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Abstract. Much progress has recently been made on information flow
control, enabling the enforcement of increasingly rich policies for increas-
ingly expressive programming languages. This has resulted in tools for
mainstream programming languages as JavaScript, Java, Caml, and Ada
that enforce versatile security policies. However, a roadblock on the way
to wider adoption of these tools has been their limited permissiveness
(high number of false positives). Flow-, context-, and object-sensitive
techniques have been suggested to improve the precision of static infor-
mation flow control and dynamic monitors have been explored to leverage
the knowledge about the current run for precision.
This paper explores value sensitivity to boost the permissiveness of infor-
mation flow control. We show that both dynamic and hybrid information
flow mechanisms benefit from value sensitivity. Further, we introduce the
concept of observable abstract values to generalize and leverage the power
of value sensitivity to richer programming languages. We demonstrate
the usefulness of the approach by comparing it to known disciplines for
dealing with information flow in dynamic and hybrid settings.

1 Introduction

Much progress has recently been made on information flow control, enabling
the enforcement of increasingly rich policies for increasingly expressive program-
ming languages. This has resulted in tools for mainstream programming lan-
guages as FlowFox [16] and JSFlow [20] for JavaScript, Jif [26], Paragon [9]
and JOANA [17] for Java, FlowCaml [30] for Caml, LIO [31] for Haskell, and
SPARK Examiner [5] for Ada that enforce versatile security policies. However, a
roadblock on the way to wider adoption of these tools has been their limited per-
missiveness i.e secure programs are falsely rejected due to over-approximations.
Flow-, context-, and object-sensitive techniques [17] have been suggested to im-
prove the precision of static information flow control, and dynamic and hybrid
monitors [22, 32, 27, 20, 19] have been explored to leverage the knowledge about
the current run for precision. Dynamic and hybrid techniques are particularly
promising for highly dynamic languages such as JavaScript. With dynamic lan-
guages as longterm goal, we focus on fundamental principles for sound yet per-
missive dynamic information flow control with possible static enhancements.

In dynamic information flow control, each value is associated with a runtime
security label representing the security classification of the value. These labels



are propagated during computation to track the flow of information through
the program. There are two basic kinds of flows: explicit and implicit [14]. The
former is induced by data flow, e.g., when a value is copied from one location to
another, while the latter is induced by control flow. The following example of
implicit flow leaks the boolean value of h into l with no explicit flow involved:
l = false;if (h) l = true;

Dynamic information flow control typically enforces termination-insensitive
non-interference (TINI) [33]. Under a two-level classification into public and se-
cret values, TINI demands that values labeled public are independent of values
labeled secret in terminating runs of a program. Note that this demand includes
the label itself, which has the effect of constraining how security labels are al-
lowed to change during computation. This is a fundamental restriction: freely
allowing labels to change allows circumventing the enforcement [27].

A common approach to securing label change is the no secret upgrade (NSU)
restriction that forbids labels from changing under secret control, i.e., when the
control flow is depending on secrets [2]. In the above example, NSU would stop
the execution when h is true. This enforces TINI because in all terminating
runs the l is untouched and hence independent of h.

Unfortunately, his limitation of pure dynamic information flow control often
turns out to be too restrictive in practice [20], and various ways of lifting the
restriction have been proposed [3, 8]. They aim to enhance the dynamic analysis
with information that allows the label of write target to be changed before en-
tering secret control, thus decoupling the label change from secret influence. For
instance, a hybrid approach [22, 32, 27, 19] is to apply a static analysis on the
bodies of elevated contexts, e.g., secret conditionals, to find all potential write
targets and upgrade them before the body is executed.

This paper investigates an alternative approach that improves both pure and
hybrid dynamic information flow control as well as other approaches relying on
upgrading labels before elevated contexts. The approach increases the precision
of the labeling, hence reducing the number of elevated contexts. In a pure dy-
namic analysis this has the effect of reducing the number of points in the program
where execution is stopped with a security error, while in a hybrid approach this
reduces the number of places the static analysis invoked further improving the
precision by not unnecessarily upgrading write targets.

Resting on a simple core, the approach is surprisingly powerful. We call
the mechanism value sensitive, since it considers the previous target value of a
monitored side-effect and, if that value remains unchanged by the update, the
security label is left untouched. Consider the program in Listing 1.1. It is safe

Listing 1.1l = false;

if (h) {l = false;}

to allow execution to continue even when h is true
by effectively ignoring the update of l in the body
of the conditional. This still satisfies TINI because
all runs of the program leaves l untouched and independent of h.

The generalization of the idea boosts permissiveness when applied to other
notions of values, e.g. the type of a variable, as exemplified on the right.



t = 2L;

t = 1H;

l = typeof(t);

In a dynamically typed language the value of t changes
from a public to a secret value, but the (dynamic) type of
t remains unchanged. By tracking the type of t indepen-
dently of its value (for example as 〈valueσ, typeσ′〉), it is
possible to leverage value sensitivity and allow the security label of the type to
remain public. Thus, l is tagged L, which is safe and more precise than under
traditional monitoring.

Similarly, if we consider a language with records, the following snippet illus-
trates that the field existence of a property can be observable independently.

o = { p: 2L };

o[’p’] = 1H;

l = ’p’ in o;

In a language with observable existence (in this case
through the primitive in) a monitor might gain precision
by labeling this feature independently of the value. The
label does not need to be updated when the property as-
signment is run, since the existence of the property remains the same.

The type and the existence are two examples of properties of runtime values
that can be independently observed and change less often than the values. We
refer to such properties as Observable Abstract Values (OAV). Value sensitivity
can be applied to any OAVs. The synergy between these two concepts has the
power to improve existing purely dynamic and hybrid information flow moni-
tors, as well as improving existing techniques to handle advanced data types as
dynamic objects. The main contributions of this paper are

– the introduction of the concept of value sensitivity in the setting of observable
abstract values, realized by systematic use of lifted maps,

– showing how the notion of value sensitivity naturally entails the notion of
existence and structure labels, frequently used in the analysis of dynamic
objects in addition to improving the precision of previous techniques while
significantly simplifying the semantics and correctness proofs.

– the application of value sensitivity to develop a novel approach to hybrid
information flow control, where not only the underlying dynamic analysis
but also the static counterpart is improved by value sensitivity.

We believe that systematic application of value sensitivity on identified ob-
servable abstract values can serve as a method when designing dynamic and
hybrid information flow control mechanism for new languages and language con-
structs. The full version [1] of the paper contains the full details and proofs.

2 The core language L

We illustrate the power of the approach on a number of specialized languages
formulated as extensions to a small while language L, defined as follows.

e ::= l
∣∣ e⊕ e ∣∣ x ∣∣ x = e s ::= if(e){s}{s}

∣∣ while(e){s} ∣∣ s;s ∣∣ skip ∣∣ e
The expressions consist of literal values l, binary operators abstractly repre-
sented by ⊕, variables and variable assignments. The statements are built up by



Assign
〈S1, e〉 →pc 〈S2, v̇〉 S2[x undef⊥←−−−−v̇]↓pc S3

〈S1, x = e〉 →pc 〈S3, v̇〉

If
〈S1, e〉 →pc 〈S2, vσ〉 〈S2, sv〉 →pctσ S3
〈S1, if(e){strue}{sfalse}〉 →pc S3

Var
Sundef⊥(x) = v̇

〈S, x〉 →pc 〈S, v̇〉

Fig. 1: Partial L semantics

conditional branches, while loops, sequencing and skip, with expressions lifted
into the category of statements.

S : string→ LabeledValue v ::= bool
∣∣ integer

∣∣ string
∣∣ undef

v̇ ∈ LabeledValue ::= vσ C ::= 〈S, v̇〉
∣∣ S pc, σ, ω ∈ Label

The semantics of the core language is a standard dynamic monitor. The primitive
values are booleans, integers, strings and the distinguished undef value returned
when reading a variable that has not been initialized. The values are labeled
with security labels drawn from a lattice of security labels, Label. Let ⊥ ∈ Label
denote the least element. Unless indicated otherwise, in the examples, a two-
point lattice L v H is used, representing low for public information and high
for secret. The label operator t notates the least-upper-bound in the lattice.

The semantics is a big-step semantics of the form 〈S, s〉 →pc C read as: the
statement s executing under the label of the program counter pc and initial state
S results in the configuration C. The states are partial maps from variable names
to labeled values and the configurations are either states or pairs of states and
values.

The main elements of the semantic are described in Figure 1, with the remain-
ing rules in the [1] for space reasons. The selected rules illustrate the interplay
between conditionals, the pc and assignment. The If rule elevates the pc to the
label of the guard and evaluates the branch taken under the elevated pc. The Var
rule and the Assign rule, for variable look up and side effects, use operations
on the lifted partial map, Sundef⊥ , to read and write to variables respectively. In
the latter case, this is where the pc constrains the side effects.

Lifted partial maps provide a generic way to safely interact with partial maps
with labeled codomains. For example, as shown in Figure 1, a lifted partial map
is used to interact with the variable environment. In general, lifted partial maps
are very versatile and in Section 3 will be used to model a variety of aspects.

A lifted partial map is a partial map with a default value. For a partial map
M : X → Y , the map M∆ : X → Y ∪ ∆ is the lifted map with default value

∆, where M∆(x) =

{
M(x) x ∈ dom(M)

∆ otherwise
This defines the reading operation.

For writing, M[x ∆←−v̇]↓pc M′ denotes that x is safely updated with the value
v̇ in the partial map M, resulting in the new partial map M′. Formally, the
MUpdate rule governs this side-effect as follows:



MUpdate
M∆(x) = wω pc v ω

M[x ∆←−v̇]↓pcM[x 7→ v̇pc]

To update the element x of a lifted
partial map with a labeled value v̇, the
current value of x needs to be fetched.
To block implicit leaks, the label of this value, ω, has to be above the level of
the context, pc. In terms of the variable environment above, if a variable holds
a low value, it cannot be updated in a high context. If the update is allowed,
the label of the new value is lifted to the pc (v̇pc) before being stored in x. This
implements the standard NSU restriction.

However, there is a situation where this restriction can be relaxed: when the
the variable to update already holds the value to write, i.e., when the side-effect
is not observable. In this case, the update can be safely ignored rather than
causing a security error, even if the target of the side-effect is not above the level
of the context.

MUpdate-VS

M∆(x) = wω

pc 6v ω w = v

M[x ∆←−v̇]↓pcM
The MUpdate-VS rule extends the

permissiveness of the monitor in cases
where pc 6v ω, like in Listing 1.1. Intuitively, the assignment statement does
not break the NSU invariant and it is safe to allow it. We call an enforcement
that takes the previous value of the write target into account value-sensitive.

Note that, in the semantics, security errors are not explicitly modeled - rather
they are manifested as the failure of the semantics to progress. In a semantics
with only the MUpdate rule, any update that does not satisfy the demands
will cause execution to stop. The addition of MUpdate-VS however allows the
special case, where the value does not change, to progress.

3 Observable Abstract Values

The notion of value sensitivity naturally scales from values to other properties of
the semantics. Any property that can act as mutable state, i.e., that can be read
and written, is a potential candidate. In the case where the property changes
less frequently than the value, such a modeling may increase the precision. In
particular, assuming that the property is modeled with a security label of its
own, the NSU label check can be omitted when an idempotent operation, with
respect to the property, is performed. We refer to such properties as Observable
Abstract Values (OAV). Consider the following examples of OAVs:

– Dynamic types It is common that the value held by a variable is secret,
while its type is not. In addition, values of variables change more frequently
than types which means that most updates of variables do not change the
type.

– Property existence The existence of properties in records or objects can
be observed independently of their value. Changing a value in a property
does not affect its existence.

– List or array length Related to property existence, the length of a list or
array is independent of the values. Mutating the list or the array without
adding or deleting values does not affect the length.



– Graph/tree structure More generally, not only the number of nodes in a
data structure, but any observable structural characteristic can be modeled
as OAVs, such as tree height.

– Security labels Sometimes [9, 10] the labels on the values are observable.
Since they change less often than the value themselves, they can be modeled
as OAVs.

Different OAVs are not necessarily independent. In the same way an OAV is
an abstraction of a value, it is possible to find OAVs that are natural abstractions
of other OAVs. Such partial order is of interest both from an implementation
and proof perspective. For space reasons we refer the reader to the full version [1]
of the paper for more information.

The rest of this section explains the first two examples above as extensions
of the core language L. The extension with dynamic types Lt is detailed in
Section 3.1, and the extension with records modeling existence and structure Lr
is detailed in Section 3.2. The two latter extensions illustrate that the approach
subsumes and improves previous handling of records [18].

3.1 Dynamic types Lt

Listing 1.2t = 〈1H , intL〉;
if (h) {t = 2;} else {t = 3;}

l = typeof(t);

Independent labeling of OAVs allows for
increased precision when combined with
value sensitivity. To illustrate this point,
consider the example in Listing 1.2 where
the types are independently observable from the values themselves, via the prim-
itive typeof(). Assuming that the value of t is initially secret while the type is
not, the example in the listing illustrates how the value of t is made dependent
on h while the type remains independent.

The precision gain is significant for, e.g., JavaScript. A common defensive
programming pattern for JavaScript library code is to probe for the presence of
needed functionality in order to fail gracefully in case it is absent.

Listing 1.3

if (typeof document.cookie

!== "undefined") { ... }

Consider, for instance, a library that in-
teracts with document.cookie. Even if all
browsers support this particular property, it
is dangerous for a library to assume that it
is present, since the library might be loaded in, e.g, a sandbox that removes
parts of the API. For this reason it is very common for libraries to employ the
defensive pattern shown in Listing 1.3, where the dots represent the entire li-
brary code. While the value of document.cookie is secret its presence is not.
If no distinction between the type of a value and its actual value is made this
would cause the entire library to execute under secret control.

To illustrate this scenario, we extend L with dynamic types and a typeof()

operation that given an expression returns a string representing the type of the
expression:

e ::= (· · · as in L)
∣∣ typeof(e) s ::= (· · · as in L)



Assignt

〈S1, e〉 →pc 〈〈V2, T2〉, 〈v̇, ṫ〉〉
V2[x undef⊥←−−−−v̇]↓pc V3 T2[x

undef⊥←−−−−ṫ]↓pc T3
〈S1, x = e〉 →pc 〈〈V3, T3〉, 〈v̇, ṫ〉〉

Typeof
〈S1, e〉 →pc 〈S2, 〈v̇, ṫ〉〉

〈S1, typeof(e)〉 →pc 〈S2, 〈string(ṫ), str⊥〉〉

Vart
Vundef⊥(x) = v̇ Tundef⊥(x) = ṫ

〈〈V, T 〉, x〉 →pc 〈〈V, T 〉, 〈v̇, ṫ〉〉

Fig. 2: Partial Lt semantics

The semantics is changed to accommodate dynamically typed values. In partic-
ular typed values are pairs of a security labeled value, and a security labeled
dynamic type. Additionally, the state S is extended to a tuple holding the value
context V and the type context T .

V : string→ LabeledValue T : string→ LabeledType

TypedValue ::= 〈v̇, ṫ〉 t ∈ Type ::= bool
∣∣ int

∣∣ str
∣∣ undef S ∈ State ::= 〈V, T 〉

A consequence of the extension with dynamic types is that the semantic
rules must be changed to operate on typed values. Figure 2 contains the most
interesting rules - the remaining rules can be found in the full version of this
paper [1].

The typeof() operator (Typeof) returns a string representation of the type
of the given expression. The string inherits the security label of the type of the
expression, whereas the type of the result is always str and hence labeled ⊥.

Further, the rules for variable assignment (Assignt) and variable look-up
(Vart) require special attention. Notice that, for both maps V and T , the default
lookup value is undefined: undef⊥ and undef⊥ respectively. These maps are
independently updated through Assignt, which calls MUpdate and MUpdate-
VS accordingly. Variable look up is the reverse process: the type and value are
fetched independently from their respective maps.

If we return to the example in Listing 1.2, the value of t is updated but not
its type. Therefore, under a value-sensitive discipline, the execution is safe and
l will be assigned to 〈”int”L, strL〉 at the end of the execution.

Distinguishing between the type of a value and its actual value in combination
with value sensitivity is an important increase in precision for practical analyses.
It allows the execution of the example of wild JavaScript from Listing 1.3, since
typeof document.cookie returns 〈”str”⊥, str⊥〉, which makes the result of the
guarding expression public.

3.2 Records and observable property existence Lr

Previous work on information flow control for complex languages has used the
idea of tracking the existence of elements in structures like objects with an



RecAssign

〈S1, e1〉 →pc 〈S2, fσf 〉 〈S2, e2〉 →pc 〈S3, v̇〉
S3(x) = 〈V1, E1〉σxς σ = pc t σf

V1[f undefς←−−−−v̇]↓σ V2 E1[f falseς←−−−−true⊥]↓σ E2
〈S1, x[e1] = e2〉 →pc 〈S3[x→ 〈V2, E2〉σxς ], v̇〉

Proj

〈S1, e〉 →pc 〈S2, fσf 〉 S2(x) = 〈V, E〉σxς
Vundefς (f) = v̇ σ = σx t σf
〈S1, x[e]〉 →pc 〈S2, v̇σ〉

In

〈S1, e〉 →pc 〈S2, fσf 〉 S2(x) = 〈V, E〉σxς
Efalseς (f) = v̇ σ = σx t σf
〈S1, e inx〉 →pc 〈S2, v̇σ〉

Fig. 3: Lr semantics extension over L

independent existence label [28, 18, 24]. In this section, we show that the notion
of OAVs and the use of lifted partial maps are able to naturally express previous
models while significantly simplifying the rules. Further, systematic application
of those concepts allows us to improve previous models — in particular for
property deletion.

Listing 1.4o = {x:1};

if (h) {o[’x’] = 0;}

l = ’x’ in o;

Treating the property existence separately
increases the permissiveness of the monitor.
Consider, for instance, the example in List-
ing 1.4. After execution, the value of property
x depends on h but not its existence. Since the existence changes less often and
is observable via the operator in, it can be seen as an OAV (of the record).

In order to reason about existence as an OAV, we create Lr by extending

L with record literals, property projection, property update and an in operator
that makes it possible to check if a property is present in a record.

e ::= (· · · as in L)
∣∣ {e : e}

∣∣ x[e] ∣∣ x[e] = e ∣∣ e inx s ::= (· · · L)

The records are implemented as tuples of maps 〈V, E〉ς decorated with a structure
security label ς.

V : string→ LabeledValue E : string→ LabeledBool

S : string→ LabeledValue v ::= r
∣∣ (· · · as in L) r ::= 〈V, E〉ς

The first map, V, stores the labeled values of the properties of the record, and
the second map E stores the presence (existence) of the properties as a labeled
boolean. As in previous work, the interpretation is that present properties carry
their own existence label while inexistent properties are modeled by the structure
label. As we will see below, the structure label is tightly connected to (the label
of) the default value of V and E . For clarity of exposition we let the records be
values rather than entities on a heap.

The semantics of property projection, assignment, and existence query are
detailed in Figure 3. Property update (RecAssign) allows for the update of a
property in a record stored in a variable and the projection rule (Proj) reads



a property by querying only the map V. There are a number of interesting
properties of these two rules. For RecAssign note the uniform treatment of
values and existence and how, in contrast to previous work, this simplifies the
semantics to only one rule. Further, note how the structure label is used as the
label of the default value in both rules and how this interacts with the rules for
lifted partial maps. Listing 1.50

1 o={ eL: 0L,

2 fL: 1M, gH: 2H}H;

3 if ( mM ) {

4 o[’e’] = 0;

5 o[’h’] = 0;

6 o[’f’] = 0;

7 o[’g’] = 0;

8 }

Consider Listing 1.5 in a L @M @ H security lat-
tice to illustrate the logic behind this monitor. In this
example, the subindex label in the key of the record
denotes the existence label for that property. When
the true branch is taken, the assignment o[’e’]=0 (on
line 4) is ignored, since MUpdate-VS is applied. Al-
though the context is higher than the label of the value
and its existence, no label change will occur.

The second assignment (o[’h’]=0, on line 5) extends the record. This side
effect demands that the structure label of the record is not belowM . The demand
stems from the MUpdate rule via the label of the default value and initiated by
the update of the existence map from false to true. Since the value changes only
MUpdate is applicable, which places the demand that the label of the previous
value (the structure label) is above the label of the control. The new value is
tainted with the label of the control, which in this case leads to an existence
label of M , resulting in { ..., hM:0M}H .

To contrast, consider the next property update (o[’f’]=0, on line 6), which
writes to a previously existing property under M control. In this case no demands
will be placed on the structure label, since neither of the maps will trigger use
of the default value. The previous existence label is below M , but this does not
trigger NSU since the value of the existence does not change, which makes the
MUpdate-VS rule is applicable. This also means that the existence label is
untouched and the result after execution is { ..., fL : 0M, ...}H .

Finally (o[’g’]=0, on line 7), the previous existence and value labels are
both above M , and the MUpdate rule is applicable. This will have the effect of
lowering both the existence and value label to then current context in accordance
with flow-sensitivity. The result after execution is { ..., gM : 0M, ... }H

It is worth noting that the above example can be easily recast to illustrate
update using a secret property name, since the pc and the security label of the
property name form the security context, σ, of the writes in RecAssign.

With respect to reading, the existence label is not taken into account unless
reading a non-existent property, in which case the structure of the record is used
via the default value. Analogously, the rule In checks for property existence in
a record by performing the same action on the E map. This illustrates that the
lifted maps provide a natural model for existence tracking. The existence map
provides all the presence/absence information of a value in a particular property.
This generalization, in combination with value sensitivity, both simplifies previ-
ous work and increases the precision of the tracking. In particular, as shown in
the full version [1] of the paper, this is true when property deletion is considered.



S-If
〈S1, e〉 ⇒pc 〈S2, v̇〉 〈S2, strue〉 ⇒pc St 〈S2, sfalse〉 ⇒pc Sf

〈S1, if(e){strue}{sfalse}〉 ⇒pc St t Sf

S-Assign
〈S1, e〉 ⇒pc 〈S2, v̇〉 S2[x undef⊥←−−−−v̇]⇓pc S3

〈S1, x = e〉 ⇒pc 〈S3, v̇〉

Ifh

〈S1, e〉 →pc 〈S2, vσ〉 〈S2, strue〉 ⇒pctσ St
〈S2, sfalse〉 ⇒pctσ Sf 〈St t Sf , sv〉 →pctσ S3

〈S1, if(e){strue}{sfalse}〉 →pc S3

Fig. 4: Partial hybrid semantics

4 Hybrid monitors Lh

In the quest of more permissive dynamic information flow monitors, hybrid mon-
itors have been developed. Some perform static pre-analyzes, i.e., before the
execution [13, 21, 25], or code inlining [12, 6, 23, 29]. In other cases, the static
analysis is triggered at runtime by the monitor [22, 32, 27, 19]. A value sensi-
tivity criterion can be applied in the static analysis of this second group. This
means that fewer potential write targets need to be considered by the static part
of these monitors.

Consider, for instance Listing 1.1, where a normal (i.e., value insensitive)
hybrid monitor would elevate the label of l to the label of h before evaluating
the branch. A value-sensitive hybrid analysis, on the other hand, is able to avoid
the elevation, since the value of l can be seen not to change in the assignment.

To illustrate how a hybrid value-sensitive monitor might work consider the
following hybrid semantics for the core language. Syntactically, Lh is identical to

L but, similar to [22] and [19], a static analysis is performed when a branching
is reached.

Consider the rule for conditionals (Ifh) that applies a static analysis on the
body of the conditional in order to update any variables that are potential write
targets. In particular, assignments will be statically executed (S-Assign), which
elevates the target to the current context using static versions of MUpdate and
MUpdate-VS. This means that the NSU check of MUpdate no longer needs
to be performed — the static part of the analysis guarantees that all variables
are updated before execution. The static update and new dynamic update rules
are formulated as follows.

S-MUpdate
M∆(x) = ẇ w 6= v

M[x ∆←−v̇]⇓σM[x 7→ ẇσ]
MUpdateh

M∆(x) = ẇ w 6= v

M[x ∆←−v̇]↓pcM[x 7→ v̇pc]

S-MUpdateVS
M∆(x) = ẇ w = v

M[x ∆←−v̇]⇓σM
MUpdate-VSh

M∆(x) = ẇ w = v

M[x ∆←−v̇]↓pcM

The value sensitivity of the static rules is manifested in the S-MUpdateVS
rule. In case the new value is equal to the value of the write target, no label
elevation is performed, which increases the permissiveness of the hybrid monitor



in the way illustrated in Listing 1.1. Note the similarity between the static and
the dynamic rules. In case it can be statically determined that the value does
not change we know that MUpdate-VSh will be run at execution time and
vice versa for MUpdateh. This allows for the increase in permissiveness while
still guaranteeing soundness. Naturally, this development scales to general OAVs
under hybrid monitors.

5 Permissiveness

Value-sensitive monitors are strictly more permissive than their value-insensitive
counterparts with respect to termination insensitive non-interference (TINI).
This means that value-sensitive discipline accepts more safe programs without
allowing insecure programs to be executed.

For space reasons, the soundness proof can be found in the full version of
this paper [1].

In this section we compare the value sensitive languages L, Lrd and Lh to the
value-insensitive counterparts. In particular L is comparable to the Austin and
Flanagan NSU discipline [2], Lrd is compared to the record subset of JSFlow [20]
and Lh is compared to the Le Guernic et al.’s hybrid monitor [22].

5.1 Comparison with Austin & Flanagan’s NSU [2]

The comparison with non-sensitive upgrade is relatively straight forward, since

L is essentially the NSU monitor of [2] with one additional value-sensitive rule,
MUpdate-VS.

Let 99K denote reductions in the insensitive monitor obtained by removing
MUpdate-VS from L. To show permissiveness we will prove that every reduc-
tion 99K can be followed by a reduction →.

Theorem 1 (value-sensitive NSU is strictly more permissive than value-
insensitive NSU).

∀s ∈ L . 〈S1, s〉 99Kpc S2 ⇒ 〈S1, s〉 →pc S2∧
∃s ∈ L . 〈S1, s〉 →pc S2 6⇒ 〈S1, s〉 99Kpc S2

Proof. ⇒: By contradiction, using that 99K is a strict subset of →. For space
reasons the proof can be found in the full version of this paper [1]. 6⇒: The
program in Listing 1.1 proves the claim, since it is successfully executed by →
but not by 99K.

5.2 Comparison with JSFlow [20]

Hedin et al. [20] present JSFlow, a sound purely-dynamic monitor for JavaScript.
JSFlow tracks property existence and object structure for dynamic objects with
property addition and deletion. The objects are represented as {x ε−→ pσ}ς , i.e., ob-
jects are maps from properties, x, to labeled values, pσ, with properties carrying
existence labels, ε, and objects structure labels, ς.



Listing 1.60

1 o={}H
2 if (hH) {

3 o[’x’]=0;

4 }

5 delete o[’x’];

6 l = ’x’ in o;

Consider the example in Listing 1.6 up to line 3, where
the property x is added under secret control. This places
the demand that the structure of o is below the pc. In
Lrd, this demand stems from the MUpdate rule via the
label of the default value and is initiated by the update of
the existence map from false to true. For Lrd the resulting
object is 〈{x → 0H}, {x → trueH}〉H , while for JSFlow

the resulting object would be {x H−→ 0H}H .
If we proceed with the execution, the deletion on line 5 is under public

context, which illustrates the main semantic difference between Lrd and JS-
Flow. In the former, deletion under public control will have the effect of low-
ering the value and existence labels to the current context, which results in
〈{x→ undefL}, {x→ falseL}〉H . In the latter, property absence is not explic-
itly tracked and deleting a property simply removes it from the map resulting in
{}H . Therefore, at line 6, Lrd is able to use that the absence of x is independent
of secrets, while JSFlow will taint l with H based on the structure level. In this
way, Lrd both simplifies the rules of previous work and increases the precision
of the tracking.

5.3 Comparison with Le Guernic et al.’s hybrid monitor [22]

The hybrid monitor presented by Le Guernic et al. [22] is similar to Lh. In both
cases, a static analysis is triggered at the branching point to counter the inherent
limitation of purely-dynamic monitors: that they only analyze one trace of the
execution.

In the case of Le Guernic et al., the static component of their monitor collects
the left-hand side of the assignments in the both sides of branches. Once these
variables are gathered their labels are upgraded to the label of the branching
guard. Intuitively, the targets of assignments in branch bodies depend on the
guard, but as, e.g., Listing 1.1 shows this method is an over-approximation.
Such over-approximations lower the precision of the enforcement, and might, in
particular, when the monitor tracks OAVs rather than regular values, jeopardize
the practicability of the enforcement.

The hybrid monitor Lh subsumes the monitor by Le Guernic et al. (see
[1]). All variable side-effects taken into account by Le Guernic et al. are also
considered by the static part of Lh via the rule for static assignment, S-Assign.
More precisely, S-Assign updates the labels of the variables by applying either
S-MUpdate or S-MUpdateVS depending on the previous value. The case when
all variables are upgraded by S-MUpdate to the level of the guard (σ in the
rules of Figure 4) corresponds to monitor by Le Guernic et al.

6 Related Work

This paper takes a step forward to improve the permissiveness of dynamic and
hybrid information flow control. We discuss related work, including work that
can be recast or extended in terms of value sensitivity and OAVs.



Permissiveness Russo and Sabelfeld [27] show that flow-sensitive dynamic
information flow control cannot be more permissive than static analyses. This
limitation carries over to value-sensitive dynamic information flow analyses.

Austin and Flanagan extend the permissiveness of the NSU enforcement with
permissive upgrades [3]. In this approach, the variables assigned under high con-
text are tagged as partially-leaked and cannot be used for future branching.
Bichhawat et al. [7] generalize this approach to a multi-level lattice. Value sensi-
tivity can be applied to permissive upgrades (including the generalization) with
benefits for the precision.

Hybrid approaches are a common way to boost the permissiveness of enforce-
ments. There are several approaches to hybrid enforcement: inlining monitors [12,
6, 23, 29], selective tracking [13, 25], and the application of a static analysis at
branch points [22, 32, 27, 19]. Value sensitivity is particularly suitable for the
latter to reduce the number of upgrades and increase precision (cf. Section 4).

In relation to OAVs Some enforcements track other more abstract proper-
ties in addition to standard values. These properties are typically equipped with
a dedicated security label, which makes them fit into our notion of OAV.

Buiras et al. [10] extend LIO [31] to handle flow-sensitivity. Their labelOf
function allows them to observe the label of values. To protect from leaks through
observable labels, their monitor implements a label on the label, which means that
the label itself can be seen as an OAV.

Almeida Matos et al. [24] present a purely dynamic information flow monitor
for DOM-like tree structures. By including references and live collections, they
get closer to the real DOM specification but are forced to track structural aspects
of the tree, like the position of the nodes. Since the attacker can observe changes
in the DOM through live collections and, in order to avoid over-approximations,
they label several aspects of the node: the node itself, the value stored in it, the
position in the forest, and its structure. These aspects are OAVs, since some of
the operations only affect a subset of their labels. A value-sensitive version of
this monitor might not be trivial given its complexity, but the effort would result
in increased precision.

In relation to value-sensitivity The hybrid JavaScript monitor designed
by Just et al. [21] only alters the structure of objects and arrays when properties
or elements are inserted or removed. Similarly, Hedin et al. [19, 20] track the pres-
ence and absence of properties and elements in objects and arrays changing the
associated labels on insertions or deletions. Both approaches can be understood
in terms of value-sensitivity. Indeed, in this paper we show how to improve the
latter by systematic modeling using OAVs in combination with value-sensitivity.

Secure multi-execution [11, 15] is naturally value-sensitive. It runs the same
program multiple times restricting the input based on its confidentiality level. In
this way, the secret input is defaulted in the low execution, thus entirely decou-
pling the low execution from the secret input. Austin and Flanagan [4] present
faceted values: values that, depending of the level of the observer, can return
differently. Faceted values provide an efficient way of simulating the multiple
executions of secure multi-execution in a single execution.



7 Conclusion

We have investigated the concept of value sensitivity and introduced the key
concept of observable abstract values, which together enable increased permis-
siveness for information flow control. The identification of observable abstract
values opens up opportunities for value-sensitive analysis, in particular in richer
languages. The reason for this is that the values of abstract properties typi-
cally change less frequently than the values they abstract. In such cases, value-
sensitivity allows the security label corresponding to the abstract property to
remain unchanged.

We have shown that this approach is applicable to both purely dynamic
monitors, where we reduce blocking due to false positives, and to hybrid analysis,
where we reduce over-approximation.

Being general and powerful concepts, value sensitivity and observable ab-
stract values have potential to serve as a basis for improving state-of-the-art
information flow control systems. Incorporating them into the JSFlow tool [20]
is already in the workings.
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