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Abstract—Tracking information flow in dynamic languages
remains an important and intricate problem. This paper makes
substantial headway toward understanding the main challenges
and resolving them. We identify language constructs that
constitute a core of JavaScript: objects, higher-order functions,
exceptions, and dynamic code evaluation. The core is powerful
enough to naturally encode native constructs as arrays, as well
as functionalities of JavaScript’s API from the document object
model (DOM) related to document tree manipulation and event
processing. As the main contribution, we develop a dynamic
type system that guarantees information-flow security for this
language.

I. INTRODUCTION

Tracking information flow in dynamic languages remains
an important and intricate problem. The goal of this paper
is understanding the fundamentals of challenges for tracking
information flow in dynamic languages and making substan-
tial headway to resolving them. We believe that with these
challenges addressed, our work opens up opportunities for
practical security of dynamic applications that are hard to
secure with existing approaches.
Motivation: Modern web applications make increasingly
intensive use of service composition. A particularly thriving
service composition technique is client-side script inclusion.
It allows straightforward integration of services, often pro-
vided by third parties, in so called web mashups. Popular
examples of integrated services are Google Maps for vi-
sualizing data on interactive maps and Google Analytics
for collecting statistics of web site usage. Extreme cases of
third-party script inclusion can be found on sensitive web
sites like barclays.es, expedia.com, scrive.se, komplett.se,
and webhallen.se, where the scripts are embedded at top
level, often on the same page where the user enters lo-
gin credentials. With user credentials at hand, integrated
client scripts have unrestricted power to engage in inter-
action with the hosting service. A directory for mashups at
programmableweb.com contains more than 6000 registered
mashups and more than 5000 registered content provider
API’s.

The state of the art in web mashup security calls for
improvement. The same-origin policy (SOP), enforced by
most browsers today, is intended to restrict access between
scripts from different Internet domains. SOP offers an all-
or-nothing choice when including a script: either isolation,
when the script is loaded in an iframe, or full integration,
when the script is included in the document via a script tag.

Securing mashups is subject to currently ongoing research
efforts. A recent survey of the area [38] identifies a number
of approaches ranging from isolation of components to their
full integration. The focus of this paper is tight yet secure
integration for scenarios when isolation is too restrictive and
full integration is insecure. In particular, we are interested
in applications where access-control policies fall short and
where fine-grained information-flow control is desired.
Scenarios: To illustrate such applications, consider the
following scenarios. The scenarios are modeled on existing
web pages, reflecting pervasive usage of advertising and
statistics services on today’s web.

Online advertisement: The first scenario is that of online
shopping. The online shopping code includes a third-party
extension for dynamically generated ads. As items are put in
the shopping cart, contextually dependent ads are displayed
to the user. The ads are tightly integrated in the shopping
cart, mixing items with discount information, offers from
the merchant, and ads from cooperating third parties. This
is achieved by programmatic manipulation by JavaScript of
the nodes in the document object model (DOM) tree, a tree
representation of the underlying document. This results in
a highly dynamic information flow, where secret and public
information is mixed in the same linear structure.

User tracking: The second scenario is that of a login to
a bank. It illustrates event handling in terms of a keypad
for entering a shared secret. The keypad is part of an
application that contains third-party code for creating click
heat maps. Such third-party code is common on many web
sites. Consequently, the position of the clicks must be kept
secret from the heat map generator, since the positions of the
clicks encode information about what is entered via the key
pad. This implies that information flow through JavaScript
event handlers must be secured.

These scenarios motivate fine-grained security that is more
permissive than full isolation (as provided by, e.g., iframes)
and at the same time more secure than full integration (as
provided by script inclusion with no additional measures).
Hence, our objective is to provide a solid foundation for
information-flow control to protect the user from malicious
scripts run in a browser. To this end, the paper delivers the
following contributions.
Contributions: We identify a language that constitutes a core
of JavaScript and includes the following constructs: objects,
higher-order functions, exceptions, and dynamic code eval-
uation. We argue that the choice of the core captures the



essence of the language, and allows us to concentrate on
the fundamental challenges for securing information flow
in dynamic languages (Section II). While we address the
major challenge of handling dynamic language constructs,
we also resolve minor challenges associated with JavaScript.
The semantics of the language closely follows the ECMA-
262 standard (v.5) [18] on the language constructs from the
core.

We develop a dynamic type system for information-flow
security for the core language (Section III) and establish
that the type system enforces a security policy of noninter-
ference [11], [22], that prohibits information leaks from the
program’s secret sources to the program’s public sinks (Sec-
tion IV). Corner cases of the soundness proof are formalized
in the proof assistant Coq [12]. We have implemented the
type system and performed a proof-of-concept indicative
study of permissiveness using the scenarios above.

We show that the core is powerful enough to naturally
encode native constructs as arrays, as well as functional-
ities of JavaScript’s DOM API related to document tree
manipulation and event processing (Section V). We develop
these encodings as a part of our implementation for the two
scenarios above.

The first encoding implements parts of the core function-
ality of the Document Object Model (DOM) [27] without
imposing any constraints on the navigation. In particular,
direct indexing via the childNodes array, and node relocation
when repeatedly adding the same node is fully supported.
The implementation only deals with the dynamic tree struc-
ture of the DOM, in order to investigate the permissiveness
of dynamic information flow. It does not obviate the need for
specific handling of the DOM in the form of, e.g., wrappers
implementing specific type rules, since the DOM is typically
not implemented in JavaScript.

JavaScript does not include concurrency features. How-
ever, the DOM API allows creating JavaScript handlers that
are triggered by external events and run without preemption.
The second encoding implements a simplified version of
the events of JavaScript, and shows how the propagation
of events can be controlled, including how events can be
stopped, the presence of certain events can be made secret,
or how the presence of events can be public, while the data
of the event remains secret.

II. CHALLENGES AND OUR APPROACH

The ultimate goal of this work is to enforce information-
flow security in JavaScript. This section outlines the main
challenges and illustrates our approach to resolving them.

A. Language challenges

JavaScript is a dynamically typed, object-based language
with higher-order functions, and dynamic code evaluation
via, e.g., the eval construction. The voluminous ECMA-262
standard describes the syntax and semantics of JavaScript.

The challenge is identifying a subset of the standard that
captures the core of JavaScript from an information-flow
perspective, i.e., where the left-out features are either ex-
pressible in the core, or where their inclusion does not reveal
new information-flow challenges. We identify the core of the
language to be: objects, higher-order functions, exceptions,
and eval. In addition, we show that the well-known problems
associated with the JavaScript variable handling and the with
construct can be handled via a faithful modeling in terms of
objects.

B. Security challenges

Before presenting the security challenges, we briefly recap
standard information-flow terminology [15]. Traditionally,
information flow analyses distinguish between explicit and
implicit flows.

Explicit flows amount to directly copying information,
e.g., via an explicit assignment like l = h;, where the value of
a secret (or high) variable h is copied into a public (or low)
variable l. High and low represent security levels. We assume
two levels without losing generality: our results apply to
arbitrary security lattices [14]. Security labels are used to
store security levels for associated variables. In the following
let h and l represent high and low variables.

Implicit flows may arise when the control flow of the
program is dependent on secrets. Consider the program
if (h) l = 1; else l = 0;. Depending on the secret stored in
variable h, variable l will be set to either 1 or 0, reflecting
the value of h. Hence, there is an implicit flow from h into l.
Frequently, this is tracked by associating a security label, the
security context, with the control flow. Above, the body of
the conditional is executed in a secret context. Equivalently,
the branches of the conditional are said to be under secret
control. The definition of public context and public control
are natural duals.

Eval: The runtime possibility to parse and execute a string
in a JavaScript program, provided by the eval instruction,
poses a critical challenge for static program analyses, since
the string may not be available to a static analysis.

Our approach: Dynamic analyses do not share this limita-
tion, by virtue of the fact that dynamic analyses are executed
at runtime. This is one of the two main reasons for the use
of a dynamic type system in this paper.

Aliasing and flow sensitivity: The type system of JavaScript
is flow sensitive; the types of, e.g., variables and fields
are allowed to vary during the execution. In addition, ob-
jects in JavaScript are heap allocated and represented by
primitive references — their heap location. Hence, objects
in JavaScript may be aliased. An alias occurs when two
syntactically different program locations (e.g., two variables
x and y) refer to the same object (contain the same primitive
reference).



Flow sensitivity in the presence of aliases poses a signifi-
cant challenge for static analyses, since changing the labels
of one of the locations requires that the security labels of
all aliased locations are changed as well, which requires the
static analysis to keep track of the aliasing.

Our approach: Dynamic approaches do not share this
limitation, since they are able to store the security label in
the referred object instead of associating it with the syntactic
program location. Consider the following program:
x = new O b j e c t ( ) ; x . f = 0 ; y = x ; y . f = h ;

First, a new object is allocated and the primitive reference
to the object is stored into x. Thereafter, the field f of the
newly allocated object is set to 0, and y is made an alias of
x, and the field f is overwritten by a secret via y. This kind
of programs are rejected by static analysis like Jif [32]. In
the dynamic setting, we simply update the security label of
the value of the field f of the allocated object. This is the
second main reason for the use of a dynamic type system
in this paper.

Dynamic flow sensitivity: There is a known limitation [21],
[36] of the flow sensitivity of dynamic analyses. Consider the
following example, where we assume h is 1 or 0 originally:
l = 1 ; t = 0 ; i f ( h == 1) t = 1 ; i f ( t != 1 ) l = 0 ;

If security labels are allowed to change freely under secret
control, the above program results in the value of h being
copied into l without changing the security label of l.

Our approach: In order to prevent such leaks it suffices
to disallow security label upgrades under secret control.
This corresponds to Austin and Flanagan’s no sensitive
upgrade [2] discipline. Hence, the execution of the above
program is stopped with a security error.

Structure and existence: Not only the values of fields can
be used to encode information, but also their presence or
absence. Consider the following example:
i f ( h ) o . q = 0 ;

After execution of the conditional the answer to the question
whether q is in the domain of o gives away the value of h.
It is important to note that not only the presence, but also
the absence, of q gives away information — copying the
value of h into l via the presence/absence of q can easily
be done by executing l = (o.q == undefined ); , since projecting
non-existing fields returns undefined.

Our approach: We solve this by associating an existence
security label with every field, and a structure security label
with every object, demanding that addition of new fields
under secret control is possible only if the structure of the
object is secret. Once the structure of an object is secret,
knowing the absence of fields in the object is also secret. In
the example above o.q would have secret existence security
labels, and the structure of o would have to be secret for the
body of the conditional to be allowed to be executed.

Permissiveness: As is, no sensitive upgrade prevents af-
fecting public locations under secret control. This poses a
permissiveness challenge: how to secure programs where
public locations must be assigned under secret control.

Our approach: We address the challenge by facilitating
upgrade of the security label before entering the secret
control via the addition of a number of upgrade instructions
to the language. All but one of the upgrade instructions is
expressible in the language. Thus, the addition is merely one
of convenience and does not extend the language.

Also note that the upgrade instructions are not necessary
for the soundness of the system. They may be used to
increase the permissiveness of the type system by com-
municating security policies to the runtime type checker.
Although they can be used as part of the programming
language, in order to support legacy code it is more fruitful
to view it as a way to incorporate the results of an au-
tomatic analysis. We have successfully experimented with
the use of automatic black-box testing to inject the upgrade
instructions [7]. The idea is to run a modified version
of the type system on automatically generated test cases,
and, whenever the type system stops the execution, the
trace of the execution is inspected to find the place in the
program where an upgrade instruction must be inserted.
The inserted upgrade instructions prevent the monitor from
blocking the program and thus help avoiding false positives.
Our experiments for a language with records and exceptions
indicate that random testing accurately discovers annotations
for a collection of scenarios with rich information flows.
Upgrade of the values of variables and fields: In order to
write to variables or fields under secret control, the language
provides instructions that upgrade the security label of the
value of the variable or field. For instance, the example from
the discussion on dynamic flow sensitivity above can be
secured by adding appropriate upgrades:
l = 1 ; t = 0 ; upg t ; i f ( h == 1) t = 1 ;

upg l ; i f ( t != 1 ) l = 0 ;

By upgrading the security label of the value of t before
the conditional in which t is assigned we guarantee that the
security label of the value of t is independent of secrets and
compatible with the assignment (analogously for l). This
renders a program that runs for all values of h, and where
the results stored in variables t and l are always secret.
Upgrade of object structure and field existence: Addition
and deletion of fields under secret control is only allowed
on structurally secret records: the existence of the added field
becomes secret, and only fields with a secret existence label
are allowed to be removed. To enable fields to be added
or deleted under secret control the structure security label
of the record must be raised, as illustrated in the example
below:
upg s t r u c t o ; i f ( h ) o . g = 1 ;
upg e x i s t e n c e o . x ; upg e x i s t e n c e o . y ;
i f ( h ) d e l e t e o . x ; e l s e d e l e t e o . y ;



Finally, it is not possible to express the upgrade of the
existence security label of variables or of the structure
security label of environment records (see Section III-B).
Under some circumstances this hinders addition and deletion
of variables under secret control. However, this restriction is
in line with the design of JavaScript, where variable hoisting
serves the purpose to make variable declarations independent
of the control structure.

Exceptions: Exceptions offer further intricacies, since they
allow for non-local control transfer. Any instructions fol-
lowing an instruction that may throw an exception based on
a secret must be seen as being under secret control, since,
similar to the conditional, the instruction may or may not
be run based on whether the exception is thrown or not.
Consider the following example:
l = t r u e ; i f ( h ) { throw 0} ; l = f a l s e ;

Whether h is 0 or not controls whether the update is run or
not and hence l encodes information about h.

Our approach: The default-allow policy for exceptions
is clearly too restrictive — it would force us to treat all
side effects after the first possible exception under secret
control as secret. Instead, we introduce a dynamic security
label for exceptions. If the exception security label is public,
exceptions under secret control are prohibited. If, on the
other hand, the security label is secret, any side effects are
treated as if they were under secret control.

Let us return to the example above. Since the exception
security label in the example is public, the conditional is
prevented from throwing exceptions and the update of l
can proceed without restrictions. If we want to allow the
exception to be thrown, however, we upgrade the exception
security label, in which case the update of l will be treated
as being under secret control. On that account, the language
provides an upgrade instruction upg exc that upgrades the
exception security label. Note that this instruction is not
expressible in the language.

To make the example above run properly we must upgrade
both the exception security label and the security label of
the variable l.
l = t r u e ; upg l ; upg exc ;
i f ( h ) { throw 0} ; l = f a l s e ;

Clearly, secret exceptions would be rather prohibitive if
there was no way of lowering the exception security label. To
this extent, the body of the try-catch statement can be used
to encapsulate exception security label upgrades. Consider
the following example:
l1 = t r u e ; upg l1 ;
t r y { upg exc ; i f ( h ) { throw 0} ; l1 = f a l s e ; }
catch ( x ) { s k i p } ; l2 = 1 6 ;

In this example, since the upgrade of the exception security
label occurs inside a try-catch statement , we know that
regardless of whether an exception is thrown or not the

assignment to l2 will be run. Thus, the update of l2 is
public, whereas the update of l1 remains secret. The ex-
ception handler is run under secret control given that the
exception label is secret. The exception security label of
the handler, however, is the initial exception security label,
which means that exceptions are not allowed in the handler,
unless exceptions under secret control are allowed by the
outer exception security label.

Although the language must be extended with non-
standard constructs to handle upgrading of the exception
security label this is not a fundamental limitation. Under
the assumption that normal execution is prevalent, i.e., that
the exceptions are used only in cases where there is a failure.
For such cases, the exception security label instruction can
be provided in order to increase the permissiveness of the
system. In the case the instruction is not made available only
programs that must be able to recover secret exceptions are
affected.

Higher-order functions: Being first class values, functions
carry a security type that must be taken into consideration
when calling the function. Consider the following example,
where a secret function f is created by choosing between
two functions under secret control.
f = i f ( h ) { f u n c t i o n g ( x ) { l = 1 ; }}

e l s e { f u n c t i o n g ( x ) { l = 0 ; }}

Depending on the secret h, a function that writes 1, or a
functions that write 0 to l is chosen, and applying the result
copies the value of h into l.

Our approach: The body of the function must be run in a
security context that is at least as secret as the security label
of the function. This discipline is inspired by static handling
of higher-order functions [33].

Variables and scoping: JavaScript is known for its non-
standard scoping rules. Variable hoisting in combination
with non-syntactic scoping, the with and eval constructions,
and the fact that updating non-existing variables will define
the variable in the global variable environment, cause com-
plex and sometimes unexpected behavior. To appreciate this
consider, for instance, conditional shadowing using eval.
f = f u n c t i o n f ( x ) { i f ( h ) { e v a l ( ” var l ” ) } ; l = 0}

In order to understand this example we must know more
about functions and scoping in JavaScript. First, the variable
environments form a chain. Variable lookup starts in the
topmost environment and continues down the chain until
the variable has been found or the end of the chain — the
global variable environment — has been reached.

Second, both if and eval are unscoped, i.e., the variable
declared by the eval is declared in the topmost variable
environment of the function call. The use of eval is to pre-
vent variable hoisting until the execution of the conditional
branch. Otherwise, l would be hoisted out of the if and
always be declared regardless of the value of h.



Execution of f is split into two cases. If h is true, the
variable is defined locally in the function, and the update of
l is captured by the local l. If h is false, l is created in the
global variable environment (unless it already exists). Hence,
both the value of l in the global variable environment and
potentially its existence encodes information about h. The
latter implies that we must track the structure of variable
environments, similar to objects above. In addition, the
presence or absence of the l in the local variable environment
(or somewhere else in the chain in general) effects where the
update takes place. This means that, when reading or writing
to variables, the structure security labels encountered during
the traversal of the variable chain must be taken into account.

Our approach: We show that the intricate variable behav-
ior of JavaScript can be handled by a faithful modeling of
the execution context in terms of objects.

C. From the core to full JavaScript

The core has been selected to be representative of the
information flow challenges of JavaScript. The simplifica-
tions and omissions have been chosen to not exclude any
information flow challenges. Hence, our approach is not a
sub-language approach. Rather we envision that extension
to the full language is possible without further technical
development.

In addition, even though property attributes and other
ECMA-262 (v.5) features like the ability to freeze objects
and strict mode are important from a security perspective and
might simplify enforcement of secure information flow we
cannot assume that code is strict mode without sacrificing
the possibility of handling legacy code. For this reason, we
target the non-strict semantics of ECMA-262 (v.5).

With the intuition on the challenges and their resolution
at hand, we are now ready to proceed to the formal devel-
opment: the presentation of the dynamic type system and its
soundness.

III. LANGUAGE

The semantics is a subset of the non-strict semantics of
ECMA-262 (v.5) standard. In order to aid the verification of
the semantics and increase confidence in our modeling we
have chosen to follow the standard closely.

The semantics is instrumented to track information flow
with respect to a two-level security lattice, classifying in-
formation as either public or secret, preventing secret infor-
mation from affecting public information. This is achieved
by stopping the execution when potential leaks are detected,
which is expressed in the semantics by not providing reduc-
tion rules for the cases that may cause insecure information
flow. Stopping the execution when security violations are
detected may introduce a one-bit information leak, which is
reflected in our baseline security condition in Section IV.

e ::= s | n | b | undefined | null | this | x | e1[e2] | e1 = e2
| delete e | typeof (e) | e1 ? e2 | e(e) | new e(e)
| function x(x) c

c ::= var x | c1; c2 | if (e) c1 else c2 | while (e) c
| for (x in e) c | throw e | try c1 catch(x) c2 | return e
| eval e | with e c | skip | upg l | e

l ::= e | existence e | struct e | exc

A. Syntax

Let X range over lists of X , where · denotes the cons
operator and [ ] denotes the empty list, e.g., x denotes lists
of variable names, and e denotes lists of expressions.

The syntax of the language consists of two basic syntactic
categories: expressions, ranged over by e, and statements,
ranged over by c.

Unary operators are represented by delete, and typeof,
and, without loss of generality, the binary operators are
opaquely represented by ?. In addition, the empty statement
is represented by a distinguished skip statement and the
language is extended with nonstandard constructions for
security label upgrade of variables and fields, existence
security labels of fields, structure security labels of objects
and the exception security label, explained in Section II-B.
For simplicity we assume that each function contains exactly
one return statement, and that it occurs as the last statement
in the body of the function. Also, in the following, we
identify string literals and variable names, writing s instead
of ”s”.

B. Semantics

The semantics of the language is given in big-step oper-
ational form and provides dynamic security type checking.

This section consists of two parts. First, we introduce
the values including a primitive notion of objects, the basis
for the formulation of ECMA objects. This provides func-
tionality for basic object interaction, extended to function
objects, providing function call, and object construction via
constructor functions, and environment records, providing
the foundation for the lexical and variable environments.
Second, we introduce the semantics of expressions and
statements in terms of the development of the first part.

This stepwise construction allows for most of the
information-flow control to be pushed into the basic prim-
itives, simplifying the formulation of more complex func-
tionality and their explanation.

v ::= r | s | n | b | undefined p ::= v̇ | F | c | x
o ::= {s1

σ17→ p1, . . . , sn
σn7→ pn, σ}

Values: Let H (secret) and L (public) be security labels,
ranged over by σ, used to label the other values with security
information. For clarity in the semantic rules, let pc and ε
range over security labels in the function of security context
and the exception security label, see Section II-B.



The primitive values, ranged over by v, are primitive
references (i.e., opaque pointers), strings, numbers, booleans,
and the undefined value. Similarly to security labels above,
r ranges over primitive references in general, while le, ve,
and τ range over primitive references when denoting lexical
environments, variable environments, and the this binding,
defined below.

In the instrumented semantics all primitive values occur
together with a security label representing the security clas-
sification of the value. Let vσ be security labeled primitive
values, written v̇ when the actual security label is unimpor-
tant. Let v̇σ2 = vσ

σ2
1 = vσ1tσ2 .

The references, (ṙ, ṡ), are pairs of security labeled prim-
itive references and strings, denoting a field in an object.
In the following we let v̇ range over both security labeled
value and references, (ṙ, ṡ).

In addition to the primitive values, the notion of primitive
object, ranged over by o, forms the foundation of the
semantics of JavaScript. A primitive object is a map from
strings to properties, decorated with existence and structure
security labels, see Section II-B. The fields are either in-
ternal or external indicated by the IsExternal predicate on
strings, which is false for strings of the form s and true
otherwise. Internal fields are used in the implementation of
the semantics but are not exposed to the programmer —
see the semantics of for-in below. The properties of external
fields are security labeled primitive values, while internal
fields may hold algorithms represented by general functions,
F , statements, c, and lists of formal parameters, x.

The heap, ranged over by φ, is a mapping from primitive
references to primitive objects. The execution environment
E ::= (φ, ε) is a pair of a heap, φ, and an exception security
label, ε. Let E[r] = φ[r] for E = (φ, ε). In addition,
execution takes place with respect to an execution context
C ::= (τ̇ , l̇e, v̇e), built up by the this binding, τ , a primitive
reference, le, to the topmost lexical environment, and a
primitive reference, ve, to the topmost variable environment.
Let u̇ denote exception lifted values, i.e., u̇ ::= v̇ | exc v̇.

ECMA Objects: All objects of JavaScript define a number
of internal algorithm fields that provide a common interface
for interacting with the object. Most of the standard is
described in terms of this interface; only few algorithms
manipulate the primitive objects directly. This common core
provides an ideal location for handling information flow
security. By showing that the core is secure we can easily
establish (by using compositionality of our security notion)
that more complex functionality formulated in terms of the
core is secure as well.

The explanation of information flow in an object oriented
language is facilitated by the notions of read context, and
write context. The read context for an entity is the accumu-
lated security label of the access path of the entity. For a
field, the access path is the primitive reference to the object

containing the field together with field name. When reading,
the result is raised to security label of the read context.

The write context of an entity is the read context together
with the security context and the exception security label.
When writing to an entity the demand is that the security
label of the entity is at least as secret as the write context
of the entity. This ensures that the security labels are
independent of secrets.

We define ECMA Objects to be primitive objects extended
with a relevant selection of the core functionality. In partic-
ular, an ECMA Object O is defined by

O = { GetOwnProperty 7→ GetOwnProperty,
GetProperty 7→ GetProperty,
HasProperty 7→ HasProperty,
Delete 7→ Delete, Get 7→ Get , Put 7→ Put }

The rules for ECMA Objects are found in Table I.

GetOwnProperty: Given a primitive reference and field
name GetOwnProperty returns a property descriptor,
{value 7→ v̇} containing the value of the field or undefined
in the case the field does not exists. In both cases the
security label of the result is raised to the read context
(i.e. the primitive reference and field name). As discussed in
Section II-B the structure security label is taken into account
for non-existing fields.
GetProperty: Let d range over property descriptors or
undefined, d ::= {value 7→ v̇}|undefinedσ , and let dσ be
defined structurally in the immediate way. GetProperty is
formulated in terms of GetOwnProperty and follows the
prototype chain [18] while searching for the field. During
the search the security labels of the primitive references and
of the GetOwnProperty results are accumulated and used to
raise the final result, cf. the notion of read context and access
path.
HasProperty: HasProperty is a boolean valued wrapper
around GetProperty, i.e., it returns true if the field exists
and false otherwise.
Delete: Delete deletes fields of objects. Given a primitive
reference to a primitive object and a field name the field
is removed from the object. Deleting an existing field from
an object, changes the structure of the object, which causes
the demand that the write context of the object is below
the structure label, and similarly for the existence, see
Section II-B. Similar to the update below, the structure
security label is raised to the security label of the field name.
Get: Given a primitive reference and a field name Get uses
GetOwnProperty to obtain a property descriptor and returns
the value of the field or undefined if the field does not exist.
Put: Of the ECMA object algorithms Put is the most com-
plicated from an information-flow perspective. It provides
addition and update of the fields of objects, with different



o = E[r] o = {s σ37→ v̇, . . . }
GetOwnProperty(rσ1 , sσ2 ) E = {value 7→ v̇σ1tσ2tσ3}

o = E[r] s 6∈ dom(o) o = {. . . , σ3}
GetOwnProperty(rσ1 , sσ2 ) E = undefinedσ1tσ2tσ3

GetOwnProperty(ṙ, ṡ) E = {value 7→ v̇}
GetProperty(ṙ, ṡ) E = {value 7→ v̇}

GetOwnProperty(ṙ, ṡ) E = undefinedσ1

o = E[r] o[ Prototype ] = nullσ2

GetProperty(ṙ, ṡ) E = undefinedσ1tσ2

GetOwnProperty(ṙ1, ṡ) E = undefinedσ1

o = E[r1] o[ Prototype ] = ṙ2 GetProperty(ṙ2, ṡ) E = d

GetProperty(ṙ1, ṡ) E = dσ1

GetProperty(ṙ, ṡ) E = {value 7→ pσ}
HasProperty(ṙ, ṡ) E = trueσ

GetProperty(ṙ, ṡ) E = undefinedσ

HasProperty(ṙ, ṡ) E = falseσ
o = φ[r] o = {s σ37→ v̇, . . . , σ4} σ = pc t ε t σ1 σ <: σ4 σ t σ2 <: σ3

pc ` Delete(rσ1 , sσ2 ) (φ, ε) = (trueL, (φ[r 7→ o \ s, σ2 t σ4], ε))

o = E[r] s /∈ dom(o)

pc ` Delete(ṙ, ṡ) E = (trueL, E)

GetProperty(ṙ, ṡ) E = {value 7→ v̇}
Get(ṙ, ṡ) E = v̇

GetProperty(ṙ, ṡ) E = undefinedσ

Get(ṙ, ṡ) E = undefinedσ

o1 = φ[r] o1 = {s σ37→ vσ42 , . . . , σ5} σ = pc t ε t σ1
σ u σ2 <: σ5 σ t σ2 <: σ4 o2 = o1[s

(σtσ2)uσ37→ v̇σtσ21 , σ2 t σ5]

pc ` Put(rσ1 , sσ2 , v̇1) (φ, ε) = (φ[r 7→ o2], ε)

o1 = φ[r] s 6∈ dom(o1) o1 = {. . . , σ3} σ = pc t ε t σ1
σ <: σ3 o2 = o1[s

σtσ27→ v̇σtσ21 , σ2 t σ3]

pc ` Put(rσ1 , sσ2 , v̇1) (φ, ε) = (φ[r 7→ o2], ε)

Table I
ECMA OBJECTS

information-flow restrictions depending on whether the field
is already present or not.

In the case of addition, the structure of the object is
changed, and the demand is that the previous structure
security label is at least as secret as the write context of
the object. In addition, flow sensitivity allows the structure
security label to be raised to the security label of the field
name. Thus, adding field with a secret field name under
public control to an object with public structure will make
the structure of the object secret. The existence security label
and the value security label are both raised to their write
contexts.

In the case of update, the structure of the object is not
changed, but the absence of change encodes information
about the field name. If both the write context of the
object and the security label of the field name are secret
it is demanded that the structure of the object is secret.
Otherwise, the structure is raised to the security label of the
field name. The existence security label is either retained or
lowered, to allow for the existence security label to become
public if the field is updated in a public write context using
a public field name. Finally, the value security label is raise
to the write context of the field value.

Let NewEcma allocate a new ECMA Object and return
the primitive reference to the newly allocated object

r fresh φ2 = φ1[r 7→ O[pc t ε]]
pc ` NewEcma (φ1, ε) = (rL, (φ2, ε))

where o[σ] denotes updating the structure security label.
For convenience, we use the standard dot notation

for method application defined as follows, rσ .X(a) E =

(E[r][X](rσ · a) E)σ, where a (the arguments) denotes a list
of security labeled values, v̇.

Initial environment and built-in objects: In addition to the
functionality provided by the expressions and statements of
the language the standard execution environment contains a
number of built-in objects reachable from the global object.

In the following, public existence security labels and value
security labels of internal fields are frequently omitted in the
case the field is mandatory or cannot be updated.

We define a minimal initial environment, φinit = { rG 7→
G, rO 7→ Object }, containing only the global object, G, and
the object constructor, Object , defined below.
Global object: In JavaScript, the global object defines a
number of fields that enriches the execution environment
with constants, functions and constructors. In addition to
this, the global object acts as the store for global variables.
For space reasons, we include only the object constructor,
Object , as a constructor property of the global object,
refraining from including the other constructors and pro-
totypes.

G = O[ Prototype 7→ null , Object 7→ rO ]

Object constructor: The object constructor, Object =

O[ Prototype 7→ null , prototype 7→ null , Construct 7→
ObjectConstruct ], is a function object that provides function-
ality for object creation, via the internal Construct field.
See below for more information on function objects. The
ObjectConstruct algorithm allocates a new object, initializes
the Prototype field to null , and returns the new primitive
reference.

(ṙ2, E2) = pc ` NewEcma E1

E3 = pc ` ṙ2. Put ( Prototype L,nullL) E2

pc ` ObjectConstruct(ṙ1, [ ]) E1 = (ṙ2, E3)

Variable environment and environment records:
The variable environment is a chain of environment



records, chained together by chaining objects, C(r1, ṙ2) =

{ EnvironmentRecord 7→ r1, OuterEnvironment 7→ ṙ2},
where EnvironmentRecord points to the environment
record, and OuterEnvironment points to the next chaining
object in the chain. The environment records store
the variable bindings and come in two forms: object
environment records and declarative environment records
differing in whether a separate object, the binding object,
is used to store the variable bindings or if the bindings are
stored in the environment record itself. Another difference
is in the implementation of the ImplicitThisValue, for which
the object environment record returns the binding object
and the declarative environment record returns null.

We simplify object environment records and declarative
environment records to support the same subset of oper-
ations: HasBinding, GetBindingValue, SetMutableBinding,
DeleteBinding, and ImplicitThisValue.

The NewDeclarativeEnvironment algorithm allocates
a new declarative environment and links it onto the
given environment record chain, and similarly for the
NewObjectEnvironment algorithm for object environ-
ments.

r1, r2 fresh E2 = E1[r1 7→ DE, r2 7→ C(r1, ṙ)]

pc ` NewDeclarativeEnvironment(ṙ) E1 = (rL2 , E2)

r3, r4 fresh E2 = E1[r3 7→ OE(ṙ2), r4 7→ C(r3, ṙ1)]

pc ` NewObjectEnvironment(ṙ1, ṙ2) E1 = (rL4 , E2)

Get identifier reference: GetIdentifierReference takes a
primitive reference to the topmost variable environment and
a variable name and traverses the chain of environment
records until the variable is found or the chain ends. The
returned result is a reference (ṙ, xL) where x is the name of
the variable and r is a primitive reference to the environment
record containing the variable, or undefined if the variable
was not found.

GetIdentifierReference(nullσ , x) E = (undefinedσ , xL)

r1 6= null r2 = E[r1][ EnvironmentRecord ]
trueσ2 = rσ12 . HasBinding (xL) E

GetIdentifierReference(rσ11 , x) E = (rσ22 , xL)

r1 6= null r2 = E[r1][ EnvironmentRecord ]
falseσ2 = rσ12 . HasBinding (xL) E
ṙ3 = E[r1][ OuterEnvironment ]

(ṙ4, ẋ) = GetIdentifierReference(ṙσ23 , x) E

GetIdentifierReference(rσ11 , x) E = (ṙ4, ẋ)

Function objects: Function objects are objects containing
two internal properties, Call , used by function application
and Construct , used in object construction.
User defined function objects: The function objects created
when evaluating function expressions are closures storing the
context the function was created in, the formal parameters of
the function and the code of the function, used by associated

Call , and Construct . Let F denote the family of
function objects

F(x, c, ṙ) = O[ Scope 7→ ṙ, FormalParameters 7→ x,
Code 7→ c, Call 7→ FunctionCall ,
Construct 7→ FunctionConstruct ]

Call: Calling a user defined function first allocates a new
declarative environment in which the arguments are bound
by a process called declaration binding. Thereafter the body
of the function is executed in the updated context. Note that
the creation of the declarative environment, the declaration
binding, and the body are run in a security context raised
to the security label of the primitive reference, rF , of the
function, as is the returned value, see Section II-B.

F = E1[rF ] pc2 = pc1 t σ
(ṙ, E2) = pc2 ` NewDeclarativeEnvironment(F[ Scope ]σ) E1

E3 = pc2, ṙ ` DeclarationBinding(F, a) E2

pc2, (this(ṙt), ṙ, ṙ) ` 〈F[ Code ], E3〉 → 〈u̇, E4〉
pc1 ` FunctionCall(ṙt, rσF , a) E1 = (u̇σ , E4)

where this(undefinedσ) = rσG, and this(ṙ) = ṙ, oth-
erwise. (Recall that rG is the primitive reference to the
global object defined above.) See below for the definition
the semantics of statements used to evaluate the body,
F[ Code ].
Declaration binding: Declaration binding first binds the
arguments of the function call and then performs variable
hoisting.

E2 = pc, ṙ ` BindParameters(F[ FormalParameters ], a) E1

E3 = pc, ṙ ` HoistVariables(F[ Code ]) E2

pc, ṙ ` DeclarationBinding(F, a) E1 = E3

The parameters are bound by ignoring any surplus param-
eters, and setting missing parameters to undefined .

pc, ṙ ` BindParameters([ ], ) E = E

E2 = pc ` ṙ. SetMutableBinding (xL, v̇) E1

E3 = pc, ṙ ` BindParameters(x, v) E2

pc, ṙ ` BindParameters(x · x, v̇ · v) E1 = E3

E2 = pc ` ṙ. SetMutableBinding (xL, undefinedL) E1

E3 = pc, ṙ ` BindParameters(x, [ ]) E2

pc, ṙ ` BindParameters(x · x, [ ]) E1 = E3

Variable hoisting traverses the body of the function and
defines all variables, initializing them to undefined . The
hoisting algorithm HoistVariables is easily formulated and
can be found in the full version of the paper [26].
Construct: Object construction via user defined functions
uses the function as an initializer on a newly allocated
ECMA object. Before passing the object, the Prototype
field is set to the value of the prototype field of the
constructor function, after which the object is initialized by
calling the constructor function using the primitive reference



to the object as the this argument. Without loss of generality,
we assume that all constructor functions return a primitive
reference to the new object.

(ṙ1, E2) = NewEcma E1 pc2 = pc1 t σ
ṙ2 = rσF . Get (prototype) E2

E3 = pc2 ` ṙ1. Put ( Prototype L, ṙ2) E2

(u̇, E4) = pc2 ` E3[rF ][ Call ](ṙ1, rσF , a) E3

pc1 ` FunctionConstruct(rσF , a) E1 = (u̇σ , E4)

In the following let NewFun allocate and set up a new
function object from the given list of formal parameters,
function body and scope.

r1 fresh E2 = E1[r1 7→ F(x, c, ṙ)] (ṙ2, E3) = NewEcma E2

E4 = pc ` ṙ2. Put (constructorL, rL1 ) E3

E5 = pc ` rL1 . Put (prototypeL, ṙ2) E4

pc ` NewFun(x, c, ṙ) E1 = (rL1 , E5)

Auxiliary reference functions: GetValue fetches the value
associated with a reference; non-reference values are re-
turned untouched. Subject to the limitations of Section II-B
an exception is raised if the reference is undefined.

pc ` GetValue(vσ) E = vσ

v̇ = ṙ. Get (ṡ) E r 6= undefined

pc ` GetValue((ṙ, ṡ)) E = v̇

σ t pc <: ε r = undefined

pc ` GetValue((rσ , ṡ)) (φ, ε) = exc ReferenceErrorσ

PutValue takes a reference and a value and updates the
location denoted by the reference with the value — if the
reference is undefined the update is done on the global
object. Subject to the limitations of Section II-B an exception
is raised if the first argument is not a reference.

σ t pc <: ε

pc ` PutValue(vσ1 , v̇2) (φ, ε) = (exc ReferenceErrorσ , (φ, ε))

E2 = pc ` pσG. Put (ṡ, v̇) E1

pc ` PutValue((undefinedσ , ṡ), v̇) E1 = E2

r 6= undefined pc ` ṙ. Put (ṡ, v̇) E1 = E2

pc ` PutValue((ṙ, ṡ), v̇) E1 = E2

Semantics of expressions: The semantics of expressions is
of the form pc, C ` 〈e, E1〉 → 〈u̇, E2〉, read as e reduces
to 〈u̇, E2〉 when run in E1, the security context pc, and the
context C.

The semantic rules for expressions are found in Table II,
where the exception propagation rules have been omitted
for clarity. We refer the reader to the full version of the
paper [26] for the remaining rules.

The expression rules are fairly straightforward, and for-
mulated in terms of the primitives of the previous sec-
tion. Identifier dereference uses GetIdentifierReference.

All rules that contain evaluation of subexpressions use
GetValue to convert the results to values, assignment uses
PutValue to update the location denoted by the refer-
ence. delete uses Delete or DeleteBinding depending on
if the target is an object or an environment record (in-
dicated by IsPropertyReference). Function creation uses
NewDeclarativeEnvironment to allocate the local variable
environment, NewFun to create the new function object and
SetMutableBinding to initialize the new environment by
binding the function name to the newly created function ob-
ject in order to allow for recursive calls. Function application
uses Call , and object creation uses Construct .

The field projection, assignment, object construction, and
binary operators all use the evaluation of a list of expressions
pc, C ` 〈e, E1〉 → 〈v,E2〉, which returns a list of security
labeled values.

Note the this(v̇) E3 of the function call, which computes
the this binding of the invocation, from the reference v̇ =
(r, s)σ: 1) if the base of the reference, r, is undefined, or
if it is a property reference then the base of the reference
is returned, otherwise, 2) the base is an environment record
and the result of calling ImplicitThisValue is returned.

Finally, note how typeof returns undefined for undefined
variables, whereas using an undefined variable in, e.g., a
binary operator would cause an exception when trying to
apply GetValue on the reference. This is the reason typeof
can be used to detect whether variables are defined or not.

From an information flow perspective only the rules for
typeof and binary operators contain primitive information
flow (corresponding to the standard treatment of unary and
binary operators); the information flow of the rest of the
rules is in terms of primitive constructions.
Semantics of statements: Let R ::= E | exc E | 〈u̇, E〉
indicating normal termination without return value, excep-
tional termination, and termination with return value u̇. The
semantics of statements is of the form pc, C ` 〈c, E〉 → R,
read as c reduces to R when run in E, security context pc
and context C.

The semantic rules of statements are found in Table III,
where the rules for exception propagation have been omitted
for clarity. We refer the reader to the full version of the
paper [26] for the remaining rules.

Sequence, iteration in the form of while, and conditional
choice are all standard. The two latter raise the security
context of the body and chosen branch to the security label
of the controlling expression.

The for-in statement iterates over the external fields of
an object. For each external field name in the object, the
given variable is updated with the name using the existence
security label of the field as the security label, and the body
of the for-in is run. The iteration is provided by the three
rules of the form pc, C ` 〈(s, v̇, c), E1〉 → E2, that for each
ṡ in s binds the variable references by v̇ to ṡ before running
c. Recall that s ranges over lists of security labeled strings.



pc, C ` 〈s|n|b|undefined , E〉 → 〈sL|nL|bL|undefinedL, E〉
pc, C ` 〈null , E〉 → 〈0L, E〉 pc, (τ̇ , l̇e, v̇e) ` 〈this, E〉 → 〈τ̇ , E〉

pc, C ` 〈[ ], E〉 → 〈[ ], E〉

pc, C ` 〈e, E1〉 → 〈v̇1, E2〉
v̇2 = pc ` GetValue(v̇1) E2

pc, C ` 〈e, E2〉 → 〈a,E3〉
pc, C ` 〈e · e, E1〉 → 〈v̇2 · a,E3〉

v̇ = GetIdentifierReferece(l̇e, x) E

pc, (τ̇ , l̇e, v̇e) ` 〈x,E〉 → 〈v̇, E〉

pc, C ` 〈[e1, e2], E1〉 → 〈[v̇1, v̇2], E2〉
ṙ = pc ` GetValue(v̇1) E2

ṡ = pc ` GetValue(v̇2) E2

pc, C ` 〈e1[e2], E1〉 → 〈(ṙ, ṡ), E2〉

pc, C ` 〈[e1, e2], E1〉 → 〈[v̇1, v̇2], E2〉
v̇3 = pc ` GetValue(v̇2) E2

E3 = pc ` PutValue(v̇1, v̇3) E2

pc, C ` 〈e1 = e2, E1〉 → 〈v̇3, E3〉

pc, C ` 〈e, E1〉 → 〈(ṙ, ṡ), E2〉
IsPropertyReference((r, s)) E2

(v̇, E3) = pc ` ṙ. Delete (ṡ) E2

pc, C ` 〈delete e, E1〉 → 〈v̇, E3〉
pc, C ` 〈e, E1〉 → 〈(undefinedσ , ṡ), E2〉

pc, C ` 〈delete e, E1〉 → 〈trueL, E2〉

pc, C ` 〈e, E1〉 → 〈(ṙ, ṡ), E2〉
¬IsPropertyReference((r, s)) E2

(v̇, E3) = pc ` ṙ. DeleteBinding (ṡ) E2

pc, C ` 〈delete e, E1〉 → 〈v̇, E3〉

pc, C ` 〈e, E1〉 → 〈v̇, E2〉 ṙ = pc ` GetValue(v̇) E2

pc, C ` 〈e, E2〉 → 〈a,E3〉
(u̇, E4) = pc ` E3[r][ Call ](this(v̇) E3, ṙ, a) E3

pc, C ` 〈e(e), E1〉 → 〈u̇, E4〉

pc, C ` 〈e, E1〉 → 〈v̇, E2〉 ṙ = pc ` GetValue(v̇) E2

pc, C ` 〈e, E2〉 → 〈a,E3〉
(u̇, E4) = pc ` E3[r][ Construct ](ṙ, a) E3

pc, C ` 〈new e(e), E1〉 → 〈u̇, E4〉

(leσ2 , E2) = pc ` NewDeclarativeEnvironment(l̇e1) E1

(ṙf , E3) = pc ` NewFun(x, c, leσ2 ) E2 ṙ = E3[le2][ EnvironmentRecord ]

E4 = ṙσ . SetMutableBinding (xL, ṙf ) E3

pc, (τ̇ , l̇e1, v̇e) ` 〈function x(x) c, E1〉 → 〈ṙf , E4〉

pc, C ` 〈[e1, e2], E1〉 → 〈[v̇1, v̇2], E2〉
vσ13 = pc ` GetValue(v̇1) E2

vσ24 = pc ` GetValue(v̇2) E2

pc, C ` 〈e1 ? e2, E1〉 → 〈(v3 ? v4)σ1tσ2 , E2〉

pc, C ` 〈e, E1〉 → 〈vσ , E2〉
pc, C ` 〈typeof (e), E1〉 → 〈typeof (v)σ , E2〉

pc, C ` 〈e, E1〉 → 〈(ṙ, ṡ), E2〉
r 6= undefined vσ = GetValue((ṙ, ṡ)) E2

pc, C ` 〈typeof (e), E1〉 → 〈typeof (v)σ , E2〉

pc, C ` 〈e, E1〉 → 〈(undefinedσ , ṡ), E2〉
pc, C ` 〈typeof (e), E1〉 → 〈undefinedσ , E2〉

Table II
SEMANTICS OF EXPRESSIONS

pc, C ` 〈c1, E1〉 → E2

pc, C ` 〈c2, E2〉 → E3

pc, C ` 〈c1; c2, E1〉 → E3

pc, C ` 〈e, E1〉 → 〈trueσ , E2〉
pc t σ, C ` 〈c1, E2〉 → E3

pc, C ` 〈if (e) c1 else c2, E1〉 → E3

pc, C ` 〈e, E1〉 → 〈falseσ , E2〉
pc t σ, C ` 〈c2, E2〉 → E3

pc, C ` 〈if (e) c1 else c2, E1〉 → E3

pc, C ` 〈e, E1〉 → 〈falseσ , E2〉
pc, C ` 〈while (e) c, E1〉 → E2

pc, C ` 〈e, E1〉 → 〈trueσ , E2〉
pc t σ, C ` 〈c, E2〉 → E3 pc t σ, C ` 〈while (e) c, E3〉 → E4

pc, C ` 〈while (e) c, E1〉 → E4
pc, C ` 〈([ ], v̇, c), E〉 → 〈E〉

IsExternal(s) E2 = pc ` PutValue(v̇, sσ) E1

pc t σ, C ` 〈c, E2〉 → E3

pc, C ` 〈(s, v̇, c), E3〉 → E4

pc, C ` 〈(sσ · s, v̇, c), E1〉 → E4

¬IsExternal(s)
pc, C ` 〈(s, v̇, c), E1〉 → E2

pc, C ` 〈(sσ · s, v̇, c), E1〉 → E2

pc <: ε

pc, C ` 〈upg exc, (φ, ε)〉 → (φ,H)

pc, C ` 〈e, E1〉 → 〈u̇, E2〉
pc, C ` 〈return e, E1〉 → 〈u̇, E2〉

pc, C ` 〈x,E1〉 → 〈v̇1, E1〉
pc, C ` 〈e, E1〉 → 〈v̇2, E2〉
rσ = pc ` GetValue(v̇2) E2

E2[r] = {s1
σ17→ ṗ1, . . . , sn

σn7→ ṗn, . . . }
pc, C ` 〈([sσtσ11 , . . . , sσtσnn ], v̇1, c), E2〉 → E3

pc, C ` 〈for (x in e) c, E1〉 → E3

pc, (τ̇ , l̇e1, v̇e) ` 〈c1, (φ1, ε1)〉 → 〈exc v̇, E2〉
(leσ2 , E3) = pc ` NewDeclarativeEnvironment(l̇e1) E2

ṙ = E3[le2][ EnvironmentRecord ]
(φ4, ε4) = ṙσ . SetMutableBinding (xL, v̇) E3

pc t ε4, (τ̇ , leσ2 , v̇e) ` 〈c2, (φ4, ε1)〉 → E5

pc, (τ̇ , l̇e1, v̇e) ` 〈try c1 catch(x) c2, (φ1, ε1)〉 → E5

pc, C ` 〈e, E1〉 → 〈v̇, (φ2, ε2)〉 pc <: ε2

pc, C ` 〈throw e, E1〉 → 〈exc v̇, (φ2, ε2)〉
pc, C ` 〈c1, (φ1, ε1)〉 → (φ2, ε2)

pc, C ` 〈try c1 catch(x) c2, (φ1, ε1)〉 → (φ2, ε1)

pc, (τ̇ , l̇e, v̇e) ` 〈e, E1〉 → 〈sσ , E2〉 c = parse(s)
E3 = pc, v̇e ` HoistVariables(c) E2

pc t σ, (τ̇ , l̇e, v̇e) ` 〈c, E2〉 → E3

pc, (τ̇ , l̇e, v̇e) ` 〈eval e, E1〉 → E3

pc, (τ̇ , l̇e1, v̇e) ` 〈e, E1〉 → 〈v̇, E2〉 ṙ = pc ` GetValue(v̇) E2

(l̇e2, E3) = pc ` NewObjectEnvironment(l̇e1, ṙ) E2

pc, (τ̇ , l̇e2, v̇e) ` 〈c, E3〉 → E4

pc, (τ̇ , l̇e1, v̇e) ` 〈with e c, E1〉 → E4

Table III
SEMANTICS OF STATEMENTS



The throw demands that the security context pc is below
the exception security label ε, as does the exception security
label upgrade statement.

The execution of try-catch is divided into normal and
exceptional execution of the body. In the first case, the result
of the execution is returned in the outer exception context,
i.e., the exception security label of the try-catch. This allows
for containing exception security label upgrades to the try-
catch. In the second case, if an exception is thrown in the
body of the try-catch, control is passed to the exception
handler. The body of the handler is run in a new lexical
environment, in which the formal parameter of the handler
is bound to the exception value. This means that variables
declared in the body of the handler are not contained to the
body of the handler, similar to eval and with above. With
respect to information flow, the body of the handler is run
in a security context which is the least upper bound of the
initial security context and the exception security label at
the program point where the exception was thrown. This
guarantees that the body of the handler is unable to leak
information about the existence of secret exceptions. Further,
the body of the handler is run in the outer exception security
level, since any (uncaught) exceptions in the handler escape
the try-catch.

The eval statement evaluates its argument, parses the
result to a program, which is run after hoisting the variables
into variable environment. Hence, variables introduced by
eval are defined in the context of the closest enclosing
function, or into the global object. The program is run in
a security context that is raised to the security label of the
parsed string.

Finally, the with statement changes the lexical environ-
ment, hence shadowing existing variables, but not containing
any potential variable declarations contained in the body of
the with, since the variable hoisting declares the variable in
the variable environment.

IV. INFORMATION-FLOW SECURITY AND
TRANSPARENCY

A common policy for information-flow security is nonin-
terference [11], [22]. Formally, noninterference is formulated
as the preservation of a family of low-equivalence relations,
∼, under execution. As is standard for languages with refer-
ences [5], the family is indexed by a relation β representing
a bijection between the public domains of the heaps.

There are several flavors of noninterference depending on
whether timing, progress, and termination are taken into
account. In the following, we consider a baseline policy
of termination-insensitive [44], [39] noninterference: two
expressions are considered noninterfering if all terminating
runs agree on public outcomes. Termination-insensitive non-
interference allows leaks of information via the termination
behavior of programs. In a batch-job setting, it allows leaks
of at most one bit of information. Termination-insensitive

noninterference is a natural fit for the monitor because it
justifies the blocking upon detecting a security violation.

A. Low-equivalence

Noninterference is formulated in terms of a family of low-
equivalence relations · ∼· · for values, objects, heaps, and
environments. The family of relations is defined structurally,
demanding that equivalent values carry equal security labels,
and in the case the label is public that values are equal. The
definition of the low-equivalence relation can be found in
the full version of the paper [26].

B. Noninterference

Two statements c1 and c2 are noninterfering, ni(c1, c2),
if any pair of terminating runs, starting from low-equivalent
execution environments, results in low-equivalent execution
environments:

ni(c1, c2) = E1 ∼β1,ε1 E2 ∧ C1 ∼β1 C2∧
L, C1 ` 〈c1, E1〉 → 〈u̇1, E′1〉 ∧ L, C2 ` 〈c2, E2〉 → 〈u̇2, E′2〉 ⇒

∃β2, ε2 . β1 ⊆ β1 ∧ 〈u̇1, E′1〉 ∼β2,ε2 〈u̇2, E
′
2〉

We prove the security of the dynamic type system by
establishing that all terminating runs of all programs are
noninterfering:

Theorem 1 (Noninterference). ∀c . ni(c, c).

Proof: The proof (detailed in the full version of this
paper [26]) proceeds by induction on the size of the exe-
cution derivation tree. As is standard, the noninterference
theorem is uses a supporting lemma that proves freedom of
public side effects under secret control. The proof includes
a number of tricky sub-proofs — in particular Put, and try-
catch and parts of the exception propagation. Those sub-
proofs have been independently stated as lemmas, and have
been formalized and proved using the proof assistant Coq.

C. Transparency

Transparency expresses that the security instrumentation
is conservative, i.e., if a program is able to run in the
instrumented semantics, then this run is consistent with
the run of the program in the original (un-instrumented)
semantics. Let  denote evaluation in the un-instrumented
semantics that ignores security labels and interpret upgrade
instructions as skip. Let Φ be a function that removes all
security labels from values.

Theorem 2 (Transparency). It holds that

L, C ` 〈c, E1〉 → 〈u̇, E2〉 ⇒ Φ(C) ` 〈c,Φ(E1)〉 〈Φ(u̇),Φ(E2)〉

V. SCENARIOS

This section presents the implementation of the two
scenarios of Section III.



A. Online advertisement

Consider an online shopping cart holding a number of
items. The cart contains a number of items, displaying their
name and their prices, and the total price. In addition, the
merchant wants to include ads from cooperating third parties
and discounts mixed in with the items to get the information
as close to the relevant item.

Figure 1. Shopping Cart Example

The resulting situation
is that items, discounts
and third party code are
all mixed, when rendering
the cart. This gives rise
to a number of interest-
ing information-flow issues.
For instance, the customer
may want to keep the ex-

istence of certain items, their prices, or the number of
items secret. Similarly, the merchant may want to keep
any discounts or offers secret, as they reflect a particular
customer relationship.

In order to construct the above example we have imple-
mented the core structure of DOM nodes, faithfully imple-
menting the interface mandated by the DOM [27]. We allow
the programmer full access to the link structure in terms
of parent, firstChild, lastChild, prevSibling, nextSibling, and
the childNodes array. Insertion and removal of nodes is
provided via insertBefore, appendChild, replaceChild, and
removeChild. As mandated by the recommendations [27],
repeated insertion of the same node will move the node in
the structure.

The cart is implemented using the structure of an un-
ordered list. This produces a linked structure mixing public
and secret data, and where the existence of certain elements
might be secret, depending on the security policies of the
merchant and the customer. Assume that the nodes of the
example ul, A, I1, I2, D, and T have been created and
properly initialized. The names should be interpreted as
follows: ul stands for unordered list, I for item, A for ad,
D for discount and T for total.

Assuming that the customer wants to protect the price of
the items and the total price, but not the items themselves,
and that the merchant wants to protect the existence of
discount, we can build the list of the cart by successive use
of appendChild on ul.

u l . appendCh i ld (A ) ; u l . appendCh i ld ( I1 ) ;
u l . appendCh i ld ( I2 ) ; . . .

This code adds the ad, and the first items to the list.
Thereafter, the discount is added under secret control using
the expression if (h) top .appendChild(D);, where h = 1H . This
addition is not allowed without changing the security labels
of the existing structure, since it is being written into under
secret control. The following sequence of label upgrades
covers the footprint of the appendChild method.

u p g s t r u c t ( u l . c h i l d N o d e s ) ;
upg ( u l . c h i l d N o d e s . l e n g t h ) ;
upg ( u l . l a s t C h i l d ) ;
upg ( I2 . n e x t S i b l i n g ) ; upg (D. n e x t S i b l i n g ) ;
upg (D. p r e v S i b l i n g ) ; upg (D. p a r e n t ) ;

As discussed in Section II such upgrade sequences can be
generated by automatic testing. Finally, we add the last node,
the total, top .appendChild(T);.

With some of the edges suppressed for clarity, the result
of the program is the node hierarchy depicted below. Note
how the contents of I1, I2, D, and T are secret, and how the
existence of the discount D is secret, indicated by the secret
references between D and its neighbors. In the bottom is
the child nodes array, where the existence of the first three
indices is public, and the existence of the last two is secret,
i.e. there exists a point in the array dividing the array into
a public left part and a secret right part. The type of this
array corresponds to the structural restrictions imposed by
Russo et al. [37]. It is interesting to note how this demand
arises naturally in the implementation without imposing any
restrictions, but rather based on how the array is used by
the node insertion code. Note that this applies only to the
array, and not to the linked node structure, which has a more
liberal type. For instance, it is possible to reach T using the
lastChild of ul.

ulL

IH2 DH THIH1AL

0L : rL1 1L : rL2 2L : rL3 3H : rH4 4H : rH5

L L H H

Thus, we have shown how the language of this paper can
be used to encode the core of the DOM, with the basic
operations provided by DOM nodes, with high precision. In
contrast to earlier work (e.g., [37]) this is achieved entirely
without taking any DOM-specific information into account.
Everything, including the arrays, has been implemented in
the language, and obey the basic type rules of the system.
We are, in a natural way, able to freely traverse the resulting
hierarchy and access nodes via the childNodes array.

B. User tracking

Consider a login system combining the use of a shared
secret and the use of a username and password. Once the
latter has been presented, a nine-digit keypad and a challenge
are presented. To authenticate, the user finds the correct
response to the challenge using the shared secret, and uses
the keypad, to enter the response. Such a system is currently
employed by barclays.es using a response size of 2 decimal
digits chosen from a shared secret of 100 such numbers.



At the same time the page uses Google Analytics to track
usage.

Figure 2. Keypad
Example

Now assume, that the above is part
of a bigger website, where some tech-
nology for generating click heat maps is
applied. In such a case, it is very impor-
tant that the position information of the
clicks on the keypad is not propagated
to the heap map generator, since the
positions of the clicks give away parts
of the shared secret. Further, one might
want to protect not only the position
information in the click events, but also

the fact that the clicks occur. The reasons for this might
include secrecy of the length of the response, or secrecy of
the time at which the events occur.

We support the example by implementing a program
modeling rudimentary support for event propagation. With-
out loss of generality, the model only supports one event
listener per node, and one type of events. An extension
to multiple event listeners and events is immediate, but
clutters the model. Each node provides methods for setting
the event listener, setting the parent and firing an event.
The fire event method takes a parameter, the event data,
and calls the registered event listener, if one exists. If the
event listener returns true the event is propagated to the
parent otherwise not. Three different fire event methods are
provided: one acting as previously described, one upgrading
the event data to secret, and one running the event handler
under secret control. The second fire event method models
events where the data is secret, e.g., the position data of
the clicks discussed above, and the third models when both
the data and the existence of the clicks is secret. In the
following, consider the events to be the onClick events
generated when the user click on the buttons of the keypad.

d map

k r

51 9

Simplified, the above exam-
ple can be represented with
the following DOM node
hierarchy, where the nodes
1 to 9 represents the but-
tons grouped under a key-
pad node k, which is part
of the document d, together
with the rest of the docu-

ment r, and the click heat map generator map.
The hierarchy also represents the parent hierarchy of event

propagation, i.e., events on 1 are propagated to k, and finally
to d, where the event is collected by the click heat map
generator, if the handlers do not stop propagation. Now
consider the following different possibilities.
Unconstrained propagation: corresponds to the situation
described above, where an event is injected using the first
fire event method and is propagated upwards in the parent
hierarchy after execution of the local handler until reaching

the top. In the example this would allow deduction of the
shared secret from the event data sent to the heat map
generator.
Propagation of secrets: corresponds to the situation, where
the second fire event method is used to inject the event.
This handler upgrades the security label of the data of the
event, i.e., the position of the click. This makes the event
data secret. Even though the event is propagated upwards,
any operation on the event data will reflect its secrecy, and
if data reaches the heat map generator it will not be able to
use the data without triggering a security violation. Hence,
the map generator gets to know the existence of the event,
but not its contents.
Stopped propagation of secrets: If we want to prohibit the
heat map generator from receiving click events from the
keypad altogether, we have two options. The first option is
to install a non-propagating handler in k, (or all of 1 to 9)
that stops the propagation of events upwards to the parent. In
such case, events originating from 1 to 9 will be propagated
to k, where the handler will return false preventing further
propagation which stops the event from reaching the heap
map generator.
Secret propagation: The other method allows the prevention
of click events originating from 1 to 9 from being used by
the heat map generation without installing special handlers
in k. Instead, if the third fire event method is used, the
event handlers, including the heap map generator, will be
executed under secret control. The result is that the heat
map generator is prevented from causing public side effects,
and thus neither the event data or the fact that the event
occurred can be used without causing a security violation.
This method is preferable, since it relies on the security
labels, rather than the presence of a special handler.

We have shown how a rudimentary event model can be
encoded natively in the language, and how the features
provide the possibility of dynamic event propagation hierar-
chies, in addition to both protecting the data of events, and
the fact that the event occurred. The event implementation
can be seen as a simplified version of the event model of
Rafnsson and Sabelfeld [34], which extends the reactive
model presented by Bohannon et al. [8].

VI. RELATED WORK

Amongst a large body of research on language-based
approach to information-flow security [39], we discuss most
related work on dynamic information control, as well as
related work that targets securing JavaScript.

Dynamic information-flow control Our paper pushes the
limits of dynamic information-flow enforcement on both
expressiveness of the underlying language and on the per-
missiveness of the enforcement. We briefly discuss previous
work that serves as our starting point.



Russo and Sabelfeld [36] show that purely dynamic flow-
sensitive monitors do not subsume the permissiveness of
flow-sensitive security type systems. Although our monitor
is purely dynamic, the language includes a security label
upgrade operator. This means that we can mimic type
systems by injecting security upgrades in appropriate parts
of the code. Hence, the permissiveness of our approach
can be boosted to that of hybrid monitors, at the cost of
programmer annotations.

Chugh et al. [10] present a hybrid approach to handling
dynamic execution. Their work is staged where a dynamic
residual is statically computed in the first stage, and checked
at runtime in the second stage.

Fenton [21] discusses purely dynamic monitoring for
information flow but does not prove noninterference. Vol-
pano [43] considers a purely dynamic monitor to prevent
explicit (but not implicit) flows. In a flow-insensitive setting,
Sabelfeld and Russo [40] show that a monitor similar
to Fenton’s enforces termination-insensitive noninterference
without losing in precision to classical static information-
flow checkers. This line of work has progressed further
to extend the monitor to a language with dynamic code
evaluation, communication, and declassification [1], as well
as timeout instructions [35].

In previous work, Russo et al. [37] investigate the impact
of dynamic tree structures like the DOM on information
flow. The monitor focuses on preventing attacks based on
navigating and deleting DOM tree nodes. The monitor
derives the security level of existence for each node from
the context of its creation. Our model can be viewed as
a generalization, where the DOM falls out naturally, and
without losing permissiveness, from the general treatment
of pointers and linked structures.

Austin and Flanagan [2], [3] suggest a purely dynamic
monitor for information flow with a limited form of flow sen-
sitivity. They discuss two disciplines: no sensitive-upgrade,
where the execution gets stuck on an attempt to assign to
a public variable in secret context, and permissive-upgrade,
where on an attempt to assign to a public variable in secret
context, the public variable is marked as one that cannot be
branched on later in the execution. Austin and Flanagan [3]
discuss inserting privatization operations, which are akin to
our upgrade commands. The insertion takes place when a
variable that was previously upgraded in secret context is
about to be branched upon. Magazinius et al. [30] show
how to inline a no-sensitive upgrade monitor into programs
in a language with dynamic code evaluation.

Bohannon et al. [8] present a flow-insensitive static
analysis for JavaScript-like event systems. Rafnsson and
Sabelfeld [34] model event hierarchies and present a hybrid
of flow-sensitive static analysis and transformation that
guarantees that at most one bit is leaked per consumed
public input. Besides the natural differences on dynamic vs.
static analysis, our event implementation can be seen as a

simplified version of Rafnsson and Sabelfeld’s event model.
JavaScript semantics The literature includes two major

approaches to formalizing the semantics of JavaScript.
On one hand, Maffeis et al. [29] give a detailed semantics

for full JavaScript. It is a full account of the ECMA-262
standard (v.3) [17], which faithfully models the, sometimes
slightly unusual, behavior of JavaScript programs.

On the other hand, Guha et al. [25] present a semantics
claimed to capture the essence of JavaScript. They provide a
core functional language that shares some similarities to the
semantics of Maffeis, but deviates in a number of important
places regarding the modeling of variables and functions.

Yu et al. [45] also formulate a semantics in terms of a
lambda calculus. Contrary to Guha et al. [25], no attempt
at faithfully mimicking JavaScript scoping is made, thus
avoiding key problems associated with JavaScript.

Our semantics is closest to that by Maffeis et al, with
the obvious difference of instrumentation with information-
flow checks. Nevertheless, we expect that our transparency
theorem also holds against the semantics by Maffeis et al.
Compared to the semantics of Guha et al., using a variable
environment chain requires more heavyweight formalism.
However, it has the benefit that it is able to deal with the
entire (complex) scoping behavior of JavaScript, including
with. This is challenging to model in the semantics of Guha
et al., as noted by them. In addition, being close to the
standard makes it natural to verify that the semantics is
faithful to the JavaScript semantics.

Our subset of JavaScript is distilled to illustrate the main
challenges for tracking information flow. Hence, our work is
not a safe sub-language approach like Caja [31], FaceBook
JavaScript (FBJS) [20], ADSafe [13], Gatekeeper [23], or
the approach by Guha et al. [24]. Further, we chose to be
faithful to the latest version (5) of the ECMA-262 standard.

Empirical JavaScript studies On the other side of the spec-
trum there is empirical work where the goal is not soundness
but catching information-flow attacks in the wild. Vogt
et al. [42] implement a static flow-sensitive information-
flow analysis to crawl around 1,000,000 popular web sites
and, after white/black-listing 30 web sites, detect suspected
attempts for cross-domain communication in 1,35% of the
sites.

Jang et al. [28] focus on privacy attacks: cookie stealing,
location hijacking, history sniffing, and behavior tracking.
The analysis is based on code rewriting that inlines checks
for data produced from sensitive sources no to flow into
public sinks. They detect a number of attacks present in
popular web sites, both in custom code and in third-party
libraries.

We believe that the road to bridging the gap between
formal and empirical approaches is dynamic information-
flow tracking. For a language like JavaScript, static analysis
is hardly feasible, as argued by this paper and others [41],
while dynamic analyses provide possibilities for precisely



recording relations between data in a given trace. The
FlowSafe [19] project at Mozilla takes a similar (dynamic)
path.

Secure multi-execution In an orthogonal yet promising
effort, Devriese and Piessens [16] investigate enforcement of
secure information by multi-execution. Multi-execution runs
the original program at different security levels and carefully
synchronizes communication among them. Multi-execution
is secure by design since programs that compute public input
only get access to public input. Bielova et al. [6] implement
secure multi-execution for the Featherweight Firefox [9]
model. Austin and Flanagan [4] propose faceted values to
model secure multi-execution within a single run. Each value
facet corresponds to the view of the value from the point
of an observer at a given security level. They show that
this approach is semantically equivalent to secure multi-
execution for a λ-calculus with mutable reference cells. An
advantage of this approach with respect to multi-execution
is that a single faceted execution simulates as many non-
faceted executions as there are elements in the security lat-
tice. However, faceted values have to deal with the problem
of tracking control flow (which is a non-issue in original
secure multi-execution). It is not clear how to scale faceted
values to handle exceptions. For the secure multi-execution
approach as a whole, it remains to be investigated whether
silent modification of behavior with respect to the original
program (such as reordering communication events) is an
obstacle in practice.

VII. CONCLUSION

We have developed a dynamic type system for enforcing
secure information flow for core features of JavaScript:
objects, higher-order functions, exceptions, and dynamic
code evaluation. Our semantic model closely follows the
choices of the ECMA-262 standard (v.5) on the language
constructs from the core. We have established a formal
guarantee that the type system guarantees noninterference. In
addition, we have illustrated our results with two prototype
implementations that show that our framework is powerful
enough to support functionalities of JavaScript’s API from
the document object model (DOM) without loss of precision.
As a result, we improve on previous work both with respect
to modeled language features and permissiveness of the
enforcement.

As argued in Section II, our results provide a solid
platform for tackling the rest of JavaScript. We believe that
the technical material developed in this paper suffices to
support the remaining constructs of JavaScript with minor
extensions.

In accord with the formalization development, we pursue
implementation in a form of a JavaScript execution monitor.
Future work includes an evaluation of the permissiveness as
well as the performance overhead of the monitor.
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