
Journal of Computer Security X (2017) 1–42 1
IOS Press

Assuring BetterTimes
Private arithmetic formulas

Per Hallgren a, Ravi Kishore b, Martín Ochoa c,d, Andrei Sabelfeld a

a Chalmers University of Technology, Gothenburg, Sweden
b International Institute of Information Technology, Hyderabad, India
c Singapore University of Technology and Design, Singapore
d Department of Applied Mathematics and Computer Science, Universidad del Rosario, Bogotá,
Colombia

Abstract.
We present a privacy-assured multiplication protocol using which an arbitrary arithmetic formula with inputs from two

parties over a finite field can be jointly computed on encrypted data using an additively homomorphic encryption scheme. Our
protocol is secure against malicious adversaries. To motivate and illustrate applications of this technique, we demonstrate an
attack on a class of known protocols showing how to compromise location privacy of honest users by manipulating messages
in protocols with additively homomorphic encryption. We demonstrate how to apply the technique in order to solve different
problems in geometric applications. We evaluate our approach using a prototypical implementation. The results show that the
added overhead of our approach is small compared to insecure outsourced multiplication.

Keywords: Location Privacy, Privacy-Enhancing Technologies, Secure Multi-Party Computation

1. Introduction

There has been an increase of the public awareness about the importance of privacy. This has become
obvious with cases such as the disclosure by Edward Snowden [43] and the increased public interest in
the Tor project [12]. Unfortunately, current best practice is not to address privacy concerns by design [8,
42,32,37]. It is by far more common that the end consumer has to send privacy-sensitive information to
service providers in order to achieve a certain functionality, rather than that the service is using privacy-
preserving technologies. A major research challenge is to enable privacy in services without hampering
sought functionality and efficiency.

In recent years, much attention has been directed to secure computations distributed among several par-
ticipants, a subfield of cryptography generally known as Secure Multi-party Computation (SMC). SMC
has now been brought to the brink of being applicable to real world scenarios [4,3], although general
purpose solutions with strong security guarantees are still too slow to be widely applied in practice.

This paper proposes a novel approach to jointly compute an arbitrary arithmetic formula using certain
additively homomorphic encryption schemes, incurring very little overhead while maintaining privacy

0926-227X/17/$27.50 c© 2017 – IOS Press and the authors. All rights reserved

2 Hallgren et al. / Assuring BetterTimes: Private arithmetic formulas

x x y y

· ·

+

Fig. 1. Arithmetic formula computing x2 + y2.

against malicious adversaries. The solution is shown to be valuable as a vital complement to boost the
security of a class of privacy-preserving protocols [13,40,22,39,45], where Alice queries Bob for a func-
tion over their combined inputs (see Figure 2). In such scenarios, it is common that Bob is intended to
learn nothing at all, while still providing Alice with useful information such as whether a picture of a
face matches a database [39,13] or whether two principals are close to each other [22,40,45]. The work
presented in this paper allows such solutions to harden the attacker model from honest-but-curious to
malicious attackers that do not necessarily follow the protocol (both attacker models are standard in SMC
and are presented for instance in [18,33]).

Although some connections have been identified [35,40,22], the two communities of Privacy-
preserving LBS and Secure Multi-Party Computations are still largely separated. One of the goals of this
paper is to contribute to bridging the gap, in particular when it comes to rigorously improving the secu-
rity of efficient protocols using additively homomorphic encryption in the presence of honest-but-curious
adversaries, enabling them to also protect against malicious adversaries in an efficient manner.

Problem statement In general in secure two-party computation [33] one considers the case where two
parties, Alice with inputs −→x and Bob with inputs −→y , want to compute a functionality f(−→x ,−→y) =
(g(−→x ,−→y), h(−→x ,−→y)), where the procedure f yields a tuple in which Alice’s output is the first item and
Bob’s output is the second item. For the scope of this work, h is always the empty string, and the inputs
of both parties are in Fp, such that ∀xi ∈ −→x : xi ∈ Fp and ∀yi ∈ −→y : yi ∈ Fp. That is, Alice obtains the
result of g whereas Bob observes nothing (as usual when using partial or full homomorphic encryption).
For this reason, in the following we will refer only to g(−→x ,−→y) as the functionality.

Moreover, we set g(−→x ,−→y) to be an arbitrary arithmetic formula over−→x and−→y in the operations (·,+)
of Fp, that is an arithmetic circuit [41] that is also a graph with directed edges and no cycles, as the one
depicted in Figure 1.

We assume as usual that both Alice and Bob want privacy of their inputs, as much as it is allowed by g.
Bob is willing to reveal the final output of g, but not any intermediate results, or a different function g′ that
would compromise the privacy of his inputs. More precisely, we want a secure two-party computation
in the malicious adversary model for a malicious Alice [33], as depicted in Figure 2. We assume that
Bob has no interest in being malicious, although we do not provide mechanisms to enforce fairness or
correcteness on the values computed by him.

Note that additions in the formula can be done correctly by Bob without the help of Alice when using
an additively homomorphic encryption scheme. This holds also for all multiplications involving Bob’s
input only, and multiplications of a ciphertext and a value known to Bob. The only operations outside
of the scope of the additively homomorphic capabilities are multiplications involving inputs from Alice

Hallgren et al. / Assuring BetterTimes: Private arithmetic formulas 3

Alice Bob�!x �!y
J�!x K

Jg(�!x ,�!y)K

· · ·

Fig. 2. High-level view of a 2-party computation based on homomorphic encryption, where J·K denotes encryption under the
public key of Alice.

only. For instance in Figure 1, Bob can not compute x2 (assuming x is a private input from Alice). In
this work therefore we focus on a protocol such that Bob can outsource such multiplications to Alice
without disclosing the value of the operands, and such that if Alice does not cooperate, the final value
of the arithmetic formula is corrupted and useless to her. This will allow us to show that our protocol is
fully privacy-preserving in the malicious adversary model of SMC.

Fairness of the computation (that is, all parties receive their intended output) is out of scope for two rea-
sons: it is impossible to guarantee this property for two-party computations in the malicious model [33];
further, Bob receives no output from the protocol by construction, which means that an early abortion of
the protocol by Alice will only hamper fairness for herself.

Contributions The paper presents a general approach BetterTrees which lets Alice and Bob compute an
arbitrary arithmetic function on their input while maintaining privacy even in the presence of malicious
adversaries. The core of the solution is a multiplication protocol BetterTimesMul, using which Bob (who
does not have the private key) can outsource multiplications using an additively homomorphic encryption
scheme while asserting privacy of his inputs. BetterTimesMul provides Bob not only with the encrypted
product but also the encryption of an assurance value (a field element a ∈ Fp) which is a random value in
F∗p if Alice does not follow the protocol and an encryption of 0 otherwise. The assurance is added to the
final output of g thus making the result useless to Alice if she tries to cheat. Our contribution thus brings
the state-of-the art forward by efficiently giving Bob guarantees in the case that Alice is malicious.

We illustrate the usefulness of our approach for a class of protocols from the literature [13,40,22,39,
45]. All these protocols compute whether the distance between two vectors in the plane is less than a
threshold and are secure against semi-honest adversaries. However, in the presence of malicious adver-
saries leakage of private information is possible. A solution using our technique is presented for these
protocols, which plugs such leakage. We further demonstrate how to use BetterTrees to enforce a com-
plex policy for location privacy, both to create a running implementation and to provide rigorous proofs
of the resulting protocol. Moreover, we make our implementation fully available to the community [20].

Comparison to our previous work This paper revises and extends previous work that introduces
privacy-assured outsourced multiplication [21,23] in various aspects. First, we seamlessly integrate mul-
tiple outputs [23] into the protocol, which is particularly useful for sequentially composing protocols,
as we will demonstrate in the application scenario of private speed-constrained location proximity. We
further develop the high-level syntax [23] that allows structured protocol design from the core primitives
and show how it can be compiled into lower level verified constructions. Furthermore, we overhaul the
formalization and proofs [21], as to accommodate compositional reasoning for protocols that leverage
privacy-assured arithmetic formulas. Finally, we discuss the implication of using the system not only in
fields but also for cryptographic schemes over rings, such as the Paillier cryptosystem, which provides

4 Hallgren et al. / Assuring BetterTimes: Private arithmetic formulas

slightly different security guarantees. Finally, we provide benchmarks for the Paillier implementation of
the framework.

Outline Section 2 introduces necessary notation and describes the BetterTimesMul protocol and its
application to computing arbitrary arithmetic formulas. Section 3 presents the security guarantees in the
malicious adversary setting. Section 5 presents benchmarks that allow one to estimate which impact
the approach would have in comparison to only protecting against semi-honest adversaries. Section 6
positions this work in perspective to already published work. Finally, Section 7 summarizes the material
presented in this paper. Before delving into details, a concrete application of the proposed solution is
outlined in Section 4.

2. Secure Arithmetics for SMC

There are a variety of primitives for implementing SMC, including garbled circuits [44], partial [36]
and fully homomorphic encryption schemes [15] among others. This section details BetterTrees, a con-
struction without third parties, utilizing additively homomorphic encryption, which gives privacy guaran-
tees against a malicious Alice. Further, being based on additively homomorphic cryptography, it supports
storing intermediate values from previous computations, a central feature in many implementations.

This section proceeds by giving a background on additively homomorphic encryption, followed by
describing the BetterTrees construction. First we describe BetterTrees using BetterTimes-instructions,
which precisely define the workings of the solution. Following this, we also outline the python-
compatible and more abstract BetterTimes-syntax, and show that from any program constructed using
BetterTimes-syntax, a corresponding compilation into BetterTimes-instructions can be obtained. Thus,
any program implemented using the BetterTimes-syntax can leverage the proofs we outline in the smaller
language of BetterTimes-instructions.

2.1. Background

The solution proposed in this paper makes use of any additively homomorphic encryption scheme
which provides semantic security and where the plaintext space is a field (such as the DGK Scheme [10]).
For a definition of semantic security see [2].

Additively Homomorphic Encryption Schemes Here and henceforth, k is the private key belonging to
Alice and K is the corresponding public key. Let the plaintext space M be isomorphic to the field
(Zp, ·,+) for some prime number p and the ciphertext space C such that encryption using public key K
is a function E :M→ C and decryption using a private key k is another function D : C →M.

The vital homomorphic features which is used later in the paper is an addition function⊕ : C×C → C,
a unary negation function ¬ : C → C, and a multiplication function � : C × M → C, as shown in
Equations 1–3.

E(m1)⊕E(m2) =E(m1 +m2) (1)

¬E(m1) =E(−m1) (2)

E(m1)�m2 =E(m1 ·m2) (3)

Hallgren et al. / Assuring BetterTimes: Private arithmetic formulas 5

Alice Bob

BetterT imesMul(JxK, JyK)
OS(Jx′K, Jy′K, JcK)

Jz′K, Ja′K

JzK, JaK

Fig. 3. Visualization of the assurance multiplication protocol

Note that in a finite field any non-zero element multiplied with a non-zero random element yields a
non-zero uniformly distributed element. This is formalized in Equation (4), where m1 ∈ M, m2 ∈ M
andMU is a uniformly random distribution of all elements inM\ {0}.

E(m1)�ρ =

{
E(0) if m1 = 0
E(⊥) otherwise , with ρ ∈MU (4)

Syntax and conventions For readability, the operations ⊕, �, ¬, E and D are not annotated with the
key associated to them, we assume they all use the usual k,K pair where Alice holds k, where only
decryption has access to k and all instructions have access toK. The	 symbol is used in the following to
represent addition by a negated term. That is, c1⊕¬c2 is written as c1	c2. For further brevity, a ciphertext
c encrypting a plaintext p under the public key of Alice is denoted as JpK.

The protocol description in Figure 4 and Figure 7 is given in the language pWHILE [1]. For the con-
venience of the reader a few constructs used in the paper are outlined here, but for details the reader is
directed to [1]. a ← b means assigning a value b to a variable a, while a $← [0..n] means assigning a
random value between 0 and n to a.

2.2. BetterTrees: Arithmetic formulas through assured Multiplication

As previously discussed, our goal is a system which can compute any arithmetic formula in the pres-
ence of a malicious Alice (who holds the private key), without leaking any information derived from
Bob’s inputs except the result of g. We call the solution BetterTrees. To show how to BetterTrees func-
tions, we first outline the primary building block, BetterTimesMul.

2.2.1. Privacy-assured Outsourced Multiplication
The core of the solution is a novel outsourced multiplication protocol with privacy guarantees, Better-

TimesMul. The protocol is visualized in Figure 3 and detailed in Figure 4. BetterTimesMul allows Bob
to calculate a multiplication by outsourcing to Alice, while retaining an assurance value with which it is
possible to make sure that Alice can learn no unintended information.

The principals interact once during BetterTimesMul, where Bob contacts Alice through the procedure
OS (for outsource), defined in Figure 4. As a result of this interaction, Bob can compute a value JzK
which corresponds to the encryption of the multiplication x · y if Alice computes the product honestly
and an assurance value a which will be uniformly random if Alice does not comply with the protocol.

6 Hallgren et al. / Assuring BetterTimes: Private arithmetic formulas

Proc. BetterT imesMul(JxK, JyK) :
ca $← {0..p}; cm $← {0..p};
bx $← {0..p}; by $← {0..p};
ρ $← {1..p};
// Blind operands
Jx′K← JxK⊕ JbxK; Jy′K← JyK⊕ JbyK;
// Create challenge
JcK← (Jx′K�cm)⊕ JcaK;
// Outsource multiplication
(Jz′K, Ja′K)← OS(Jx′K, Jy′K, JcK);
// Compute assurance value
JaK← (Ja′K	 Jz′K�cm	 Jy′K�ca)�ρ;
// Un-blind multiplication
JzK← Jz′K	 (JxK�by⊕ JyK�bx⊕ Jbx · byK) ;
return (JaK, JzK) ;

Proc. OS(JxK, JyK, JcK) :
return ((E(D(JxK) ·D(JyK),

E(D(JcK) ·D(JyK))) ;

Fig. 4. The assured multiplication protocol

BetterTimesMul contains several random variables, here follows a brief explanation of their names to
make the procedures easier to follow. The first two, ca and cm, serve to construct the challenge c used in
the assurance. ca and cm are an additive and multiplicative component, respectively. The second pair, bx
and by, is used to blind the operands x and y, respectively, when outsourcing the multiplication. Finally,
ρ is used to make sure that an assurance which does not match the supplied product causes a random
offset of the final result.

Note that the assurance is only needed when outsourcing a multiplication. The blinding used in Bet-
terTimesMul has also been presented and used by, among others, Kolesnikov et al. [27]. The construc-
tion using the challenges ca and cm yields the following computations in the plaintext, starting with
the assurance value a in Equation (6). Through the procedure OS, Alice replies (in the plaintexts) as in
Equation (5). Thus, assuming Alice is honest, we see that Equation (7) must hold.

a′ = (x′ · cm + ca) · y′ = (x′ · y′ · cm + y′ · ca) (5)

a = (a′ − z′ · cm − y′ · ca) · ρ = (x′ · y′ · cm + y′ · ca − z′ · cm − y′ · ca) · ρ (6)

a = (x′ · y′ − z′) · cm · ρ (7)

Since by assumption Alice is honest, z′ = x′ · y′ =⇒ a = 0. To see that this is the case if and only if
Alice honest, see Section 3.

2.2.2. Privacy-assured Arithmetic Formulas
The following discusses how to construct arbitrary arithmetic formulas in the BetterTrees system using

BetterTimesMul as described above. The general idea is to accumulate any errors caused by misbehavior
by Alice using assurances aj , one for each outsourced multiplication. The other operations require no
assurances as they can be calculated locally by Bob. If Alice is dishonest during an outsourced multipli-
cation, the corresponding assurance aj is a uniformly random variable. Once an arithmetic formula has

Hallgren et al. / Assuring BetterTimes: Private arithmetic formulas 7

A1 B1 A2

·

·
O1

O2

Fig. 5. Example of a formula with multiple outputs

been fully evaluated, and the result obtained as JresultK, Bob instead returns the value JresultK⊕∑ ai.
The returned value is JresultK if and only if Alice is honest, and the encryption of a uniformly random
field element if she is dishonest.

To describe the precise workings of BetterTrees, the system is formally described using BetterTimes-
instructions. BetterTimes-instructions are useful to create precise arguments about the security of the
system, but cumbersome to use when constructing a program. To ease this problem, the more readable
BetterTimes-syntax is presented later in this section as a subset of the Python programming language.

BetterTimes-instructions are constructed using a recursive data structure Ins, modeling an instruc-
tion representing an arbitrary arithmetic formula g. An instruction either contains an operation and two
operands or a scalar. Formally, Ins ∈ {[o, l, r], x}, where o is the operator, l and r are the left- and
right-hand side operands, and x is a scalar. The operands are nested instances of Ins. The operator is
an enum-like variable, with four possible values {ADD, SUB, MUL, PMUL}. The scalar mem-
ber holds a ciphertext or a plaintext. An instance ins of Ins is created using either Ins(scalar), or
Ins(op, ins1, ins2). An instruction to compute the addition of two encrypted values JxK and JyK thus
looks like as e.g.: Ins(ADD, Ins(JxK), Ins(JyK)). At the start of the protocol, Bob must collect Alice’s
encrypted inputs, and hard-wire them into the algorithm. For an example, see Section 4.1.1.

BetterTrees allows for any intermediate values to be output from the computation and used outside
of the circuit. To mark a value for output, a normal Ins instruction is annotated as InsO. The assurance
values of all outputs are combined, such that misbehavior at any time while the formula is computed
yields ⊥ for all outputs. Figure 5 shows a visualization of a formula with multiple outputs.

The core of the setup is the recursive procedure binOp, defined in Figure 7, which recursively com-
putes an instruction including any nested instructions. The value returned by binOp has the same struc-
ture as that of BetterTimesMul, but the assurance in the first part of the return value is now an accumu-
lated value over all nested instructions. The main function, wrapping all functionality, is the evaluate
procedure, see Figure 7. Evaluate takes as parameter an algorithm modeled using nested instructions.
Evaluate adds the assurance values and the result of the individual instructions, creating the final result
– which is the output of g if and only if Alice is honest. For a visualization of messages exchanged and
actions taken by each principal, see Figure 6.

The protocol resulting from evaluate sets Alice as the initiating party, and she starts the protocol by
sending her inputs to Bob. Bob then hardwires both his and Alice’s inputs into an instruction of nested
operations, forming a graph with directed edges and no cycles like in Figure 8. Depending on g, Bob
computes any local operations and executes BetterTimesMul as necessary, with as many iterations as nec-

8 Hallgren et al. / Assuring BetterTimes: Private arithmetic formulas

Alice Bob

JA1K, . . . , JAnK
evaluate()

JxK⊕ JyK
Local additions | R,OLocal additions | R,O

JxK	 JyK
Local subtractions | R,OLocal subtractions | R,O

JxK�y
Local multiplications | R,OLocal multiplications | R,O

JxK, JyK

JzK, JaK

BetterTimesMul | OBetterTimesMul | O

BetterTrees | RBetterTrees | R

JresultK
g(. . .) = JresultK

Fig. 6. Possible actions by each principal, where R and O means repeatable and optional, respectively.

essary. Finally, he computes the ciphertext JresultK. Since Alice by assumption is honest, JresultK will
hold the output of g (and would hold the encryption of a random element in Fp if Alice was dishonest).

The assurance values JaiK are summed as the evaluation proceeds, to accumulate a final assurance JaK.
Finally, the assurance value is randomized and added to the result as (JresultK⊕JaK)�ρ, with ρ random.
When evaluate encounters an InsO instruction, it computes the result and the assurance value as usual,
but also saves the intermediate result JziK to a store S.

Hallgren et al. / Assuring BetterTimes: Private arithmetic formulas 9

Proc. binOp(ins) :
if isScalar(ins) then :

(a, z, outputs)← (0, ins[0], []);
else :

(a1, o1, out1)← binOp(ins[1]);
(a2, o2, out2)← binOp(ins[2]);
outputs← out1 + out2;
switch(ins[0]) :

case ADD :
(a, z)← (a1 + a2, o1 + o2);

case SUB :
(a, z)← (a1 + a2, o1− o2);

case PMUL :
(a, z)← (a1 + a2, o1 ∗ o2);

caseMUL :
(a3, z)← BetterT imesMul(o1, o2);
a← a1 + a2 + a3;

if isOutput(ins) then :
return (a, z, outputs :: z);

else :
return (a, z, outputs);

Proc. evaluate(alg) :
result← [];
(a, z, outputs)← binOp(alg);
for output in outputs do :

ρi $← {1..p};
result← result :: output+ (a ∗ ρi);

return result;

Fig. 7. The procedures to evaluate recursive instructions.

Finally, the array of the final result and all intermediate values is given as:

[(JresultK⊕ (JAK�ρ)] :: [(fst(s)⊕ JAK)�ρi for s ∈ S]

Where ρ and all ρi are independent and uniformly random variables, and :: denotes array concatenation.

2.2.3. BetterTimes-syntax
This section details BetterTimes-syntax as a subset of python, which directly maps into BetterTimes-

instructions. BetterTimes-syntax allows arithmetic formulas to be expressed in a readable and concise
manner. The full source code is available online [20]. In short, BetterTimes-instructions are more easily
represented using BetterTimes-syntax by normal addition, subtraction and multiplication operations. The
operations are overloaded, and when used a datatructure is constructed in the background, which later
can be translated into Ins objects and evaluated. The construction will be explained by working through
an example, shown in Listing 1.

In Listing 1, we first create an instance of the used encryption scheme, DGK, and generate a keypair.
Normally, the keypair would be generated by Alice, while the formula is evaluated by Bob. Note that the
private key is not needed until we want to print the final output. Following, we define the encrypted inputs
from Alice (you can assume these were previously sent over the network), and Bob’s inputs in plain.
Either party may in theory have any number of plaintext and ciphertext inputs. Alice can send public
parameters, and Bob may input ciphertexts obtained previously from Alice or third parties (encrypted

10 Hallgren et al. / Assuring BetterTimes: Private arithmetic formulas

with Alice’s keys). After these initialization steps, we create a formula composer. The composer takes an
encryption scheme, a key pair, and the inputs by the two parties.

The BetterTimes-syntax makes use of the built-in Python construct with. Traditionally, a with statement
is used to manage the opening and closing of files as with open(’file.txt’) as my_file_handle. Here, we
use it to initiate and finish the construction of a secure arithmetic formula, and the class FormulaComposer
is used much like the open built-in function. The operations done with the inputs, and what the resulting
outputs are, is defined by operating inside a with block. Upon leaving the with block, variables are no
longer mutable, and the formula is fixed. There are four inputs provided to the formula, which we now
call i1, i2, i3 and i4. At this point, we do not need to care about which ones originate from which party,
and which ones are encrypted. There are two outputs, i1 ∗ i3 and (i1 ∗ i3) + i2 − i4. These outputs are
marked using the output() method, by simply passing the variables that we want to output. The built-
in sum function is used in the formula to show how easily one can make use of pre-existing arithmetic
methods.

Listing 1: Example composition

scheme = DGK()

key_pair = scheme.keygen(1024)

public_key , private_key = key_pair

alice_inputs = [scheme.encrypt(public_key , 4), scheme.encrypt(public_key , 3)]

bob_inputs = [2, 1]

formula = FormulaComposer(scheme, public_key , alice_inputs + bob_inputs)

with formula as sf:

i1, i2, i3, i4 = sf.inputs

c = i1 ∗ i3
sf.output(c) # 4 ∗ 2 = 8
sf.output(sum([c, i2, −i4])) # (4∗2) + 3 + (−1) = 10

assembled = formula.assemble()

outputs = evaluate(assembled)

print [scheme.decrypt(key_pair, output) for output in outputs] # prints [8 , 10]

Finally, once the formula is fixed, we now use the formula.assemple() method to translate the internal
representation of the formula and outputs into BetterTimes-instructions. Regardless of how the output
is constructed, even when control flow primitives such as if statements and loops are used, the resulting
computations can be represented through BetterTimes-instructions. The BetterTrees library includes an
evaluator for BetterTimes-instructions, which is called through the evaluate() method. Thus, using the
above construction gives all security properties achieved with BetterTimes-instructions (modulo imple-
mentation mistakes).

Note that using the BetterTimes-syntax, it is not necessary for the programmer to distinguish between
MUL and PMUL operations. Instead, the type of both operands is inspected to determine whether or
not an outsourced multiplication is due. Further, it’s not necessary to encrypt a value before using it in a
formula. Instead, such conversions can be done automatically. For further examples, including networked
applications, we refer the reader to the source code [20].

Hallgren et al. / Assuring BetterTimes: Private arithmetic formulas 11

3. Privacy Guarantees of BetterTrees

The goal of this section is to show that the result of evaluate as defined above is secure in the malicious
adversary model for Alice (as depicted in Figure 2), following standard SMC security definitions.

3.1. Security Concepts

In the following we briefly recall some fundamental concepts from SMC that will be useful for the
security guarantees discussion of Sect. 3.

Definition 1 (Negligible functions). A function ε : N→ R is said to be negligible if

∀ c ∈ N. ∃ nc ∈ N. ∀n≥nc |ε(n)| ≤ n−c

That is, ε decreases faster than the inverse of any polynomial.

Definition 2 (Indistinguishability). The two random variables X(n, a) and Y (n, a) (where n is a secu-
rity parameter and a represents the inputs to the protocol) are called computationally indistinguishable
and denoted X

c≡ Y if for a probabilistic polynomial time (PPT) adversary A the following function is
negligible:

δ(n) = |Pr[A(X(n, a)) = 1]− Pr[A(Y (n, a)) = 1]|

Ideal and Real Execution We construct our proofs using the idea of “security as emulation of a real
execution in the ideal model”, following the definitions of Pinkas and Lindell [33]. In the following, this
proof framework is recalled. We use two models, the IDEAL and the REAL. In the imaginary IDEAL model
the parties interact only with a trusted third party, which ensures that the executed protocol matches
exactly an implementation of the functionality, where parties cannot deviate from the protocol. In the
REAL model, instead, a concrete instance of the protocol is considered. The goal is then to show that an
attacker on the REAL model has no advantage over an attacker on the IDEAL model.

In the following, let −→x ∈ IA and −→y ∈ IB be the private inputs for two parties, and let g(−→x ,−→y) ∈
OA × OB be the output of a functionality g, where OA and OB are arbitrary but fixed output spaces for
both parties (for instance strings of bits of length n).

Formally, in the execution in the IDEAL model thus, an adversary AIDEAL is controlling a corrupted
party (Alice for the context of this paper).AIDEAL tells the corrupted party (Alice) to either send the actual
input of Alice (which can be read by AIDEAL) or another value of the same length as −→x to the trusted
party. The trusted party then computes the output to be received by both parties. For the scope of this
paper, Bob has no output, and Alice receives g(−→x ,−→y). Alice forwards the result to AIDEAL. The original
definition also handles the case when AIDEAL wishes to abort the protocol. In the context of this paper,
since the SMC solution is based on homomorphic encryption, Bob receives no output from the ideal
functionality. Therefore, it does not make sense for the adversary to abort the protocol. Also, this means
that fairness guarantees for Bob are out of scope, so abortions of the protocol by the simulator do not
need to be accounted for. After the ideal execution of a functionality on inputs (−→x ,−→y) A outputs an
arbitrary PPT function on the private input of Alice and the output of the functionality (−→x , g(−→x ,−→y)).
Formally thus:

AIDEAL : IA ×OA → OA

12 Hallgren et al. / Assuring BetterTimes: Private arithmetic formulas

We say that the distribution of the IDEAL model is:

{IDEALg,S(−→x ,−→y)} = {g(−→x ,−→y),AIDEAL(−→x , g(−→x ,−→y))}

The real execution of a concrete protocol π is rather intuitive, where AREAL takes the place of the
corrupted party and acts on their behalf. In this case:

AREAL : IA × viewAπ ×OA → OA

where viewAπ are the intermediate values seen by AREAL during the execution of π. We say that the
distribution of the REAL model is:

{REALπ,A(−→x ,−→y)} = {−→o ,AREAL(−→x , viewAπ ,−→o))}

Where −→o are the outputs to the corrupted party during an execution of π.
As previously mentioned, the goal of a proof in this framework is to show that an attacker in the real

model is as effective as one in the ideal model. To do this, one constructs a simulator S of a AREAL but
which only interacts in the IDEAL model. If, for an arbitrary attacker against the real mode one can con-
struct such a simulator and show that the distributions of the real and ideal models are indistinguishable,
the attacker in the real model has no advantage than the one in the ideal model. Formally, it is required
that for any adversary AREAL against a protocol, there exists a simulator:

S : IA ×OA → OA

such that the distribution of the outputs of S and AREAL are computationally indistinguishable:

S(−→x , g(−→x ,−→y))
c≡ AREAL(−→x , viewAπ ,−→o)}

That is, a protocol π is privacy-preserving if it is possible to construct a concrete PPT S such that for
every attacker A against the real protocol, its output is indistinguishable from the one of A, using only
the information available to the attacker (their inputs and the functionality output). If this is possible, an
adversary does not learn anything apart from what is disclosed by the functionality by attacking π. This
leads to the central privacy notion of this work, which is according to Definition 3, following the standard
SMC security definitions of [33] against malicious adversaries. Since AIDEAL henceforth is replaced by
S, A always refers to AREAL in the following.

Definition 3 (Privacy definition). A protocol π is said to privately implement a functionality g against
malicious adversaries if for every adversary A against the protocol π, there exist a simulator S such
that:

{IDEALg,S(−→x ,−→y)} c≡ {REALπ,A(−→x ,−→y)}

Hallgren et al. / Assuring BetterTimes: Private arithmetic formulas 13

3.2. Proofs

Recall that a malicious Alice in possession of the private key can attack the privacy of the inputs of Bob
by deviating from the original protocol (as discussed in Section 4 for a proximity calculation protocol).
Intuitively, a malicious Alice will deviate from the protocol every time it fails to answer to the outsourced
multiplication with the expected values z′ and a′ as defined in Figure 4. A deviation would be for example
failing to multiply x′ with y′, in order to change the intended jointly computed arithmetic formula.

Formally, we set out to prove the following theorem, which is an instance of the general definition of
[33] where the concrete SMC protocol π will depend on the arithmetic formula g to be jointly computed.
In the following indistinguishability will be established with respect to the size p of the field Fp (p is thus
the security parameter).

Theorem 1. For a fixed but arbitrary arithmetic formula g(−→x ,−→y) represented by a recursive instruction
ι ∈ Ins, the protocol π resulting from evaluate(ι) is private according to Definition 3.

In order to prove that the system is privacy-preserving, we need to construct a simulator which acts
as the real attacker, but in the ideal model. We will do so by showing that any input not available to the
simulator can be simulated using a computationally indistinguishable value. Recall that the attacker has
to their disposal −→x , viewAπ and −→o . Trivially, the input −→x can be simulated by using the input itself. The
tricky parts are the view and the outputs. The view is explicit through the construction of evaluate(), but
for clarity we also detail it here:

viewAπ = {(x′i, y′i, ci)|i ∈ {0, . . . ,m}}

where m is the number of outsourced multiplications in π. That is, except for the inputs and the outputs,
the only message are a triple for every outsourced multiplication, containing the blinded x and y values
as well as the challenge c.

To show how to simulate the view and the outputs, we will use the fact that Bob (who is honest)
controls a large portion of the computations, and that honest behavior is easy to simulate. The main points
are captured in the following three lemmas. First, we show that the blinding used for each outsourced
multiplication can be simulated using ⊥ in Lemma 1. In Lemma 2, we look at the case when Alice tries
to cheat during a multiplication to create an incorrect result where z 6= x · y, and show that the assurance
value then is ⊥. Finally, we show in Lemma 3 we build on Lemma 2 to show that when Alice cheats,
such that the out is not that of the functionality g, we can again use ⊥ for simulating the output.

Lemma 1. For a fixed but arbitrary arithmetic formula g(−→x ,−→y) represented by a recursive instruc-
tion ι ∈ Ins against the protocol π resulting from evaluate(ι), all intermediate messages to Alice are
independent and uniformly random.

Proof. It follows from the procedures defined in Figure 4, that the intermediate values observed by an
adversary A during the protocol execution are Jx′K, Jy′K and JcK, which are independently blinded and
thus they are encryptions of uniformly random independent and indistinguishable from (J⊥K, J⊥K, J⊥K).

Lemma 2. In the outsourced multiplication protocol BetterTimesMul the assurance value a is equal to
0 if the protocol is followed, and is indistinguishable from ⊥ otherwise.

14 Hallgren et al. / Assuring BetterTimes: Private arithmetic formulas

Proof. First recall the calculations from Figure 4:

JaK←
(
Ja′K	 Jz′K�cm	 Jy′K�ca

)
�ρ JzK← Jz′K	 (JxK�by⊕ JyK�bx⊕ Jbx · byK)

Which in the plaintexts corresponds to:

a =
(
a′ − z′ · cm − y′ · ca

)
· ρ z = z′ − (x · by + y · bx + bx · by)

where a′ and z′ are produced by Alice. It is easy to see that if a′ and z′ are computed following the
protocol, then a = 0 by construction.

To see that if Alice does not comply with the protocol then a is a randomly distributed non-zero element
with very high probability, first note that there are three cases for non-compliance, either z′ 6= x′ · y′,
a′ 6= y′ · c or both. In any case of non-compliance, the goal of Alice is to construct a′ and z′ such that
a′ − (z′ · cm + y′ · ca) = 0 since otherwise by construction a will be random. From this we can easily
see that then it must hold that a′ = (z′ · cm + y′ · ca).

Note that given c = (x′ · cm + ca) (which is known by Alice), the probability of guessing cm is at most
ε = 1

2p where p is the size of the field, since multiplication is a random permutation and ca is unknown
and uniformly distributed.

Now by contradiction, let’s assume that the probability of Alice of computing a′ = (z′ · cm + y′ · ca)
with z′ 6= x′ · y′ is bigger than ε. If this holds, then she can also compute:

α = a′ − c · y′ = (z′ · cm + y′ · ca)− (x′ · cm + ca) · y′

α = (z′ − x′ · y′) · cm

But then she could also compute cm = α(z′ − x′ · y′)−1 with probability bigger than ε, since by
hypothesis z′ 6= x′ · y′ and thus (z′ − x′ · y′) ∈ F∗p is invertible, which contradicts the fact that the
probability of guessing cm is smaller than ε.

Lemma 3. For a fixed but arbitrary arithmetic formula g(−→x ,−→y) represented by a recursive instruction
ι constructed using BetterTimes-syntax against the protocol π resulting from evaluate(ι), all output
values of the protocol are an encryption of ⊥ for a dishonest Alice.

Proof. From Lemma 2, the decryption of an assurance value JaK is indistinguishable from J⊥K if an
adversary is dishonest. Further, since by the construction of evaluate(), if any assurance value ai = ⊥,
then the final assurance value is ⊥. The final assurance value is added to the each output ri as ri + a ∗ ρi
with an independently uniformly random ρi. Thus all outputs are indistinguishable from J⊥K if any ai is
⊥.

Now, for the proof of Theorem 1:

Proof of Theorem 1. Without loss of generality, we assume that ι ∈ Ins hasm instructions of typeMUL
and o outputs. We will distinguish two cases.

Hallgren et al. / Assuring BetterTimes: Private arithmetic formulas 15

A follows the protocol As per Lemma 1, all m intermediate messages sent from Bob appear uniformly
random to Alice (and independent) due to the fact that they are all of the type ri = (x′, y′, c) where
each value is blinded. In the case when A complies with the protocol, the last message contains the
correct output g, since Bob is an honest party. This implies that the output of A depends exclusively on
r0, . . . , rm and g(−→x ,−→y), so we can simulate an adversary as:

S := A(rS0 , . . . , r
S
m, g(−→x ,−→y))

with rSi = (⊥,⊥,⊥) for i ∈ {0, . . . ,m}.
A does not follow the protocol Note that independently of the cheating strategy of A, all m interme-
diate messages sent from Bob appear uniformly random to A since the blinding is done by Bob locally
with randomization independent from A’s inputs. Now, as a consequence of Lemma 3, if A does not
follow the protocol for at least one of the outsourced multiplications, all outputs will be blinded by an
independent (for each output) re-randomization of the accumulated assurance value, that is, all outputs
are ⊥. Therefore, the outputs, denoted rm+1, . . . , rm+o, will contain an encryption of an independent
random value. Therefore we can simulate this in the ideal model as:

S := A(rS0 , . . . , r
S
m, r

S
m+1, . . . , r

S
m+o)

with rSi = (⊥,⊥,⊥) for i ∈ {0, . . . ,m} and rSi = ⊥ for i ∈ {m+ 1, . . . ,m+ o}. With S defined as
above, it is easy to see that S(−→x , g(−→x ,−→y))

c≡ A(−→x , viewAπ ,−→o)}.
Since the above two cases partition the set of all possible attackers, we conclude that we can simulate

an arbitrary attacker.

3.3. BetterTrees in Rings

Given the advantages of partially homomorphic cryptographic constructions (such as the Paillier cryp-
tosystem) where the plaintext space is a ring isomorphic to Zn, n = p · q (and not a field), a natural
question arises: Is it possible to extend BetterTrees to work under rings Zn? Unfortunately, the answer is
negative, since an attacker can leverage on non-invertible plaintexts to deviate from the protocol without
losing information on the final computation. However, attackers are also limited in the amount of infor-
mation they can learn, and thus in this setting it is possible to obtain a partial result, which gives slightly
weaker privacy guarantees. Since such guarantees are weaker, they are less useful for the application
domain considered in this article (location privacy). We refer the interested reader to Appendix B for a
discussion of theses results.

4. Applications for proximity protocols

This section shows the usefulness of BetterTrees in two ways. First, we show how easily it can be
used to upgrade a group of protocols which are secure only against semi-honest adversaries to being able
to cope with malicious attackers. Secondly, we show a concrete application of BetterTrees to a speed-
constrained proximity protocol by Hallgren et al. [23], both with respect to the description of the protocol
but also to exemplify how to reuse the lemmas and theorems provided together with BetterTrees.

16 Hallgren et al. / Assuring BetterTimes: Private arithmetic formulas

4.1. Attacks on proximity protocols

We illustrate the usefulness of our approach by an attack on a class of protocols from the litera-
ture [13,40,22,39,45], which compute whether the distance between two vectors in the plane is less than
a threshold in a privacy-preserving manner. Popular applications of this algorithm are geometric identifi-
cation and location proximity. For concreteness, this section focuses on the distance computation used in
the InnerCircle protocol by Hallgren et al. [22]. The same attack also applies to the other representatives
of the same class of protocols [13,40,39,45], but in many cases a successful exploit does not have as
visible effects.

Hallgren et al. present a protocol for privacy-preserving location proximity. It is based on the fact
that Bob can compute the euclidean distances from a point represented as three ciphertexts J2xK, J2yK
and Jx2 + y2K to any other point known by Bob using additively homomorphic encryption (here J·K
stands for encryption under the public key of Alice). A problem with the approach is that Bob has no
knowledge of how the ciphertexts are actually related, he sees three ciphertexts JαK, JβK and JγK. In the
case that γ 6= (α/2)2 + (β/2)2, subsequent computations may leak unwanted information. The distance
is expressed as the (squared) distance as shown in Equation (8), computed homomorphically as shown
in Equation (9) where only some of Bob’s inputs are needed in plaintext.

D =x2A + y2A + x2B + y2B − (2xAxB + 2yAyB) (8)

JDK =Jx2A + y2AK⊕ Jx2B + y2BK	 (J2xAK�xB⊕ J2yAK�yB) (9)

Here, ⊕, 	 and � are the homomorphic operations which in the plaintext space map to +, − and
· respectively (see Section 2.1). Now, by replacing the information sent by Alice by α, β and γ and
observing that Alice can choose α and β arbitrarily, the expression becomes as in Equation (10):

D = x2B + y2B + γ + αxB + βyB (10)

The effects of the attack are very illustrative in [40,22,45]. In these works, Bob wants to return a
boolean b = (r2 > D) indicating whether two principals are within r from each other. Thus the result
given to Alice is the evaluation of the function r2 > x2B + y2B + αxB + βyB + γ. This is equivalent to
the result of r2 − γ > x2B + y2B + αxB + βyB . Given that Alice knows r, she can encode it into the
manipulated variables thus forcing the evaluation of δ > x2B+y2B+αxB+βyB+η, with γ = r2−δ−η.
By changing α, β and η, Alice can move the center of the queried area, and by tweaking δ she can dictate
the size of the area, causing unwanted and potentially very serious information leakage (for instance by
querying in arbitrarily located and precise areas such as buildings).

4.1.1. Securing protocols for euclidean distances
Based on the novel asserted multiplication presented in Section 2.2, a new structure for the protocols

of Hallgren et al. can be constructed. Similar amendments can easily be constructed in similar form for
other afflicted solutions [13,40,39,45]. Using the system proposed in this paper, it is possible to send
only the encryption of xA and yA in the initial message, and securing the necessary squaring by means
of BetterTrees.

An arithmetic formula which computes the distance directly using xA, yA, xB and yB is already
defined in Equation (8). Now remains only to model this such that it can be computed by the system

Hallgren et al. / Assuring BetterTimes: Private arithmetic formulas 17

JxAK JxAK Jx2BK

·

+

JyAK JyAK Jy2BK

·

+

JxAK 2 · xB

·

JyAK 2 · yB

·

+

+

−

JDK

Fig. 8. Tree depicting computation of a secured version of the protocol.

presented later in this paper, after which the protocols can proceed to compute the proximity result as
they would normally.

The result is an algorithm modeled using the recursive data structure Ins, which simply is passed to
the procedure evaluate by Bob. The formula of can be depicted as a tree as in Figure 8, for which the
concrete instructions (instances of Ins) are spelled out in Equation (11). Per Theorem 1, this distance-
computation is secure against malicious adversaries. Not however that additional effort may be needed
to prove a full construction, if the following operations cannot be translated into instances of Ins.

Ins(SUB,
Ins(ADD,

Ins(ADD, Ins(MUL, Ins(JxAK), Ins(JxAK)), Ins(Jx2BK)),
Ins(ADD, Ins(MUL, Ins(JyAK), Ins(JyAK)), Ins(Jy2BK))

),
Ins(ADD,

Ins(PMUL, Ins(JxAK), Ins(2 · xB)),
Ins(PMUL, Ins(JyAK), Ins(2 · yB))

),
)

(11)

Of course, this formula can be more concisely represented using BetterTimes-syntax. One such repre-
sentation is shown in Listing 2, which exactly corresponds to Equation (8). Note that an exponentiation
ab is denoted a ∗∗ b in Python.

Listing 2: Procedure for distance computation

def dist(x_a, y_a, x_b, y_b):

return x_a ∗∗ 2 + y_a ∗∗ 2 + x_b ∗∗ 2 + y_b ∗∗ 2 − 2 ∗ (x_a ∗ x_b + y_a ∗ y_b)

18 Hallgren et al. / Assuring BetterTimes: Private arithmetic formulas

4.2. Simplification of MaxPace

In [23], Hallgren et al. show how to reduce the effectiveness of an attacker which try to infer addi-
tional data about the victim by issuing multiple location proximity queries. This section shows how to
simplify their effort using the tools presented here (the original work was based on an older version of
BetterTrees).

The core idea is a policy called MaxPace, which aims to reduce the velocity of the attacker, such that
they may not query in rapid succession for proximity from positions that are far apart. The attacker can
be enforced to behave as a user intuitively does – in patterns achieved by walking, riding a bike, using
public transport, etc. The desired functionality for MaxPace is specified by Definition 4.

Definition 4 (Constrained speed querying functionality). The functionality of a speed-constraining func-
tionality g is a function from queries to responses: g : Q→ L.

g(q1, . . . , qm)[i] =

{
⊥ if ∃j<i :

dist(pj ,pj+1)
time(qj)−time(qj+1)

> h

inProx(pi, pb, r) otherwise

where qi = (pi, ti) and pb is the position of Bob.

The MaxPace can be implemented in a straightforward way using a trusted third party who stores and
manages location information for all users who are utilizing the service. Any already existing service
can easily deploy MaxPace as an additional privacy measure. Many applications scenarios lack a natural
third party that can be trusted, and a decentralized trust-model has obvious benefits as compared to giving
location information to third parties. Services are usually not deployed in a decentralized manner without
trusted parties, as for most application scenarios there are no ad-hoc solutions readily available. Hence,
in these situations a tool like BetterTrees comes in handy.

Listing 3: Request handling using DecentMP

def mpRequest(ev,c_xA,c_yA,xB,yB,h,r,cache):

formula = SecureFormula(ev, h,r, c_xA, c_yA, xB, yB,

cache[’a’], cache[’t’], cache[’x’], cache[’y’])

with formula as sf:

c_xA,c_yA,xB,yB,h,r,ct,c_ca,c_cx,c_cy = sf.inputs

t = now()

pr = proximity(c_xA, c_yA, xB, yB, r)

if ’x’ in cache:

v = speed(c_xA,c_yA,c_cx,c_cy,h,t−ct)
alpha = random(1, k) ∗ (v + c_ca)
sf.output(pr + alpha)

sf.output(alpha)

else:

sf.output(pr)

out = formula.evaluate()

c_result = out[0]

Hallgren et al. / Assuring BetterTimes: Private arithmetic formulas 19

cache[’a’] = out[1] if ’x’ in cache else 0

cache[’t’] = t

cache[’x’] = c_xA

cache[’y’] = c_yA

return c_result

The protocol devised to enforce MaxPace is called DecentMP, and is represented using BetterTimes-
syntax in Listing 3. For further details on any functions called, see Appendix A. This means that the
procedure is executed by Bob, while operations carried out by Alice are implicitly determined through
the BetterTrees system.

For the first run, the protocol simply returns the proximity result and caches the query’s position and
time. Bob also initializes a special cache value a which is used to accumulate all speed threshold checks.
For following requests, the speed threshold v is combined with the accumulated speed threshold. By
adding the proximity result to the accumulated speed threshold, Bob constructs c_result. Note that all
values depending on Alice’s inputs are encrypted and not readable by Bob.

Bearing the functionality shown in Definition 4 and the protocol resulting from Listing 3 in mind,
we now present the main theorem of the original work [23], in order to show how to make use of the
results presented in this work to create a simple proof of a construction such as DecentMP. The privacy-
guarantees sought for DecentMP are captured by Theorem 2.

Theorem 2 (Privacy guarantees of DecentMP). The protocol π resulting from evaluating the program
Listing 3 implements the functionality of Definition 4 privately according to Definition 3.

The intuition behind the proof of Theorem 2 is as follows. DecentMP defines α as an arithmetic
formula. From the security guarantees of BetterTrees, it follows that a malicious Alice that tampers with
the protocol at any point will cause α to encrypt ⊥. This in turn will cause the proximity result sent to
Alice to be random, and cause cache[’a’] to be updated just as in the case where Alice does not respect
the MaxPace speed policy, making subsequent location responses yield an encryption of⊥. Thus, if Alice
would tamper with the protocol to try to learn more about the private inputs of Bob than allowed by the
arithmetic formula (the functionality), BetterTrees guarantees that she instead receives a fresh uniformly
random value.

Proof of Theorem 2. After performing m location queries Alice has observed the intermediate values in
each query qi and the respective location response li by Bob. From Lemma 3, and by construction of
the cache[’a’], it follows that if Alice cheats for the first time when jointly computing li with Bob, then
li = ⊥ and ∀j>i lj = ⊥. Further, from Lemma 1, it follows directly that all intermediate values in a
joint computation, denoted by −→v i, are equal to ⊥. Without loss of generality, let’s assume that a class of
malicious adversaries Ax are dishonest when jointly computing the location response lx. The output of
any such malicious Ax against DecentMP can be simulated by a simulator Sx that outputs:

Sx(q1, . . . , qm, l1, · · · lm) =

Ax(q1, . . . , qm, l
′
1, · · · l′m,−→v 1, · · · −→v m)

20 Hallgren et al. / Assuring BetterTimes: Private arithmetic formulas

Table 1
Benchmarks for outsourced multiplication

1024 bits 2048 bits

Plaintext space This
approach

Naive
approach Extra work This

approach
Naive
approach Extra work

DGK
28 6.400 4.017 59.32% 30.052 19.484 54.24%
224 6.538 4.100 59.46% 30.578 19.801 54.43%

Paillier
Equal to keysize 41.811 24.982 67.36% 292.333 175.325 66.74%

The outputs l′i corresponding to the view of A in a real execution are easy to simulate, as they can be
computed using only the inputs through:

l′i =

{
⊥ if i ≥ x
li otherwise

And the intermediate messages can be simulated as −→v j = ⊥, · · · ,⊥ as per Lemma 1.

5. Implementation and Benchmarks

5.1. Multiplication cost evaluation

Comparison against insecure outsourced multiplication The approach has been implemented in Python
using the GMP [14] arithmetic library. The implementation has been benchmarked to show the impact
of using our approach compared to the more common approach of naive outsourced multiplications. In
the naive approach, Alice is honest-but-curious, and the operands are therefore only blinded. For this
implementation, the DGK [10] cryptosystem was used.

Table 1 shows time in milliseconds for different sizes of plaintexts and keys for the two cases when
outsourced multiplication is performed using BetterTimesMul, or naively. The difference between the
two approaches is a small factor of about 1.5 for both key sizes, though slightly smaller for the larger
keys. The factor is only marginally increasing as the plaintext space grows from 28 to 224.

The benchmarked time shows only the processing time for each multiplication. The communication
overhead is exactly twice for our approach as compared to the naive solution.

Paillier We have also included in Table 1 results on the implementation of BetterTimes using Paillier
with a key of size of 1024 bits and 2048 bits. Although as discussed before, the obtained security guar-
antees are different in this case, there are advantages in using Paillier when the plaintext space needs to
be bigger than what usually supported by DGK.

5.2. Comparison with Garbled Circuits

It is difficult to directly compare our work with state-of-the-art implementations of Garbled Circuits for
two main reasons: on the one hand, most implementations such as [25] provide only guarantees for semi-
honest players; on the other hand, recent implementations of garbled circuits are the product of decades

Hallgren et al. / Assuring BetterTimes: Private arithmetic formulas 21

of optimizations, and thus usally are written in C/C++, whereas our proof-of-concept implementation is
written in Python.

However, it is possible to at least in principle compare advantages and disadvantages of both ap-
proaches in the following aspects:

Cost of a single multiplication We have implemented a circuit in FastGC [25] for 24-bit numbers,
which can be performed in 332ms (in the same hardware as our benchmarks) which is two orders of
magnitude slower than BetterTimesMul.

Bandwidth The bandwidth required for a GC is a factor of the number of gates of the circuit. In the
case of a single multiplication this was 1084KB1. The bandwith cost of one multiplication of Better-
TimesMul is 10KB for a 2048-bit key. Moreover note that a whole new GC must be generated and
shared every time a new computation takes place between two-parties, whereas for BetterTrees only
the inputs of Alice, the intermediate multiplication steps and the final result need to be exchanged
over the network.

Integer comparisons It is well known that although partially homomorphic encryption can be ad-
vantegeous to perform arithmetic operations, it suffers from efficient constructions to perform cer-
tain common operations such as less-than comparisons. This is the main motivation for hybrid GC
and homomorphic approaches such as TASTY [24]. Note that however, an inefficient (quadratic)
algorithm to perform comparisons such as the one proposed in [22] can outperform a constant GC
solution for small values (comparing a value a with r for r < 100 using Paillier takes less than
1.6ms, which is the constant value of a comparison for FastGC). Since the quadratic comparison in
[22] is done without the need of outsourced multiplications, the time would be the same for a Bet-
terTimesMul implementation. Also the comparison algorithm of [22] has been shown to be highly
parallelizable, as we will discuss in the following for the InnerCircle case. In contrast, GC-based or
hybrid GC and homomorphic encryption protocols are not known to be easily parallelizable.

In sum, a comparison with a modern GC implementations is heavily application dependent: for com-
putations involving several multiplications and few or no integer comparisons, BetterTrees can be ad-
vantageous both in computation time and bandwidth; however for other computations GC might be the
better choice.

5.3. Benchmarking MaxPace and InnerCircle

Note that the code snipets presented above for distance computation and the exemplary application
MaxPace can directly be compiled into a secure 2-party protocol using BetterTimesMul. In the following
we report a summary of benchmarking experiments for both protocols.

InnerCircle We have benchmarked an implementation of InnerCircle using DKG and a 1024 key, up to
the distance calculation phase. An implementation with BetterTimesMul takes 96ms to run, whereas an
implementation with insecure outsourcing would take 15ms. For the proximity response phase, the re-
sults depend strongly on the distance bound r and the number of cores used in the computation, since the
proximity response phase is easy to parallelize. For instance, using Paillier and a 1024 bits key, the run-
ning time of the proximity phase for r ≤ 100 remains below 1.6 seconds, which is faster than a FastGC
implementation. In Table 2 we report experiments on the speed-up factor by a parallel implementation of
the proximity response phase [22], which are close to the maximum theoretical speed-up. Moreover, the

1By using the tool in [25].

22 Hallgren et al. / Assuring BetterTimes: Private arithmetic formulas

Fig. 9. Different speeds and proximity thresholds

bandwidth needed for r = 100 and a 2048-bit Paillier key is around 1.3MB, whereas for FastGC 17MB
are needed.

Table 2
Results using different number of threads

Threads used 6 8 10
Speedup 51.29% 71.20% 76.76%

Max theoretical 66.67% 75.00% 80.00%

MaxPace Figure 9 visualizes how the time of a single protocol execution time is affected by different
configurations of h and r. Benchmarks were carried out with a key of sizes 2048 bits, and plaintext
space 22 bits. Table 3 shows on the other hand how different values of r and h affect communication.
Communication cost ranges from 166 kilobytes to 12 megabytes. Note that although 12MB might seem
big, as most modern devices and networks can handle high-quality video streaming, all results are within
practical applicability. This also is still below the 17MB needed for a single proximity query using
FastGC.

Table 3
Communication cost in kilobytes (messages)

Activity
Proximity Threshold (meters)

Messages
10 15 50 100

Walking 166 610 2050 7392 11
Running 196 640 2080 7422 17
Cycling 286 730 2170 7512 35
Bus 1076 1520 2960 8302 193
Car 4706 5150 6590 11932 919

6. Related Work

There are three current approaches to compute an arbitrary formula in the two-party setting in the pres-
ence of malicious adversaries, Fully Homomorphic Encryption, Enhanced Garbled Circuits and Zero-
knowledge proofs.

FHE is by far the most inefficient approach, and its use is often considered not feasible due to the heavy
resource consumption. We do not consider FHE a viable alternative to additively homomorphic encryp-
tion for practical applications. Garbled Circuits is an excellent tool for boolean circuits, but does not
perform as well for arithmetic circuits as approaches built on homomorphic encryption. Zero-knowledge
proofs could be used instead of the proposed approach, but at the cost of more computations and/or round
trips.

Hallgren et al. / Assuring BetterTimes: Private arithmetic formulas 23

6.1. Zero-knowledge Proofs

The technique which resembles BetterTimesMul the most is Zero-Knowledge (ZK) proofs. Any state-
ment in NP can be proven using generic, though inefficient, ZK (Goldreich et al. [19]). However, to the
best of our knowledge it is not straightforward to constructively devise such a scheme for a given ad-
ditively homomorphic cryptosystem. Our solution in contrast does not require Bob to be able to verify
whether a multiplication is correct, but by construction will render the final computation result useless to
malicious adversaries.

In a nutshell, the novelty as compared to zero-knowledge proofs is based on the simple realization
that Bob does not need to know whether Alice is cheating or not in order to assure the correctness of
the final computation and the privacy of his inputs, which decreases the number of round-trips that such
a verification step implies. This is a special case of the conditional disclosure of secrets introduced by
Gertner et al. [17], where a secret is disclosed using SMC only if some condition is met. In our case, the
condition is that zi = xi · yi for each multiplication in the formula, and the secret is the output of g.

Some protocols in the literature can be used efficiently for proving correct multiplications, with only
one additional round trip. One such is the Chaum-Pedersen protocol [7], which however is not trivially
applicable to an arbitrary encryption scheme. Another interesting solution was introduced by Damgård
and Jurik [11], but which is constructed specifically for the Damgård-Jurik cryptosystem.

Thought there are some homomorphic schemes able to handle both additions and multiplications, to
the best of our knowledge, there is no previous solution to accomplish secure outsourced multiplications
for additively homomorphic encryption in the malicious model without the use of zero-knowledge proofs
(with the exception of second degree-functions, see [6]).

6.2. Secure Multi-party Computations

There are two main categories for private remote computations: Homomorphic Encryption and Garbled
Circuits. Through recent research they are both near practical applicability (see [29,25,30] and [5,25,
16]). However, which of the two approaches to choose is typically application-dependent [31,28]. Our
approach brings state-of-the-art SMC solutions based on additively homomorphic cryptographic systems
forward by protecting against malicious adversaries when outsourcing multiplications, while remaining
strongly competitive to the efficient though less secure approaches which currently are popular examples.

There are several works that combine the use of an additively homomorphic scheme with secret shar-
ing, to compute multiplications securely using threshold encryption. This line of work stems from the
SMC schemes developed by Cramer et al. [9]. Note that such approaches are secure only against mali-
cious minorities, and are not directly applicable in scenarios with only two parties.

To compare against GC-solutions which can compute arbitrary formulas, some experiments using
FastGC, a Garbled Circuit framework by Huang et al. [25] were conducted and are reported in detail
in Section 5. Any arithmetic circuit can be expressed as a binary circuit, and vice versa[15]. In this
framework for arbitrary computations, integer multiplication of 24-bit numbers needed 332 ms to finish,
approximately 5078% slower than BetterTrees. Note however that FastGC is only secure in the honest-
but-curious model, and thus not as secure as the approach presented in this paper. Further work exists in
the direction of efficiently providing security against malicious adversaries by the authors of FastGC [26],
however where one bit of the input is leaked. Moreover, work on optimizing garbled-circuits in the
honest-but-curious model also exists, e.g. recently [34], but so far without enough speedup that it can
compare to additively homomorphic encryption for privately computing arithmetic formulas.

24 Hallgren et al. / Assuring BetterTimes: Private arithmetic formulas

7. Conclusions

We have presented a protocol for outsourcing multiplications and have shown how to use it construct a
system for computation of arbitrary arithmetic formulas with strong privacy guarantees. We have shown
that the construction is secure in the malicious adversary model and that the overhead of using the
approach is a small constant factor.

The need for such a protocol is justified by the format attacks we have unveiled in known protocols,
and presented a concrete exploit targeting [45] where we can alter the format of a message and gain
more than the intended amount of location information. We have made a case for using a more realistic
attacker model and identified examples from the literature which are vulnerable to this stronger attacker,
while also showing how to amend such vulnerabilities.

A key feature of our approach is its compositionality. We we seamlessly integrate multiple outputs,
allowing us to sequentially compose protocols. The new high-level syntax and proof framework prove
indispensable when we show how our approach applies to the application domain of speed-constrained
location proximity. Leveraging the compositionality, we construct the proximity protocol from core prim-
itives while obtaining privacy guarantees by compositional reasoning.

We provide benchmarks that compare our exemplary applications (InnerCircle and MaxPace) to im-
plementations based on Garbled Circuits. We discuss security guarantees for the particular case of an
implementation over rings, and make our implementation fully available to the community. In sum our
approach provides strong security guarantees when implemented over fields (for instance in the DKG
cryptosystem) and has competitive efficiency and bandwidth performance against other 2-party proto-
cols. However the general case depends strongly on the type of computation performed and the range of
the variables involved. Moreover note that the security guarantees given can be summarized as strong pri-
vacy guarantees for both parties whenever any party is malicious, but we offer no correctness guarantees
on the result of the computation when Bob is malicious.

As future work we plan to investigate the non-trivial task of applying closely related primitives (such
as Zero-Knowledge constructions [7] and Threshold Encryption [9]) to achieve the same security guar-
antees, and benchmark those solutions to compare them to BetterTrees.

Acknowledgments Thanks are due to Allen Au for the useful comments. This work was funded by the
European Community under the ProSecuToR project and the Swedish research agencies SSF and VR.

References

[1] G. Barthe, B. Grégoire, and S. Z. Béguelin. Formal certification of code-based cryptographic proofs. In Z. Shao and B. C.
Pierce, editors, Proceedings of the 36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2009, Savannah, GA, USA, January 21-23, 2009, pages 90–101. ACM, 2009.

[2] M. Bellare, A. Boldyreva, and S. Micali. Public-key encryption in a multi-user setting: Security proofs and improvements.
In B. Preneel, editor, Advances in Cryptology - EUROCRYPT 2000, International Conference on the Theory and Appli-
cation of Cryptographic Techniques, Bruges, Belgium, May 14-18, 2000, Proceeding, volume 1807 of Lecture Notes in
Computer Science, pages 259–274. Springer, 2000.

[3] D. Bogdanov, S. Laur, and J. Willemson. Sharemind: A framework for fast privacy-preserving computations. In S. Jajodia
and J. López, editors, Computer Security - ESORICS 2008, 13th European Symposium on Research in Computer Security,
Málaga, Spain, October 6-8, 2008. Proceedings, volume 5283 of Lecture Notes in Computer Science, pages 192–206.
Springer, 2008.

[4] P. Bogetoft, D. L. Christensen, I. Damgård, M. Geisler, T. P. Jakobsen, M. Krøigaard, J. D. Nielsen, J. B. Nielsen,
K. Nielsen, J. Pagter, M. I. Schwartzbach, and T. Toft. Secure multiparty computation goes live. In R. Dingledine and
P. Golle, editors, Financial Cryptography and Data Security, 13th International Conference, FC 2009, Accra Beach,

Hallgren et al. / Assuring BetterTimes: Private arithmetic formulas 25

Barbados, February 23-26, 2009. Revised Selected Papers, volume 5628 of Lecture Notes in Computer Science, pages
325–343. Springer, 2009.

[5] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. Fully homomorphic encryption without bootstrapping. Electronic Collo-
quium on Computational Complexity (ECCC), 18:111, 2011.

[6] D. Catalano and D. Fiore. Using linearly-homomorphic encryption to evaluate degree-2 functions on encrypted data. In
Ray et al. [38], pages 1518–1529.

[7] D. Chaum and T. P. Pedersen. Wallet databases with observers. In E. F. Brickell, editor, Advances in Cryptology -
CRYPTO ’92, 12th Annual International Cryptology Conference, Santa Barbara, California, USA, August 16-20, 1992,
Proceedings, volume 740 of Lecture Notes in Computer Science, pages 89–105. Springer, 1992.

[8] D. Coldewey. "Girls Around Me" Creeper App Just Might Get People To Pay Attention To Privacy
Settings. http://techcrunch.com/2012/03/30/girls-around-me-creeper-app-just-might-
get-people-to-pay-attention-to-privacy-settings/, Mar. 2012.

[9] R. Cramer, I. Damgård, and J. B. Nielsen. Multiparty computation from threshold homomorphic encryption. In B. Pfitz-
mann, editor, Advances in Cryptology - EUROCRYPT 2001, International Conference on the Theory and Application of
Cryptographic Techniques, Innsbruck, Austria, May 6-10, 2001, Proceeding, volume 2045 of Lecture Notes in Computer
Science, pages 280–299. Springer, 2001.

[10] I. Damgård, M. Geisler, and M. Krøigaard. Efficient and secure comparison for on-line auctions. In J. Pieprzyk, H. Gho-
dosi, and E. Dawson, editors, Information Security and Privacy, 12th Australasian Conference, ACISP 2007, Townsville,
Australia, July 2-4, 2007, Proceedings, volume 4586 of Lecture Notes in Computer Science, pages 416–430. Springer,
2007.

[11] I. Damgård and M. Jurik. A generalisation, a simplification and some applications of paillier’s probabilistic public-key
system. In K. Kim, editor, Public Key Cryptography, 4th International Workshop on Practice and Theory in Public Key
Cryptography, PKC 2001, Cheju Island, Korea, February 13-15, 2001, Proceedings, volume 1992 of Lecture Notes in
Computer Science, pages 119–136. Springer, 2001.

[12] R. Dingledine, N. Mathewson, and P. F. Syverson. Tor: The second-generation onion router. In M. Blaze, editor, Pro-
ceedings of the 13th USENIX Security Symposium, August 9-13, 2004, San Diego, CA, USA, pages 303–320. USENIX,
2004.

[13] Z. Erkin, M. Franz, J. Guajardo, S. Katzenbeisser, I. Lagendijk, and T. Toft. Privacy-preserving face recognition. In
I. Goldberg and M. J. Atallah, editors, Privacy Enhancing Technologies, 9th International Symposium, PETS 2009, Seattle,
WA, USA, August 5-7, 2009. Proceedings, volume 5672 of Lecture Notes in Computer Science, pages 235–253. Springer,
2009.

[14] Free Software Foundation. The gnu multiple precision arithmetic library. http://gmplib.org/, 1991-2013.
[15] C. Gentry. Fully homomorphic encryption using ideal lattices. In M. Mitzenmacher, editor, Proceedings of the 41st Annual

ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009, pages 169–178.
ACM, 2009.

[16] C. Gentry, A. Sahai, and B. Waters. Homomorphic encryption from learning with errors: Conceptually-simpler,
asymptotically-faster, attribute-based. In R. Canetti and J. A. Garay, editors, Advances in Cryptology - CRYPTO 2013 -
33rd Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part I, volume 8042 of
Lecture Notes in Computer Science, pages 75–92. Springer, 2013.

[17] Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin. Protecting data privacy in private information retrieval schemes. J.
Comput. Syst. Sci., 60(3):592–629, 2000.

[18] O. Goldreich. The Foundations of Cryptography - Volume 2, Basic Applications. Cambridge University Press, 2004.
[19] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their validity for all languages in NP have

zero-knowledge proof systems. J. ACM, 38(3):691–729, 1991.
[20] P. Hallgren. Bettertimes. https://bitbucket.org/hallgrep/bettertimes, 2017.
[21] P. A. Hallgren, M. Ochoa, and A. Sabelfeld. Bettertimes - privacy-assured outsourced multiplications for additively

homomorphic encryption on finite fields. In M. H. Au and A. Miyaji, editors, Provable Security - 9th International
Conference, ProvSec 2015, Kanazawa, Japan, November 24-26, 2015, Proceedings, volume 9451 of Lecture Notes in
Computer Science, pages 291–309. Springer, 2015.

[22] P. A. Hallgren, M. Ochoa, and A. Sabelfeld. Innercircle: A parallelizable decentralized privacy-preserving location prox-
imity protocol. In A. A. Ghorbani, V. Torra, H. Hisil, A. Miri, A. Koltuksuz, J. Zhang, M. Sensoy, J. García-Alfaro, and
I. Zincir, editors, 13th Annual Conference on Privacy, Security and Trust, PST 2015, Izmir, Turkey, July 21-23, 2015, pages
1–6. IEEE Computer Society, 2015.

[23] P. A. Hallgren, M. Ochoa, and A. Sabelfeld. Maxpace: Speed-constrained location queries. In 2016 IEEE Conference on
Communications and Network Security, CNS 2016, Philadelphia, PA, USA, October 17-19, 2016, pages 136–144. IEEE,
2016.

[24] W. Henecka, A.-R. Sadeghi, T. Schneider, I. Wehrenberg, et al. Tasty: tool for automating secure two-party computations.
In Proceedings of the 17th ACM conference on Computer and communications security, pages 451–462. ACM, 2010.

26 Hallgren et al. / Assuring BetterTimes: Private arithmetic formulas

[25] Y. Huang, D. Evans, J. Katz, and L. Malka. Faster secure two-party computation using garbled circuits. In 20th USENIX
Security Symposium, San Francisco, CA, USA, August 8-12, 2011, Proceedings. USENIX Association, 2011.

[26] Y. Huang, J. Katz, and D. Evans. Quid-pro-quo-tocols: Strengthening semi-honest protocols with dual execution. In IEEE
Symposium on Security and Privacy, SP 2012, 21-23 May 2012, San Francisco, California, USA, pages 272–284. IEEE
Computer Society, 2012.

[27] V. Kolesnikov, A. Sadeghi, and T. Schneider. From dust to dawn: Practically efficient two-party secure function evaluation
protocols and their modular design. IACR Cryptology ePrint Archive, 2010:79, 2010.

[28] V. Kolesnikov, A. Sadeghi, and T. Schneider. A systematic approach to practically efficient general two-party secure
function evaluation protocols and their modular design. Journal of Computer Security, 21(2):283–315, 2013.

[29] V. Kolesnikov and T. Schneider. Improved garbled circuit: Free XOR gates and applications. In L. Aceto, I. Damgård,
L. A. Goldberg, M. M. Halldórsson, A. Ingólfsdóttir, and I. Walukiewicz, editors, Automata, Languages and Programming,
35th International Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part II - Track B: Logic,
Semantics, and Theory of Programming & Track C: Security and Cryptography Foundations, volume 5126 of Lecture
Notes in Computer Science, pages 486–498. Springer, 2008.

[30] B. Kreuter, A. Shelat, and C. Shen. Billion-gate secure computation with malicious adversaries. In T. Kohno, editor,
Proceedings of the 21th USENIX Security Symposium, Bellevue, WA, USA, August 8-10, 2012, pages 285–300. USENIX
Association, 2012.

[31] R. L. Lagendijk, Z. Erkin, and M. Barni. Encrypted signal processing for privacy protection: Conveying the utility of
homomorphic encryption and multiparty computation. IEEE Signal Process. Mag., 30(1):82–105, 2013.

[32] M. Li, H. Zhu, Z. Gao, S. Chen, L. Yu, S. Hu, and K. Ren. All your location are belong to us: breaking mobile social
networks for automated user location tracking. In J. Wu, X. Cheng, X. Li, and S. Sarkar, editors, The Fifteenth ACM
International Symposium on Mobile Ad Hoc Networking and Computing, MobiHoc’14, Philadelphia, PA, USA, August
11-14, 2014, pages 43–52. ACM, 2014.

[33] Y. Lindell and B. Pinkas. Secure multiparty computation for privacy-preserving data mining. IACR Cryptology ePrint
Archive, 2008:197, 2008.

[34] C. Liu, X. S. Wang, K. Nayak, Y. Huang, and E. Shi. Oblivm: A programming framework for secure computation. In
2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015, pages 359–376. IEEE
Computer Society, 2015.

[35] A. Narayanan, N. Thiagarajan, M. Lakhani, M. Hamburg, and D. Boneh. Location privacy via private proximity testing.
In Proceedings of the Network and Distributed System Security Symposium, NDSS 2011, San Diego, California, USA, 6th
February - 9th February 2011. The Internet Society, 2011.

[36] P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In J. Stern, editor, Advances in
Cryptology - EUROCRYPT ’99, International Conference on the Theory and Application of Cryptographic Techniques,
Prague, Czech Republic, May 2-6, 1999, Proceeding, volume 1592 of Lecture Notes in Computer Science, pages 223–238.
Springer, 1999.

[37] I. Polakis, G. Argyros, T. Petsios, S. Sivakorn, and A. D. Keromytis. Where’s wally?: Precise user discovery attacks in
location proximity services. In Ray et al. [38], pages 817–828.

[38] I. Ray, N. Li, and C. Kruegel, editors. Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communica-
tions Security, Denver, CO, USA, October 12-6, 2015. ACM, 2015.

[39] A. Sadeghi, T. Schneider, and I. Wehrenberg. Efficient privacy-preserving face recognition. In D. H. Lee and S. Hong,
editors, Information, Security and Cryptology - ICISC 2009, 12th International Conference, Seoul, Korea, December 2-4,
2009, Revised Selected Papers, volume 5984 of Lecture Notes in Computer Science, pages 229–244. Springer, 2009.

[40] J. Sedenka and P. Gasti. Privacy-preserving distance computation and proximity testing on earth, done right. In S. Moriai,
T. Jaeger, and K. Sakurai, editors, 9th ACM Symposium on Information, Computer and Communications Security, ASIA
CCS ’14, Kyoto, Japan - June 03 - 06, 2014, pages 99–110. ACM, 2014.

[41] A. Shpilka and A. Yehudayoff. Arithmetic circuits: A survey of recent results and open questions. Foundations and Trends
in Theoretical Computer Science, 5(3-4):207–388, 2010.

[42] M. Veytsman. How i was able to track the location of any tinder user. http://blog.includesecurity.com/
2014/02/how-i-was-able-to-track-location-of-any.html, Feb. 2014.

[43] M. Wachs, M. Schanzenbach, and C. Grothoff. On the feasibility of a censorship resistant decentralized name system. In
J. L. Danger, M. Debbabi, J. Marion, J. García-Alfaro, and A. N. Zincir-Heywood, editors, Foundations and Practice of
Security - 6th International Symposium, FPS 2013, La Rochelle, France, October 21-22, 2013, Revised Selected Papers,
volume 8352 of Lecture Notes in Computer Science, pages 19–30. Springer, 2013.

[44] A. C. Yao. Protocols for secure computations (extended abstract). In 23rd Annual Symposium on Foundations of Computer
Science, Chicago, Illinois, USA, 3-5 November 1982, pages 160–164. IEEE Computer Society, 1982.

[45] G. Zhong, I. Goldberg, and U. Hengartner. Louis, lester and pierre: Three protocols for location privacy. In N. Borisov
and P. Golle, editors, Privacy Enhancing Technologies, 7th International Symposium, PET 2007 Ottawa, Canada, June
20-22, 2007, Revised Selected Papers, volume 4776 of Lecture Notes in Computer Science, pages 62–76. Springer, 2007.

Hallgren et al. / Assuring BetterTimes: Private arithmetic formulas 27

Appendix

A. MaxPace implementation using BetterTimes-syntax

This section describes how MaxPace can be enforced using BetterTimes-syntax. The concrete protocol
is referred to as DecentMP (short for Decentralized MaxPace).

A.1. Homomorphic primitives

Recall that for the scope of this paper, Alice holds the private key for all BetterTrees computations and
is the only principal able to decrypt data. However, Bob is able to perform arithmetic computations using
the BetterTrees system. Below, the building blocks needed to construct DecentMP are described (see the
result in Listing 3).

The following is constructed using BetterTimes-syntax. All coin tosses can be sampled from a crypto-
graphically secure source using the built-in random(start, end) function. By convention, variables stor-
ing a ciphertext uses a prefixing “c_”. As in normal Python, exponentiation is written using double mul-
tiplication signs; xy is written as x ∗∗ y.
A.1.1. Homomorphic Distance

The squared Euclidean distance (henceforth simply called distance) can be computed using additively
homomorphic encryption in a privacy-preserving manner [45,13,40,39,22]. As shown in [21], most ap-
proaches are only secure in the semi-honest model but can be made secure in the malicious model using
BetterTrees.

The approaches above require that Bob holds one of the two coordinates in the clear. Listing 4 shows a
short protocol in BetterTimes-syntax syntax which computes the distance between (x1, y1) and (x2, y2)
without any plaintext knowledge. Computing the distance while holding a coordinate in the plain is
similar, however where the last two parameters c_x2, c_y2 are plaintexts and thus have a different type.
For the scope of this paper such a method is called ODistplain.

Listing 4: Procedure for distance computation

def ODist(c_x1, c_y1, c_x2, c_y2):

c_sq1 = c_x1 ∗ c_x1 + c_y1 ∗ c_y1
c_sq2 = c_x2 ∗ c_x2 + c_y2 ∗ c_y2
c_cross = c_x1 ∗ c_x2 + c_y1 ∗ c_y2
return c_sq1 + c_sq2 − 2 ∗ c_cross

A.1.2. Homomorphic Comparisons
There are several solutions to compute comparisons homomorphically in the literature [22,13] by

making use of bit parity. Here, a comparison method very similar to the one by Hallgren et al. is used [22].
Hallgren et al. use the fact that (x − y) · ρ, with ρ uniformly random, yields ⊥ if and only if x and

y are not equal. Thus, to compare x < y, it’s possible to check if ∃i ∈ {0..y − 1} : (x − i) · ρ = 0.
However, where Hallgren et al. use an array of equality-checks and shuffle it to hide which slot is equal
to the compared value, instead the values are multiplied here, as shown in Listing 5.

Listing 5: Procedure for computing “less than"

28 Hallgren et al. / Assuring BetterTimes: Private arithmetic formulas

def lessThan(c_x, y):

c_l = 1

for i in range(0, y − 1):
c_l = c_l ∗ (c_x − i)

return c_l ∗ random(1, k)

A.1.3. Homomorphic Proximity Check
To enforce the MaxPace policy, it is necessary to compute whether two points are near each other. In

short, the formula consists of chaining ODistplain and lessThan, as shown in Listing 6.

Listing 6: Procedure to check the proximity of two points

def proximity(c_x1, c_y1, x2, y2, r):

dist = ODist_plain(c_x1, c_y1, x2, y2)

return lessThan(dist, r ∗∗ 2)

A.1.4. Homomorphic Speed
The following shows, to the best of the authors’ knowledge, the first case where speed computations

are used together with additively homomorphic encryption. More precisely, Bob calculates whether or
not the speed of Alice is under an allowed threshold, as shown in Listing 7.

Listing 7: Procedure to check for too fast movement

def speed(c_x1, c_y1, c_x2, c_y2, h, t):

dist = ODist(c_x1, c_y1, c_x2, c_y2)

return lessThan(dist, (h ∗ t) ∗∗ 2)

The speed when moving d distance over a time t is computed as d/t. In MaxPace, the goal is to check
when the speed exceeds a threshold h. Thus, the sought computation is d

t ≤ h, which can be re-written
(for non-negative integers) as d ≤ h · t.

B. BetterTreesover Rings

Note that additively homomorphic schemes are commonly defined over groups where when multi-
plying a non zero element γ with a uniformly chosen ρ, the result is not necessarily uniformly dis-
tributed, thus potentially affecting the blinding of g(x, y). For instance, in groups such as Zn for compos-
ite n = p · q (as used by the Paillier [36] encryption scheme) when multiplying a non invertible element
with random ρ, the result stays in the subgroup of non-invertible elements. In that setting is thus possible
to show a counterexample to the theorem above.

In this section we design a protocol for outsourcing multiplication to Alice over the Ring Zn = {k ∈
N | 1 ≤ k ≤ n} for n = pq, where p and q are two different primes. We show that the protocol is secure
similar to the protocol over Fields presented in earlier section. Before proceeding to the main protocol
we introduce required basics.

Hallgren et al. / Assuring BetterTimes: Private arithmetic formulas 29

For given n ∈ N, Z∗n = {k ∈ N | 1 ≤ k ≤ n and G.C.D(k, n) = 1} denotes the set of all numbers
between 1 to n which are co-prime to n. We know that Z∗n is a group with respect to multiplication
modulo n. The cardinality of Z∗n is denoted by Φ(n). In our case, Φ(n) is (p− 1)(q− 1). The number of
non co-primes to n are n−Φ(n) = pq− (p−1)(q−1) = p+q−1. These non-co-primes are essentially
multiples of p and q; q of them are multiples of p, p of them are multiples of q and pq is the common
multiple. It is easy to see that, if a number m ∈ Zn is not co-prime to n, then G.C.D(m,n) must be
either p or q. Therefore, if Bob picks a number m randomly and suppose it is not co-prime to n then Bob
can find p (and hence q) easily as finding G.C.D is easy. As a result, with out loss of generality, we can
assume that if Bob picks a number m ∈ Zn then m is most probably co-prime to n.

B.1. Proof sketch

Lemma 4. In the outsourced multiplication protocol BetterTimesMul the assurance value a is equal to 0
if the protocol is followed, else either the value of a is indistinguishable from ⊥ or Alice learns nothing
extra by deviating from the protocol.

Proof. We first show that if Alice follows the protocol honestly then a is equal to 0. From the protocol,
we have [a] = ρ[d], where [d] = [a′]− ([z′]cm + [y′]ca).

[d] = [a′]− ([z′]cm + [y′]ca)

= [cy′]− ([x′y′]cm + [y′]ca)

= ([x′]cm + [ca])y
′ − ([x′y′]cm + [y′]ca)

= ([x′y′]cm + [y′]ca)− ([x′y′]cm + [y′]ca)

= [0]

(12)

This implies, [a] = ρ[d] = [ρd] = [0].
Now we proceed to show that if Alice deviates from the protocol then either the value of a is indistin-

guishable from ⊥ or Alice learns nothing extra by deviating from the protocol.
It is easy to see that, if d ∈ Z∗n then a is indistinguishable from⊥ as ρd is random when ρ 6= 0 and d is

invertible. This implies, at the same time if Alice wants to cheat Bob and distinguish ρd from ⊥ then she
must choose d ∈ Zn \Z∗n. That is, G.C.D(d, n) must be either p or q. Without loss of generality assume
that G.C.D(d, n) = p and Alice choose d such that d = kp for some k ∈ {1, 2, . . . , q − 1}. Recall that,
[d] = [a′]− ([z′]cm + [y′]ca).

[d] = [a′]− ([z′]cm + [y′]ca)

[kp] = [a′]− ([z′]cm + [y′]ca)

[a′] = ([z′]cm + [y′]ca) + [kp]

[a′] = [z′cm + y′ca + kp].

(13)

30 Hallgren et al. / Assuring BetterTimes: Private arithmetic formulas

We notice that, Alice can always compute [α] = [a′]− [c]y′ − [k]p as she knows a′, c, y′, k and p.

[α] = [a′]− [c]y′ − [k]p

= [a′]− ([x′]cm + [ca])y
′]− [kp]

= [a′]− ([x′y′cm + y′ca + kp])

= [a′ − (x′y′cm + y′ca + kp)]

= [z′cm + y′ca + kp− (x′y′cm + y′ca + kp)]

= [(z′ − x′y′)cm].

(14)

This shows that Alice can always compute α = (z′ − x′y′)cm. If (z′ − x′y′) is invertible then Alice
can compute cm = α(z′ − x′y′)−1 as well. But, the probability that the Alice can guess cm from c is
1
n . Therefore, if Alice deviates from the protocol then with high probability (z′ − x′y′) is non-invertible,
i.e., (z′ − x′y′) ∈ Zn \ Z∗n.

In any case, the goal of Alice is to return [z′] which is different from [x′y′] such that d ∈ Zn \ Z∗n
and (z′ − x′y′) ∈ Zn \ Z∗n. As (z′ − x′y′) ∈ Zn \ Z∗n, G.C.D(z′ − x′y′, n) must be either p or q but
not pq, since z′ 6= x′y′. With out loss of generality, assume that G.C.D(z′ − x′y′, n) = q. This implies,
z′ − x′y′ = lq for some l, where 1 ≤ l ≤ p− 1. This implies, z′ = x′y′ + lq and [z′] = [x′y′] + [lq].

If Alice cheats, then she receives the final value [Res + ρd + lqw] from Bob, for some w ∈ Zn
depending on the circuit. [Res+ ρd+ lqw] = [Res+ ρkp+ lqw] since d = kp for some k.

B.2. Insecure Functionalities over Rings

Some functionalities may be insecure over rings, even if they are evaluated with BetterTrees. One such
example is the InnerCircle protocol by Hallgren et al. [22]. InnerCircle is a protocol for deciding whether
two principals are closer to each other than some threshold r. This is accomplished using a distance
computation as shown in Section 4.1.1, followed by a novel comparison technique. Hallgren et al. prove
the protocol secure over fields in the semi-honest model, however even though the distance computation
can be made secure in the malicious model (as explained in Section 4.1.1), the comparison technique can
not. This is due to the fact that the functionality assumes that multiplication with any non-zero element
by a random number yields another number, which to the attacker is indistinguishable from random (it
is ⊥). However, using for instance Paillier, we have that any multiplication with a product of p is another
product of p (and likewise for q). The comparison method proceeds as shown in Listing 8.

Listing 8: Procedure for computing “less than"

def lessThan(c_x, y):

l = []

for i in range(0, y − 1):
l.append((c_x − i) ∗ random(1, k))

return l

The idea is that the list l contains only random numbers if x ≥ y, or only random numbers except for
exactly one zero if x < y. However, if there are subgroups (like with Paillier), this will also leak whether

Hallgren et al. / Assuring BetterTimes: Private arithmetic formulas 31

y

x

Attacker

p

r

Fig. 10. Visualized attack on the InnerCircle protocol

or not x ≥ t · p ∨ x < t · p+ r for some t ∈ {0..q} (and vice versa for q). It may seem far fetched that a
number is close to the secret factors p or q, but in the case of InnerCircle, x is the distance which means
that the adversary can make this fact likely by positioning themselves at a large distance away from the
victim.

For InnerCircle, this leakage is also rather meaningful. Assuming that the plane is large (e.g. with Pail-
lier, each axis would be at least 21024), the coordinates needed to cover the earth are in least-significant
corner. If the attacker positions them far from earth, e.g. p units from the center of the earth’s surface,
then the lessThan function will compute not the proximity of the attacker and the victim, but whether
the victim is a band of width r, spanning the height of the earth. For an example, see Figure 10, where
the attacker, positioned at the red dot, learns if the victim is in an area stretching from Cape Town in the
south of Africa to Svalbard north of Europe, covering several entire European countries such as Italy and
Sweden.

