entry points in the
browser extension ecosystem. This leads us to both discovering
novel attacks and analyzing known ones from a wider attacker
model perspective. We group all the attacks by the actors involved
to define the attacker, victim, attack surface, and target asset. Based
on the attack we use a combination of static and dynamic analysis
to detect insecure extensions and in some cases synthesize payloads.
We download all the 133,365 extensions from the ChromeWeb Store
and test our detection mechanism on the extensions. We search for
characteristics of our novel attacks on the web and confirm their
novelty by finding no evidence of attackers using them in the wild
so far.

https://doi.org/10.1145/3477314.3507098
https://doi.org/10.1145/3477314.3507098

SAC’22, April 25 –April 29, 2022, Brno, Czech Republic Benjamin Eriksson, Pablo Picazo-Sanchez and Andrei Sabelfeld

Table 1: Summary of the attacks versus the ecosystem presented in this paper.

Attack Subattack Attacker Victim In wild Section

Password Chrome autofill Extension Extension/User/Web page Novel Section 5.1.1
Virtual keyboard Extension Extension/User/Web page Novel Section 5.1.2

Traffic Extension User 4,410 Section 5.2.1

Inter-extension

Collusion Extension User Benign Section 5.2.2
History poisoning Extension/Web page Extension 1,349 Section 5.3.1
Code execution Extension/Web page Extension 1,349 Section 5.3.2
Fingerprint Extension User 10,785 Section 5.3.3

Attacks.We present novel vectors that extensions can use to attack
both the user and other extensions. We divide them into three
categories: password stealing, traffic stealing, and inter-extension
attacks. We summarize these attacks in Table 1.

Password stealing:We develop a newmethod for actively steal-
ing passwords, circumventing Chrome’s protection. Chrome tries
to protect against password stealing by not adding the password to
the page DOM before a user interacts with the page. To circumvent
this, an extension can change the type of the password field to text
and capture a screenshot.

Traffic stealing: By analyzing extensions from the Web Store,
we find extensions that are actively stealing search queries by redi-
recting traffic.

Inter-extension attacks:We create novel methods for detect-
ing potentially vulnerable extensions that can be attacked by other
extensions. We detect this by analyzing how inter-extension mes-
sage passing and poisoning shared resources can lead to Cross-Site
Scripting (XSS). In addition, we show that inter-extension message
passing can also fingerprint extensions.

Empirical study.Our findings show that 4,410 extensions, totaling
over 120,000 downloads, are actively stealing search queries from
users. We also detect 1,349 extensions being vulnerable to takeover
using XSS from malicious extensions. Furthermore, this group of
extensions is also vulnerable to history poisoning attacks leading to
XSS while 2,829 are vulnerable to HTML code injection via history
poisoning. In the latter case, Content Security Policy (CSP) protects
them from XSS. Our new method for fingerprinting extensions also
improves the state-of-the-art by adding 162 new extensions.

Countermeasures. We propose countermeasures for each class
of the aforementioned attacks. In brief, for the password attacks,
we consider that extensions that want to take screenshots should
declare a concrete permission (e.g., captureVisibleTab) similar
to the need for the desktopCapture permission. For traffic steal-
ing, Chrome is already in the process of adopting a new version
of the manifest file where extensions will have to declare in ad-
vance how they will handle users’ requests [15]. Finally, for the
inter-extension attacks, we propose to either make mandatory the
definition of the externally_connectable key in the manifest
file or if not, change the security-by-default option, and if such a
key is not in the manifest, then the extension will not handle any
external message.

Contributions. The paper offers the following contributions:
• We present a systematic study of attack entry points in the
browser extension ecosystem in Section 3.

• We describe our methodology based on a combination of
static and dynamic analysis to discover attacks in Section 4.

• We study the prevalence of attacks in the wild and two
novel attacks: password stealers and inter-extension history
poisoning in Section 5.

• We perform a detailed case study of the popular “New Tab”
extensions in Section 6.

• We present countermeasures to the identified problems in
Section 7.

We release our implementation and example extensions1.

2 Background
While implementation details differ between the main browsers
(e.g., Firefox and Chromium-based browsers), the overall architec-
ture for browser extensions is similar.

Chrome isolates the execution of browser extensions in different
environments for security reasons [4]. Due to this, message passing
is used. We can classify message passing, depending on who the
sender is, into 1) scripts provided by the web page; 2) content scripts
of the extensions, and; 3) background pages.

If the sender is a web page, it can use the postMessage method
to send a message to any other script also running in the web page
context. Also, web pages can send direct messages to background
pages of extensions by using one-time requests (sendMessage(<
ext_id>) from runtime and tabs APIs). Browser extensions will
handle these messages by implementing onMessageExternal.

These event listeners are triggered if and only if the extensions
define the externally_connectable key in the manifest file and
explicitly add the web page in the matches sub-key. Since exten-
sions cannot establish this external communication by themselves,
the only way they have to reply to external messages is in the body
of the event listener by using sendResponse or postMessage,
depending on whether the communication is one-time or long-
lived respectively. Using the same procedure, Chrome allows cross-
extension messaging.

If the sender is the content script of an extension, it can send
messages to scripts provided by web pages (or to other content
scripts) by using runtime.postMessage method. It can also send
direct messages to the background of the same extension using

1https://www.cse.chalmers.se/research/group/security/hardening-extensions/

https://www.cse.chalmers.se/research/group/security/hardening-extensions/

Hardening the Security Analysis of Browser Extensions SAC’22, April 25 –April 29, 2022, Brno, Czech Republic

runtime.connect
runtime.sendMessage

content_script.js background.js

web_script.js

postMessage

postMessage
tabs.sendMessage

postMessage sendResponse
postMessage

sendMessage (<ext_id>)
connect (<ext_id>)

content_script.js background.js

background.js
sendMessage (<ext_id>)
connect (<ext_id>)

Extension A

Extension B

sendMessage (<ext_id>)
connect (<ext_id>)

sendResponse
postMessage

Figure 1: Message passing in browser extensions.

one-time requests. The background of the extension will handle
messages coming from the content scripts of the same extension
by implementing onMessage(). Also, content scripts can send
external messages to other extensions using the method explained
before, i.e., as if they were scripts coming from web pages.

If the sender is the background, it can use postMessage() to
send messages to the content scripts of the same extension and
runtime.sendMessage(<ext_id>) for cross-extension messag-
ing.

In Figure 1, we include a summary of the message passing in
browser extensions. In the figure, we represent two extensions
(Extension A and B) and simplify the methods to send and receive
information between isolated worlds (content scripts, background
pages, and web scripts) as explained before.

3 Threat Model
We define a vulnerable extension as an extension that can lose
control of any of its confidential or integrity-sensitive assets to
another actor. For example, another malicious extension can send a
message resulting in code execution. On the contrary, we say that
an extension is malicious when it controls assets from another
actor. For example, a malicious extension could steal the user’s
password, which is an asset. We define both the actors and the
assets in the description of the entire ecosystem in Section 4.1.

There are two main entry points, which we explore in the
following sections, that attackers can use to exploit browser exten-
sions: 1) shared resources, and; 2) message passing.

3.1 Shared Resources
We consider shared resources to be all the elements that exten-
sions have access to, e.g., DOM content, history, Web Accessible
Resources (WARs), and bookmarks. The DOM can be used by scripts
and extensions to communicate and share data [13].

3.2 Message Passing
As explained in Section 2, in message passing, we can distinguish
between messages coming from scripts of the same extension and
external ones. For messages coming from external scripts, we pro-
pose a novel and methodological way to extract from the manifest
of the extensions how vulnerable they are.
External message passing. To know to what extent the exten-
sions are vulnerable due to message passing, we use the optional

Table 2: Each row showswhich communications are possible
based on the IDs and matches defined in the manifest.

∃ externally_connectable Communication
IDs matches Web pages Extensions

1 ✗ – – ✗ ∀
2 ✓ [ID1,. . .,ID𝑛] [URL1,. . .,URL𝑛] [URL1,. . .,URL𝑛] [ID1,. . .,ID𝑛]
3 ✓ [ID1,. . .,ID𝑛] ✗ ✗ [ID1,. . .,ID𝑛]
4 ✓ ✗ [URL1,. . .,URL𝑛] [URL1,. . .,URL𝑛] ✗

5 ✓ ✗ ✗ ✗ ✗

6 ✓ ["*"] [URL1,. . .,URL𝑛] [URL1,. . .,URL𝑛] ∀
7 ✓ ["*"] ✗ ✗ ∀

externally_connectable key. Such a key can include two op-
tional keys, ids, and matches. The former indicates the list of
extension IDs whose messages are handled, whereas the latter for
web pages instead.

If the externally_connectable key is not defined in the man-
ifest (1𝑠𝑡 row in Table 2), all extensions can send messages but
webpages cannot. On the contrary, if the key is defined there can
be 6 possible options depending on the values of the two lists.
We include in Table 2 all the possible cases of (not) defining the
externally_connectable key in the manifest. Note that the
most secure option is when the key is defined but none of the
lists are provided (5𝑡ℎ row in Table 2). By analyzing the manifest
file of all the extensions, we found that 6,417 extensions define
externally_connectable key whereas 126,948 do not, mean-
ing there are more than 100,000 extensions that accept external
messages coming from other extensions.
Content scripts message passing. Even though message passing
using content scripts is an attack vector, as recently demonstrated
[37], we consider that this is a particular case of the DOM shared
resource entry point. Extensions can react to the event fired by
either web pages or by other extensions when they send a message.

4 Methodology
In this section, we explain in detail our method for discovering
malicious as well as potentially vulnerable extensions.

4.1 Identifying entry points
To harden the analysis we first perform a systematic analysis of the
extension ecosystem, including assets, attackers, and interaction
methods. We use a top-down approach and start by analyzing the
actors, followed by the different assets they possess, the attack
surface, and finally the entry points into the extension.

Ecosystem. The browser extension ecosystem allows for rich in-
teraction between three classes of actors: users, web pages, and
extensions.

Security Assets. We define security assets as important assets re-
lated to sensitive information and program control flow. The main
asset of the user in our model is sensitive information, such as his-
tory, cookies, passwords, and the user’s online activity. Passwords
are also custody of web pages, making them an important asset
to web pages too. Finally, extensions’ assets include both confi-
dential user-generated data, like todo-notes and passwords, and

SAC’22, April 25 –April 29, 2022, Brno, Czech Republic Benjamin Eriksson, Pablo Picazo-Sanchez and Andrei Sabelfeld

control flow (e.g., code execution). For example, an extension steal-
ing sensitive data like users’ history is malicious as it is reading a
confidential asset (history).

Attack surface.We model the attack surface by close inspection
of the interaction methods available to the actors. For shared re-
sources, we consider DOM content, history, bookmarks, WARs,
and cookies. These could potentially be used to carry malicious
payloads. In Figure 1 we show the possible message passing in-
teractions between extensions and web pages that make up the
second part of the attack surface for the two actors. Note that both
web pages and extensions can use message passing but in the inter-
extension case the messages can go directly to the high-privileged
background scripts making such vulnerabilities a larger threat com-
pared to attacks from web pages. We also further refine the attack
surface dynamically by inspecting the manifest of the extension. By
comparing the manifests of extensions to Table 2 we can efficiently
filter out attack vectors.

Entry points. The final step is to extract all the entry points from
the attack surface and analyze them. We use a combination of static
and dynamic analysis based on the type of entry points to do this.

4.2 Combining Static and Dynamic Analysis
We crawled the Web Store in Jan 2020 and downloaded all the
133,365 browser extensions. To evaluate our approach on as many
extensions as possible we include both old and young extensions.
As it can be seen in Figure 2, to detect both malicious and potentially
vulnerable extensions, we split our methodology into i) static, and;
ii) dynamic analysis. Finally, we installed the potentially vulnerable
extensions and confirmed whether they are exploitable or not.

To improve efficiency and harden the analysis we combine both
static and dynamic analysis. By combining them we no longer need
to dynamically test all extensions, which would require more re-
sources. In many cases, we can do this without losing precision, e.g.,
by statically analyzing the manifest we know if an extension can
manipulate web requests to perform traffic stealing. If the extension
lacks the permission we can skip the dynamic analysis.

Static Analysis. During the static analysis, we analyze the mani-
fest key externally_connectable according to Table 2. We also
parse both permissions and the optional permissions of the exten-
sions to know what sensitive information the extension has access
to. This takes about 12 hours on a normal workstation.

We use Esprima2, a powerful library to perform lexical (tokeniza-
tion) and syntactic (parsing) analysis of JavaScript, to generate the
Abstract Syntax Tree (AST) of the JavaScript files and extract the
external message event listener’s code. For HTML files, we use
regular expressions instead to extract the code.

We find 53,177 potentially malicious extensions containing either
runtime.connect() or runtime.sendMessage() functions.We
also find 11,595 extensions that are susceptible to being abused. That
is, they implement event listeners for external message passing
functions, e.g., onMessageExternal().

After, we compute the SHA-256 hash of the event listener func-
tions and group extensions by their hashes, obtaining 570 different

2https://esprima.org

implementations. The use of cryptographic hashes, as opposed to
fuzzy hashes like ssdeep [24], ensures that the functions are the
same. We discuss the implications of this in Section 8. Then, we
chose one extension from each of the 570 groups and dynamically
analyzed them. Note that since each extension in the group has the
same function it does not matter which one we pick.

Dynamic Analysis. Based on the static analysis we extracted ex-
tensions that can be further tested for dynamic analysis. The dy-
namic analysis consists of three major steps: 1) instrumentation;
2) monitoring, and; 3) payload generation. The exact implementa-
tion of these differ from attack to attack and is explained in more
detail in Section 5.

In general, the extensions are statically instrumented to log the
line numbers being executed. This is done by inserting fetch instruc-
tions on each line, like the following: fetch("http://localhost
/inst/'+token()+'/line/'+(line_number)+'"). For each attack,
we also hooked API calls, including the arguments, and exfiltrate
them by using similar instructions and encodings.

To monitor we use a web server that listens to these fetch in-
structions. Based on the requests we can determine the trace of
the extension’s execution and if any security and privacy-relevant
APIs were executed.

Finally, the last part is generating payloads or instructions to
bring the extension to an interesting state. We used puppeteer [31],
which is a tool for controlling Chrome, to load the extension we
wanted to test and any other extensions we developed to interact
with it. From here the instructions depend on the type of attack.
For example, our extension can send inter-extension messages to
the other extension. We can load pre-configured chrome profiles to
test history poisoning attacks or navigate the browser to test traffic
stealing. Dynamically testing one extension takes around 1 minute,
but many can be done in parallel and after the static filtering we
are only dynamically executing a subset of all extensions.

Manual Verification.When the static or dynamic analysis marks
an extension as either potentially vulnerable or malicious we make
sure to manually verify it. To manually verify a malicious extension
we run the original version of the extension, i.e., without instrumen-
tation code and other modifications, in a normal Chrome browser,
not via puppeteer. From there we verify that the same malicious
behavior, for example, traffic stealing, is still present. Similarly, for
vulnerable extensions, we also use the original extension and load
it in Chrome together with a suitable attacker extension we create.

To avoid manually testing every vulnerable or malicious exten-
sion, we cluster them usingDeDup.js [30].DeDup.js allows us to find
all extensions that have the same malicious or vulnerable JavaScript
files. We also check the manifests to ensure the JavaScript files are
loaded and executed. We discuss the risk of possible false positives
from this approach in the discussion in Section 8.

5 Discovering Attacks and Vulnerabilities
In this section, we present the novel attacks that we designed as
well as both the vulnerable and the malicious extensions we found
in the wild. Our novel attacks are presented in Section 5.1, the
attacks used by malicious extensions are presented in Section 5.2,
while the vulnerable extensions are in Section 5.3. We analyze these

https://esprima.org

Hardening the Security Analysis of Browser Extensions SAC’22, April 25 –April 29, 2022, Brno, Czech Republic

WebStore
AST

manifest

crx

Match
“permissions”: []

U
“optional_permissions”: []

Regex

“externally_connectable”: []

crx
Exploitable

External
Message Event

Listeners

Hash
crx

Vulnerable

Instrument

Payloads

Static Analysis Dynamic Analysis

API calls

Attacker
Model

Monitoring

M
an

ua
l V

er
ifi

ca
tio

n

crx
Malicious

Figure 2: Static and dynamic analysis combination to determine possible attacks and detect malicious and potentially vulner-
able extensions.

attacks and vulnerabilities in Chrome but discuss how they apply
to other browsers in Section 8.4.

5.1 Novel Attacks by Malicious Extensions
In this section, we detail two novel attacks we designed to steal
users’ credentials. As these attacks are designed by us and not
discussed in prior works, we did not expect to find any of these
in the wild. We did not find any extensions using these attacks,
further supporting their novelty.

5.1.1 Password stealer A password-stealing extension can attack
any actor in the attacker model, i.e., other extensions, web pages, or
users. We have seen previous attacks [42] where extensions inspect
the DOM to steal passwords.

In this paper, we present a novel active password-stealing ap-
proach where the extension actively visits different domains to
extract the passwords. A novel component to this is a bypass of
Chrome’s protection against autofill-scraping [43]. Note that this
protection is so far only in Chromium-based browsers, i.e., not in
Firefox or Safari yet. The attack still works in Firefox but not in
Safari as it requires the user to click a pop-up before the password
is added to the field. Chrome protects the user from autofill attacks
by waiting for user interaction before adding the password to the
DOM. However, we can edit the underlying password element to
bypass the protection. Our attack changes the type of the pass-
word element to text instead of password. Although the value is
still not added to the DOM, the asterisks are converted into text.
Our extension takes a screenshot of the page to exfiltrate the im-
age with the password. Note that taking screenshots of the pages
only requires the <all_urls> permission, which is used by over
18,000 extensions, including popular extensions like Grammarly
with over 10 million downloads. Furthermore, no special screenshot
permissions or user interaction are required.

Making the attack stealthy to the user is an orthogonal problem.
We use a pop-under attack which creates a new window under the
active one. In this newwindow,we load a page and take a screenshot.
This approachmakes the attack stealthy on bothmacOS andUbuntu.
Another approach can be to modify the style of the DOM to make
it harder for the user to see the unmasked password. In addition,
the attack takes less than five seconds to steal a password in our

tests, with possible variation due to network speed, making it hard
to stop even if the user notices it.

5.1.2 Virtual keyboard attack To increase the security of the user’s
credentials, some online services include virtual keyboards on
the screen for the users to avoid directly writing the passwords
and thus protect them from keylogger attacks. For this attack to
work, the attacker has to implement an click event listener using
document.onClick. Later on, in an offline analysis, the attacker
matches both the coordinates and the screenshot to get not only
the clicked elements but also the order in which they were clicked.
This login system is popular among banks, e.g., ING bank in Spain,
France, Australia, BNP Paribas, and La Banque Postale in France,
without the option for the users to use an alternative.

5.2 Malicious Extensions in the Wild
In this section, we present extensions attacking users or other
extensions.

5.2.1 Traffic stealing Extensions have the power to cancel, redirect,
modify request and response headers, and supply authentication.
This allows them to implement features like ad-blocking by match-
ing URLs against deny-lists. The permissions needed to modify on-
going network requests are webRequest and host_permissions,
and webRequestBlocking. Using these permissions and APIs, an
extension can attack the user by intercepting general search queries,
for example to Google or Yahoo, redirect these back to their server,
and finally have their server redirect the user back to a search
engine. Without the user noticing, their search traffic is stolen.

Results. To detect malicious extensions exploiting this attack,
we analyzed those that interact with network requests. In partic-
ular, extensions that used the webRequestBlocking permission
and defined a listener for onBeforeRequest were dynamically
analyzed. We clustered extensions based on the SHA-512 hash of
the file responsible for the traffic stealing.

Before dynamically executing the extension, we instrumented
it to send the list of filtered URLs to our control server at run-
time. These are the potential URLs the extension can interact with.
We then compared this to a list of domains, plus query parame-
ters, we wanted to test against. The domains (www.google.com,
www.yahoo.com, and www.bing.com) were picked based on a short

SAC’22, April 25 –April 29, 2022, Brno, Czech Republic Benjamin Eriksson, Pablo Picazo-Sanchez and Andrei Sabelfeld

pilot study of malicious extensions we found, we discuss improve-
ments to this method in Section 8. For each match, we dynamically
executed and analyzed the extension. To detect network requests
we use page.setRequestInterception in Puppeteer. Using this
we notice if the extension introduces new requests or redirects.

Example. We found 4,410 extensions abusing this method to
steal traffic from users. We discuss these in detail in Section 6.

5.2.2 Collusion Extensions can communicate directly to other ex-
tensions by sending messages. The possibility for message passing
depends on the externally_connectable definition (see Table 2).
Malicious extensions can abuse message passing to share permis-
sions, allowing multiple low permission extensions to combine
their permissions. This would allow them to stay under the radar.

Results. To detect collusion we looked for message passing
between extensions. As can be seen in Figure 1, the sendMessage
function takes an extension ID as a parameter. Therefore, we
scanned each extension for extension IDs in their code.

Extension IDs follow a simple pattern, 32 lower case characters.
We first scanned each file using this regular expression in python, re
.findall("[a−z]{32}"). This returns all the strings that could
potentially be other extensions. Next, we compared all the potential
extension IDs with the real ones in the dataset we are using. To
further filter the list we removed the extensions that do not use
message passing APIs. This helps to remove extensions that simply
link to other extensions, without directly messaging them. Based
on this, we created our “collusion map” which we then manually
analyzed to understand why the extensions interact with each other.

Example. In this paper, we did not find any colluding extensions
that could be classified as malicious. However, we did find two
extensions colluding with each other to share permissions. The first
one3 defines three permissions while the second one4 requires no
permissions. The second one then asks the first one for data.

5.3 Vulnerable Extensions in the Wild
In this section, we present the vulnerable extensions we found
during our analysis.

5.3.1 History poisoning History poisoning is a novel attack we
present which targets extensions working with users’ browser his-
tories. Malicious extensions, or web pages, can poison the browser
history with code injection payloads. The vulnerable extensions
usually present the user with an overview of their history. This can
range from exact history to most visited or recently closed tabs. By
adding HTML code to the title of a web page, a web attacker can
gain content script code execution if the history titles are not sani-
tized correctly. The exploitability of this attack depends on the type
of history poisoning necessary. Changing the most visited pages is
difficult for a web attacker to accomplish. However, adding a single
entry to recent history or closed tabs only requires a redirection.

Results. To detect potentially vulnerable extensions due to this
attack, we first extract extensions with the history permission.
Once a vulnerability is found we automatically mark other exten-
sions which share the same file and use the history permission.
Later, in the dynamic phase, we loaded the history with visits to

3dnclbikcihnpjohihfcmmldgkjnebgnj (version 1.3.6)
4bepofoammpdjhfdibmlghoaljkemineg (version 0.1.4)

pages with HTML and JavaScript payloads in the title. These pay-
loads are explained in Section 6. We then loaded the extension and if
a payload is executed we conclude that the extension is vulnerable.
Based on the CSP in the manifest, this can either imply full XSS or
be limited to HTML injection.

Example. In Section 6 we present a detailed analysis of exten-
sions vulnerable to this attack.

5.3.2 Code execution If an extension uses dynamic code execu-
tion functions, such as eval, without safety precautions it can
potentially be abused by other web pages and extensions.

The impact of this attack depends on the context of the code
execution. The highest impact context is the background scripts
where, if exploited, an attacker would gain access to all the APIs the
extension has permission to use. The impact in the DOM context
depends on the connection to the background. By executing code in
the DOM context, the attacker gains access to all the APIs available
for the content scripts. For instance, the attacker can make use of
the sendMessage function and impersonate the legitimate content
scripts of the extensions, allowing the attacker to send messages
to the background as if she were the content scripts, affecting the
confidentiality, integrity, and availability of the extension.

Results. To detect code execution vulnerabilities, we extracted
the code from the message passing functions in Figure 1. We did this
by analyzing and extracting listeners like onMessageExternal.
From this, we clustered the extensions based on the SHA-512 hash
of the code of these functions. For each cluster, we extracted the
API calls from the listener functions to check if they either execute
code dynamically, e.g., by eval, or interact with shared resources,
e.g., local storage. We then checked these API calls against the per-
missions that the extension uses. Finally, we analyzed the clusters
with API calls to determine if they can lead to code execution.

To findmore extensions we search for others containing the same
file, and if the permissions are correct, we mark them as vulnerable.
This could lead to false positives if another extension has the same
file but does not use it. However, in our manual testing, we found
no such cases.

Example. In this paper, a group of 1,349 extensions was vul-
nerable to code execution attacks. We discuss them in-depth in
Section 6

5.3.3 Fingerprinting Knowing which extensions a user has in-
stalled can allow both extension and web page attackers to de-
grade the privacy of a user. Multiple methods of browser exten-
sion fingerprinting have been proposed. Sjösten et al. [36] used
WARs; Starov et al. [38] identified extensions by the changes they
perform to the DOM; [23] et al. do so by sending messages and
waiting for their response; recently, [25] et al. used CSS styles. How-
ever, extensions with the “management” permission can use the
chrome.management.getAll function to get a list of all installed
extensions. We show how extensions can bypass the “management”
permission and get this list. Note that malicious extensions do not
require any extra capabilities or permissions to bypass the permis-
sion and perform the attack.

Our technique is based on the externally_connectable prop-
erty. Recall this allows extensions and web pages to send messages
to another extension using inter-extension messaging. If that prop-
erty is not in themanifest, by default the target extensionwill accept

Hardening the Security Analysis of Browser Extensions SAC’22, April 25 –April 29, 2022, Brno, Czech Republic

Table 3: Browser extensions fingerprinting.

Methodology Browser Extensions
Fingerprintable Non-Fingerprintable

20
19

This paper 10,785 (8.0%) 665
WARs[36] 10,919 (8.1%) 531
WARs [36] ∩ Bloat [38] 10,977 (8.2%) 473
This paper ∩ [36] ∩ [38] 11,147 (8.3%) 303

all messages coming from extensions. However, if the property is
defined, then twomain properties can be defined: matches and ids.
Both are allowed-lists where only the web pages and extensions
defined can send direct messages to the target extension.

Results. To detect how many extensions are fingerprintable
due to external messages, we parsed the manifest file of all the
133,365 we downloaded as of January 2020. 126,948 extensions
do not define the externally_connectable key in the man-
ifest. Remember that if this key is not in the manifest file but
the extensions implement listeners for external communications,
e.g., onMessageExternal, web pages cannot send direct messages
through message passing functions but other extensions can.

From the 126k extensions, we statically check how many of
them implement any of the methods to handle external connec-
tions and got a lower bound of 11,595 potentially fingerprintable
extensions. Later, we automatically installed them all—146 could
not be analyzed because the manifest had syntactic errors and the
bowser could not install them—and certified that 10,785 use the
sendResponse() function to send a response back to the sender.

We then coded two fingerprinting attacks proposed by 1) Sjösten
et al. [36], where extensions are fingerprintable due to the WARs
they publicly expose, and; 2) Starov et al. [38], where extensions are
fingerprintable due to bloat (changes they automatically perform
over the DOM). In Table 3 we summarized our findings and the
combination with prior work in the field. Despite being aware of a
recently published work [23], we could not reproduce the proposed
attack being therefore impossible for us to corroborate their find-
ings and include them in the final result. After executing the three
fingerprinting attacks (third row of Table 3), we successfully finger-
printed 11,147 extensions (approximately 8.3% of the total exten-
sions) where 303 were not possible to do so with these techniques.
The reason for not being possible to be fingerprinted is because
either they do not send a message back using the sendResponse()
method, they do not define WARs, or they do not automatically
modify the web content provided by the server.

6 New Tabs Case Study
Our empirical study has uncovered a remarkable cluster of “New
Tab” extensions. The main characteristic of these extensions is that
they override the new tab functionality in the browser. When the
user opens a new tab in the browser, this is replaced by the one the
new tab extension created. Such new tabs usually have a search
bar with some arbitrary wallpaper backgrounds. Some extensions
also add widgets like todo-notes, weather reports, email, a list of
the most visited sites, and bookmarks management among others.

Table 4: Distribution of file versions for
search-overwrite.js and domains used to steal queries.

URL # Extensions SHA[0:3]

s.tablovel.com 1740 026
www.explorenewtab.com 1178 1f8
www.newtabprobe.com 560 191
www.newtabexplore.com 539 513
www.lovelychrometab.com 255 381
www.newtabexplore.com 82 6d9
www.themefornewtab.com 40 c49
www.newtabwallpapers.com 8 7e1
www.newtabwallpapers.com 7 5dc
www.newtabprobe.com 1 732

Our analysis has flagged many vulnerable and malicious ex-
tensions in this category, justifying further investigation. In the
following section, we analyze them in more detail.

Traffic stealing. We found 4,410 extensions, with a combined 176
thousand downloads, that steal search queries from users while
posing as new tab extensions. There is a common file in all these ex-
tensions called search-overwrite.jswhich implements an event
listener that is fired just before a web request is sent (chrome.
webRequest.onBeforeRequest.addListener). In such a func-
tion, all the extensions block the ongoing request and redirect it to
different URLs, like s.tablovel.com. We realized that, in addition to
stealing queries from popular search engines like Google, a subset
of them, containing 2,588 extensions, also steal queries from other
new tab extensions, e.g., from redirect.lovelytab.com.

Regarding the search-overwrite.js file, from all the 4,410
extensions, we computed all the SHA-512 hashes of such a file in
different extensions and found that there are 10 unique versions. In
Table 4 we show the distribution of the files and the URL used to
steal the queries. As can be seen, the two most popular versions of
that file are used by a majority of the extensions.

Code execution. In addition to finding malicious new tab exten-
sions, we also found multiple vulnerable ones. In particular, we
found that 1,349 extensions were vulnerable to XSS attacks from
other extensions. At the time of download, these extensions had
over 73 million downloads combined, making them quite popular.
However, we do believe many of these downloads were fraudulent
and some extensions have lost many of their downloads since then.
This attack depends on three factors: 1) the extensions allow exter-
nal messages; 2) the external messages are stored and reflected in
the extension, and; 3) the CSP in the manifest allows for JavaScript
execution. The problem in these extensions is that data from the
localStorage is reflected unsanitized, as is the case for the “Peppa
Pig HQ Wallpapers New Tab”5 with over 3,000 downloads. For the
1,349 extensions, all of the above criteria were met. We also found
two other groups of new tab extensions, totaling 2,829 extensions,
which met all but the last criterion. This means that XSS is no longer

5cikheolhmcgdkmblgmfkgkcgfflddaem (version: 3.2) now removed.

s.tablovel.com

SAC’22, April 25 –April 29, 2022, Brno, Czech Republic Benjamin Eriksson, Pablo Picazo-Sanchez and Andrei Sabelfeld

possible but HTML injections still are, allowing attackers to inject
ads or meta redirects, effectively taking over the new tab extension.

History poisoning.A popular function with new tab extensions is
showing both recently and most visited websites. We set up a local
server and installed the extensions in the browser. The browser
is running a profile with multiple poisoned shared resources, i.e.,
before running the extension, history data are added to the profile.
We found that if we change the <title> tag of a page in the history,
we were able to remotely execute code in the user’s browser.

As an example, we use “Halloween Backgrounds New Tab”6
and the title payload <script>alert(1)</script>. When the
extension reads our web page from the most visited list of the user,
which happens when the user opens a new tab of the browser or
when the user launches the browser, the payload is executed. We
found that the same group of extensions being vulnerable to inter-
extension XSS is also vulnerable to XSS from history poisoning. In
total, all 1,349 are vulnerable to XSS and 2,829 to HTML injection
from history poisoning.

Evasion. We discovered that New Tab extensions actively practice
evasion mechanisms, making their detection challenging for purely
dynamic mechanisms. It turned out that 53 of them share a file that
implements a time bomb logic that waits five days after installation
before starting to redirect traffic.

7 Countermeasures
In this section, we briefly discuss possible countermeasures for the
attacks we discovered.

Password stealing. Stopping malicious extensions from stealing
passwords is complicated. Many legitimate password manager ex-
tensions need the capability to both read and write passwords to
the DOM. Thus, simply blocking access to password fields is not
viable. To stop the more nefarious type of password-stealing, which
is active password-stealing where no user input is needed, Chrome
decided to hide autofilled passwords from the DOM until the user
interacts with the page, which our attack bypasses with screenshots.

To protect against extensions screenshotting passwords there are
three avenues. First, warning the users about the screenshot being
taken, similarly to what Chrome does for full desktop screenshots
already. A similar approach for screenshots using chrome.tabs
.captureVisibleTab, would clearly show the password being
leaked to the user.

The second approach is for the browser to hide the password
before taking the screenshot. As the browser knows which field
it inserts the saved password into it can either obfuscate or fully
remove this field before taking the screenshot. Then after the cap-
ture is completed, add back the field again. The third approach is
to create a new permission such that extensions that want to use
the captureVisibleTab function should declare in advance such
permissions so the user has to specifically approve such privileges.

Traffic stealing. With the adoption of the new manifest version
3, the webRequestBlocking permission will be moved to the
chrome.declarativeNetRequest API [15]. If extensions would

6jckojlfhehjnlkdoiojpmkjjoojbgfjl (version: 0.1.8.4) now removed.

want to block web requests by using the chrome.webRequest API,
they will have to declare that in advance in a set of rules. With
this, traffic stealing will not be solved but extensions will have to
explicitly declare the purpose in advance, being easier to detect and
block by either Google or users.

Inter-extension attacks. In this paper, we conclude that one of
the most effective methods to avoid undesired extensions to send
messages to others is using the externally_connectable key in
the manifest, similar to what Somé [37] suggested. We developed a
script that automatically inserts externally_connectable into
the manifest of those extensions without it. After, we run the inter-
extension attacks presented in this paper and certified that the
extensions were not exploitable anymore due to external messages.

A common problem in both the extension being vulnerable to
inter-extension XSS and history poisoning attacks was that they did
not sanitize user-controlled input. These problems could have been
avoided by properly sanitizing content before presenting it to the
user, whether it is todo-notes or an overview of the browser history.
There are many good JavaScript libraries available to sanitize input
before adding it to the DOM, e.g., Both jQuery and DOMPurify.

For XSS specifically, strict CSP policies are very effective. Chrome
already applies a default strict CSP policy protecting against inline
XSS attacks. However, as we found in this paper, many extensions
override this with weaker policies. Making it clearer to both the de-
velopers and users that weak CSP policies can lead to the extension
and user data being compromised might help raise awareness of
this problem.

8 Discussion
In this section, we discuss the limitations of our work and how we
try to minimize both false positives and false negatives. We also
discuss deviating results in the Safari browser.

8.1 Static analysis
There are some inherent limitations in using static code analysis. In
the case of JavaScript files, there are two main aspects to consider:
dynamic function execution and code obfuscation. Dynamically
executed code inside an eval() statement would not be parsed
and analyzed correctly. Obfuscated JavaScript code is another well-
known problem. During our manual analysis, we did find a heavily
obfuscated traffic stealing extension that used a base64-encoded
string to evade static detection. Thus, even if we use basic regular
expression searches in the code, they can be evaded. To improve
this future static analysis approaches should focus more on deob-
fuscation and attempt to decode and decrypt data.

Due to dynamic code execution and obfuscation, our analysis
may miss potentially malicious extensions resulting in false neg-
atives. However, for the code in the extension that can be parsed,
we ensure that the permissions and APIs we extract are in the
extension’s code.

8.2 Dynamic analysis
Before we dynamically executed the extensions, we instrumented
them to relay useful information about API calls. However, the
instrumentation is done statically, which inherits similar limitations
as mentioned in the static analysis. In the case of traffic stealing

Hardening the Security Analysis of Browser Extensions SAC’22, April 25 –April 29, 2022, Brno, Czech Republic

detection, this means that we would not be able to acquire the exact
filter list the extensions use. We handled this by dynamically testing
the extension on all the URLs in our target list, which means that
we tested everything but at the cost of worse performance.

For traffic stealing, we tested extensions against three URLs we
had seen being targeted by traffic stealers, namely www.google.com,
www.yahoo.com, and www.bing.com. Similarly, by executing the
extension multiple times on the same URL we could reduce the
noise in terms of requests being made, thus lowering false positives.
For example, visiting www.google.com might result in different
requests between two visits. By making multiple visits both with
and without the extension we could determine which requests are
introduced by the extensions. Future work includes testing more
URLs than the three we picked. This can lower the false negatives
by potentially finding more malicious extensions.

8.3 Manual Analysis
To further minimize any false positives from the static and dynamic
analysis we test the original extension in a plain Chrome browser.
We test one extension from each cluster of extensions, where the
cluster is all the extensions that have the same vulnerable or ma-
licious JavaScript file. We also check that the manifests for all the
extensions in the cluster contain the same file in the manifest to
ensure it is not simply unreachable code.

8.4 Cross-browser
For each attack and vulnerability we recreated them in both Firefox
and Safari. In general, they worked similarly in Firefox but failed
in Safari. This is because browser extensions in Safari follow a
slightly different model than both Chrome and Firefox. In Safari,
extensions are composed of three main parts [2]: 1) a macOS app;
2) the browser extension—similar to Chrome and Firefox, and; 3) a
native app extension that mediates between both the macOS app
and the browser extension. In addition to that, the number of per-
missions available for extensions is limited in comparison to the
other browsers. As a consequence, most of the attacks explained in
Section 5 are not exploitable in Safari but the password stealer.

9 Related Work
From the privacy point of view, we differentiate among approaches
that focus on how browser extensions handle the (sensitive) in-
formation that they have access to [1, 10–12, 17, 41], approaches
that demonstrate how extensions can be used to fingerprint users
[23, 36, 38–40], and approaches that analyze the permissions of
the extensions [4, 6–9, 19, 28]. From the security point of view,
extensions can be used to execute malicious code [3, 5, 37] and how
extensions can cooperate to execute collusion attacks [33].

Often, these works pursue attacker models and capabilities based
on concrete attacks, e.g., fingerprinting and information leaking.
To complement the depth, our approach offers the breadth of sys-
tematically analyzing the attack surface for the browser extension
ecosystem, identifying gaps that lead to discovering new attacks.

Mystique [12] proposes a powerful approach to taint privacy
information in browser extensions by modifying the V8 engine of
Chromium. This approach is suitable for detecting traffic stealing
attacks, assuming the complexity of V8 does not break the sound-
ness of taint tracking [44]. In this paper, we used a complementary

technique based on a combination of static and dynamic analysis
with clustering of similar extensions. While Mystique is powerful
enough to find the traffic stealers, the benefit of our approach is its
performance efficiency and independence of the browser engine.

We review the literature on the paper’s three main themes:
password-stealing, traffic stealing, and inter-extension attacks indi-
vidually.

Password stealing. The security of password managers has been
widely evaluated, resulting in discoveries of security flaws in the
autofill functionality, being vulnerable to web pages managed by an
attacker [26, 27, 35]. In this paper, we demonstrated how amalicious
browser extension can transform the password field of the DOM
into text, take a screenshot of the password, and transform it back
without the user noticing.

Traffic stealing. In 2014, Hulk [22] was one of the first papers
pointing out that extensions are sniffing users’ communication
traffic. The authors analyzed 48,332 extensions and marked 130 as
malicious and 4,712 as suspicious. Seven years later, we realized that
this technique is still being used by 4,410 extensions that capture
users’ searches and forward that information to external servers
apart from performing the original request. To our surprise, most
of these extensions fall into the “HD Wallpapers New Tab” group
where they claim to modify Chrome’s new tab page.

Inter-extension.Many authors focused on fingerprinting browser
extensions. The common adversarial model is a web page that at-
tempts to track users using the extensions they have running in
the browser. Probing for WARs [36], detecting the changes the ex-
tensions automatically perform over the DOM [38], using message
passing to know which extension replied to the message [40] or
executing timing attacks [34] are a few examples of how browser
extensions can be fingerprinted. In our paper, apart from consid-
ering web pages, we also include browser extensions as attackers
and knowing which extensions the user has without declaring the
“management” permission.

Regarding collusion, very little effort has been made in this area
in browser extensions. As far as we know, Saini et al. [33] were
the first authors who demonstrated that legitimate extensions can
collude to achieve malicious goals and showed how a malicious
extension can misconfigure the browser or other extensions using
message passing. Similarly, Buyukkayhan et al. [7] showed how the
API that Firefox exposes to extensions, known as Cross Platform
Component Object Model (XPCOM), can be exploitable by other
extensions because of a lack of isolation mechanisms, being only
able to be exploited in previous versions of Firefox. In contrast, even
though Chrome isolates the execution of the extensions in different
environments, we demonstrate that browser extensions in Chrome
not only can modify others’ configurations but also cooperate to
achieve a common goal.

Pantelaios et al. [29] investigate 922,684 extensions and find 143
malicious extensions where 64 were still online. From these 143
extensions, they detected that 16 changed the search engine of the
user. To do so, they use the users’ feedback (a combination of rating
and comments) and a clustering algorithm to classify and detect
malicious extensions. With our systematic study of attack entry

SAC’22, April 25 –April 29, 2022, Brno, Czech Republic Benjamin Eriksson, Pablo Picazo-Sanchez and Andrei Sabelfeld

points and a combination of both static and dynamic analysis, we
discover 4,410 that steal search queries of the user by redirecting
them to external servers.

10 Conclusions
As a step toward filling the gap in the security analysis of the
browser extension ecosystem, we have presented a systematic study
of attack entry points leading us to novel methods for password
stealing, traffic stealing, and inter-extension attacks. Because ex-
tensions are highly privileged, it pays off for the attacker to target
vulnerable extensions, leading to possibilities of exfiltrating secrets
and performing unauthorized modification. Combining static and
dynamic analysis we have shown how to discover extension attacks
and study their prevalence in the wild. Our findings indicate that
1,349 extensions are vulnerable to cross-extension messaging pass-
ing attacks leading to XSS. We also discovered a remarkable cluster
of “New Tab” extensions where 4,410 extensions in this class per-
form traffic-stealing attacks. We have suggested countermeasures
for the uncovered attacks.

Coordinated disclosure.Our disclosure report to Google includes
not only malicious and vulnerable extensions but also recommenda-
tions on mitigating inter-extension attacks, as well as our findings
on password and traffic stealing, which require browser support for
the countermeasures. All of the 4,410 reported traffic stealers have
now been deleted. We are in contact with Google about the rest,
including the password stealer which is currently being triaged by
their security team.

Acknowledgments.Thisworkwas partially supported by theWal-
lenberg AI, Autonomous Systems and Software Program (WASP)
funded by the Knut and Alice Wallenberg Foundation, the Swedish
Foundation for Strategic Research (SSF), the Swedish Research
Council (VR), and Facebook.

References
[1] A. Aggarwal, B. Viswanath, L. Zhang, S. Kumar, A. Shah, and P. Kumaraguru.

2018. I Spy with My Little Eye: Analysis and Detection of Spying Browser
Extensions. In Euro S&P. 47–61.

[2] Apple. 2021. Messaging Between the App and JavaScript in a Safari Web
Extension. https://developer.apple.com/documentation/safariservices/safari_we
b_extensions/messaging_between_the_app_and_javascript_in_a_safari_web_
extension.

[3] S. Bandhakavi, S. T. King, P. Madhusudan, and M.Winslett. 2011. Vetting Browser
Extensions for Security Vulnerabilities with VEX. Commun. ACM 54, 9 (2011).

[4] Adam Barth, Adrienne Porter Felt, Prateek Saxena, and Aaron Boodman. 2010.
Protecting Browsers from Extension Vulnerabilities.. In NDSS.

[5] A. Barua, M. Zulkernine, and K. Weldemariam. 2013. Protecting Web Browser
Extensions from JavaScript Injection Attacks. In ICECCS. 188–197.

[6] Lujo Bauer, Shaoying Cai, Limin Jia, Timothy Passaro, and Yuan Tian. 2014.
Analyzing the dangers posed by Chrome extensions. In CNS,. 184–192.

[7] Ahmet Salih Buyukkayhan, Kaan Onarlioglu, William K. Robertson, and Engin
Kirda. 2016. CrossFire: An Analysis of Firefox Extension-Reuse Vulnerabilities.
In NDSS.

[8] S. Calzavara, M. Bugliesi, S. Crafa, and E. Steffinlongo. 2015. Fine-Grained
Detection of Privilege Escalation Attacks on Browser Extensions. In PLAS.

[9] Nicholas Carlini, Adrienne Porter Felt, and David Wagner. 2012. An Evaluation
of the Google Chrome Extension Security Architecture.. In USENIX Sec. 97–111.

[10] Wentao Chang and Songqing Chen. 2013. Defeat Information Leakage from
Browser Extensions via Data Obfuscation. In ICICS. 33–48.

[11] W. Chang and S. Chen. 2016. ExtensionGuard: Towards runtime browser exten-
sion information leakage detection. In CNS. 154–162.

[12] Quan Chen and Alexandros Kapravelos. 2018. Mystique: Uncovering Information
Leakage from Browser Extensions. In CCS. 1687–1700.

[13] Chrome. 2019. Content scripts. https://developer.chrome.com/docs/extensions
/mv2/content_scripts/.

[14] Chrome. 2020. Chrome extensions permission model. https://developer.chrome
.com/extensions/declare_permissions.

[15] Google Chrome. 2020. Migrating to Manifest V3. https://developer.chrome.com
/extensions/migrating_to_manifest_v3.

[16] crytpo-wallet-steal-2020 2020. Google Pulls 49 Cryptocurrency Wallet Browser
Extensions Found Stealing Private Keys. https://news.bitcoin.com/google-crypt
ocurrency-wallet-browser/.

[17] M. Dhawan and V. Ganapathy. 2009. Analyzing Information Flow in JavaScript-
Based Browser Extensions. In ACSAC. 382–391.

[18] Firefox. 2020. Firefox extensions permission model. https://developer.mozilla.or
g/en-US/docs/Mozilla/Add-ons/WebExtensions/manifest.json/permissions.

[19] A. Guha, M. Fredrikson, B. Livshits, and N. Swamy. 2011. Verified Security for
Browser Extensions. In S&P. 115–130. https://doi.org/10.1109/SP.2011.36

[20] Sam Jadali. 2019. DataSpii: The catastrophic data leak via browser extensions.
https://securitywithsam.com/2019/07/dataspii-leak-via-browser-extensions/.

[21] N. Jagpal, E. Dingle, J.-P. Gravel, P. Mavrommatis, N. Provos, M. Abu Rajab,
and K. Thomas. 2015. Trends and Lessons from Three Years Fighting Malicious
Extensions. In USENIX Sec. 579–593.

[22] A. Kapravelos, C. Grier, N. Chachra, C. Kruegel, G. Vigna, and V. Paxson. 2014.
Hulk: Eliciting Malicious Behavior in Browser Extensions. In USENIX Sec. 641–
654.

[23] Soroush Karami, Panagiotis Ilia, Konstantinos Solomos, and Jason Polakis. 2020.
Carnus: Exploring the Privacy Threats of Browser Extension Fingerprinting. In
NDSS.

[24] Jesse Kornblum. 2021. ssdeep - Fuzzy hashing program. https://ssdeep-project.g
ithub.io/ssdeep/.

[25] Pierre Laperdrix, Oleksii Starov, Quan Chen, Alexandros Kapravelos, and Nick
Nikiforakis. 2021. Fingerprinting in Style: Detecting Browser Extensions via
Injected Style Sheets. In USENIX Sec.

[26] Zhiwei Li, Warren He, Devdatta Akhawe, and Dawn Song. 2014. The Emperor’s
New Password Manager: Security Analysis of Web-based Password Managers.
In USENIX Sec.

[27] Xu Lin, Panagiotis Ilia, and Jason Polakis. 2020. Fill in the Blanks: Empirical
Analysis of the Privacy Threats of Browser Form Autofill. In CCS.

[28] Lei Liu, Xinwen Zhang, Guanhua Yan, Songqing Chen, et al. 2012. Chrome
Extensions: Threat Analysis and Countermeasures.. In NDSS.

[29] Nikolaos Pantelaios, Nick Nikiforakis, and Alexandros Kapravelos. 2020. You’ve
Changed: Detecting Malicious Browser Extensions through Their Update Deltas.
In CCS. 477–491.

[30] Pablo Picazo-Sanchez, Maximilian Algehed, and Andrei Sabelfeld. 2022. DeDup.js:
Discovering Malicious and Vulnerable Extensions by Detecting Duplication. In
International Conference on Information Systems Security and Privacy (ICISSP).

[31] puppeteer. 2021. puppeteer. https://github.com/puppeteer/puppeteer.
[32] Reuters. 2020. Exclusive: Massive spying on users of Google’s Chrome shows

new security weakness. https://www.reuters.com/article/us-alphabet-google-c
hrome-exclusive/exclusive-massive-spying-on-users-of-googles-chrome-sho
ws-new-security-weakness-idUSKBN23P0JO.

[33] A. Saini, M. Singh Gaur, V. Laxmi, and M. Conti. 2016. Colluding browser
extension attack on user privacy and its implication for web browsers. Computers
& Security 63 (2016), 14 – 28.

[34] I. Sánchez-Rola, I. Santos, and D. Balzarotti. 2017. Extension Breakdown: Security
Analysis of Browsers Extension Resources Control Policies. In USENIX Sec.

[35] David Silver, Suman Jana, Dan Boneh, Eric Chen, and Collin Jackson. 2014.
Password Managers: Attacks and Defenses. In USENIX Sec. 449–464.

[36] A. Sjösten, S. Van Acker, P. Picazo-Sanchez, and A. Sabelfeld. 2019. Latex Gloves:
Protecting Browser Extensions from Probing and Revelation Attacks. In NDSS.

[37] D. F. Somé. 2019. EmPoWeb: Empowering Web Applications with Browser
Extensions. In S&P. 227–245.

[38] Oleksii Starov, Pierre Laperdrix, Alexandros Kapravelos, and Nick Nikiforakis.
2019. Unnecessarily Identifiable: Quantifying the Fingerprintability of Browser
Extensions Due to Bloat. In WWW. 3244–3250.

[39] Oleksii Starov and Nick Nikiforakis. 2017. Extended Tracking Powers: Measuring
the Privacy Diffusion Enabled by Browser Extensions. In WWW. 1481–1490.

[40] O. Starov and N. Nikiforakis. 2017. XHOUND: Quantifying the Fingerprintability
of Browser Extensions. In S&P. 941–956.

[41] Mike Ter Louw, Jin Soon Lim, and V. N. Venkatakrishnan. 2007. Extensible Web
Browser Security. In DIMVA. 1–19.

[42] usmedicalit. 2020. Another Chrome extension is stealing passwords.
https://www.usmedicalit.com/2018/09/18/another-chrome-extension-is-stealin
g-passwords/.

[43] vabr@chromium.org. 2016. Issue 636425: Value of Autofilled in-
put[type="password"] Shows in DOM as Empty. https://bugs.chromiu
m.org/p/chromium/issues/detail?id=636425/.

[44] Mengfei Xie, Jianming Fu, Jia He, Chenke Luo, and Guojun Peng. 2020. JTaint:
Finding Privacy-Leakage in Chrome Extensions. In ACISP. 563–583.

 https://developer.apple.com/documentation/safariservices/safari_web_extensions/messaging_between_the_app_and_javascript_in_a_safari_web_extension
 https://developer.apple.com/documentation/safariservices/safari_web_extensions/messaging_between_the_app_and_javascript_in_a_safari_web_extension
 https://developer.apple.com/documentation/safariservices/safari_web_extensions/messaging_between_the_app_and_javascript_in_a_safari_web_extension
 https://developer.chrome.com/docs/extensions/mv2/content_scripts/
 https://developer.chrome.com/docs/extensions/mv2/content_scripts/
https://developer.chrome.com/extensions/declare_permissions
https://developer.chrome.com/extensions/declare_permissions
https://developer.chrome.com/extensions/migrating_to_manifest_v3
https://developer.chrome.com/extensions/migrating_to_manifest_v3
https://news.bitcoin.com/google-cryptocurrency-wallet-browser/
https://news.bitcoin.com/google-cryptocurrency-wallet-browser/
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/manifest.json/permissions
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/manifest.json/permissions
https://doi.org/10.1109/SP.2011.36
https://securitywithsam.com/2019/07/dataspii-leak-via-browser-extensions/
https://ssdeep-project.github.io/ssdeep/
https://ssdeep-project.github.io/ssdeep/
https://github.com/puppeteer/puppeteer
https://www.reuters.com/article/us-alphabet-google-chrome-exclusive/exclusive-massive-spying-on-users-of-googles-chrome-shows-new-security-weakness-idUSKBN23P0JO
https://www.reuters.com/article/us-alphabet-google-chrome-exclusive/exclusive-massive-spying-on-users-of-googles-chrome-shows-new-security-weakness-idUSKBN23P0JO
https://www.reuters.com/article/us-alphabet-google-chrome-exclusive/exclusive-massive-spying-on-users-of-googles-chrome-shows-new-security-weakness-idUSKBN23P0JO
https://www.usmedicalit.com/2018/09/18/another-chrome-extension-is-stealing-passwords/
https://www.usmedicalit.com/2018/09/18/another-chrome-extension-is-stealing-passwords/
 https://bugs.chromium.org/p/chromium/issues/detail?id=636425/
 https://bugs.chromium.org/p/chromium/issues/detail?id=636425/

	Abstract
	1 Introduction
	2 Background
	3 Threat Model
	3.1 Shared Resources
	3.2 Message Passing

	4 Methodology
	4.1 Identifying entry points
	4.2 Combining Static and Dynamic Analysis

	5 Discovering Attacks and Vulnerabilities
	5.1 Novel Attacks by Malicious Extensions
	5.2 Malicious Extensions in the Wild
	5.3 Vulnerable Extensions in the Wild

	6 New Tabs Case Study
	7 Countermeasures
	8 Discussion
	8.1 Static analysis
	8.2 Dynamic analysis
	8.3 Manual Analysis
	8.4 Cross-browser

	9 Related Work
	10 Conclusions
	References

