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Abstract—Location Based Services (LBS) have seen alarming
privacy breaches in recent years. While there has been much
recent progress by the research community on developing
privacy-enhancing mechanisms for LBS, their evaluation has
been often focused on the privacy guarantees, while the
question of whether these mechanisms can be adopted by
practical LBS applications has received limited attention. This
paper studies the applicability of Privacy-Preserving Location
Proximity (PPLP) protocols in the setting of mobile apps. We
categorize popular location social apps and analyze the trade-
offs of privacy and functionality with respect to PPLP enhance-
ments. To investigate the practical performance trade-offs, we
present an in-depth case study of an Android application that
implements InnerCircle, a state-of-the-art protocol for privacy-
preserving location proximity. This study indicates that the
performance of the privacy-preserving application for coarse-
grained precision is comparable to real applications with the
same feature set.
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I. INTRODUCTION

Location Based Services (LBS) have seen a tremendous
growth in recent years. A single resource lists over 2900
services at the time of writing [1]. The growth is boosted by
the increasing spread of mobile devices, as Internet usage by
mobile devices has come to dominate over desktop both by
the number of users [2] and time spent [3]. Thanks to these
developments, LBS-based mobile applications (or apps) have
come to be a lucrative and thriving market.

LBS in mobile applications lets users accomplish a variety
of tasks, such as planning a route from one location to
another or obtaining information about entertainment venues
in the vicinity. By obtaining the location of their users, LBS
are able to provide a personalized experience to their users.
Unfortunately, location disclosure endangers the privacy of
the user, opening up for a plethora of attacks. These attacks
are typically classified into external and internal.

The most intuitive kind of attacks are external, where the
attacker has a black-box view of the system and can act as
an ordinary user. External attacks have been seen in many
widely used applications such as Foursquare [4], Tinder [5]
and Grindr [6]. These attacks often rely on trilateration

techniques to precisely position users based on multiple
distance queries. In these situations, the service provider is
a Trusted Third Party (TTP) while the information being
disclosed among users needs to be limited.

Secondly, internal attackers have full access to the system,
such as the LBS providers themselves. The smartphone app
Uber, connecting passengers with private drivers, has been
the subject of much privacy debate. Uber and its employees
have been allegedly involved in privacy-violating activities
from stalking journalists and VIPs to tracking one-night
stands [7]. Given how powerful they are, internal attackers
are significantly harder to protect against.

To mitigate the attacks, there has been substantial progress
on privacy-enhancing LBS [8], [9], [10]. Some approaches
separate some parts of the system [11] in order to make it
harder for an attacker to gain full white-box access to the
service. For these approaches, the same foundational issue
remains: the user needs to trust (a part of) the service, thus
not addressing internal attacks. Other promising tracks have
emerged using cryptographic techniques [12], [13] where
the user retains control of their data through (homomor-
phic) public-key cryptography (homomorphic encryption is
detailed further in Section III).

While these studies address increasingly more powerful
attackers, their evaluation has been often focused on the
privacy guarantees. At the same time, the question of
whether these mechanisms can be adopted by practical LBS
applications has received limited attention.

The focus of this paper is on the location proximity
problem, i.e., the problem of computing whether one user
is within a distance from another user. The privacy goal is
to reveal the proximity and nothing else about the location
of the users. Cryptographic approaches can provably protect
against internal attackers, while disclosing only proximity
mitigates the external attacker. Such solutions are referred
to as privacy-preserving location-proximity (PPLP) [14],
[15], [16], [17], [18], [12], [13], [19] protocols.

Note that different existing solutions protect different parts
of user’s data. Many approaches provide k-anonymity [11],
[10], where the location of the user is indistinguishable
among a set of users. The primary objective of these



solutions is to protect the identity from the attacker, while
allowing them to learn k distinct possible locations of the
user. For the scope of this study, only solutions where the
location of the user is secret are considered.

This paper studies the applicability of PPLP in the setting
of mobile apps. We categorize popular location social apps
and analyze the trade-offs of privacy and functionality with
respect to PPLP enhancements.

To investigate the practical performance trade-offs, we
present an in-depth case study of an Android application that
implements InnerCircle [19], a state-of-the-art protocol for
privacy-preserving location proximity. This study indicates
that the features of PPLP fits several scenarios of real-world
LBS and that the performance of such protocols is, for
coarse-grained precision, comparable to real applications. To
summarize the main contributions of the paper:

1) We evaluate to what extent a state-of-the-art protocol
can be applied to mobile applications without limiting
their functionality. The study uses popular location-
based social apps from the Google Play Store.

2) We investigate performance trade-offs by performance
measurements of an implementation of InnerCir-
cle [19], a state-of-the-art privacy-preserving location-
proximity protocol in an Android application. The
study compares the performance of the implementa-
tion to real-world applications

The paper is organized as follows. Section II studies
the applicability of privacy-preserving proximity-testing pro-
tocols to real-world LBS by investigating the privacy vs.
functionality trade-offs. Section III presents necessary back-
ground for the InnerCircle protocol. Section IV describes
the architecture of the Android-based implementation of In-
nerCircle. Section V studies the performance of the protocol
and compares it with the performance of the real-world apps.
Section VI discusses the related work. Section VII offers
concluding remarks.

II. APPLICABILITY

This section studies the applicability of privacy-preserving
proximity-testing protocols to real-world LBS. First, a new
set of features for LBS is outlined. These features can be
used to assign an LBS into a category. A privacy-preserving
protocol is able to serve a fixed set of categories.

A. LBS Features and Categories

We identify features and categories to aid the applicability
analysis of privacy-preserving protocols for LBS. First,
mobile LBS applications vary based on whose location
information they provide to the user, herein called the target
type feature: venues, acquaintances, and strangers. Second,
the applications also vary based on the precision of the
location information provided, called the precision feature:
exact location, precise distance, or a boolean proximity
result. Using these application features we will determine

Table I
CATEGORIZATIONS FOR LOCATION-BASED SERVICES

Precision
Target Type Venues Acquaintances Strangers

Exact Location PoI FF PD
Precise Distance – – PD
Proximity Boolean – – PD

to what extent a given privacy-preserving mechanism is
applicable to each application.

Important to note about the venue target type is that in
most cases, a venue’s location is normally not secret. Thus,
for most common applications, there is little to gain by using
privacy-preserving protocols towards a venue, as in this case
the instigator can be told the venue’s coordinates and then
run all computations locally. Although there is no need for
a privacy-preserving protocol to handle the venue’s position
in this case, the privacy of the requester’s location needs to
be protected by the implementation as to prevent location
leaks to internal attackers such as via the IP address.

We define three app categories: Point-of-Interest based
(PoI), Friend-Finding (FF), and People-Discovery (PD)
apps. PoI apps are common venue-locator applications, e.g.
where people wish to meet each other or find a shop of
some kind. Friend-Finding apps are for keeping track of the
whereabouts of close friends and family. People-Discovery
apps are for locating new people to interact with.

Table I reflects what kinds of applications belong to
which category. As expected, the PoI applications disclose
the precise location of the venue. This is also the case
for Friend-Finding applications, though one could imagine
scenarios where users would not want their precise location
known even to friends and family, e.g. when buying a gift.
Surprisingly, many applications that facilitate interaction
between strangers also disclose the exact location of the
users to each other.

For any privacy-preserving proximity-testing protocol to
be adopted, the application must have proximity precision.
Further, it cannot be a venue target type, as then the location
can be publicized instead. The services which could most
easily adopt privacy-enhancing technologies are thus the
Friend-Finding and People-Discovery, both with proximity
precision. However, some applications might in their current
state reveal more location information than strictly neces-
sary. As such, applicability of a privacy-preserving protocol
is grouped into three classes:

• Not Applicable: the mechanism sets overly strict limits
on the information disclosure to support the features of
the application.

• Partly Applicable: to incorporate the mechanism the
application would require minor modifications to its
features but would still be able to maintain its core
purpose.

• Applicable: the mechanism can be incorporated into the
mobile application without hampering the functionality
of the mobile application.
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B. Real-World Applications
This section examines how real-world mobile applications

utilize LBS to determine if their functions can be supported
by a privacy-preserving protocol. We focus on analyzing
popular applications, as indicated by top hits from searching
for ”location social networking” on Google Play Store.
Examining the applications has revealed several trends,
discussed below. Table II summarizes the results, but before
looking at the results the different applications are outlined.

MeetUp a PoI application that allows users to find meet-
up venues and meet new people with similar interests. The
user is able to search for meet-up events by specifying a
radius and receiving exact location of the venue. As high-
lighted earlier, PoI applications cannot easily adopt privacy-
preserving technologies, making them Not Applicable.

FourSquare a PoI venue finding application which allows
users to search for various entertainment venues, providing
their exact location. PPLP can not be incorporated by
FourSquare without significant changes in the application,
and are Not Applicable.

Family Locator is another Friend-Finding application. It
allows users to locate their family members and friends and
see their exact location. Modifying the application to only
display proximity boolean would go against the intent of the
application and as such the PPLP is deemed Not Applicable.

Badoo and Singles Around Me are dating applications
(PD) allowing users to find matches in their area, displaying
their location on a map. In order to implement PPLP, they
would need to forego this feature which would be a relatively
important change in its functionality. Therefore PPLP is
deemed Not Applicable for these application.

LINK is a PD app that allows users to connect with others
and form groups based on interests. LINK provides its users
with the exact distance between two strangers. Similarly to
LINK, SKOUT enables strangers to search for others based
on various criteria and displays to instigator the target’s
precise distance. Although such functionality is not directly
supported by PPLP, a minor change in the application’s
features would fix the issue. Hence we deem PPLP to be
Partly Applicable for these applications.

MeetMe is a People-Discovery application which allows
users to chat with strangers with similar interests in their
area. Tagged is another People-Discovery app allowing users
to find and chat with people in vicinity. In both cases,
proximity checks occur mainly between strangers and only
proximity boolean is revealed to the users, maintaining all
other location information concealed. As these features are
well within the limits of PPLP, the protocol is deemed to be
Applicable to these to applications.

As visible in Table II, PPLP protocols are of limited use
to applications which focus on interaction between people
who already know each other as such applications place
less importance on location privacy and allow their users
to see the precise location of different users on a map. On

Table II
APPLICABILITY OF PPLP TO POPULAR MOBILE APPLICATIONS

Application Category Not
Applicable

Partly
Applicable

Fully
Applicable

MeetUp PoI X
FourSquare PoI X
Family Loca-
tor

FF X

Badoo PD X
Singles
Around Me

PD X

LINK PD X
SKOUT PD X
MeetMe PD X
Tagged PD X

the other hand, PPLP are very promising for applications
that facilitate interaction with strangers before a possible
meeting in reality. In such cases proximity between users is
important as users want to know in advance if the potential
meeting is possible, but at the same time want to keep their
location private as they have not built enough trust yet to
reveal it. As search on Google Play Store shows that such
applications are relatively popular, good location privacy-
preserving mechanism applicability means such mechanisms
can become quite important in the future of the mobile
application market.

III. A CONCRETE PPLP PROTOCOL

Hitherto, we have only touched upon PPLP protocols
in general; the enforcement of such is discussed in this
section. There are many published works describing how
to accomplish different flavours of PPLP [14], [15], [16],
[17], [18], [12], [13], [19]. In this work, InnerCircle by
AnonymousAthors [19] was implemented to evaluate effi-
ciency of a recent PPLP protocol on a smartphone device.
InnerCircle is a good representative of state-of-the-art PPLPs
as it provides protection against internal attackers while
disclosing only location proximity, which is a good coun-
termeasure against external attackers. Further, the authors
provide evidence that the protocol could be efficient enough
for usage in smartphone applications. Other protocols, such
as the work by Sedenka et al. [13] provides the same security
guarantees, but requires the use of multiple cryptographic
schemes and has several additional round-trips between the
parties as compared to InnerCircle. Reducing the number
of round-trips proved a good choice, as this can cause a
blow-up in communication, as seen in Section IV.

The mobile application produced in this work uses the
InnerCircle protocol [19]. This particular protocol was cho-
sen as it preserves location privacy against both internal and
external attackers, while completing in a single round-trip.
The key concept used in InnerCircle is, as mentioned previ-
ously, homomorphic encryption, which avoids the need for
TTP. In recent years homomorphic encryption has became a
popular choice for creating privacy preserving protocols and
as such, it is a good representation of much of the state-of-

3



the-art technology in location-privacy.
The protocol considers two principals, Alice and Bob,

where Alice is the instigator. When Alice wants to query
Bob to check if they are in each other’s proximity, Alice con-
structs a location request. The location request encapsulates
Alice’s coordinates, encrypted under her public key. Bob
uses the information in the location request together with
his own coordinates to create a location response. A location
response is an array which encodes a single boolean value,
which can be decoded using Alice’s private key. For the full
protocol, the reader is referred to the original paper [19].
For the scope of this work, it suffices to view the protocol
as consisting of three steps: request construction, response
construction to encode the boolean result, and response
interpretation to decode the boolean. The encoding step
which constructs the lesser than comparison is henceforth
referred to as lessThan(), while the decoding step where
Alice finds out whether Bob is in her proximity is called
inProx(). As shown in Section V, the lessThan()
and inProx() methods are the more time-consuming
operations in the protocol.

The key concept used in InnerCircle is, as mentioned
previously, homomorphic encryption, which avoids the need
for TTP and in recent years has became a popular choice for
creating privacy preserving protocols [14], [20], [21], [13],
[19]. Homomorphic encryption allows for computations to
be evaluated on encrypted data. Formally, given the plaintext
spaceM and the ciphertext space of a homomorphic scheme
C such that encryption is a function E : M → C and
decryption is D : C → M, for any arithmetic formula
f :Mk →Mk it is possible to construct g : Ck → Ck such
that D(g(E(−→m))) = f(−→m). I.e., for any arithmetic formula
in the plain it is possible to construct another formula to
compute the same in the ciphertexts. There are several
flavours of homomorphic encryption. Normally homomor-
phic encryption signifies Fully Homomorphic Encryption
(FHE) schemes [22], [23]. FHE schemes are extremely pow-
erful, and can evaluate any formula as described above, but
are rather inefficient. On the other hand, there are schemes
that are more limited in what they can compute – such as
Additively Homomorphic Encryption (AHE) – but which are
far more efficient [24]. The Authors Of [19] present several
cryptosystems which can be used to instantiate InnerCircle.
In this research we have chosen to use the ElGamal’s [25]
encryption system using 1024 bit keys since it had a notably
fast performance in the original implementation.

Of interest is also how an array is used in InnerCircle to
encode a boolean. Of course, using an array requires much
more communication, memory and computational resources.
However, due to the limitations of AHE, the authors of In-
nerCircle found this the most efficient approach. In essence,
the array a is the result of a less-than operation. To check if
x < y, one can check if ∃yi < y : x− yi = 0. The protocol
creates the array such that it contains only uniformly random

numbers, except for the case when x < y, when it contains
a single (random) slot which contains the encryption of 0.
The decoding step is thus to decrypt the array and check for
the existence of a zero. Further, as square roots can not be
computed using homomorphic encryption, the square of the
distance between Alice and Bob is compared to the square
of the radius, which yields an array which is quadratic in r.

IV. SYSTEM OVERVIEW

This section details the full system resulting from the
implementation effort. In brief, the system consists of a
mobile application for the Android operating system, an
application server, and the messaging service used to send
push notifications to the mobiles. Though network attackers
are not considered in this work, such can easily be thwarted
using HTTPS connections between all parties.

The original InnerCircle protocol finishes in a single
round trip. As smartphones do not communicate in a peer-
to-peer fashion the resulting implementation uses a larger
protocol. The devices send messages to each other via
push notifications, e.g. Firebase Cloud Messaging (FCM)
on Android or Apple Push Notification Service (APSN) on
iOS devices. Further, some of the messages are much too
large to be sent via the FCM push service, which limits the
size of the messages to 4 kilobytes. To send larger messages,
a combination of the application server and the FCM service
was used, where the FCM services were used to notify
when a message is available for on the server. This results
in a protocol using 7 messages rather than 2 as intended
by the original proposal. This communication overhead is
much higher than the original prototype implementation by
AnonymousAthors [19].

The resulting application thus involves communication
between two clients and two servers. The clients are herein
called Alice and Bob as in the original protocol, and the
two servers the Application Server, and FCM. Messages
exchanged during a single request are shown in Figure 1.
Alice generates a location request which is sent to the
Application Server (1), then from the Application Server
to FCM (2), and from FCM to Bob (3). Bob then creates
a proximity result using lessThan() (4), which is sent
directly to the Application Server (5). The server notifies
FCM (6), which in turn notifies Alice that the answer is
ready to be retrieved (7). Alice then fetches the answer from
the Application Server (8 & 9). When Alice retrieves the
answer, she interprets ti using inProx() which will tell
her if Bob is in her proximity (9).

InnerCircle assumes a euclidean plane, but the Android
GPS interface provides longitude and latitude which have to
be converted into Cartesian coordinates. The search radius
and the coordinates input to InnerCircle are specified in an
arbitrary distance unit. Thus, converting from GPS to the
distance unit allows for discretization to take place, and
the unit of the resulting Cartesian coordinate system can
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Alice Application Server FCM Bob

1
locationRequest(m, recipient) 2

sendMessage(m) 3
receiveRequest(m) 4

bobResult:=lessThan(m)
5

answer(bobResult)
6

notifyUser(userId)

7
notify()

8
pullMessage(recipient)

9
bobResult

10
result:=inProx(bobResult)

Figure 1. Sequence Diagram of a Communication Request

correspond to a millimeter, a yard, a meter or a kilometer. As
the performance of InnerCircle is proportional to the radius,
this is a useful tool to trade precision for efficiency.

V. PERFORMANCE

This section presents the performance benchmarks per-
formed in this study. First follows a brief description of
the setup, after which efficiency both in terms of CPU and
network usage is presented and discussed.

Testing was performed on two smartphone devices con-
nected to a WiFi network, with the application server hosted
on the same network. Each device is able to act as Alice as
well as Bob to measure how the different phones handle both
roles of the protocol. The devices used were two Samsung
Galaxy S6 (model SM-G920F). The model was released in
April 2015 and has a 64-bit Exynos 7 Octa 7420 system-on-
chip, consisting of four 2.1 GHz Cortex-A57 cores, and four
1.5 GHz Cortex-A53 cores, and 3 GB of LPDDR4 RAM.

The protocol was executed 25 times with radius 25, 50, 75
and 100. The outcome total time taken to execute a request
was measured as well as the CPU time spent computing by
each party. CPU time measures the cryptographic parts of the
protocol, with the two larger parts being lessThan() and
inProx(). Encryption of Alice’s coordinates and distance
computation by Bob are included in the total CPU time but
not displayed individually, as they are both relatively quick
methods. Total Time represents the amount of time taken
for the application to display the results to the user and
includes the CPU time of both users as well as the network
delay. Measurement starts when the user presses the locate
button, and ends when the answer is available on the user’s
phone. The source code for both the application server and

Table III
BENCHMARK RESULTS (IN MILLISECONDS)

Radius Total
Time

CPU time
inProx()

CPU time
lessThan()

CPU time
Total

25 4318.8 1500.2 1542.1 3124.1
50 11508.1 4978.0 5114.5 10174.2
75 21911.0 10235.4 10061.2 20376.4
100 35736.5 17355.1 16453.1 33887.0
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Figure 2. Averages of Execution Times for Protocol in Different Ranges.

the smartphone app has been made publicly available1.

A. CPU Performance

The results of the benchmarks can be seen in Table III,
which shows the average time consumed for the collected
data. As seen from Table III, the time for protocol executions
increases drastically with increase in radius. Mapping the
average protocol execution times onto a line chart in Figure
2 suggests that the increase in time is more than linear,
though less than the expected quadratic increase due to
optimizations detailed in the original paper [19].

The performance of the Google Play applications was
measured using a stopwatch, starting from the moment
user opts to check location proximity to the moment the
application displays its results to the user. The applications
were tested 10 times each. The results can be seen in Table

1https://bitbucket.org/innercircleandroid/
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Table IV
EFFICIENCY RESULTS FOR REAL APPLICATIONS IN SECONDS
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1.73 1.65 2.9 7.34 2.14 1.77 2.19 3.17

Table V
AVERAGE NETWORK USAGE IN KILOBYTES

25 50 75 100
143.242 489.307 1025.198 1740.382

IV. These benchmarks can be compared to the total time
in Table III, allowing to determine if the efficiency of the
protocol is sufficient enough to be successful in the market
of mobile applications.

B. Network Usage

Additionally, network usage of the protocol is measured.
Network usage is relevant for two reasons. First, users are
often out of range of free network access, which means
network usage has a financial cost. Secondly, SMC solutions,
such as homomorphic encryption, are often limited either by
computational or communications resources. Determining
which is the limiting factor of the protocol is vital contribu-
tion of this work. Network usage is measured by testing the
protocol 10 times at distances of 25, 50, 75 and 100 units
and recording Bob’s answer size in bytes.

The protocol on average used 143 and 1740 kilobytes
when transferring messages for 25 and 100 distance unit
proximity checks respectively. The results of network usage
can be seen in Table V. As real applications would transfer
unencrypted coordinates, network usage would be minimal
and irrelevant. As such, network usage of real applications
was not measured.

C. Discussion

The results shows the protocol yields an answer within
36 seconds for a radius of 100. Narayanan et al. [12]
implemented a novel protocol in an Android application
with an execution time of 46 seconds. Their results are
comparable to our implementation, although their solution
would likely perform better for larger radiuses. However,
time frames over half a minute are unacceptable for most
practical scenarios. Furthermore, it is reasonable to assume
that Bob will not always be stationary in his position while
the answer is generated on his phone. Given that on foot, at
5 km/h, it takes 72 seconds to cover a distance of 100 meters
(more so by transportation vehicle), it is plausible that Bob’s
position can change to in/out of range before Alice receives
an answer, invalidating the result.

On the other hand, using InnerCircle with smaller radiuses
is definitely feasible in a mobile application; it took only
4.3 seconds to calculate proximity for proximity requests
for a radius of 25 units. This is within the time frames of
real applications, which provide output to the users in the

range of 1 to 7 seconds. However, it is unlikely that Google
Play application’s response times are affected by the radius
specified by the users. The majority of mobile applications
focus on rather large distances. Thus, the distance unit used
by InnerCircle must be tweaked to accommodate these,
and should not be chosen as, for instance, 1 meter. Even
though an implementation of InnerCircle would fall short of
practical applicability if both high precision and large radius
are needed, our study shows that state-of-the-art location-
proximity protocols are efficient enough for integration in
most mobile applications with more restricted precision than
the applications are currently using.

As a concrete example, consider using InnerCircle to
enhance the privacy of the previously mentioned Tagged
application. Tagged allows users to check for other users
within 100 kilometers. To utilize InnerCircle at such dis-
tances, the application would need to use a distance unit
of approximately 4 kilometers to be able to use a radius of
25. The expected time for a proximity check would be only
4.3 seconds, which is comparable to the current time of the
Tagged application.

The negative side of using a discretized plane where
the unit is rather large is that it introduces an imprecise
edge at the circle which denotes Bob’s proximity to Alice.
However, this error is fairly small relative to the proximity
radius. Using the previous example, Alice is able to check
the proximity of Bob in the radius of approximately 100
kilometers with the error range being 4 kilometers, which
is an error of 4%. Although current applications most likely
are checking proximity with higher accuracy at the same
range, we believe the significance of the error is small in
comparison to the radius.

In regards to network usage, the proximity result is
at most 1.7 megabytes for proximity checks up to 100
distance units. Such sizes are comparable to average size
of images, which the users rarely take into consideration
when browsing Internet on their mobile devices. As such, we
believe the protocol’s network usage would be insignificant
when incorporated into an application. Users could check
proximity many times without much concern. This speaks
favorably towards the protocol’s implementation in mobile
applications.

VI. RELATED WORK

The relevance of research on location-privacy has seen
some debate, with studies showing mixed results on whether
location-privacy is important to users of LBS or not.
Barkhuus and Dey [26] compared the two scenarios of
location-tracking services and location-aware services and
performed an experimental case study with 16 participants.
The participants had more privacy concerns regarding loca-
tion tracking services compared to location-aware services,
but in general were not overly concerned about privacy of
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their location data. Nevertheless, Barkhuus and Dey recom-
mended focusing on developing services around location-
aware concept. In case of location-tracking services, the
researchers believe such services can still be acceptable
as long as users have the option to turn-off the tracking
capability at any time.

Xu and Gupta [27] developed a model to examine the
impact of privacy concerns on intention to use LBS. They
found that performance expectancy had a positive impact
on participants’ intention to use LBS and effort expectancy
was positive only for inexperienced users, but privacy con-
cerns had no direct effect. Interestingly, privacy concerns
negatively impact performance and effort expectancy, thus
indirectly affecting user decision to use LBS mobile ser-
vices. This implies that privacy concerns are relevant to at
least a limited extent to user of LBS applications.

Zickuhr [28] studied use of LBS in mobile apps by Amer-
icans. The findings show that the use of such applications
is rapidly growing, from 55% of smartphone owners using
LBS applications in 2011 to 74% of smartphone owners
using LBS in 2012. Furthermore, taking into account that
smartphone ownership itself quickly grew from 35% of
adults in 2011 to 46% in 2012, it is safe to assume that
the importance of LBS privacy concerns, even if relevance
is currently debatable, will grow in the coming years.

A. Privacy-Preserving Technologies

There is significant literature on both protecting users’
privacy against internal and external attackers. For internal
attackers, there are several generic techniques not tied to
LBS. For external attackers on LBS, there are two core
tracks [29]. The first idea is to minimize each individual
disclosure. For instance, by disclosing distances instead
of positions, etc. Secondly, a good countermeasure is to
discretize the location data by dividing the plane into a grid,
such that many coordinates in a grid-cell are mapped to the
same location. The grid cells need to be large enough that the
imprecision is sufficient to provide privacy. While the first
often allows a service to remain unchanged while providing
better protection, the second can provide strict guarantees of
how much information the attacker is able to learn.

1) Generic Privacy-Preservation: For internal attackers,
there are a number of different techniques. One popular strat-
egy is the “k-anonymity model” [30], [31], [32], which hides
the user among similar other users. This makes the original
user indistinguishable from the rest of the population and
thus anonymous. However, all efficient techniques for k-
anonymity require a third party to be set up, which again
opens up for internal attackers at this new party.

A generic approach to hide sensitive data from ser-
vice providers is to utilize Secure Multi-party Computation
(SMC), which is a research field of considerable size. SMC
enables multiple parties to compute on private data without
revealing their inputs. The ability to compute functions

without revealing inputs allows for private data to remain
confidential while being handled by 3rd parties, which
completely removes the need for trusting a third party. There
are three tracks in the literature that achieve SMC, each
with its own large community: Secret Sharing (SS) [33],
Garbled Circuits (GC) [34] and Homomorphic Encryption
(HE) [22]. SS-based techniques show very promising perfor-
mance, and are seeing some commercial use [35]. However,
they typically require a set of non-colluding servers, which
makes it unsuitable when the goal is to not put any trust
in the service provider(s). Techniques based on GC have
seen promising performance utilizing the Intel Advanced
Encryption Standard Instructions through protocols tailored
for this particular instruction set. As most mobile devices
use ARM processors, it is unlikely that the performance
results can be extrapolated to mobile devices. Further, GC
offer a one-off solution, where any results (except the output)
should not be reused in further computations.

As previously detailed, homomorphic encryption makes
it possible to perform mathematical operations on encrypted
data. The ground-breaking result by Gentry [23] presented
the first Fully Homomorphic Encryption (FHE) scheme,
which is capable of computing arbitrary arithmetic formulas.
Following Genrty’s work, there’s been numerous improve-
ments for FHE [36], [37], [38]. However, so far there is
no FHE scheme that is comparable in efficiency to schemes
that are just additive or multiplicative. There have been many
works that utilize homomorphic encryption to create privacy-
preserving protocols in areas such as location-privacy and
biometric authentication [20], [13], [19], [21], [14].

2) Privacy-Preservation in LBS: Puttaswamy et al. [39]
present a new technique for location privacy by coordinate
system transformations, called LocX. Each user has a secret
for which it’s coordinate system is translated, and a set of
friends. The secrets are distributed to each user’s friends,
such that only the user’s friends may understand how coor-
dinates are mapped. A prototype has been developed and it
showed that it can be used in commercial applications with
minimum overhead. However, unlike other protocols men-
tioned in this section, the user’s exact location is revealed
to all users with the secret, which forces the users to limit
their social circle to users they trust with their location.

Further, to generate dummy data and present this to the
LBS is a viable option to hide the user’s location. Zhou et
al. [40] propose a system called TISSA. TISSA allows users
to choose what data an application can access. In case an
application demands access to data that the user is unwilling
to provide, the system sends dummy data as substitute,
keeping the real data private. The system was tested in
Android OS and successfully prevented leakage of informa-
tion to restricted applications and caused no significant slow
down to performance of the phone. However, using only
dummy inevitably prevents the application from functioning
properly. Kido et al. [41] propose a system which sends
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LBS providers real user data as mixed with dummy data. As
the LBS providers cannot distinguish between real and fake
data, the anonymity of the user is preserved. However, the
solution causes large communication overhead as all users
need to send many additional messages with dummy data
for each real query.

There are not many works that provide an in-depth
discussion of PPLP on Mobile Devices. Narayanan et al. [12]
provides use cases where LBS mobile applications could be
used and how their proposed protocol would relate to such
applications. However, it is debatable whether the use cases
themselves are realistic examples of LBS use and sufficient
proof that the protocol could be applicable enough to be
used in general applications.

VII. CONCLUSION

This study furthers the knowledge of how well current
cryptographic privacy-preserving protocols apply to real-
world mobile apps. To this end, we have road-mapped
popular location-based social maps and identified scenarios
where privacy-preserving location proximity is desired. The
category of People-Discovery apps turns out to be a par-
ticularly promising fit. We conclude that the protocol can
be fruitfully applied to a number of popular applications,
in particular for the ones that facilitate meetings in real life
between strangers, such as meet-up and dating apps.

Further, we have implemented InnerCircle, the state-of-
the-art privacy-preserving location proximity protocol and
integrated it in an Android app. With respect to performance,
we arrive at the conclusion that InnerCircle on Android
matches real applications at radius values of 25 and 50 units
while values at 75 units and above are not yet within a reach.
The average network usage for 25 units is 143 KB and for
100 units is 1740 KB respectively. With less precise coor-
dinates the protocol can check the radius of 100 kilometers,
using 25 unit radius in only 4 seconds, which shows that
the protocol is efficient enough for implementation in real
applications.

Acknowledgments: This work was partly funded by the
European Community under the ProSecuToR project and the
Swedish research agency VR.

REFERENCES

[1] AngelList, “Location based services startups,” Sep. 2014,
https://angel.co/location-based-services.

[2] A. Lella, “Number of Mobile-Only Internet Users
Now Exceeds Desktop-Only in the U.S.” https://
www.comscore.com/Insights/Blog/Number-of-Mobile-Only-
Internet-Users-Now-Exceeds-Desktop-Only-in-the-U.S,
Apr. 2015.

[3] K. Dreyer, “Mobile Internet Usage Skyrockets in Past 4
Years to Overtake Desktop as Most Used Digital Platform,”
http://www.comscore.com/Insights/Blog/Mobile-Internet-
Usage-Skyrockets-in-Past-4-Years-to-Overtake-Desktop-as-
Most-Used-Digital-Platform, Apr. 2015.

[4] D. Coldewey, “”Girls Around Me” Creeper App Just Might
Get People To Pay Attention To Privacy Settings,” http:
//techcrunch.com/2012/03/30/girls-around-me-creeper-app-
just-might-get-people-to-pay-attention-to-privacy-settings/,
Mar. 2012.

[5] M. Veytsman, “How i was able to track the location of any
tinder user,” http://blog.includesecurity.com/2014/02/how-i-
was-able-to-track-location-of-any.html, Feb. 2014.

[6] C. Paton, “Grindr urges LGBT community to hide their
identities as Egypt persecutes nation’s gay community,”
http://www.independent.co.uk/news/world/africa/grindr-
urges-lgbt-community-to-hide-their-identities-as-egypt-
persecutes-nations-gay-community-9757652.html, Sep.
2014.

[7] C. Bessette, “Does Uber Even Deserve Our Trust?”
http://www.forbes.com/sites/chanellebessette/2014/11/25/
does-uber-even-deserve-our-trust/, Nov. 2014.

[8] J. Krumm, “A survey of computational location privacy,”
Personal and Ubiquitous Computing, vol. 13, no. 6, 2009.

[9] M. Terrovitis, “Privacy preservation in the dissemination of
location data,” SIGKDD Explorations, vol. 13, no. 1, 2011.

[10] E. Magkos, “Cryptographic approaches for privacy
preservation in location-based services: A survey,”
IJITSA, vol. 4, no. 2. [Online]. Available: http:
//dx.doi.org/10.4018/jitsa.2011070104

[11] N. Talukder and S. I. Ahamed, “Preventing multi-query
attack in location-based services,” in WISEC 2010. [Online].
Available: http://doi.acm.org/10.1145/1741866.1741873

[12] A. Narayanan, N. Thiagarajan, M. Lakhani, M. Hamburg,
and D. Boneh, “Location privacy via private proximity
testing,” in Proceedings of the Network and Distributed
System Security Symposium, NDSS 2011. [Online]. Available:
http://www.isoc.org/isoc/conferences/ndss/11/pdf/1 3.pdf

[13] J. Sedenka and P. Gasti, “Privacy-preserving distance
computation and proximity testing on earth, done right,” in
ASIA CCS ’14, Kyoto, Japan - June 03 - 06, 2014. [Online].
Available: http://doi.acm.org/10.1145/2590296.2590307

[14] G. Zhong, I. Goldberg, and U. Hengartner, “Louis, lester
and pierre: Three protocols for location privacy,” in Privacy
Enhancing Technologies, 7th International Symposium, PET
2007. [Online]. Available: http://dx.doi.org/10.1007/978-3-
540-75551-7 5

[15] L. Siksnys, J. R. Thomsen, S. Saltenis, M. L. Yiu, and
O. Andersen, “A location privacy aware friend locator,”
in Advances in Spatial and Temporal Databases, 11th
International Symposium, SSTD 2009. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-02982-0 29

[16] L. Siksnys, J. R. Thomsen, S. Saltenis, and M. L.
Yiu, “Private and flexible proximity detection in mobile
social networks,” in Eleventh International Conference on
Mobile Data Management, MDM 2010. [Online]. Available:
http://dx.doi.org/10.1109/MDM.2010.43

8



[17] D. Freni, C. R. Vicente, S. Mascetti, C. Bettini, and
C. S. Jensen, “Preserving location and absence privacy in
geo-social networks,” in 19th Conference on Information and
Knowledge Management, CIKM 2010. [Online]. Available:
http://doi.acm.org/10.1145/1871437.1871480

[18] S. Mascetti, D. Freni, C. Bettini, X. S. Wang, and
S. Jajodia, “Privacy in geo-social networks: proximity
notification with untrusted service providers and curious
buddies,” VLDB J., vol. 20, no. 4, 2011. [Online]. Available:
http://dx.doi.org/10.1007/s00778-010-0213-7

[19] P. A. Hallgren, M. Ochoa, and A. Sabelfeld, “Innercircle: A
parallelizable decentralized privacy-preserving location prox-
imity protocol,” in PST. IEEE, 2015, pp. 1–6.

[20] Z. Erkin, M. Franz, J. Guajardo, S. Katzenbeisser, I. La-
gendijk, and T. Toft, “Privacy-preserving face recognition,”
in Privacy Enhancing Technologies, 2009.

[21] A. Sadeghi, T. Schneider, and I. Wehrenberg, “Efficient
privacy-preserving face recognition,” in Information, Security
and Cryptology - ICISC 2009. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-642-14423-3 16

[22] R. L. Rivest, L. Adleman, and M. L. Dertouzos, “On data
banks and privacy homomorphisms,” Foundations of secure
computation, vol. 32, no. 4, pp. 169–178, 1978.

[23] C. Gentry, “Fully homomorphic encryption using ideal lat-
tices,” in STOC, 2009, pp. 169–178.

[24] P. Paillier, “Public-key cryptosystems based on composite
degree residuosity classes,” in Advances in Cryptology -
EUROCRYPT 1999. [Online]. Available: http://dx.doi.org/
10.1007/3-540-48910-X 16

[25] T. E. Gamal, “A public key cryptosystem and a signature
scheme based on discrete logarithms,” in Advances in
Cryptology, CRYPTO 1984. [Online]. Available: http:
//dx.doi.org/10.1007/3-540-39568-7 2

[26] L. Barkhuus and A. K. Dey, “Location-based services for
mobile telephony: a study of users’ privacy concerns,” in
Human-Computer Interaction INTERACT ’03: IFIP TC13
International Conference on Human-Computer Interaction,
2003, Zurich, Switzerland.

[27] H. Xu and S. Gupta, “The effects of privacy concerns
and personal innovativeness on potential and experienced
customers’ adoption of location-based services,” Electronic
Markets, vol. 19, no. 2-3. [Online]. Available: http:
//dx.doi.org/10.1007/s12525-009-0012-4

[28] Kathryn Zickuhr, “Three-quarters of smartphone
owners use location-based services,” May 2012,
http://www.pewinternet.org/files/old-media/Files/Reports/
2012/PIP Location based services 2012 Report.pdf.

[29] I. Polakis, G. Argyros, T. Petsios, S. Sivakorn, and
A. D. Keromytis, “Where’s wally?: Precise user discovery
attacks in location proximity services,” in Proceedings of
the 22nd ACM SIGSAC CCS, 2015. [Online]. Available:
http://doi.acm.org/10.1145/2810103.2813605

[30] M. Gruteser and D. Grunwald, “Anonymous usage of
location-based services through spatial and temporal
cloaking,” in MobiSys 2003. [Online]. Available:
http://www.usenix.org/events/mobisys03/tech/gruteser.html

[31] B. Gedik and L. Liu, “Protecting location privacy with
personalized k-anonymity,” IEEE Trans. Mob. Comput.,
vol. 7, no. 1. [Online]. Available: http://dx.doi.org/10.1109/
TMC.2007.1062

[32] C. Wu, C. Huang, J. Huang, and C. Hu, “On preserving
location privacy in mobile environments,” in Ninth Annual
IEEE International Conference on Pervasive Computing
and Communications, PerCom 2011. [Online]. Available:
http://dx.doi.org/10.1109/PERCOMW.2011.5766939

[33] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22,
no. 11, 1979. [Online]. Available: http://doi.acm.org/10.1145/
359168.359176

[34] A. C. Yao, “Protocols for secure computations (extended
abstract),” in 23rd Annual Symposium on Foundations
of Computer Science, 1982. [Online]. Available: http:
//dx.doi.org/10.1109/SFCS.1982.38
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