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Abstract

Noninterference requires that there is no information flow from sensitive to
public data in a given system. However, many systems release sensitive informa-
tion as part of their intended function and therefore violate noninterference. To
control information flow while permitting information release, some systems have
a downgrading or declassification mechanism, but this creates the danger that it
may cause unintentional information release. This paper shows that a robustness
property can be used to characterize programs in which declassification mecha-
nisms cannot be controlled by attackers to release more information than intended.
It describes a simple way to provably enforce this robustness property through a
type-based compile-time program analysis. The paper also presents a generaliza-
tion of robustness that supports upgrading (endorsing) data integrity.

1 Introduction

To appear in Journal of Computer Security, c© IOS Press.

Information flow controls have many appealing properties as a security enforcement
mechanism. Unlike access controls, they track the propagation of information and pre-
vent sensitive information from being released, regardless of how that information is
transformed by the system. Dually, information flow controls may be used to enforce
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data integrity. One common formal underpinning of these mechanisms is the noninter-
ference security property [19], which imposes an end-to-end requirement on the behav-
ior of the system: sensitive data may not affect public data. Recent work on language-
based enforcement of confidentiality (e.g., [48, 1, 20, 44, 46, 2, 41, 35, 42, 52, 3, 36])
have used various flavors of noninterference as the definition of security. However,
in practice noninterference is too strong; real systems leak some amount of sensitive
information as part of their proper functioning.

One way to accommodate information release is to allow explicit declassification
or downgrading of sensitive information (e.g., [17, 31, 35, 8]). These mechanisms are
inherently unsafe and create the possibility that a downgrading channel may release
information in a way that was not intended by the system designer.

Given that noninterference is not satisfied, we would like to know that the infor-
mation release occurs as intended, in accordance with some kind of security policy.
However, it seems difficult in general to express these policies precisely and even more
difficult to show that systems satisfy them [43]. Therefore a reasonable strategy is in-
stead to identify and enforce important aspects of the intended security policy rather
than trying to express and enforce the entire policy.

A recent example of this approach is robust declassification, a security property
introduced by Zdancewic and Myers [51] in the context of a state transition system.
Robustness addresses an important issue for security analysis: the possibility that an
attacker can affect some part of the system. If a system contains declassification, it
is possible that an attacker can cause the declassification mechanism to release more
information than was intended. A system whose declassification is robust may re-
lease information, but it gives attackers no control over what information is released
or whether information is released. Although this paper is about robust declassifica-
tion, robustness has been explored for other aspects of information security, such as
information erasure [7].

Robustness is an important property for systems that may be attacked; for example,
it is particularly important for distributed systems containing untrusted host machines,
but is also useful for systems that simply process some untrusted input that might affect
later information release. However, robustness is not intended to be a complete answer
to the question of whether information release is secure. Additional useful ways to
reason about information release include delimited information release [40], intransi-
tive noninterference [38, 34, 37, 28], quantitative information flow [14, 30, 27, 9, 10],
and complexity-bounded information flow [47, 22, 23]. However, among these only
robustness directly addresses the important problem of attackers who exploit declassi-
fication.

This paper generalizes previous work on robust declassification in several ways.
First, the paper shows how to express it in a language-based setting: specifically, for a
simple imperative programming language. Second, it generalizes robust declassifica-
tion so that untrusted code and data are explicitly part of the system rather than having
them appear only when there is an active attack. Third, it introduces a relaxed secu-
rity guarantee called qualified robustness that gives untrusted code and data a limited
ability to affect information release.

The key technical result of the paper is a demonstration that both robustness and
qualified robustness can be enforced by compile-time program analyses based on sim-

2



ple security type systems. Using lightweight annotations, these type systems track data
confidentiality and integrity, in a manner similar to earlier work by Zdancewic [50].
However, this paper takes the new step of proving that all well-typed programs satisfy
robustness.

The rest of the paper is structured as follows. Section 2 introduces robustness
informally and shows how it adds value as a method for reasoning about information
release in some simple program fragments. Section 3 presents basic assumptions and
models used for this work, including a simple imperative language with an explicit
declassification construct that downgrades confidentiality levels. Section 4 presents a
generalized robustness condition in this language-based setting. Section 5 presents a
security type system that enforces robustness in the imperative language. Section 6
presents more detailed examples and shows how the robust declassification condition
gives insight into program security. Section 7 generalizes the robust declassification
condition to allow untrusted code limited control over information release, and shows
that useful code examples satisfy this limited robustness property. Section 8 discusses
related work, and Section 9 concludes.

2 Robustness
The essential idea of robustness is that although systems may release some information,
attackers should not be able to affect what information is released or whether informa-
tion is released. Regardless of what attack is launched against the system, the same
information should be released. This implies that a passive attacker who merely ob-
serves system execution learns no more than an active attacker who both changes and
observes system execution. In a system that has robust declassification, the problem
of understanding whether all information release is intentional in the presence of the
attacker is reduced to the problem of understanding whether information flows are as
intended when the attacker does nothing. It is not necessary to reason about all possible
attacks.

Consider the following simple program, which releases information from a secret
location zH to a publicly readable variable yL if the boolean variable xL is true, and
otherwise has no effect:

if xL then yL := declassify(zH)
else skip

The subscripts H and L are used to indicate secret (“high”) and public (“low”) infor-
mation respectively. The special operator declassify is simply an identity function
that explicitly releases information from high to low.

Clearly this program is intended to release information and therefore violates non-
interference. Although noninterference is violated, robustness allows us to gain more
understanding of the security of this program. Suppose that the attacker is able to
change the value of xL. In that case, the attacker is able to affect whether information
is released; the declassification is not robust. Suppose instead that the attacker can af-
fect the value of zH , perhaps by causing some other secret information to be copied
into it. In that case the attacker can cause different information to be released than
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was intended. Conversely, if the attacker is unable to affect the values of these two
variables, the declassification is robust because these are the only variables that affect
what information is released from high to low.

It is clear from this example that the robustness of a system is contingent on the
power an active attacker has to affect the execution of the system. A natural way to
describe this power is by ascribing integrity labels to the information manipulated.
High-integrity information and code are trusted and assumed not to be affected by the
attacker; all low-integrity information and code are untrusted and assumed to be under
the control of the attacker. Low-integrity variables may be changed by the attacker;
low-integrity code may be replaced by the attacker with different code.

This is a very general model of the system. The attacker may in fact be an ordinary
user, in which case robustness means that program users cannot cause unintended infor-
mation release, perhaps by providing unexpected inputs. Alternatively, as in the work
on secure program partitioning [53, 54], the system might be a distributed program in
which some program code runs on untrusted hosts and is assumed to be controlled by
a malicious attacker who will try to exploit declassification. (In fact, robustness was
inspired by the work on secure program partitioning.)

A recent survey on declassification [43] categorizes approaches to information re-
lease by what information is declassified, by whom it is released, and where and when
in the system declassification occurs. We view robustness as operating primarily on the
who dimension. Robustness controls on whose behalf declassification occurs because it
prevents untrusted attackers from affecting declassification. The security type system
we suggest in Section 5 enforces these restrictions by controlling where information
release can occur, which helps express which part of the system can release what infor-
mation and on whose behalf. This aspect is provided by localizing information release
to declassification statements, whose occurrence is regulated by the type system.

Other mechanisms that control information release, such as the decentralized la-
bel model [32], also control who can declassify information, using an access control
mechanism. Access control mechanisms can prevent the attacker from declassifying
information directly, but robustness is a stronger notion of security because it prevents
the attacker even from influencing declassification.

Requiring that the attacker cannot affect information release turns out to be too re-
strictive for many systems of interest; some systems satisfy their security requirements
yet do not have robust declassification. Section 7 explores a relaxation of robust de-
classification that addresses this restrictiveness. An endorsement operation is added
that explicitly says untrusted data may be treated as trusted, upgrading its integrity
level. This leads to a relaxation of the robustness property that makes it less restrictive.

3 Language and attacker model

3.1 Security lattice
We assume that the security levels form a security lattice L. The ordering specifies the
relationship between different security levels. To enable reasoning about both confi-
dentiality and integrity, the security latticeL is a product of confidentiality and integrity
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Figure 1: Security lattice LLH .

lattices, LC and LI , with orderingsvC andvI , respectively. Suppose x and y are both
elements in the confidentiality lattice (or both in the integrity lattice). If x v y then
data at level x is no more confidential (no less trustworthy) than data at level y. An
element ` of the product lattice is a pair (C(`), I(`)) (which we sometimes write as
C(`)I(`) for brevity), denoting the confidentiality part of ` by C(`) and the integrity
part by I(`). The ordering on L, LC , and LI corresponds to the restrictions on how
data at a given security level can be used. The use of high-confidentiality data is more
restricted than that of low-confidentiality data, which helps prevent information leaks.
Dually, the use of low-integrity data is more restricted than that of high-integrity data,
which helps prevent information corruption.

An example LLH of a security lattice is displayed in Figure 1. This lattice is a
product of a simple confidentiality lattice (with elements L and H of low and high
confidentiality so that L vC H) and a dual integrity lattice (with elements L and H of
low and high integrity so that H vI L). At the bottom of the lattice is the level LH for
data that may be used arbitrarily. This data has the lowest confidentiality and highest
integrity level. At the top of the lattice is the data that is most restrictive in usage. This
data has the highest confidentiality and lowest integrity level.

3.2 Attacker model
In all these scenarios, the power of the attacker is described by a lattice element A,
where the confidentiality level C(A) is the confidentiality of data the attacker is ex-
pected to be able to read, and the integrity level I(A) is the integrity of data or code that
the attacker is expected to be able to affect. Thus, the robustness of a system is with re-
spect to the attacker parameters (C(A), I(A)). As far as a given attacker is concerned,
the four-point lattice LLH captures the relevant features of the general lattice L. Let
us define high- and low-confidentiality areas of L by HC = {` | C(`) 6v C(A)} and
LC = {` | C(`) v C(A)}, respectively. Similarly, we define low- and high-integrity
areas by LI = {` | I(A) v I(`)} and HI = {` | I(A) 6v I(`)}, respectively. The four
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Figure 2: Attacker’s view of a general lattice.

key areas of lattice L correspond exactly to the four points of lattice LLH :

LH ∼ LC ∩HI HH ∼ HC ∩HI

LL ∼ LC ∩ LI HL ∼ HC ∩ LI

This correspondence is illustrated in Figure 2. From the attacker’s point of view, area
LH describes data that is visible but cannot be modified; area HH describes data that is
not visible and cannot be modified; area LL describes data that is both visible and can
be modified; and, finally, area HL describes data that is not visible but can be modified
by the attacker. Because of this correspondence between LLH and L, results obtained
for the lattice LLH generalize naturally to the full lattice L.

3.3 Language
This paper uses a simple sequential language consisting of expressions and commands.
It is similar to several other security-typed imperative languages (e.g., [48, 2]), and its
semantics are largely standard (cf. [49]).

Definition 1. The language syntax is defined by the following grammar:

e ::= val | v | e1 op e2 | declassify(e, `)

c ::= skip | v := e | c1; c2

| if e then c1 else c2 | while e do c

where val ranges over values Val = {false, true, 0, 1, . . . }, v ranges over variables
Var , op ranges over arithmetic and boolean operations on expressions, and ` ranges
over the security levels.

The security environment Γ : Var → L describes the type of each program variable
as a security level. The security lattice and security environment together constitute a
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〈M,v := e〉 v−→ 〈M [v 7→ M(e)], skip〉
〈M, if b then c1 else c2〉

·−→ 〈M, c1〉 (ifM(b) = true)
〈M, if b then c1 else c2〉

·−→ 〈M, c2〉 (ifM(b) = false)
〈M, while b do c〉 ·−→ 〈M, c; while b do c〉 (ifM(b) = true)
〈M, while b do c〉 ·−→ 〈M, skip〉 (ifM(b) = false)

〈M, skip; c〉 ·−→ 〈M, c〉
〈M, c1; c2〉

α−→ 〈M ′, c′1; c2〉 (if〈M, c1〉
α−→ 〈M ′, c′1〉)

Figure 3: Operational semantics.

security policy, specifying that information flow from a variable v1 to a variable v2 is
allowed only if Γ(v1) v Γ(v2). This means that the confidentiality (integrity) of v2

must be at least (at most) as high as that of v1. In the rest of this paper, we assume that
we are given a fixed, arbitrary security environment, Γ, which is an implicit parameter
of the concepts defined below.

The only non-standard language expression is the construct declassify(e, `),
which declassifies the security level of the expression e (which is simply the join of
the security levels of the variables used in e) to the level ` ∈ L. Operationally, the
result of declassify(e, `) is the same as that of e regardless of `. The intention is
that declassification is used for controlling the security level of information without
affecting the execution of the program.

The evaluation semantics are defined in terms of small-step transitions between
configurations. A configuration 〈M, c〉 consists of a memory M (which is a finite
mapping M : Var → Val from variables to values) and a command c. A transition
from configuration 〈M, c〉 to configuration 〈M ′, c′〉 is denoted by 〈M, c〉 α−→ 〈M ′, c′〉.
Configurations of the form 〈M, skip〉 are terminal. The complete operational seman-
tics are shown in Figure 3, where we write M(e) to denote the result of evaluating
expression e in memory M . We assume that operations used in expressions are total—
expressions always terminate (while command configurations might diverge).

In the operational semantics, α is an event that is either ·, indicating that no as-
signment has taken place during this transition step, or a variable v, indicating that the
variable has been updated. We extend the label ordering to events by defining ` v α if
α = · or α = v and ` v Γ(v). Similarly, α v ` iff α = v and Γ(v) v `.

The trace Tr(〈M, c〉) of the execution of configuration 〈M, c〉 is the sequence

〈M, c〉 α0−→ 〈M1, c1〉
α1−→ 〈M2, c2〉

α2−→ 〈M3, c3〉 . . .

We write −→ for the relation obtained by erasing the event annotation from α−→.
As usual, −→∗ is the reflexive and transitive closure of −→. Configuration 〈M, c〉
terminates in M ′ if 〈M, c〉 −→∗ 〈M ′, skip〉, which is denoted by 〈M, c〉 ⇓ M ′ or,
simply, 〈M, c〉 ⇓ when M ′ is unimportant. If there is an infinitely long sequence of
transitions from the initial configuration 〈M, c〉 then that configuration diverges.
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4 Formalizing robustness
Let us define the view of the memory at level `. The idea is that the observer at level
` may only distinguish data whose security level is at or below `. Formally, memories
M1 and M2 are indistinguishable at a level ` (written M1 =` M2) if ∀v.Γ(v) v ` =⇒
M1(v) = M2(v). The restriction M |` of memory M to the security level ` is defined
by restricting the mapping to variables whose security level is at or below `. In the
following, we make use of this simple proposition:

Proposition 1. If 〈M, c〉 α−→ 〈M ′, c′〉 and α 6v ` then M =` M ′.

Proof. By induction on the structure of c. The only interesting cases are for assignment
and sequencing. For assignment, v := e, the result follows from the observation that
Γ(v) 6v ` and the definition of =`, which implies that M =` M [v 7→ M(e)]. The case
for sequential composition follows immediately from the inductive hypothesis.

Because computation steps can be observed at level ` only if they update variables
of level ` or below, and because we are not concerned with timing channels, we identify
traces up to high-stuttering with respect to a security level `.

Definition 2. The `-projection of the trace t, written t|`, where

t = 〈M0, c0〉
α0−→ 〈M1, c1〉

α1−→ . . . 〈Mi, ci〉
αi−→ . . .

is the sequence of (`-restrictions of) memories

m = M0|`,Mi1 |`,Mi2 |`, . . .

Such that 0 < i1 < i2 < . . . and for every transition 〈Mj , cj〉
αj−→ 〈Mj+1, cj+1〉 in

t, if αj v ` then j + 1 = ik for some k, and for every ik in m, there is a j such that
j + 1 = ik.

Let p1 and p2 be trace projections. Their concatenation p1 · p2 must take into
account divergence and stuttering. If p1 is infinite, then p1 · p2 = p1. Otherwise, we
have p1 = M1|`,M2|`, . . . ,Mn|` and p2 = Mn+1|`,Mn+2|`, . . . If Mn|` = Mn+1|`
then

p1 · p2 = M1|`,M2|`, . . . ,Mn|`,Mn+2|`, . . .

otherwise
p1 · p2 = M1|`,M2|`, . . . ,Mn|`,Mn+1|`,Mn+2|`, . . .

We need a simple proposition that relates sequential composition of commands
with the projections of their traces:

Proposition 2. If 〈M, c1〉 ⇓ M ′ then for all ` and c2:

Tr(〈M, c1; c2〉)|` = (Tr(〈M, c1〉)|`) · (Tr(〈M ′, c2〉|`)

Proof. Straightforward from the definitions of the operational semantics and `-projection
of traces.
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Definition 3. Given traces t1 and t2 and a security level `, we say that t1 and t2 are
high-stutter equivalent up to `, written t1 ∼` t2 if t1|` = t2|`.

Intuitively, t1 ∼` t2 means that t1 and t2 look the same to an observer at level `
after all successive transitions involving memories related by =` have been collapsed
together, provided that the transition between them did not arise from an update. For
example, consider t1 = Tr(〈M1, l := h〉) and t2 = Tr(〈M2, l := h〉) where Γ(l) = `,
Γ(h) 6v `, ∀x ∈ Var .M1(x) = 0, and M2 = M1[h 7→ 1]. Although M1 =` M2,
we have Tr(〈M1, l := h〉) 6∼` Tr(〈M2, l := h〉) because the effect of the assignment
l := h is distinguishable at the level `:

Tr(〈M1, l := h〉)|` = (M1|`,M1|`) 6= (M2|`,M2[l 7→ 1]|`) = Tr(〈M2, l := h〉)|`

On the other hand, if

c = (if h = 0 then h := h + l else skip); l := 2

then we have Tr(〈M1, c〉) ∼` Tr(〈M2, c〉): because M1 =` M2, and the assignment
to l updates the low parts of the memories with the same value:

Tr(〈M1, c〉)|` = (M1|`,M1[l 7→ 2]|`) = (M2|`,M2[l 7→ 2]|`) = Tr(〈M2, c〉)|`

Definition 4. Two traces t1 and t2 are indistinguishable up to `, written t1 ≈` t2, if
whenever both t1 and t2 terminate then t1 ∼` t2.

We lift indistinguishability from memories and traces to configurations by the fol-
lowing definition:

Definition 5. Two configurations 〈M1, c1〉 and 〈M2, c2〉 are weakly indistinguishable
up to ` (written 〈M1, c1〉 ≈` 〈M2, c2〉) if Tr(〈M1, c1〉) ≈` Tr(〈M2, c2〉). We say
that two configurations are strongly indistinguishable up to ` (written 〈M1, c1〉 u`

〈M2, c2〉) if 〈M1, c1〉 ⇓, 〈M2, c2〉 ⇓, and 〈M1, c1〉 ≈` 〈M2, c2〉.

Note that weak indistinguishability is timing- and termination-insensitive because it
deems a diverging trace indistinguishable from any other trace; although strong indis-
tinguishability is timing-insensitive, it requires the termination of both configurations
so that the traces remain related throughout their entire execution. Because of the ter-
mination insensitivity, weak indistinguishability is not transitive, but transitivity is not
needed in the subsequent development. (Note that the transitivity of strong indistin-
guishability follows from the transitivity of equality on values.)

For example, configurations 〈M1, c〉 and 〈M2, c〉 so that Γ(l) = `, Γ(h) 6v `, ∀x ∈
Var .M1(x) = 0, M2 = M1[h 7→ 1], and c = (while h 6= 0 do h := h + 1); l := 2
are weakly indistinguishable up to ` (〈M1, c〉 ≈` 〈M2, c〉) because 〈M2, c〉 diverges.
For the same reason, these configurations are not strongly indistinguishable up to `
(〈M1, c〉 6u` 〈M2, c〉). Strong indistinguishability up to ` holds if instead of the mem-
ory M2 we take M3 = M1[h 7→ −1]. Clearly, we have both 〈M1, c〉 ≈` 〈M3, c〉 and
〈M1, c〉 u` 〈M3, c〉. Consider d = (while h 6= 0 do h := h + 1); l := h. Despite
the fact that 〈M1, d〉 ≈` 〈M2, d〉 and 〈M2, d〉 ≈` 〈M3, d〉 (thanks to the divergence
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of〈M2, d〉), we have 〈M1, d〉 6≈` 〈M3, d〉, which illustrates the intransitivity of weak
indistinguishability,

Noninterference says that if two memories are indistinguishable at a certain level,
then the executions of a given program on these two memories are also (at least weakly)
indistinguishable at that level:

Definition 6 (Noninterference). A command c satisfies noninterference if

∀`,M1,M2.M1 =` M2 =⇒ 〈M1, c〉 ≈` 〈M2, c〉

We assume that the attacker has the ability to read and write some data manipulated
by the program. Recall that robustness means an active attacker, who both observes and
modifies part of the system state, should not learn more sensitive information than a
passive attacker, who merely observes visible data. The power of the attacker to ob-
serve and modify system state can be described by a single point A in a security lattice.
A passive A-attacker may read data at or below C(A) (i.e., at or below (C(A),>I) in
the product lattice); an active A-attacker may also modify data at or above I(A) (i.e.,
at or above (⊥C , I(A)) in the product lattice).

In general, an active attacker may change system behavior by injecting new code
into the program. However, accesses by the attacker must satisfy certain conditions on
what data can be read and modified. Code satisfying these conditions is considered a
fair attack because the code should not be able to violate confidentiality and integrity
directly; rather, a fair attack attempts exploiting insecure information flow in the trusted
code.

Definition 7. A command a is a fair attack (at some level ` ∈ LL) if it is formed accord-
ing to the following grammar, where expressions e and b do not contain declassify:

a ::= skip
| v := e (∀x ∈ Vars(e).Γ(x) = ` = Γ(v))
| a1; a2

| if b then a1 else a2 (∀x ∈ Vars(b).Γ(x) = `)
| while b do a (∀x ∈ Vars(b).Γ(x) = `)

For simplicity, each attack operates at a single security level `. This does not re-
strict the attacker because the attacker is already assumed to completely control the LL
region of the lattice (recall from Section 3 that the LL region is relative to the attacker’s
point A in the lattice), and ` is an adequate representative of this region. Anything that
the attacker can read has lower confidentiality than `, and anything the attacker can
write to has lower integrity. So if attacker code used other levels in LL, the code could
be translated to code that only used `. In fact, our results are proved for a strictly more
general class of attacks that we call A-attacks (defined in Section 5), which subsume
fair attacks and may operate across different security levels.

Attacker-controlled low-integrity computation may be interspersed with trusted
high-integrity code. To distinguish the two, the high-integrity code is represented as a
program in which some statements are missing, replaced by holes (•). The idea is that
the holes are places where the attacker can insert arbitrary low-integrity code. There
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may be multiple holes in the high-integrity code, represented by the notation ~•. The
high-integrity computation is then a high-integrity context c[~•] in which the holes can
be replaced by a vector of attacker code fragments ~a to obtain a complete program
c[~a]. An attacker is thus a vector of such code fragments. A passive attacker is an
attack vector that fills all holes with the low-integrity code from the original program.
An active attacker is any attack vector that fills some hole in a way that changes the
original program behavior.

Although the assumption that attackers are constrained to interpolating sequential
code may seem artificial, it is a reasonable assumption to make both in a single-machine
setting, where the attacker’s code can be statically checked before it is run, and in a
distributed setting where the attacker has complete power to change the untrusted code,
but where that code is limited in its ability to affect the machines on which trusted code
is run [53].

High-integrity contexts are defined formally as follows:

Definition 8. High-integrity contexts, or commands with holes, c[~•] are defined by
extending the command grammar from Definition 1 with:

c[~•] ::= . . . | [•]

Using this definition, robust declassification can be translated into the language-
based setting. Robust declassification holds if for all ~a, whenever program c[~a] cannot
distinguish the behaviors of the program on some memories, then any change of the
attacker’s code to any other attack ~a′ still cannot distinguish the behaviors of the pro-
gram on these memories. In other words, the attacker’s observations about c[~a′] may
not reveal any secrets apart from what the attacker already knows from observations
about c[~a]. This is formally expressed in the following definition (where we assume
that F is the set of fair-attack vectors).

Definition 9 (Robustness). Command c[~•] has robustness with respect to fair attacks
at level A if

∀M1,M2,~a ∈ F, ~a′ ∈ F. 〈M1, c[~a]〉 u(C(A),>I) 〈M2, c[~a]〉 =⇒

〈M1, c[~a′]〉 ≈(C(A),>I) 〈M2, c[~a′]〉

As noted, the attacker can observe data below the lattice point (C(A),>I). This level
is used in the relations u(C(A),>I) and ≈(C(A),>I), requiring equality for assignments
to low-confidentiality variables. Observe that 〈M1, c〉 u(C(A),>I) 〈M2, c〉 implies that
M1 =(C(A),>I) M2 by Definition 5. Note that attacks in the vectors ~a and ~a′ may
operate at different levels (as long as these levels are in the LL region).

The definition of robustness uses both strong and weak indistinguishability, which
is needed to deal properly with nontermination. Because we are ignoring timing and
termination channels, information is only really leaked if configurations are not weakly
indistinguishable. However, the premise of the condition is based on strong indis-
tinguishability because a sufficiently incompetent attacker may insert nonterminating
code and thus make fewer observations than even a passive attacker. We are not con-
cerned with such attackers.
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Note that the robustness definition quantifies over both passive and active attacks.
This is because neither passive or active attacker behavior is known a priori. The vector
of skip commands is an example of a possible attack. Importantly, the robustness
definition also guards against other attacks (which might affect what critical fragments
of the target program are reachable). For example, under lattice LLH and attacker at
LL, consider the following program (here and in the rest of the paper the subscript of a
variable indicates its security level in Γ):

xLL := 1; [•]; while xLL > 0 do skip;
if xLL = 0 then yLH := declassify(zHH ,LH )

else skip

This program would be robust if a in Definition 9 were fixed to be the skip com-
mand (as c[a] would always diverge). However, the attacker may tamper with the
declassification mechanism in the program because whether declassification code is
reachable depends on the attacker-controlled variable xLL. This is indeed captured
by Definition 9, which deems the program as non-robust (take a = xLL := −1 and
a′ = xLL := 0).

The robustness definition ensures that the attacker’s actions cannot lead the declas-
sification mechanism to increase the attacker’s observations about secrets. Note that
robustness is really a property of a high-integrity program context rather than of an en-
tire program. A full program c[~a] is robust if its high-integrity part c[~•] is itself robust.
Because the low-integrity code ~a is assumed to be under the control of the attacker, the
security property is insensitive to it.

For example, under lattice LLH and attacker at LL, consider programs:

[•];xLH := declassify(yHH ,LH )

and
[•]; if xLH then yLH := declassify(zHH ,LH )

else skip

No matter what (terminating attack) fills the hole, these programs are rejected by non-
interference although their declassification operations are intended. On the other hand,
these programs satisfy robustness because the attacker may not either influence what
is declassified (by assigning to yHH in the former program) or manipulate the control
flow leading to declassification (by assigning to xLH in the latter program). Indeed,
no fair attack filling the hole may assign to either yHH or xLH . Note that the latter
program is similar to the example from Section 2, except with integrity annotations.
However, a similar program where x is low-integrity is properly rejected:

[•]; if xLL then yLL := declassify(zHH ,LH )
else skip

To see a successful attack, take a = xLL := 0 and a′ = xLL := 1 and memories
different in zHH .

12



5 Security type system for robustness

Γ ` val : `

Γ(v) = `

Γ ` v : `

Γ ` e : ` Γ ` e′ : `
Γ ` e op e′ : `

Γ ` e : ` ` v `′

Γ ` e : `′

Γ, pc ` skip

Γ ` e : ` ` t pc v Γ(v)
Γ, pc ` v := e

Γ, pc ` c1 Γ, pc ` c2

Γ, pc ` c1; c2

Γ ` e : ` Γ, ` t pc ` c1 Γ, ` t pc ` c2

Γ, pc ` if e then c1 else c2

Γ ` e : ` Γ, ` t pc ` c

Γ, pc ` while e do c

Γ, pc ` c pc′ v pc
Γ, pc′ ` c

Γ ` e : `′ ` t pc v Γ(v)
I(`) = I(`′) pc, `′ ∈ HI

Γ, pc ` v := declassify(e, `)

Figure 4: Typing rules.

Figure 4 gives typing rules for the simple sequential language. These are security
typing rules because they impose conditions on the security level components of types.
As we show later in this section, any program that is well-typed according to these
rules also satisfies the robustness property. Expressions and commands are typed with
respect to a typing context that comprises both a security environment Γ and a program-
counter security level pc. The program-counter security level tracks what information
has affected control flow up to the current program point. For example, if pc is high-
confidentiality at some program point, then an attacker might learn secrets from the
fact that execution reached that point. If pc is low-integrity, the attacker might be able
to affect whether control reaches that point.

We write Γ ` e : ` to mean that an expression e has type ` under an environment Γ
and a security level pc. For commands, we write Γ, pc ` c if command c is well-typed
under Γ and pc.

The typing rules control the information flow due to assignments and control flow
in a largely standard fashion (cf. [48]). However, the key rule governing uses of de-
classification is non-standard, though similar to that proposed by Zdancewic [50] (we
discuss the relation at the end of this section). This rule states that only high-integrity
data is allowed to be declassified and that declassification might only occur at a high-
integrity program point (pc). The effect of this rule can be visualized by considering the
lattice depicted in Figure 5. The figure includes an arrow corresponding to a declassi-
fication from security level ` to level `′. If the area of possible flow origins (below `) is
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HL
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C(A)
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'

A

Figure 5: Effects of declassification.

within the high-integrity area of the lattice, the attacker (who can only affect the low-
integrity area of the lattice) cannot influence uses of the declassification mechanism
and therefore cannot exploit it.

Using the type system, we define A-attacks, programs controlled by the attacker
at level A, which subsume fair attacks. We prove that well-typed programs are robust
with respect to A-attacks (or simply “attacks” from here on) and therefore with respect
to fair attacks.

Definition 10. A command a is an A-attack if Γ, (⊥C , I(A)) ` a and declassify
does not occur in a.

Under lattice LLH and A = LL, examples of attacks are programs skip (a harm-
less attack), xLL := yLL, and while xHL do skip. On the other hand, programs
xHH := yLH and xLH := declassify(yLH ,LH ) are not attacks because they ma-
nipulate high-integrity data. Note that programs like xLL := declassify(yHL,LL)
and if xLL then yLL :=declassify(zHH,LH ) else skip are not valid attacks be-
cause declassify may not be used in attacks. This is consistent with the discipline
enforced by the type system that the attacker may not control declassification. All fair
attacks are A-attacks, but the reverse is not true. For example, the program xHL := yHL

is an A-attack but is not a fair attack because it reads from a confidential variable. Re-
call the partition of data according to the confidentiality (HC and LC) and integrity
(LI and HI ) levels from Section 3.2. The following propositions provide some useful
(and straightforward to prove) properties of attacks.

Proposition 3. A fair attack a at level ` ∈ LL is also an A-attack.

Proof. The proof is by induction on the structure of the attack a. The declassify
expression cannot appear in a by construction, and to show that Γ, (⊥C , I(`)) ` a, we
rely on an auxiliary proposition for expressions that shows that if ∀x ∈ Vars(e).Γ(x) =
` then Γ ` e : `.

Proposition 4. An A-attack a (i) does not have occurrences of assignments to high-
integrity variables (such v that Γ(v) ∈ HI ); and (ii) satisfies noninterference.

14



Proof. Part (i) follows by induction on the derivation that Γ, (⊥C , I(A)) ` a. To see
why, observe that the pc label in the typing judgments only increases as the derivation
moves from the root toward the leaves (this is seen in the typing rule for conditional
statements in which the branches are checked under the higher label ` t pc). There-
fore, when type checking any assignment statement v := e, it must be the case that
(⊥C , I(A)) v pc and the typing rule for assignment implies that pc v Γ(v). By tran-
sitivity, it follows that (⊥C , I(A)) v Γ(v), and we have I(A) v I(Γ(v)). But from
the definition of HI = {` | I(A) 6v I(`)}, so Γ(v) 6∈ HI .

Part (ii) follows directly from Theorem 1 below.

The type system can be used to enforce two interesting properties: noninterference
(if declassify is not used) and robust declassification (even if it is).

Theorem 1. If Γ, pc ` c and declassify does not occur in c, then c satisfies nonin-
terference.

Because the declassification-free part of the security type system is largely standard,
this result is proved by induction on the evaluation of c, similar to the proof of Volpano
et al. [48]. Note that although the noninterference condition by Volpano et al. is weaker
(the attacker can only observe the low part of the final state), their noninterference proof
is based on a stronger condition. In particular, this condition happens to guarantee
for executions that start in memories that agree on low data, that assignments to low
variables affect the memories in the same way (see the UPDATE case in the proof of
Theorem 6.8 of [48]). Hence, most of their proof can be simply reused for the present
theorem. One simple proposition needed in the proof is the following:

Proposition 5. If Γ ` e : ` where e contains no declassify expressions and M1 =`′

M2 and ` v `′ then M1(e) = M2(e).

Proof. By induction on the structure of e. The only interesting case is when e is a
variable, but that follows immediately from the definition of memory equivalence at `′

and the assumption that ` v `′.

The interesting question, however, is what the type system guarantees when declas-
sification is used. Observing that declassification affects only confidentiality, we prove
that the integrity part of the noninterference property is preserved in the presence of
declassification:

Theorem 2. If Γ, pc ` c then for all integrity levels I we have

∀M1,M2.M1 =(>C ,I) M2 =⇒ 〈M1, c〉 ≈(>C ,I) 〈M2, c〉

Proof. This theorem follows essentially in the same way as Theorem 1, the only dif-
fering case is when the program contains a declassify expression, so it suffices to
show that noninterference holds for the program v := declassify(e, `).

Let M1 =(>C ,I) M2 be given. From the typing rule for declassify, we obtain
that ` t pc v Γ(v) and Γ ` e : `′ and I(`) = I(`′) and `, `′ ∈ HI . Also from the
typing rules, we know that e itself contains no declassifications. From the definition of
memory equivalence, it suffices to show that if Γ(v) v (>C , I) then M1(e) = M2(e).
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Observe that ` v Γ(v) and, since I(`) = I(`′), we have `′ v (>C , I) and result
follows by Proposition 5.

As for the confidentiality part, we show the key result of this paper: typable pro-
grams satisfy robustness and, thus, the attacker may not manipulate the declassification
mechanism to leak more information than intended.

For robustness, it is important that holes not be placed at program points where the
program counter pc is high-confidentiality, because then an attacker would be able to
directly observe implicit flows [15] to the hole and could therefore cause information
to leak even without a declassify. This restriction is achieved by defining a suitable
typing rule for holes, permitting program contexts c[~•] to be type-checked:

pc ∈ LC

Γ, pc ` •

The main theorem of the paper can now be stated:

Theorem 3. If Γ, pc ` c[~•] then c[~•] satisfies robustness.

Before proving the theorem, we present a few helpful propositions. One such
proposition says that if a sequential composition of well-typed commands may not dis-
tinguish two low-equivalent memories (through terminating execution), then the first
command of the composition may not distinguish between the memories (which im-
plies that it terminates in some low-equivalent intermediate memories). Further, the
second command may not distinguish between these intermediate memories. This
property is achieved because of the trace-level granularity of the security condition:
the indistinguishability of configurations requires the indistinguishability of traces (up
to high-stuttering).

Proposition 6. If Γ, pc ` c and pc 6v ` then Tr(〈M, c〉)|` = M |`.

Proof. Observe that the typing rules require that all variables v assigned to in the body
of c satisfy pc v Γ(v). Therefore Γ(v) 6v ` and the result follows directly from the
definition of `-projection of traces.

Proposition 7. Let ` = (C(A),>I). If Γ, pc ` c1; c2 and 〈M1, c1; c2〉 u` 〈M2, c1; c2〉
then 〈M1, c1〉 u` 〈M2, c1〉. Further, we have 〈M1, c1〉 ⇓ N1 and 〈M2, c1〉 ⇓ N2 for
some N1 and N2 so that 〈N1, c2〉 u` 〈N2, c2〉.

Proof. Let t1 = Tr(〈M1, c1; c2〉) and t2 = Tr(〈M2, c1; c2〉). We proceed by induc-
tion on the structure of c1. We show the cases for skip, assignment, and sequential
composition, and if. The loop case follows similarly to the case for conditionals.

• If c1 = skip then from the definition of the operational semantics we have that:

t1 = 〈M1, skip; c2〉
·−→ Tr(〈M1, c2〉)

t2 = 〈M2, skip; c2〉
·−→ Tr(〈M2, c2〉)
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Clearly, Tr(〈M1, skip〉) = 〈M1, skip〉 ≈` 〈M2, skip〉 = Tr(〈M2, skip〉),
since M1|` = M2|`. Moreover, 〈M1, skip〉 ⇓ M1 and 〈M2, skip〉 ⇓ M2

and, since t1|` = Tr(〈M1, c2〉)|` and t2|` = Tr(〈M2, c2〉)|`, it follows that
〈M1, c2〉 u` 〈M2, c2〉.

• If c1 = v := e, we let M ′
i = Mi[v 7→ Mi(e)] (for i ∈ {1, 2}) and from the

operational semantics we obtain that 〈M1, v := e〉 ⇓ M ′
1 and 〈M2, v := e〉 ⇓

M ′
2. We choose N1 = M ′

1 and N2 = M ′
2 observe that

t1 = 〈M1, v := e; c2〉
v−→ Tr(〈M ′

1, skip; c2〉)
t2 = 〈M2, v := e; c2〉

v−→ Tr(〈M ′
2, skip; c2〉)

If Γ(v) 6v `, we have 〈M1, c1〉 u` 〈M2, c1〉 because

Tr(〈M1, v := e〉)|` = M1|` = M2|` = Tr(〈M1, v := e〉)

Note that Mi|` = M ′
i |`, and it follows that Tr(〈M ′

1, c2〉)|` = t1|` = t2|` =
Tr(〈M ′

2, c2〉)|`. The other case is that Γ(v) v `. This implies that the assign-
ment step is `-observable, so the ` projections must look like

t1|` = M1|`,M ′
1|`, . . . = M2|`,M ′

2|`, . . . = t2|`

Consequently, Tr(〈M1, c1〉)|` = M1|`,M ′
1|` = M2|`,M ′

2|` = Tr(〈M2, c1〉),
and Tr(〈M ′

1, c2〉)|` = Tr(〈M ′
2, c2〉)|` as required.

• If c1 = (d1; d2) then by inversion of the typing rule for sequences, we ob-
tain Γ, pc ` d1 and Γ, pc ` d2. Therefore, Γ, pc ` d2; c2. Note that since
Tr(〈M1, (d1; d2); c2〉) = Tr(〈M1, d1; (d2; c2)〉) (and similarly for M2) we must
have 〈M1, d1; (d2; c2)〉 u` 〈M2, d1; (d2; c2)〉. One application of the induction
hypothesis applied to the command d1; (d2; c2) yields the following: 〈M1, d1〉 u`

〈M2, d1〉 and there exist N ′
1 and N ′

2 such that 〈M1, d1〉 ⇓ N ′
1 and 〈M2, d1〉 ⇓ N ′

2

and, moreover, 〈N ′
1, d2; c2〉 u` 〈N ′

2, d2; c2〉. A second use of the induction
hypothesis applied to the command d2; c2 yields that 〈N ′

1, d2〉 u` 〈N ′
2, d2〉

and there exist N1 and N2 such that 〈N ′
1, d2〉 ⇓ N1 and 〈N ′

2, d2〉 ⇓ N2 and,
moreover, 〈N1, c2〉 u` 〈N2, c2〉. To complete the theorem, we observe that
Tr(〈M1, d1; d2〉) = Tr(〈M1, d1〉)

·−→ Tr(〈M1, d2〉) (and similarly for M2).
This yields that 〈M1, d1; d2〉 ⇓ N1 and 〈M2, d1; d2〉 ⇓ N2, and, moreover,

Tr(〈M1, d1; d2〉)|` = Tr(〈M1, d1〉)|` · Tr(〈N ′
1, d2〉)|`

= Tr(〈M2, d1〉)|` · Tr(〈N ′
2, d2〉)|`

= Tr(〈M2, d1; d2〉)|`

So 〈M1, d1; d2〉 u` 〈M2, d1; d2〉.

• If c1 = if e then d1 else d2 then Γ ` e : `′ and Γ, (`tpc) ` di (for i ∈ {1, 2}).
If `′ v ` then by Proposition 5 we have that M1(e) = M2(e). Therefore both
configurations take the same branch, and the result follows by application of
the induction hypothesis. The case for `′ 6v ` follows from Proposition 6 and
transitivity of u`.
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The following proposition relates the executions of two well-typed programs formed
by filling a target program with two different attacks. The proposition says that, as-
suming the set of high-integrity variables is not empty, if the memories in the initial
configurations agree on high-integrity data and both configurations terminate then they
also agree on high-integrity data at the end of computation. This is a form of noninter-
ference of low-integrity code with high-integrity values.

Proposition 8. If HI 6= ∅, Γ, pc ` c[~•], 〈M, c[~a]〉 ⇓ N , and 〈M ′, c[~a′]〉 ⇓ N ′ for some
M ′ where M(v) = M ′(v) for all v such that Γ(v) ∈ HI and for some attacks ~a and
~a′ then N(v) = N ′(v) for all v such that Γ(v) ∈ HI .

Proof. Induction on the structure of c. If c[~•] is skip then M = N and M ′ = N ′,
which is a vacuous case. If c[~•] has the form v := e (where e might contain declassifi-
cation) then, as in the previous case, the command has no holes. If Γ(v) 6∈ HI then the
high-integrity parts of the memories M and M ′ are not affected by the assignment. If
Γ(v) ∈ HI then the type system guarantees that e might only depend on high-integrity
data (if Γ ` e : ` then ` v Γ(v)), which implies that N(v) = N ′(v) for all v such
that Γ(v) ∈ HI . If c[~•] = [•] then by Proposition 4 there are no assignments to high-
integrity variables in either a or a′, which gives the desired relation on the memories.
Structural cases on c (where appropriate, we assume that ~a is split into two vectors ~a1

and ~a2):

c1[ ~a1]; c2[ ~a2] Clearly, 〈M, c1[ ~a1]〉 ⇓ N1 and 〈M ′, c1[ ~a′1]〉 ⇓ N ′
1 for some N1 and N ′

1.
By the induction hypothesis N1(v) = N ′

1(v) for all high-integrity v. On the
other hand, 〈N1, c2[ ~a2]〉 ⇓ N and 〈N ′

1, c2[ ~a′2]〉 ⇓ N ′. Applying the induction
hypothesis again we receive N(v) = N ′(v) for all v such that Γ(v) ∈ HI .

if b then c1[ ~a1] else c2[ ~a2] If ∃v ∈ Vars(b).Γ(v) 6∈ HI then there is a low-integrity
variable that occurs in b. Therefore, the type system guarantees that there are no
assignments to high-integrity variables in the branches c1[ ~a1] and c2[ ~a2]; there-
fore the equality of the high parts of the memory is preserved through the entire
command. If ∀v ∈ Vars(b).Γ(v) ∈ HI then b evaluates to the same value in
both M1 and M2. Hence, this case follows from the induction hypothesis for
c1[ ~a1] (if this value is true) or for c2[ ~a2] (if this value is false).

while b do c1[ ~a1] If ∃v ∈ Vars(b).Γ(v) 6∈ HI then, as in the previous case, there is a
low-integrity variable that occurs in b. Therefore, the type system guarantees that
there are no assignments to high-integrity variables in the body c1[ ~a1]; therefore
the equality of the high parts of the memory is preserved through the entire com-
mand. If ∀v ∈ Vars(b).Γ(v) ∈ HI then b evaluates to the same value in both
M1 and M2. If b evaluates to false then this case reduces to skip. If b evaluates
to true then this case reduces to a (finitely) nested sequential composition. We
observe that b evolves under while b do c1[~a] and while b do c1[~a′] in the same
way (due to the induction hypothesis). This guarantees that memories N and
N ′ in which these loops (synchronously) terminate are equal in all high-integrity
variables.

In order to prove Theorem 3, we show a stronger property of typable commands.
Suppose we have a typable program context filled with an attack and two memories
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forming configurations with this command. The next proposition states that whenever
the terminating behaviors of the configurations are indistinguishable for the attacker
then no alteration of the attacker-controlled part of the initial memory or alteration of
the attacker-controlled code may make the behaviors distinguishable for the attacker.
The key idea is that because declassification is not allowed in a low-integrity context
(pc), the type system ensures that changes in low-integrity values may not reflect on
low-confidentiality behavior of the computation.

Proposition 9. If Γ, pc ` c[~•] and 〈M1, c[~a]〉 u(C(A),>I) 〈M2, c[~a]〉 for some M1

and M2 then for any attack ~a′, values val1, . . . , valn, and variables v1, . . . , vn so that
∀i.Γ(vi) ∈ LI we have 〈M ′

1, c[~a′]〉 ≈(C(A),>I) 〈M ′
2, c[a

′]〉 where M ′
1 = M1[v1 7→

val1, . . . , vn 7→ valn] and M ′
2 = M2[v1 7→ val1, . . . , vn 7→ valn].

Proof. If HI = ∅ then declassification is disallowed by the typing rules, and the propo-
sition follows from Theorem 1. In the rest of the proof we assume HI 6= ∅, and pro-
ceed by induction on the structure of c[~•]. Suppose that for some c[~a] and memories
M1 and M2 we have 〈M1, c[~a]〉 u(C(A),>I) 〈M2, c[~a]〉 (which, in particular, implies
M1 =(C(A),>I) M2). We need to show 〈M ′

1, c[~a′]〉 ≈(C(A),>I) 〈M ′
2, c[~a′]〉 for all ~a′.

Structural cases on c[~a] (where appropriate, we assume that ~a is split into two vectors
~a1 and ~a2):

[•] This case is straightforward because by Proposition 4 attack a′ satisfies noninter-
ference.

skip The proposition follows from the fact that M ′
1 =(C(A),>I) M ′

2, which is obvious.

v := e The command has no holes, implying c[~a] = c[~a′]. If Γ(v) ∈ HC then the case
is similar to skip because the assignment does not affect any part of the memory
that is visible to the attacker. If Γ(v) ∈ LC then we have two sub-cases. If e
is a declassification expression, then it does not depend on low-integrity vari-
ables, and hence low-confidentiality indistinguishability is preserved. If e is not
a declassification expression, then the type system guarantees that Γ ` e : `′ for
such `′ that `′ v `, which implies that e may depend only on low-confidentiality
data. Whether the data that is used in e comes from M1/M2 or M ′

1/M
′
2 does not

matter because, in all cases, e evaluates to the same value in all of them. Hence,
the assignment preserves low-confidentiality indistinguishability.

c1[ ~a1]; c2[ ~a2] In this case we have 〈M1, c1[ ~a1]; c2[ ~a2]〉 u(C(A),>I) 〈M2, c1[ ~a1]; c2[ ~a2]〉.
By Proposition 7 we infer 〈M1, c1[ ~a1]〉 u(C(A),>I) 〈M2, c1[ ~a1]〉. By the in-
duction hypothesis we obtain 〈M ′

1, c1[ ~a′1]〉 ≈(C(A),>I) 〈M ′
2, c1[ ~a′1]〉. If one,

say 〈M ′
1, c1[ ~a′1]〉, of the configurations diverges then 〈M ′

1, c[~a′]〉 also diverges.
Since weak indistinguishability relates divergent traces to any trace, conclude
〈M ′

1, c[~a′]〉 ≈(C(A),>I) 〈M ′
2, c[~a′]〉. If both configurations 〈M ′

1, c1[ ~a′1]〉 and
〈M ′

2, c1[ ~a′1]〉 terminate, we have 〈M ′
1, c1[ ~a′1]〉 u(C(A),>I) 〈M ′

2, c1[ ~a′1]〉. Thus,
there exist some N ′

1 and N ′
2 so that 〈M ′

1, c1[ ~a′1]〉 ⇓ N ′
1, 〈M ′

2, c1[ ~a′1]〉 ⇓ N ′
2, and

N ′
1 =(C(A),>I) N ′

2.
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Because 〈M1, c1[ ~a1]〉 u(C(A),>I) 〈M2, c1[ ~a1]〉, there exist some N1 and N2

such that 〈M1, c1[ ~a1]〉 ⇓ N1 and 〈M2, c1[ ~a1]〉 ⇓ N2. Applying Proposition 8
twice, we have N ′

1(v) = N1(v) and N ′
2(v) = N2(v) for all high-integrity vari-

ables v. Because 〈M1, c[~a]〉 u(C(A),>I) 〈M2, c[~a]〉, by the last part of Propo-
sition 7 we have 〈N1, c2[ ~a2]〉 u(C(A),>I) 〈N2, c2[ ~a2]〉. The induction hypoth-
esis allows us to change memories N1 and N2 into N ′

1 and N ′
2, respectively,

and attack ~a2 into ~a′2, yielding 〈N ′
1, c2[ ~a′2]〉 ≈(C(A),>I) 〈N ′

2, c2[ ~a′2]〉. Connect-
ing the low-assignment traces for c1 and c2, 〈M ′

1, c1[ ~a′1]; c2[ ~a′2]〉 ≈(C(A),>I)

〈M ′
2, c1[ ~a′1]; c2[ ~a′2]〉.

if b then c1[ ~a1] else c2[ ~a2] If ∃v ∈ Vars(b).Γ(v) 6∈ LC , i.e., a high-confidentiality
variable occurs in b, then we observe that there are no assignments to low-
confidentiality variables in the program, which is a vacuous case. If ∃v ∈
Vars(b).Γ(v) 6∈ HI then no declassification occurs in c[~a′] by the definition
of the type system and attacks. Consequently, by Theorem 1, c[~a′] satisfies non-
interference, which completes the proof.

If ∀v ∈ Varsb. Γ(v) ∈ LC ∩ HI then b evaluates to the same value, say true,
under all of M1, M2, M ′

1, and M ′
2, i.e., the execution of the conditional reduces

to the same branch in both memories. We have 〈M1, c[~a]〉 −→ 〈M1, c1[ ~a1]〉
and 〈M2, c[~a]〉 −→ 〈M2, c1[ ~a1]〉 as well as 〈M ′

1, c[~a′]〉 −→ 〈M ′
1, c1[ ~a′1]〉 and

〈M ′
2, c[~a′]〉 −→ 〈M ′

2, c1[ ~a′1]〉. Because 〈M1, c[~a]〉 u(C(A),>I) 〈M2, c[~a]〉 we
have 〈M1, c1[ ~a1]〉 u(C(A),>I) 〈M2, c1[ ~a1]〉. By the induction hypothesis, we
have 〈M ′

1, c1[ ~a′1]〉 ≈(C(A),>I) 〈M ′
2, c1[ ~a′1]〉. This implies 〈M ′

1, c[~a′]〉 ≈(C(A),>I)

〈M ′
2, c[~a′]〉.

while b do c1[~a] The cases when ∃v ∈ Vars(b).Γ(v) 6∈ LC and ∃v ∈ Vars(b).Γ(v) 6∈
HI are handled in the same way as for conditionals. The remaining case is
∀v ∈ Vars(b).Γ(v) ∈ LC ∩ HI . Expression b evaluates to the same value un-
der all of M1, M2, M ′

1, and M ′
2. If this value is false then both 〈M ′

1, c[~a′]〉 and
〈M ′

2, c[~a′]〉 terminate in one step with no change to the memories M ′
1 and M ′

2,
yielding 〈M ′

1, c[~a′]〉 ≈(C(A),>I) 〈M ′
2, c[~a′]〉.

If, on the other hand, the value of b is true then 〈M1, while b do c1[~a]〉 u(C(A),>I)

〈M2, while b do c1[~a]〉 ensures that 〈M1, c1[~a]; while b do c1[~a]〉 u(C(A),>I)

〈M2, c1[~a]; while b do c1[~a]〉. By Proposition 7, we have 〈M1, c1[~a]〉 u(C(A),>I)

〈M2, c1[~a]〉. By the induction hypothesis, 〈M ′
1, c1[~a′]〉 ≈(C(A),>I) 〈M ′

2, c1[~a′]〉.
If either 〈M ′

1, c1[~a′]〉 or 〈M ′
2, c1[~a′]〉 diverges then the top-level loop also di-

verges under M ′
1 (or M ′

2), implying 〈M ′
1, c[~a′]〉 ≈(C(A),>I) 〈M ′

2, c[~a′]〉. If both
configurations terminate, then there exist some N ′

1 and N ′
2 so that 〈M ′

1, c1[~a′]〉 ⇓
N ′

1, 〈M ′
2, c1[~a′]〉 ⇓ N ′

2, and N ′
1 =(C(A),>I) N ′

2. Note that the value of b is the
same under N ′

1 and N ′
2. If this value is false then the proof is finished. Other-

wise, we need to further unwind the loop, as follows.

Applying Proposition 8 twice, we infer 〈M1, c1[~a]〉 ⇓ N1 and 〈M2, c1[~a]〉 ⇓ N2

for some N1 and N2 so that N ′
1(v) = N1(v) and N ′

2(v) = N2(v) for all high-
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integrity variables v. This, in particular, implies that b evaluates to true in both
N1 and N2.

Because 〈M1, c[~a]〉 u(C(A),>I) 〈M2, c[~a]〉, we apply Proposition 7 to receive
〈M1, c1[~a]〉 u(C(A),>I) 〈M2, c1[~a]〉 and thus 〈N1, c[~a]〉 u(C(A),>I) 〈N2, c[~a]〉
(because c[~a] corresponds to unwinding the loop).

Note that we have mimicked a c[~a] iteration by a c[~a′] iteration (with the pos-
sibility that the latter might diverge because of an internal loop caused by low-
integrity computation). During this iteration we have preserved the invariant
that the executions for both respective pairs M1,M2 and M ′

1,M
′
2 give indistin-

guishable low-assignment traces (for each c1[~a] and c1[~a′] respectively), and low-
confidentiality high-integrity data in the final states of all traces is the same re-
gardless of the memory (M1,M2,M

′
1 or M ′

2) and the command (c1[~a] or c1[~a′]).
By finitely repeating this construction (with the possibility of finishing the proof
at each step because of an internal loop of c1[~a′]), we reach the state when b
evaluates to false, which corresponds to the termination of the top-level loop for
both c1[~a] and c1[~a′]. We receive 〈M ′

1, c[~a′]〉 ≈(C(A),>I) 〈M ′
2, c[~a′]〉 by concate-

nating low-assignment traces from each iteration.

Theorem 3 is a simple corollary of the above proposition:

Proof (Theorem 3). By Proposition 9, setting M ′
1 = M1 and M ′

2 = M2.

It is worth clarifying the relation of this type system to that defined by Zdancewic [50].
While both require high pc integrity in the typing rule for declassify, the present sys-
tem also requires high integrity of the expression to be declassified. The purpose of the
latter requirement is illustrated by the following example:

[•]; if xHL then yHL := zHL else yHL := vHL;
wLL := declassify(yHL,LL)

This program is allowed by the typing rules presented by Zdancewic [50]. However,
the program clearly violates the definition of robustness presented here. By requiring
high integrity of the declassified expression, the type system in Figure 4 rejects the
program.

6 Password checking example
This section applies robust declassification to a program that performs password check-
ing, illustrating how the type system gives security types to password-checking routines
and prevents attacks.

Password checking in general releases information about passwords when attempts
are made to log on. This is true even when the login attempt is unsuccessful, because
the user learns that the password is not the password tried. A password checker must
therefore declassify the result of password checking in order to report it to the user. A
danger is that an attacker might exploit this login procedure by encoding some other
sensitive data as a password.
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We consider UNIX-style password checking where the system database stores im-
ages (e.g., secure hashes) of password-salt pairs. The salt is a publicly readable string
stored in the database for each user id, as an impediment to dictionary attacks. For a
successful login, the user is required to provide a query such that the hash of the string
and the salt for that user matches the image from the database.

Below are typed expressions/programs for computing the hash, matching the user
input to the password image from the database, and updating the password. Arrows
in the types for expressions indicate that under the types of the arguments on the left
from the arrow, the type of the result is on the right from the arrow. The expres-
sion hash(pwd , salt) concatenates the password pwd with the salt salt and applies
the one-way hash function buildHash to the concatenation (the latter is denoted by
||). The result is declassified to the level Csalt (where Γ(salt) ∈ LC). The command
match(pwdI , salt , pwd , hashR,matchR) checks whether the password image pwdI
matches the hash of the password pwd with the salt salt . It stores the result in the
variable matchR. We assume that Cv and Iv denote the confidentiality C(Γ(v)) and
integrity I(Γ(v)) of the variable v, respectively.

Γ, pc ` hash(pwd , salt) :
CpwdIpwd × CsaltIsalt → CsaltI

= declassify(buildHash(pwd ||salt), CsaltI)
Γ, pc ` match(pwdI , salt , pwd , hashR,matchR)

= hashR := hash(pwd , salt);
matchR := (pwdI == hashR)

where CmatchR = CpwdI t Csalt , ImatchR = IpwdI t I , I = Ipwd t Isalt ; and
I(A) 6v I, I(A) 6v I(pc) (both I and I(pc) have high integrity). As before, basic
security types are written in the form CI (e.g., LH) where C is the confidentiality level
and I is the integrity level. Let us assume the lattice LLH from Figure 1 and A = LL.
Instantiating the typings (and omitting the environment Γ) for these functions shows
that they capture the desired intuition:

The users apply hash to a password and salt:
LH ` hash(pwd , salt) : HH × LH → LH

The users match a password to a password image:
LH ` match(pwdI , salt , pwd , hashR,matchR) : LH ×LH ×HH ×LH ×LH

Consider an attack that exploits declassification in hash and match in order to leak
information about whether xHH (Γ(xHH ) = HH ) equals yLL (Γ(yLL) = LL):

[•]; match(hash(xHH , 0), 0, yLL, hashR,matchR);
if matchR then zLL := 1 else zLL := 0

This attack is rejected by the type system because low-integrity data yLL is fed to
match. Indeed, this attack compromises robustness. For example, take M1 and M2

such that M1(xHH ) = 2 and M2(xHH ) = 3; a = yLL := 0; and a′ = yLL := 2.
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We have 〈M1, c[a]〉 u(C(A),>I) 〈M2, c[a]〉 (the else branch is taken regardless of
xHH ) but 〈M1, c[a′]〉 6≈(C(A),>I) 〈M2, c[a′]〉 (which branch of the conditional is taken
depends on the outcome of the match).

As a side note, this laundering attack is not defended against in many approaches
that are agnostic about the origin (or integrity) of data. For example, a typical intran-
sitive noninterference model accepts the attack as a secure program. Clearly, robust
declassification and intransitive noninterference capture different aspects of safe down-
grading.

The process of updating passwords can also be modeled as a typable program that
satisfies robustness. We might define a procedure update to which the users must
provide their old password in order to update to a new password:

Γ, pc ` update(pwdI , salt , oldP ,newP , hashR,matchR)
= match(pwdI , salt , oldP , hashR,matchR);

if matchR
then pwdI := hash(newP , salt)
else skip

where Csalt(Isalt t IoldP t InewP ) v CpwdI IpwdI and Isalt , IoldP , InewP , I(pc) have
high integrity. In order for this code to be well-typed, both the old password oldP
and the new password newP must be high-integrity variables; otherwise, hash would
attempt to declassify low-integrity information newP (with the decision to declassify
dependent on low-integrity information oldP ), which the type system prevents. Thus,
an attacker is prevented from using the password system to launder information. In-
stantiating this typing to the simple lattice LLH and A = LL is as follows:

The users modify a password:
LH ` update(pwdI , salt , oldP ,newP , hR,mR) : LH × LH × HH × HH ×
LH × LH

7 Endorsement and qualified robustness
Sometimes it makes sense to give untrusted code the ability to affect what information
is released by a program. For example, consider an application that allows untrusted
users to select and purchase information. The information provider does not care which
information is selected, assuming that payment is forthcoming. This application is
abstractly described by the following code:

[•]; if xLL = 1 then zLH := declassify(yHH ,LH )
else zLH := declassify(y′HH ,LH )

There are two pieces of confidential information available, yHH and y′HH . The pur-
chaser computes the choice in low-integrity code •, which sets the variable xLL. The
user expects to receive output on zLH . This code obviously violates robust declassifi-
cation because the “attacks” xLL := 1 and xLL := 2 release different information, yet
the program can reasonably be considered secure.
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7.1 Characterizing qualified robustness
To address this shortcoming, we generalize robust declassification to a qualified robust-
ness property in which untrusted code is given a limited ability to affect information
release. This ability is marked explicitly in the code by the use of a new construct,
endorse(e, `). This endorsement operation has the same result as the expression e
but upgrades the integrity of the result, indicating that although this value might be
affected by untrusted code, the real security policy is insensitive to the value.

Suppose that the program contains endorsements of some expressions. We wish to
qualify the robust declassification property to make it insensitive to how these expres-
sions evaluate. To do this we consider the behavior of the program under an alternate
semantics for endorse expressions, in which the endorse expression evaluates to a
nondeterministically chosen new value val :

〈M, endorse(e, `)〉 −→ val

Interpreting the endorse statement in this way makes the evaluation semantics nonde-
terministic, so it is necessary to modify the definitions of configuration indistinguisha-
bility to reflect the fact that a given configuration may have multiple traces.

Let T⇓ stand for {t ∈ T | t ⇓}, the set of terminating traces from trace set T . Two
trace sets T1 and T2 (generated by some two configurations) are indistinguishable up
to ` (written T1 ≈` T2) if whenever T⇓

1 6= ∅ and T⇓
2 6= ∅ then ∀t1 ∈ T⇓

1 .∃t2 ∈
T⇓

2 . t1 ≈` t2 & ∀t2 ∈ T⇓
2 .∃t1 ∈ T⇓

1 . t1 ≈` t2. In other words, two trace sets
are indistinguishable up to ` if either one of them contains diverging traces only or for
any terminating trace from T1 we can find a terminating trace from T2 so that they are
indistinguishable up to `, and vice versa. We can now lift Definition 5 to multiple-trace
semantics:

Definition 11. Two configurations 〈M1, c1〉 and 〈M2, c2〉 are weakly indistinguishable
up to ` (written 〈M1, c1〉 ≈` 〈M2, c2〉) if Tr(〈M1, c1〉) ≈` Tr(〈M2, c2〉). We say
that two configurations are strongly indistinguishable up to ` (written 〈M1, c1〉 u`

〈M2, c2〉) if 〈M1, c1〉 ≈` 〈M2, c2〉 and both 〈M1, c1〉 and 〈M2, c2〉 always terminate.

Using this notation, the robust declassification property can be qualified to express
the idea that the attacker’s effect on endorsed expressions does not matter:

Definition 12 (Qualified robustness). Command c[~•] has qualified robustness with re-
spect to fair attacks if

∀M1,M2,~a ∈ F, ~a′ ∈ F. 〈M1, c[~a]〉 u(C(A),>I) 〈M2, c[~a]〉 =⇒

〈M1, c[~a′]〉 ≈(C(A),>I) 〈M2, c[~a′]〉

Note the similarity of qualified robustness to the original robustness property from
Definition 9. In fact, the difference is entirely contained in the generalized indistin-
guishability relations u(C(A),>I) and ≈(C(A),>I).

One may wonder why, if confidentiality and integrity are dual properties (cf. [5]),
the treatment of declassify and endorse are not more symmetric. We argue that
there are at least two explanations:
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• The first explanation is that robustness is fundamentally about regulating access
to the potentially dangerous operations like declassify and endorse, and, be-
cause both of them are “privileged” operations, the robustness constraints should
be the same, not dual, for them.

• Another explanation is that treating integrity as a strict dual to confidentiality
leads to a very weak notion of integrity (see, for example, the discussion by Li
et al. [24, 26]), so we should not be surprised if treating them as duals leads
to somewhat unsatisfactory results. The use of nondeterministic semantics for
endorse but not declassify compensates for the differences between them.

It is fair to say that understanding the complete relation between declassification
and endorsement is still unsettled, and poses an interesting problem for future work.

7.2 Enforcing qualified robustness
The use of endorse is governed by the following typing rule; in addition, attacker code
may not use endorse:

Γ ` e : `′ ` t pc v Γ(v) C(`) = C(`′) `′ ∈ LI ` ∈ HI

Γ, pc ` v := endorse(e, `)

Adding this rule to the type system has no impact on confidentiality when no
declassify occurs in a program. To be more precise, we have the following theo-
rem:

Theorem 4. If Γ, pc ` c and no declassify occurs in c then for all confidentiality
levels C we have

∀M1,M2.M1 =(C,>I) M2 =⇒ 〈M1, c〉 ≈(C,>I) 〈M2, c〉

Proof. We assume Tr(〈M1, c〉)⇓ 6= ∅ and Tr(〈M2, c〉)⇓ 6= ∅. Induction on the struc-
ture of c.

skip Tr(〈M1, c〉)|(C,>I) = M1|(C,>I) = M2|(C,>I) = Tr(〈M2, c〉)(C,>I).

v := e If e = endorse(e′, `) for some e′ and ` then v can result in any value. Clearly,
〈M1, c〉 ≈(C,>I) 〈M2, c〉 regardless of the confidentiality level of v. If e is not
an endorsement expression, then the proof is the same as in Theorem 1.

c1; c2 Suppose t1 ∈ Tr(〈M1, c1; c2〉)⇓. There exist t11, t12, and N1 such that t1 =
t11 · t12 and t1 ⇓ N1. Clearly, Tr(〈M1, c1〉)⇓ 6= ∅ and Tr(〈M2, c1〉)⇓ 6= ∅. By
the induction hypothesis, there exists t21 ∈ Tr(〈M2, c1〉)⇓ so that t11 ≈(C,>I)

t21. Suppose t21 ⇓ N2 for some N2. We know N1 =(C,>I) N2 by the in-
duction hypothesis. This allows us to apply the induction hypothesis to c2.
If Tr(〈N1, c2〉)⇓ = ∅ or Tr(〈N2, c2〉)⇓ = ∅ then we receive a contradiction
to the initial assumption about c. Hence, we receive that there exists t22 ∈
Tr(〈N2, c2〉)⇓ such that t12 ≈(C,>I) t22. Connecting the traces we receive
t1 ≈(C,>I) t21 · t22 where t21 · t22 ∈ Tr(〈M2, c1; c2〉)⇓, which finishes the
proof.
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if b then c1[ ~a1] else c2[ ~a2] As in Theorem 1.

while b do c1[ ~a1] As in Theorem 1.

The interesting question is what security assurance is guaranteed in the presence
of both declassify and endorse. The rule above rejects possible misuses of the
endorsement mechanism leading to undesired declassification, as illustrated by the fol-
lowing example:

[•]; if xLL then yLH := endorse(zLL,LH )
else skip;

if yLH then vLH := declassify(wHH ,LH )
else skip

In this example, the attacker has control over xLL which, in turn, controls whether
the variable zLL is endorsed for assignment to yLH . It is through the compromise of
yLH that the attacker might cause the declassification of wHH . This program does
not satisfy qualified robustness (take M1(wHH ) = 2,M2(wHH ) = 3,M1(yLH ) =
M2(yLH ) = 0,M1(zLL) = M2(zLL) = 1, a = xLL := 0 and a′ = xLL := 1 to
receive 〈M1, c[a]〉 u(C(A),>I) 〈M2, c[a]〉 but 〈M1, c[a′]〉 6≈(C(A),>I) 〈M2, c[a′]〉) and
is rightfully rejected by the type system (endorse fails to type check under a low-
integrity pc). In general, we prove that all typable programs (using the extended type
system that includes the rule for endorse) must satisfy qualified robustness:

Theorem 5. If Γ, pc ` c[~•] then c[~•] satisfies qualified robust declassification.

As in Section 5, we prove the theorem with respect to a larger class of attacks,
namely A-attacks. Recall that A-attacks subsume fair attacks by Proposition 3. In
order to prove the theorem we lift the proof technique of Theorem 3 to a possibilistic
setting by reasoning about the existence of individual traces that originate from a given
configuration and possess desired properties. In parentheses, we provide references to
the respective propositions and definitions for the non-qualified version of robustness.

Proposition 10 (4). An A-attack (i) does not have occurrences of assignments to high-
integrity variables (such v that Γ(v) ∈ HI ); and (ii) satisfies (possibilistic) noninter-
ference.

Proof. The proof is a straightforward adaptation of the proof of Proposition 4.

Proposition 11 (7). Let ` = (C(A),>I). If Γ, pc ` c1; c2 and 〈M1, c1; c2〉 u`

〈M2, c1; c2〉 then 〈M1, c1〉 u` 〈M2, c1〉. Moreover, for t1 ∈ Tr(〈M1, c1〉) such that t1
terminates in N1 and t2 ∈ Tr(〈M2, c1〉) such that t2 terminates in N2 if t1 ≈` t2 then
〈N1, c2〉 u` 〈N2, c2〉.

Proof. The proof follows by induction on the structure of c1, using mostly the same
structure as Proposition 7. Note that since the operational semantics is deterministic
except in the case of endorse, most of the cases for this proof follow directly from the
prior proposition. Nondeterminism plays an interesting role only for the assignment
and sequencing operations, so we show only those cases here. From the assumptions
that the configurations are related, we obtain M1 =` M2.
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• If c1 = endorse(e), then we have T1 = Tr(〈M1, x := endorse(e)〉) =

T1 = {〈M1, x := endorse(e)〉 x−→ 〈M1[x 7→ v], skip〉 | v ∈ V al}
T2 = {〈M2, x := endorse(e)〉 x−→ 〈M2[x 7→ v], skip〉 | v ∈ V al}

If Γ(x) 6v ` then the first part of the proposition follows because every trace in
T1 has `-projection M1 and every trace in T2 has `-projection M2. If Γ(x) v `
then for every t1 ∈ T1 it is easy to find related trace in T2 by choosing the
same nondeterministic choice. The second part of the theorem follows by similar
reasoning, by noting that if there were no possible way for c1 to evaluate via
related traces then it would be impossible to extend the traces in T1 and T2 with
a trace for c2, which contradicts the assumption.

• If c1 = d1; d2, then from the typing rule we obtain that Γ; pc ` d1 and Γ; pc `
d2. For the first part of the proposition, we use the inductive hypothesis plus
the associativity of trace composition (as in the deterministic analog of this
proof) to conclude that 〈M1, d1〉 u` 〈M2, d1〉 and, consequently for any t1 ∈
Tr(〈M1, d1〉) there exists a trace t2 ∈ Tr(〈M2, d1〉) such that t1 ≈` t2 (and
vice versa). Furthermore, t1 terminates in some state N ′

1 and t2 terminates in
some `-equivalent state N ′

2. A second application of the inductive hypothesis
yields that 〈N ′

1, d2〉 u` 〈N ′
2, d2〉 so that for all u1 ∈ Tr(〈N ′

1, d2〉) there is a
u2 ∈ Tr(〈N ′

2, d2〉) where u1 ≈` u2. Let r1 ∈ Tr(〈M1, d1; d2〉) be given. It is
enough to show that there exists an r2 ∈ Tr(〈M2, d1; d2〉) such that r1 ≈` r2.
But r1 = t1

·−→ u1 for some t1 and u1 and we can construct r2 by appending the
corresponding t2 and u2 provided by the inductive hypothesis. The second part
of the proof follows from the fact that we assume that c1; c2 is everywhere ter-
minating and reasoning similar to the case above that says that it is not possible
to extend two inequivalent traces to obtain equivalent ones.

Proposition 12 (8). If HI 6= ∅ and Γ, pc ` c[~•] and 〈M, c[~a]〉 always terminates
(for some attack ~a) then for any attack ~a′, values val1, . . . , valn, variables v1, . . . , vn

where ∀i. Γ(vi) ∈ LI , and t′ ∈ Tr(〈M [v1 7→ val1, . . . , vn 7→ valn], c[~a′]〉) where t′

terminates, there exists t ∈ Tr(〈M, c[~a]〉) where t ∼` t′ for all such ` that ` ∈ HI .

Proof. The proof closely follows the one of Proposition 8. Suppose M ′ = M [v1 7→
val1, . . . , vn 7→ valn]. Induction on the structure of c. If c[~•] is skip then there is only
one possible t ∈ Tr(〈M, c[~a]〉) and t ∼` t′ because t|` = M |` = M ′|` = t′|` for all
such ` that ` ∈ HI . If c[~•] has the form v := e (where e might contain declassification
or endorsement) then, as in the previous case, the command has no holes. Suppose
N = M [v 7→ M(e)] and N ′ = M ′[v 7→ M ′(e)]. If Γ(v) 6∈ HI then the high-integrity
parts of the memories M and M ′ are not affected by the assignment, and the case is
similar to skip. If Γ(v) ∈ HI and e is not an endorsement expression, then the type
system guarantees that e might only depend on high-integrity data (if Γ ` e : ` then
` v Γ(v)), which implies that N(w) = N ′(w) for all w such that Γ(w) ∈ HI . If
Γ(v) ∈ HI and e is an endorsement expression, then any value can be assigned to
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v as an outcome of assignment under both M and M ′. In this case, t′ has the form
M ′,M ′[v 7→ val ] for some val . Clearly, M |`,M [v 7→ val ]|` is a possible `-projection
of trace Tr(〈M, c[~a]〉) and (M |`,M [v 7→ val ]|`) = (M ′|`,M ′[v 7→ val ]|`) for all `
such that Γ(`) ∈ HI . If c[~•] = [•] then by Proposition 4 there are no assignments to
high-integrity variables in either a or a′, which gives the desired relation on the traces.
Structural cases on c (where appropriate, we assume that ~a is split into two vectors ~a1

and ~a2):

c1[ ~a1]; c2[ ~a2] Assume t′ = t′1 · t′2, t′1 ⇓ N ′ (for some N ′), t′1 ∈ Tr(〈M ′, c1[ ~a′1]〉),
and t′2 ∈ Tr(〈N ′, c2[ ~a′2]〉). By the induction hypothesis there exists t1 such
that t1 ∼` t′1 (for all ` such that Γ(`) ∈ HI ) and t1 ⇓ N (for some N ). This
implies N(v) = N ′(v) for all v that Γ(v) ∈ HI , and we can apply the induction
hypothesis to c2. By the induction hypothesis, there exists t2 with the initial
memory N such that t2 ∼` t′2 (for all ` such that Γ(`) ∈ HI ). Connecting the
traces, we receive t1|` · t2|` = t′|` (for all ` such that Γ(`) ∈ HI ).

if b then c1[ ~a1] else c2[ ~a2] As in Proposition 8.

while b do c1[ ~a1] As in Proposition 8.

Proposition 13 (9). If Γ, pc ` c[~•] and 〈M1, c[~a]〉 u(C(A),>I) 〈M2, c[~a]〉 for some M1

and M2 then for any attack ~a′, values val1, . . . , valn, and variables v1, . . . ,vn where
∀i.Γ(vi) ∈ LI we have 〈M ′

1, c[~a′]〉 ≈(C(A),>I) 〈M ′
2, c[a

′]〉 where M ′
1 = M1[v1 7→

val1, . . . , vn 7→ valn] and M ′
2 = M2[v1 7→ val1, . . . , vn 7→ valn].

Proof. If HI = ∅ then declassification is disallowed by the typing rules, and the propo-
sition follows from Theorem 4. In the rest of the proof we assume HI 6= ∅. Sup-
pose that for some c[~a] and memories M1 and M2 we have 〈M1, c[~a]〉 u(C(A),>I)

〈M2, c[~a]〉 (which, in particular, implies M1 =(C(A),>I) M2). We need to show
〈M ′

1, c[~a′]〉 ≈(C(A),>I) 〈M ′
2, c[~a′]〉 for all ~a′.

The proof is by structural induction on c[~•]. We only show the sequential composi-
tion case as the rest of the cases can be reconstructed straightforwardly from the proof
of Theorem 3. Assume c[~•] = c1[~•1]; c2[~•2] where the vector ~• is split into two vectors
~•1 and ~•2.

A premise of the proposition is 〈M1, c1[ ~a1]; c2[ ~a2]〉 u(C(A),>I) 〈M2, c1[ ~a1]; c2[ ~a2]〉.
We need to show 〈M ′

1, c1[ ~a′1]; c2[ ~a′2]〉 ≈(C(A),>I) 〈M ′
2, c1[ ~a′1]; c2[ ~a′2]〉, i.e., by Defin-

ition 11, whenever Tr(〈M ′
1, c1[ ~a′1]; c2[ ~a′2]〉)⇓ 6= ∅ and Tr(〈M ′

2, c1[ ~a′1]; c2[ ~a′2]〉)⇓ 6= ∅
then ∀t′1 ∈ Tr(〈M ′

1, c1[ ~a′1]; c2[ ~a′2]〉)⇓.∃t′2 ∈ Tr(〈M ′
2, c1[ ~a′1]; c2[ ~a′2]〉)⇓. t1 ≈(C(A),>I)

t2 along with the symmetric condition where M ′
1 and M ′

2 are swapped (which is proved
analogously). In the rest of the proof, we assume Tr(〈M ′

1, c1[ ~a′1]; c2[ ~a′2]〉)⇓ 6= ∅ and
Tr(〈M ′

2, c1[ ~a′1]; c2[ ~a′2]〉)⇓ 6= ∅. Obviously, this implies Tr(〈M ′
1, c1[ ~a′1]〉)⇓ 6= ∅ and

Tr(〈M ′
2, c1[ ~a′1]〉)⇓ 6= ∅.

Suppose t′1 = t′11 · t′12 where t′11 ∈ Tr(〈M ′
1, c1[ ~a′1]〉)⇓ and t′11 terminates in some

state N ′
1, and t′12 ∈ Tr(〈N ′

1, c2[ ~a′2]〉)⇓. By Proposition 11, 〈M1, c1[ ~a1]〉 u(C(A),>I)

〈M2, c1[ ~a1]〉. By the induction hypothesis we get 〈M ′
1, c1[ ~a′1]〉 ≈(C(A),>I) 〈M ′

2, c1[ ~a′1]〉.
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In particular, ∃t′21 ∈ Tr(〈M ′
2, c1[ ~a′1]〉)⇓. t′11 ≈(C(A),>I) t′21. This means that there ex-

ists some N ′
2 so that 〈M ′

1, c1[ ~a′1]〉 ⇓ N ′
2, corresponding to trace t′21, and N ′

1 =(C(A),>I)

N ′
2.

By applying Proposition 12 twice, there exist u1 ∈ Tr(〈M1, c[~a]〉) and u2 ∈
Tr(〈M2, c[~a]〉) where t′11 ∼` u1 and t′21 ∼` u2 for all such ` that ` ∈ HI . Note
that this implies that nondeterminism due to endorsement is resolved in the same
way in both u1 and u2. We assume 〈M1, c1[ ~a1]〉 ⇓ N1, corresponding to trace u1

and 〈M2, c1[ ~a1]〉 ⇓ N2, corresponding to trace u2, for some N1 and N2. Because
t′11 ∼` u1, t′21 ∼` u2, and t′11 ∼` t′21, we conclude N1 =` N2 for all ` ∈ LH .

The type system guarantees that assignments to variables in LL in c1[ ~a1] may only
depend on variables in LH and LL. This leads to N1 =` N2 for all ` ∈ LL. Thus, we
have N1 =(C(A),>I) N2 and therefore 〈N1, c2[ ~a2]〉 u(C(A),>I) 〈N2, c2[ ~a2]〉 by Propo-
sition 11. By the induction hypothesis we have 〈N ′

1, c2[ ~a′2]〉 ≈(C(A),>I) 〈N ′
2, c2[ ~a′2]〉.

By construction, Tr(〈N ′
2, c2[ ~a′2]〉)⇓ 6= ∅. Connecting the traces for c1 and c2, we

construct t′2 ∈ Tr(〈M ′
2, c1[ ~a′1]; c2[ ~a′2]〉) such that t′1 ≈(C(A),>I) t′2. This implies

〈M ′
1, c1[ ~a′1]; c2[ ~a′2]〉 ≈(C(A),>I) 〈M ′

2, c1[ ~a′1]; c2[ ~a′2]〉.

Theorem 5 is a simple corollary of the above proposition:

Proof (Theorem 5). By Proposition 13, setting M ′
1 = M1 and M ′

2 = M2.

Below we consider two examples of typable and, thus, secure programs that involve
both declassification and endorsement.

7.3 Password update example revisited
The first example is a variant of the password update code in which the requirement
that the old and new passwords have high integrity is explicitly lifted (the assumption,
in this case, is that checking the old password provides sufficient integrity assurance).
Under the simple lattice LLH :

LH ` update(pwdI , salt , oldP ,newP , hashR,matchR)
= oldH := endorse(oldP ,LH );

newH := endorse(newP ,LH );
match(pwdI , salt , oldH , hashR,matchR);
if matchR

then pwdI = hash(newH , salt)
else skip

which enables the following typing for password update:

The users modify a password:
LH ` update(pwdI , salt , oldP ,newP , hR,mR) : LH × LH × HL × HL ×
LH × LH

Under this typing, the above variant of update satisfies qualified robustness by Theo-
rem 5.
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7.4 Battleship game example
The second example is based on the game of Battleship, an example used by Zheng
et al. [54]. Initially, two players place ships on their grid boards in secret. During the
game they try to destroy each other’s ships by firing shots at locations of the opponent’s
grid. On each move, the player making a shot learns whether it hit a ship or not. The
game ends when all squares containing a player’s ships are hit. It is critical to the secu-
rity of a battleship implementation that information is disclosed one location at a time.
Because the locations are initially secret, this disclosure must happen through declas-
sification. However, a malicious opponent should not be able to hijack the control over
the declassification mechanism to cause additional leaks about the secret state of the
board. On the other hand, the opponent does have some control over what is disclosed
because the opponent picks the grid location to hit. To allow the opponent to affect
declassification in this way, endorse can be used to express the idea that any move by
the opponent is acceptable.

Without loss of generality, let us consider the game from the viewpoint of one
player only. The security classes can again be modeled by the simple lattice LLH with
A = LL. Consider the following core fragment of the main battleship program loop:

while not done do

[•1];
m′

2 := endorse(m2,LH );
s1 := apply(s1,m

′
2);

m′
1 := get move(s1);

m1 := declassify(m′
1,LH );

not done := declassify(not final(s1),LH );
[•2]

We suppose that s1 stores the first player’s state (the secret grid and the current knowl-
edge about the opponent) where Γ(s1) ∈ HH . While the game is not finished the
program gets a move from the opponent, computed in [•1] and stored in m2 where
Γ(m2) ∈ LL. In order to authorize the opponent to decide what location of s1 to
disclose, the move m2 is endorsed in the assignment to m′

2 where Γ(m′
2) ∈ LH .

The state s1 is updated by a function apply . Then the first player’s move m′
1 (where

Γ(m′
1) ∈ HH ) is computed using the current state. This move includes information

about the location to be disclosed to the attacker. Hence, it is declassified to variable
m1 (where Γ(m1) ∈ LH ) before the actual disclosure, which takes place in [•2]. The
information whether the game is finished (which determines when to leave the main
loop) is public: not done ∈ LH . Hence, when updating not done , the value of
not final(s1) is downgraded to LH .

Clearly, this program is typable. Hence, from Theorem 5 we know that no more
secret information is revealed than intended.
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7.5 Observations on the semantic treatment of endorsement
The “scrambling” of the value of an endorsed expression allows for lifting the integrity
of the expression. While such scrambling is based on a known approach to ignoring
the difference between (high-confidentiality) values [21], it is worth highlighting some
effects of scrambling when using it for ignoring the difference between low-integrity
values in the presence of endorsement. We illustrate these effects by two examples.

Consider the following command c[•]:

[•];
yLL := yLL mod 2;
xLH := endorse(yLL,LH );
if xLH > 42 then vLH := declassify(wHH ,LH ) else skip;
if zLL then vLH := declassify(wHH ,LH ) else skip

Intuitively, this program is insecure because the decision whether wHH is leaked into
vLH is in the hands of the attacker. The then branch in the first if command is
not reachable when the program is run. However, according to the scrambling se-
mantics, xLH might very well be greater than 42 after the endorsement. Hence, the
first occurrence of vLH := declassify(wHH ,LH ) is reachable under the scrambling
semantics. The occurrence masks the real leak—the second occurrence of vLH :=
declassify(wHH ,LH )—that the attacker has control over. To see that the program
satisfies qualified robustness, observe that for initial memories M1 and M2 that are
different in wHH we have 〈M1, c[a]〉 6u(C(A),>I) 〈M2, c[a]〉 for all attacks a because
of the first occurrence of vLH := declassify(wHH ,LH ).

Clearly, the scrambling treatment of endorsement may change the reachability of
program commands. This example highlights that reachability can be affected in a way
that makes intuitively insecure programs secure. Note that endorsement as scrambling
merely reproduces arbitrary changes the attacker can make to the low-integrity mem-
ory before the endorse. If these changes are indeed arbitrary (which can be ensured
by placing holes for low-integrity code immediately before occurrences of endorse)
then reachability is not changed by the scrambling treatment of endorse, which allows
for recovering from this undesirable effect. In any case, note that the above program
is rightfully rejected by the type system because the second if command fails to type-
check.

Consider another example command:

[•];
xHH := endorse(yHL,HH );
vHH := endorse(wHL,HH );
if cLL then zLH := declassify(xHH ,LH ) else zLH := declassify(vHH ,LH )

This program is intuitively insecure because the attacker controls what is leaked by
choosing cLL. However, the values of yHL and wHL are “forgotten” (and equalized)
before they are written into xHH and vHH , respectively, because of the scrambling se-
mantics of endorsement. Qualified robustness classifies the program as secure. Indeed,
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any outcome for zLH is possible independently of the initial memories and attacks in-
serted in the hole. Again, the above program is rightfully rejected by the type system
because the if command fails to typecheck.

The above examples illustrate that qualified robustness is in some cases more per-
missive than desired. An end-to-end strengthening of qualified robustness that is capa-
ble of rejecting these corner cases is an intriguing topic for future work.

8 Related work
Protecting confidential information in computer systems is an important problem that
has been studied from many angles. This work has focused on language-based secu-
rity, which has its roots in Cohen and Denning’s work [11, 13, 15]. See the survey
by Sabelfeld and Myers [39] for an overview of the language-based approach to infor-
mation flow. With respect to declassification, the research most directly related to the
topic of this paper is surveyed in Sabelfeld and Sands’ work [43], which has a detailed
comparison of many downgrading models. Below, we discuss the connections most
relevant to this work.

Related to this paper is Myers’ and Liskov’s decentralized label model [32], which
provides a rich policy language that includes a notion of ownership of the policy.
Downgrading a principal’s policy requires its authority. The decentralized label model
has been implemented in the Jif compiler [33]. Work by Zdancewic and Myers [51, 50]
introduced notions of robustness and an enforcement mechanism for robustness, as dis-
cussed in the introduction. The major contribution of this work is that it connects a
(new) semantic security condition for robustness directly to a type-based enforcement
mechanism; this connection has not been previously established.

The key observation behind the robustness approach is that to understand whether
information release is secure, it is necessary to take into account the integrity of the
decision to release information. Other work on controlled information release has not
taken into account integrity, and as a result, does not address systems containing un-
trustworthy components.

Another approach to ensuring that only the intended information is released is to
write a specification restricting which information should be released. Giambiagi’s and
Dam’s work on admissible flows [12, 18] is an example of the specification approach.
Their security condition requires that the implementation reveal no more information
than the specification of a protocol. Relaxed noninterference [25] is a lighter-weight
method for specifying what information should be released. It is a strict generalization
of pure noninterference that gives an extensional definition of exactly what information
may be declassified. Delimited information release [40] allows these specifications to
be given explicitly, via “escape hatches”. These escape hatches are represented by ex-
pressions that might legitimately leak sensitive information. Delimited release guaran-
tees that the program may leak no more information than the escape hatch expressions
alone.

The specification approach has value because it says directly what may be released.
However, in the presence of an attacker, even the specification may contain subtle vul-
nerabilities that require careful analysis; we expect robustness to be a useful tool for
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analyzing such specifications because it captures an important property that specifica-
tions should ordinarily satisfy.

Despite their importance, general downgrading mechanisms and their related secu-
rity policies are not yet thoroughly understood. Partial information flow policies [11,
21, 42] weaken noninterference by partitioning the domain of confidential information
into subdomains such that noninterference is required only within each subdomain.
Quantitative information flow policies [14, 27, 9] restrict the information-theoretic
quantity of downgraded information. Policies for complexity-theoretic information
flow [22, 23] aim to prevent complexity-bound attackers from laundering information
through programs that declassify the result of encryption. Approximate noninterfer-
ence [16] relaxes noninterference by allowing confidential processes to be (in a proba-
bilistic sense) approximately similar for the attacker.

Intransitive noninterference policies [38, 34, 37, 28] alter noninterference so that
the interference relation is intransitive. Certain information flows are designated as
downward and must pass through trusted system components. The language-based
work by Bevier et al. on controlled interference [4] similarly allows policies for infor-
mation released to a set of agents. Bossi et al. [6] offer a framework where downgrad-
ing is characterized by a generalization of unwinding relations. Mantel and Sands [29]
consider the problem of specifying and enforcing intransitive noninterference in a
multi-threaded language-based setting. Such policies are attractive, but the concept
of robustness in this paper is largely orthogonal to intransitive noninterference (cf. the
discussion on the laundering attack in Section 6), suggesting that it may be profitable
to combine the two approaches.

Volpano and Smith [47] consider a restricted form of declassification, in the form
of a built in matchh(l) operation, intended to model the password example. They
require h to be an unmodifiable constant when introducing matchh(l), but this means
that password may not be updated. Volpano’s subsequent work [45] models one-way
functions by primitives f(h) and a match-like f(h) = f(r) (where h and r correspond
to the password and user query, respectively), which are used in a hash-based password
checking. However, the assumption is that one-way functions may not be applied to
modifiable secrets. Both studies argue that one could do updates in an independent
program that satisfies noninterference. However, in general this opens up possibilities
for laundering attacks. The match, f(h), and f(h) = f(r) primitives are less general
than declassification.

The alternate semantics for endorse that are used to define the qualified robustness
are inspired by the “havoc” semantics that Joshi and Leino used to model confidential-
ity [21].

9 Conclusions
This paper presents a language-based robustness property that characterizes an impor-
tant aspect of security policies for information release: that information release mech-
anisms cannot be exploited to release more information than intended. The language-
based security condition generalizes the earlier robustness condition of Zdancewic and
Myers [51] by expressing the property in a language-based setting: specifically, for a
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simple imperative programming language. Second, untrusted code and data are explic-
itly part of the system rather than an aspect that appears only when there is an active
attacker. This removes an artificial modeling limitation of the earlier robustness condi-
tion. Third, a generalized security condition called qualified robustness is introduced
that grants untrusted code a limited ability to affect information release.

The key contribution of the paper is a demonstration that robustness can be enforced
by a compile-time program analysis based on a simple type system. A type system
is given that tracks data confidentiality and integrity in the imperative programming
language, similarly to the type system defined in [50]; this paper takes the new step of
proving that all well-typed programs satisfy a language-based robustness condition. In
addition, the analysis is generalized to accommodate untrusted code that is explicitly
permitted to have a limited effect over information release.

Robust declassification appears to be a useful property for describing a variety of
systems. The work was especially motivated by the work on Jif/split, a system that
transforms programs to run securely on a distributed system [53, 54]. Jif/split automat-
ically splits a sequential program into fragments that it assigns to hosts with sufficient
trust levels. This system maps naturally onto the formal framework described here;
holes correspond to low-integrity computation that can be run on untrusted host ma-
chines. In general, being an A-attack (cf. Definition 10) is required for a program to be
placed on an A-trusted host. Thus, the results of this paper are a promising step toward
the goal of establishing the robustness of the Jif/split transformation for the full Jif/split
language.

Much further work is possible in this area. The security model in this paper as-
sumes, as is common, a termination-insensitive and timing-insensitive attacker. How-
ever, we anticipate no major difficulties in adapting the robustness model and the secu-
rity type system to enforce robust declassification for termination-sensitive or timing-
sensitive attacks. These are worthwhile directions for future investigations.

Although we have argued that the sequential programming model is reasonable,
and certainly a reasonable starting point, considering the impact of concurrency and
concurrent attackers would be an important generalization. Combining robust declas-
sification with other security properties related to downgrading (such as intransitive
noninterference or relaxed noninterference) would also be of interest.
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