
Explicit Secrecy: A Policy for Taint Tracking

Daniel Schoepe∗, Musard Balliu∗, Benjamin C. Pierce†, and Andrei Sabelfeld∗
∗Chalmers University of Technology

†University of Pennsylvania

Abstract—Taint tracking is a popular security mechanism for
tracking data-flow dependencies, both in high-level languages
and at the machine code level. But despite the many taint
trackers in practical use, the question of what, exactly, tainting
means—what security policy it embodies—remains largely
unexplored.

We propose explicit secrecy, a generic framework capturing
the essence of explicit flows, i.e., the data flows tracked by taint-
ing. The framework is semantic, generalizing previous syntactic
approaches to formulating soundness criteria of tainting. We
demonstrate the usefulness of the framework by instantiating
it with both a simple high-level imperative language and an
idealized RISC machine. To further understanding of what is
achieved by taint tracking tools, both dynamic and static, we
obtain soundness results with respect to explicit secrecy for the
tainting engine cores of a collection of popular dynamic and
static taint trackers.

1. Introduction

Taint tracking is a striking success story in computer secu-
rity. It is used to enhance both confidentiality and integrity
in a wide variety of applications ranging from hardware-
level [23], [56] and binary-level tainting [22], [54] to taint-
ing in mobile [34] and web [46], [59], [43] applications.
Languages such as Perl [4] and Ruby [3] have built-in
support for taint tracking, and extensions for languages such
as Java [37], [59], JavaScript [46], and Python [28] are
available to perform taint tracking.
Motivation. At its heart, taint tracking is about tracking
data dependencies as data is propagated by the system. In
the setting of a mobile app, taint tracking can help detect
privacy leaks, e.g., when the app attempts to send the user’s
location to a third-party. This is done by labeling location
data as secret and detecting when secret-labeled data is sent
to third parties over the network, as e.g. in the popular
TaintDroid tool [34]. This is an example of enforcing a
confidentiality policy by taint tracking. Or, in the setting of a
web application, some input sources (e.g., user input) can be
labeled as “tainted,” and taint tracking can be used to prevent
tainted data from affecting sensitive sinks (e.g., writing to a
system file or generating HTML for a web page) [59], [43].
This is an example of enforcing an integrity policy by taint
tracking.

A key reason behind the success of taint tracking tools in
practice is that taint tracking is a pure data dependency anal-

ysis. It only tracks explicit [32] flows of the form l := h+1
where the value of h is explicitly leaked into l, while ignor-
ing implicit [32] flows of the form if h then l := 1 else l :=
0 via the control-flow structure of the program. Ignoring
implicit flows makes taint trackers unsound (especially for
malicious code where the attacker is in control of what flows
to exploit [50]), but this loss of soundness is compensated
by a large increase in practicality because the enforcement
need not track control flows. This makes a crucial difference
for the practicality because tracking control flow is hard:
although much progress has been made on information-
flow tracking, dealing with control flow in expressive pro-
gramming languages remains challenging [51], especially
in dynamic languages as JavaScript where it is hard to
predict side effects along alternative execution paths [38].
By comparison, taint tracking is appealingly lightweight and
effective, as evidenced by its success in finding vulnerabili-
ties in real systems and its adoption in many programming
languages.

The success of taint tracking brings us to a seemingly
basic yet highly elusive question: What, precisely, is taint
tracking good for? In other words, what is the formal
meaning of “data dependency” and “explicit flows,” and
what is an appropriate soundness criterion for a taint tracker?
Answers to these questions are not to be found in program
analysis literature [48], where the focus is not on data
dependencies themselves but on their use for code trans-
formation and optimization [7]. What is more surprising is
that general answers to these basic questions, to the best
of our knowledge, are neither to be found in the security
literature!

This is in sharp contrast to the general area of infor-
mation flow [51], which is concerned with specifying confi-
dentiality and integrity for both explicit and implicit flows,
where there is a large body of work on policies ranging from
noninterference [27], [35], which allows no dependencies
from secret sources to public sinks, to various flavors of
declassification [52] and endorsement [11] policies.

It is thus highly desirable to improve the understanding
of explicit (vs. implicit) flows and develop a general policy
framework for taint tracking that can be related to known
security characterizations and serve as a target condition for
taint tracking mechanisms.

Background. To date, efforts on characterizing tainting
policies have been scarce. Rather than specifying a security
condition, it is common to state desired properties of the



enforcement, phrased in an enforcement-centric fashion, as,
e.g., in graph-based properties in the work by Livshits and
Chong [42], [43]. Another approach is to formalize the
essence of taint tracking by formalizing a generic taint
tracker, as, e.g., in the work by Schwartz et al. [54]. While
succinctly representing what happens inside such tools as
BitBlaze [56] and BAP [19], such a formalization is inher-
ently low-level [54].

What we are looking for is an enforcement-independent
condition that captures the essence of explicit flows and that
can be checked against independently interesting approaches
to enforcement.

Closest to our needs is Volpano’s weak secrecy [63],
the only policy we are aware of that focuses on describing
what can be enforced by explicit flow analysis. Weak se-
crecy makes use of the classical information-flow notion of
noninterference [27], [35], which demands that a program’s
secret input may not influence the program’s public output.
Intuitively, a program satisfies weak secrecy if, for any run
of a program up to a given point in time, the sequence of
assignments performed by the program satisfies noninterfer-
ence.

While weak secrecy is a reasonable starting point, there
are some roadblocks for adopting it for reasoning about
practical taint trackers. The fact that the definition is syn-
tactic in nature, relying on extracting assignment commands
from the original program, implies that the definition does
not scale to languages with rich features such as reflec-
tion. This makes adapting it to low-level languages partic-
ularly challenging. Low-level machines allow “reflective”
programming idioms such as programs that read or write
their own instructions. A direct extension of weak secrecy
in this setting does not work because a modified program
will not necessarily have the same instructions in the mem-
ory. Also, low-level machines typically have many instruc-
tions, and each instruction may have complex semantics
(e.g., jump-and-link instructions that modify both control
flow and memory). There is no clear criterion for how
to extend the weak secrecy definition. This is particularly
concerning, given that taint tracking often targets low-level
machines [22], [54]. Other features that challenge weak
secrecy, even in high-level languages, include expressions
with side effects, which require custom-tailored encodings to
get weak secrecy to work. Finally, the definition is indirect,
defining a weak policy, weak secrecy, via the stronger policy
of noninterference.

What we want is a language-independent, semantic defi-
nition of “correct taint tracking”, generalizing weak secrecy
and applicable to a wide range of models from high-level
languages to low-level machines. Our goal is to lay founda-
tion for exploring the design space of ways to split program
configurations into data and control.
Contributions. Motivated by the above, we propose a gen-
eral semantic framework for specifying explicit flows, of-
fering the following contributions: (i) We propose a knowl-
edge-based semantic security condition, explicit secrecy, that
captures the essence of explicit flows in a language-inde-
pendent way, based on a distinction between “control” and

“data” that is specified by the language designer. Intuitively,
explicit secrecy separates data and control and demands the
security of flows for the data part. (ii) We show the flexibility
of the model by incorporating possibilities of declassifica-
tion and sanitization, unexplored features in the context of
previous attempts to give a soundness condition to taint
tracking. (iii) We instantiate explicit secrecy for a high-level
imperative language with I/O to obtain a soundness criterion
for taint tracking. (iv) We instantiate explicit secrecy for
a simple RISC machine to yield a soundness criterion in
the setting of low-level languages. (v) Being a semantic
condition, explicit security can readily be related to known
security characterizations. We show that its instantiation to
a simple imperative language agrees with weak secrecy,
demonstrating that explicit secrecy indeed generalizes weak
secrecy. Thus, like weak secrecy, explicit secrecy does not
subsume (and is not subsumed by) noninterference. Further,
we establish that explicit secrecy is stronger than an intu-
itive declassification-based condition (dubbed Control-Flow
Gradual Release) that declassifies the guards at branching
points. (vi) We use explicit secrecy to illuminate the behav-
ior of real-world taint trackers by analyzing the core of taint
tracking engines from several popular languages and tools.
In particular: we show soundness for a dynamic enforcement
mechanism for a simple subset of high-level languages
such as Perl and Ruby; we show soundness for a dynamic
enforcement mechanism [54] underlying the BAP [19] and
BitBlaze [56] tools for low-level machines; and we define
a simple static enforcement mechanism reminiscent of the
ones in Andromeda [60] and FlowDroid [8] and prove it
sound.

Scope. The paper lays groundwork for judging the sound-
ness of existing and new enforcement mechanisms. We eval-
uate the foundational framework on the core mechanisms
underlying practical enforcement techniques. The approach
gives benefit whether the soundness proofs succeed (by
giving assurance of what is achieved) or fail (by pointing
to insecurities). Thus, in addition to the foundational im-
pact, the practical impact of the paper is the demonstration
that core mechanisms of the practical tools (analyzed in
Section 3) are sound. While experimental evaluation of the
approach is important, it can only be done once a sound
foundation is in place. Similarly to other foundational work
on security (e.g., [44], [12], [25], [54]), we note that while
the experimental evaluation is not in the scope of the present
study, it is subject to subsequent engineering work that can
build on the foundations.

For simplicity, we focus on confidentiality in the rest
of the paper. Note that noninterference is suitable for both
integrity (e.g., tracking buffer overruns) and confidentiality
(e.g., tracking leaks in mobile apps). These are dual proper-
ties in terms of information flow [17]. Similarly, our notion
of explicit secrecy is equally suitable for both integrity and
confidentiality, through dualization. Using the duality, we
can interpret tainted sources/sinks as untrusted and reason
about attacker influence similarly to knowledge-based ap-
proaches. Sanitization functions for preventing injection vul-



nerabilities can be modeled as declassification/endorsement.
For brevity, we elide proofs of formal statements and

full details of the larger definitions; these are available in
the full version of the paper, available online [6].

2. Specifying Explicit Flows

We first review the definition of weak secrecy and elaborate
on difficulties with instantiating weak secrecy to richer
languages (Section 2.1). To address these difficulties, we
introduce explicit secrecy (Section 2.2), a language-agnostic
security property that formalizes the idea of “security with
respect to explicit flows only.” We show how to instan-
tiate this property to both a simple imperative language
(Section 2.4.1) and machine code for a simple RISC ma-
chine (Section 2.4.2). To benchmark explicit secrecy against
information-flow conditions, we show examples demon-
strating that it is incomparable in power to noninterfer-
ence. Further, we explore an intuitive approach to char-
acterize explicit-flow tracking using a variant of gradual
release [12], a knowledge-based information release policy.
We show that explicit secrecy is stronger than this charac-
terization (Section 2.5).

2.1. Weak Secrecy

To formalize security with respect to (just) explicit flows,
Volpano [63] introduced weak secrecy for a simple impera-
tive language. We begin by recapitulating his definition.

Our language includes global variables, while loops,
conditionals, assignment, and output.

c ::= skip | c1; c2 | x := e | out e |
if e then c1 else c2 | while e do c

We assume a set of variables Var . A configuration (c,m)
consists of a command c and a memory m ∈ Mem mapping
variables to integers, i.e. Mem = Var → Z. We write
(c,m)

α−→ (c′,m′) to denote that a configuration (c,m) eval-
uates in one step to configuration (c′,m′) while producing
trace α ∈ Obs∗, where Obs = Z. The (standard) definition
of this relation can be found in the extended version. A
terminated program is represented by ε. We also write ε for
the empty trace.

Clark and Hunt [24] show that for the security of
deterministic programs, such as programs in the presented
language, it makes no difference whether the environments
are modeled as streams or strategies. A further common
simplification [10] is to model input to a program by initial
memories.

We assume that each variable x has an associated se-
curity level Γ(x) ∈ L, where (L,t,v) is a lattice of
security levels. In the examples, we assume a two-level
security lattice consisting of H for variables containing con-
fidential information and L for variables containing public
information, with L v H. Two memories m1 and m2

are said to be low equivalent, written m1 =L m2, iff
∀x. Γ(x) = L⇒ m1(x) = m2(x).

Our language differs in one small respect from the one
used by Volpano: there, every assignment to a low variable
generates an event that is visible to the attacker. While
this allows for content in high variables to be updated
with low values, any assignment of high content to low
variables renders the program insecure. We make the setup
a bit more flexible by limiting the attacker to observing
the program’s external behavior, introducing explicit out-
put instructions that generate attacker-visible events, with
assignments not being directly observable. However, this
choice is orthogonal to the security conditions presented
here and in Section 2.2.

The intuition of weak secrecy is that every possible
sequence of non-control-flow statements (assignments and
outputs) executed by a program run has to be noninter-
fering. To define this, we annotate the evaluation rules in
the semantics to record executed explicit flow statements,
writing (c,m)

α−→
d

(c′,m′) if the step from (c,m) to (c′,m′)

generates the explicit flow statement d (and observable
events α). Note that d is distinct from α—i.e., it is not part
of the trace of attacker-visible observations generated by the
program. For example, here are the instrumented rules for
assignment, output, and the true case of the conditional1
(the extended version gives the other rules); when d and/or
α are empty or unimportant, we omit the superscript and/or
subscript on the −→:

m(e) = n

(x := e,m) −−−→
x:=e

(ε,m[x 7→ n])
(E-ASSIGN)

m(e) = n

(out e,m)
n−−−→

out e
(ε,m)

(E-OUT)

m(e = 0) = n n = 0

(if e then c1 else c2,m) −→ (c1,m)
(E-IFTRUE)

Note that the notion of “control-flow statement” is not a
formal one and is left open when instantiating weak secrecy
to another language. While for this language it is reasonably
straight-forward to determine which statements affect the
memory, more advanced language features can blur this
issue.

We use a standard definition of noninterference [27],
[35]. Because we will only apply noninterference to straight-
line programs the exact flavor (e.g., termination-sensitive vs.
insensitive [51]) is inconsequential.

2.1.1 Definition [Noninterference]: A program c satisfies
noninterference, written NI � c, iff whenever m1 =L m2

and (c,m1)
`1−→∗ (ε,m′1) and (c,m2)

`2−→∗ (ε,m′2), we have
`1 = `2.

Finally, we define weak secrecy in terms of the extracted
explicit flow statements from all possible runs:

1. We assume that an expression such as e = 0 evaluates to 1 if m(e) =
0 and 0 otherwise.



2.1.2 Definition [Weak secrecy]: A program c satisfies
weak secrecy, written WS � c, iff whenever (c,m) −→

d

∗

(c′,m′), we have NI � d.

Consider the following program (call it cimpl ):

i f (h = 0)
then l := 1
e l s e l := 2;

out l

This program leaks whether or not the high variable h is
0 using an implicit flow. For c to satisfy weak secrecy,
all possible sequences of assignment and output statements
arising from executions of this program in different starting
memories must be noninterfering. Concretely, l := 1 and
l := 2, as well as l := 1; out l and l := 2; out l have
to satisfy noninterference. Since this is the case, WS � c
holds. This captures the intuition that taint is not propagated
through control-flow decisions in taint-tracking systems.

Weak secrecy offers an intuitive formal account of se-
curity with respect to explicit flows. However, its inherently
syntactic nature (“extract the assignment statements and
outputs from every run of the program...”) means that it is
not always clear how to extend it to other programming lan-
guages. For example: (i) Many high-level languages allow
the expressions appearing in the guards of conditionals and
loops to have side effects. In such languages, the extracted
statement will have to include more than just top-level as-
signment statements and outputs from the original program.
E.g., for a program such as if (h := 0) = 0 then ... else ...,
the assignment h := 0 has to be extracted. (ii) Con-
versely, many languages allow conditional expressions such
as x ? y : z in C. If such expressions are regarded as
“control flow,” then some significant transformation may be
required to extract just the data-flow parts of expressions.
Weak secrecy gives no direct guidance as to how this should
be done.

One particular setting where taint tracking is commonly
employed in practice is machine code. But adapting weak
secrecy to machine code again raises questions: (i) Ma-
chine-code programs can access their own “program text” as
data (and they sometimes do this, in practice, for example
in certain tamper-proofing techniques [45]). If we extract
only a part of this program text into the extracted program,
then program memory will contain different values when
the extracted program is executed, compared to the original.
The extracted program can then produce different results,
resulting in insecure flows that only occur in the extracted
program but not in the original, or vice versa. We discuss
this further in Section 2.4.2. (ii) Some instructions, e.g.
jal (jump and link), modify both the machine’s memory
(the stack) and its control state (the program counter); that
is, there is both an explicit as well as an implicit flow of
information. To extract only the explicit flow part, it seems
jal instructions would have to be extracted into instructions
capturing only the changes to the memory.

2.2. Explicit Secrecy

To deal uniformly with all these issues, we introduce explicit
secrecy, a semantic property that builds on the intuition of
weak secrecy. Intuitively, explicit secrecy separates changes
to the state of a program from changes to the control flow,
like weak secrecy. However, rather than manipulating the
syntax of the running program, we now extract a function
that captures the “state modification” of each execution step.

Explicit secrecy is language-agnostic, assuming only that
the language designer can give a (small-step) semantics
for their language or machine and specify the distinction
between the “state” and “control” parts of a program or
machine configuration with this choice determining what
is considered to be an explicit flow. Roughly speaking,
choosing a larger part of a configuration as the “state” part
entails considering more flows as explicit flows. Concretely,
the interface between the language definition and the explicit
secrecy property comprises the following:

i. Sets of configurations (Conf ), commands (Com),
states (State), and observations (Obs). Intuitively, a
state denotes only the “memory part” (as opposed to the
“control part,” which is a command) of a configuration.
An observation is an event that is visible to the attacker.
(We sometimes say “program” instead of “command”
when we want to emphasize that we are talking about
an entire program such as might be loaded into a
machine at the beginning of a run, as opposed to
smaller fragments such as single machine instructions.)

ii. A small-step evaluation relation: → ⊆ Conf ×Obs∗×
Conf . We write cfg

α−→ cfg ′ if cfg evaluates to cfg ′

in one step while producing observations α; we elide
α when it is empty or unimportant. For simplicity, we
assume that this relation is deterministic. (We discuss
how to lift this assumption later in this section.)

iii. An equivalence relation =L ⊆ State × State between
states, where s1 =L s2 means that the states s1 and s2
are not distinguishable by the attacker.

iv. A function state(·) : Conf → State mapping configu-
rations to states and a function com(·) : Conf → Com
that extracts the next command that will be executed.
Moreover, we require a function 〈·, ·〉 : Com×State →
Conf constructing a configuration with a given com-
mand and state. For every configuration cfg it must
hold that 〈com(cfg), state(cfg)〉 = cfg .
(In the instantiation for the while language in Sec-
tion 2.4.1, configurations are simply tuples of command
and state parts; 〈·, ·〉 constructs a tuple, with state(·)
and com(·) acting as projections and obeying the usual
laws. In the case of machine code, however, data and
code are mixed. Therefore, the command that is ex-
tracted consists only of the next instruction, since other
memory content cannot be distinguished from data that
will not be executed. Thus, com(〈c, s〉) = c does not
hold in general for machine code. We discuss this in
more detail in Section 2.4.2.)

The power of explicit secrecy depends on careful choice of
the parameters. Intuitively, explicit flows are only concerned



with changes to the state. To model explicit flows, we
use the small-step semantics to construct, for each exe-
cution step during a program’s execution, a function that
transforms a state while possibly producing output events.
For simplicity, we add another assumption to guarantee
totality of the function constructed for each step: we assume
that, if cfg −→ cfg ′, then for every configuration cfg1
with com(cfg) = com(cfg1), there exists cfg ′1 such that
cfg1 −→ cfg ′1. I.e., evaluation of a fixed command is defined
for all possible states, if that command can be evaluated
in some state. This, together with assuming a deterministic
evaluation relation, allows us to extract functions acting on
state in a unique and well-defined way.

2.2.1 Definition: For each step cfg −→ cfg ′, we de-
fine a function f : State → State × Obs∗ by
f(s) = (state(cfg ′′), α) for the unique α, cfg ′′ such that
〈com(cfg), s〉 α−→ cfg ′′. We write cfg −→

f
cfg ′ to denote that

cfg evaluating to cfg ′ is associated with f in this way.

(Whether the subscript on −→ refers to a function, or an
extracted command in the sense of weak secrecy, should
always be clear from context.)

Intuitively, for a step cfg −→
f

cfg ′, f(s) simulates how

the given input state s would be changed by executing
the same step that cfg performs. For example, executing
an assignment x := e in the while language results in
f(m) = (m[x 7→ m(e)], ε), where m(e) denotes evaluat-
ing expression e in memory m; i.e., executing an assign-
ment modifies the memory accordingly while producing
no output. Performing a step for a command of the form
if e then c1 else c2 results in f(m) = (m, ε), encoding
the fact that branching neither changes the memory nor
produces any output.

We can then lift the construction of state changing func-
tions to multiple steps by chaining the state modifications
and concatenating the produced output

cfg −→
id

∗ cfg

cfg
α−→
f

∗ cfg ′ cfg ′
β−→
g

cfg ′′

cfg
α.β−−−→
g�f

∗ cfg ′′

where g � f computes the final state and concatenates the
outputs—i.e., (g � f)(s) = (s′′, α.β), when f(s) = (s′, α)
and g(s′) = (s′′, β).

For example, consider the command c = (h := 0 ;
out h) in the simple imperative language of Section 2.1.
The function g associated with executing two steps of
this program, i.e., (c,m)

`−→
g

∗ (ε,m′), will first perform

update the current memory and then output the value of
h in the modified memory. That is, g = g2 � g1 where
g1(m) = (m[h 7→ 0], ε) and g2(m) = (m, [m(h)]), and
hence g(m) = (m[h 7→ 0], [0]).

Functions constructed this way correctly encode actual
execution steps:

2.2.2 Lemma: If cfg α−→
f

∗ cfg ′, then

f(state(cfg)) = (state(cfg ′), α).

Depending on how programs and configurations are
represented, not all initial states might be valid starting states
for a program. For example, in the low-level language we
consider, starting configurations are created from a program,
represented as a list of instructions, and a starting memory
by overwriting a part of the memory with the instructions
of the program. Therefore, considering states where the pro-
gram region contains different instructions can render well-
behaved programs insecure. (A concrete example of this can
be found in Section 2.4.2.) To rule out such “impossible”
initial states, we define valid initial states as the set of states
that can be obtained by creating a configuration from the
command:

2.2.3 Definition [Initial states]: For command c, we de-
fine the set of valid initial states S0(c) by

S0(c) = {s | ∃s′.state(〈c, s′〉) = s}.

In the case of machine code programs, this set will
contain memories that match the instructions of c at the
addresses where c is placed. In the case of while programs,
all states are valid initial states.

We can now define the knowledge an attacker obtains
from observing only outputs from a sequence of changes to
the state. We capture this by defining a set of initial states
that the attacker considers possible based on some obser-
vations. Concretely, for a given initial state s0 and some
state transformer f , another state is considered possible if
s0 =L s and it matches the trace produced by f(s0), i.e.
π2(f(s0)) = π2(f(s)), where πi projects a tuple to its ith
component.

2.2.4 Definition [Explicit knowledge]: We define the ex-
plicit knowledge with respect to command c, initial state s0,
and state transformer f by

ke(c, s0, f) = {s | s =L s0 ∧ s ∈ S0(c)∧
π2(f(s)) = π2(f(s0))}.

A program then satisfies explicit secrecy for some initial
state iff no indistinguishable, valid initial states can be ruled
out from observing the output generated by the extracted
state transformer.

2.2.5 Definition [Explicit secrecy]: A program c satis-
fies explicit secrecy for initial state s, written ES �
(c, s), iff whenever 〈c, s〉 −→

f

∗ cfg ′, we have ∀s0 ∈
S0(c). ke(c, s0, f0) = ke(c, s0, f) where f0(s) = (s, ε).
A program c satisfies explicit secrecy, written ES � c, iff
ES � (c, s) for all s ∈ State.

In order to ignore information from implicit flows, the
definition quantifies over all s0 ∈ S0(c) instead of states that
are low-equivalent to s. For example, consider the program
if l = 0 then out l× h else skip, which is considered inse-
cure by most taint-tracking systems. The state transformer
extracted for the then branch (for a memory m0 where
m0(l) = 0) is f(m) = (m, [m(l) ×m(h)]). If we consider
only states that are low-equivalent to m0, the explicit flow
in the then branch is not detected, since low equivalence



to m0 implies that l = 0. In order to capture the behavior
of taint-tracking systems, we quantify over all (valid) initial
states instead.

Since the definition is knowledge-based, it extends nat-
urally to a non-deterministic setting by extending state
transformers to return sets of possible successor states.
Similarly, the totality assumption on the evaluation relation
can be lifted by constructing partial state transformers and
considering only states in the domain of the resulting state
transformers.

2.3. Declassification

Like noninterference, explicit secrecy is often too strict to
accommodate real-world applications and needs a mech-
anism to declassify some data that depends on sensitive
information. For example, taint-tracking systems often allow
taint to be removed from data after passing it through a
sanitizer. In this section we show how explicit secrecy can
be extended to handle such behavior.

Being a knowledge-based definition, explicit secrecy can
be extended naturally to support declassification in the style
of gradual release [12]. We assume that there is a set of
release events Rel ⊆ Obs that occur when information is
intentionally released by a program. In terms of explicit
secrecy, we allow the attacker’s knowledge to change based
on observing such events but require that it remain constant
for other events.

2.3.1 Definition [Explicit secrecy modulo release]: A
command c then satisfies explicit secrecy modulo release
for initial state s iff

〈c, s〉 −→
f

∗ cfg ′
α−→
g

∗ cfg ′′ ∧ α 6∈ Rel ⇒

ke(c, s, f) = ke(c, s, g � f)

For example, the while language from Section 2.1 can be
extended with a declassify(e) statement that releases the
value of expression e to the attacker. The semantics of the
language is extended by the following rule:

E-DECL
m(e) = n

(declassify(e),m)
rel(n)−−−−→ (ε,m)

The rule denotes that evaluating a statement
declassify(e) produces a release event rel(n) containing
value n. We then define the set of release events as
Rel = {rel(n) | n ∈ Z}.

To illustrate this extension, consider a program that
processes some sensitive input (such as a POST request
containing a password and other data) and logs information
about requests to a log file. It is important that the user’s
password not be leaked to the log file. For example, the
following program logs the request verbatim, thereby
violating the intended policy (this is often mentioned as a
secure coding guideline as well [2]):

output_to_log ("Request: " + request);
i f (hash(password(request)) == stored_hash)
then output_to_user sensitive_data
e l s e output_to_user "access denied";

(Here password extracts the submitted password and hash

computes the hash of a password.) This program is rejected
by explicit secrecy since private information, namely the
contents of request, are output explicitly (to the log file).

If instead the request is sanitized by removing the pass-
word, the program is secure and it is accepted:

declassify(remove_password(request));
output_to_log ("Request: " + remove_password(request));
i f (hash(password(request)) == stored_hash)
then output_to_user sensitive_data
e l s e output_to_user "access denied";

Because of the use of declassification, this program sat-
isfies explicit secrecy modulo release: The attacker learns
the value of remove_password(request) when the declassify

command is executed; this is permitted, since the produced
event is a release event. The same value is then appended
to the log, resulting in no increase in knowledge for the
attacker. (The final output statement also depends on the
user’s password, but does so only through the control flow
and hence is accepted by explicit secrecy.)

2.4. Instantiating Explicit Secrecy

This section demonstrates how to instantiate the explicit se-
crecy framework both for the high-level language introduced
in Section 2.1 and for a RISC-style assembly language.

As described in Section 2.2, instantiating explicit secrecy
first requires the language designer to define which parts of
a configuration hold state and which determine the control
flow of a program. This is specified by providing mapping
functions from configurations to state and command parts
respectively.

For example, in many imperative high-level languages,
configurations often consist of the current statement, along
with various forms of state, such as values of variables,
the state of the heap and stack, exception handlers, etc. In
such a case, the statement and exception handlers (since they
are part of the control flow) can be considered the control-
flow component and the variables and the heap and stack as
the state component of a configuration. Also note that, in
the extremes, choosing the entire configuration as control-
flow component yields a vacuously true condition, while
taking the entire configuration to be the state part results in a
form of noninterference. For example, in a purely functional
language without side effects, the entire configuration has
to be considered as either just state or just control, showing
that taint tracking for (purely) functional languages is not a
very meaningful notion.

Second, explicit secrecy assumes a small-step evaluation
relation provided by the language designer, which also
determines the events that are observable by the attacker.
To model a powerful attacker observing all writes to public
memory locations, each step of an assignment statement



to a low variable would produce an attacker observation.
Conversely, for an attacker who only observes specific out-
put events, observations are only produced when evaluating
distinguished output statements.

To summarize, the following steps are needed when
instantiating explicit secrecy for a new language:
• Decide what part of a configuration contains data. Ex-

plicit secrecy then only tracks statements that directly
modify this part. Changes to other parts of the config-
uration are not considered for security. A useful rule
of thumb may be to choose all parts of a configuration
that directly contain secrets. Additionally, the language
designer has to specify a function constructing config-
urations from a command and a state part.

• Choose an appropriate small-step relation. In order to
arrive at a sensible security condition, evaluation steps
need to be small enough to separate changes to the
state from changes to the control-flow. For example,
a big-step relation results in a much stronger security
condition, similar to noninterference.

• Choose the attacker observations. This depends on the
application scenario and affects how strong the result-
ing security condition is.

• Depending on the attacker, one should also choose
an equivalence relation on states encoding what the
attacker can observe about initial states.

2.4.1. Instantiation for While Language. To instantiate
explicit secrecy for the language introduced in Section 2.1,
we define the parametric elements from Section 2.2 as
follows:

i. The set of states is given by memories, i.e., functions
mapping variables to values State = Mem = Var →
Z, and Com is the set of statements defined in Sec-
tion 2.1. A configuration is a pair of a command and
a memory: Conf = Com ×Mem . An observation is a
value v ∈ Z.

ii. The evaluation relation −→ is as given in Section 2.1.
iii. As before, m1 =L m2 holds iff ∀x. Γ(x) = L ⇒

m1(x) = m2(x).
iv. Projecting to the state or command component of a

configuration extracts the memory state((c,m)) = m
or command part com((c,m)) = c; creating a configu-
ration from a given command and memory is given by
〈c,m〉 = (c,m).

Each step results in a state transformer based on the first
statement in the configuration. The state transformer acts on
the memory part of the configuration, and might produce an
output: An assignment x := e will yield a function f(m) =
(m[x 7→ m(e)], ε). Output statements of the form out e
result in a function f(m) = (m, [m(e)]). For every other
type of statement, the extracted function is f(m) = (m, ε).
In particular this means that control-flow commands such
as if statements will not affect the attacker’s knowledge,
corresponding to the intuition that these are not considered
explicit flows.

As an example, consider the program cimpl from Sec-
tion 2.1, which leaks one bit about the value of h using

an implicit flow. The possible state transformers f for a
complete execution of cimpl starting in m0 have the form
fi(m) = (m[l 7→ i], [i]) where i = 1 or i = 2, depend-
ing on whether or not m0(h) = 0. If we consider any
other memory m such that m ∈ [s0]L, then it holds that
π2(fi(m)) = [i] = π2(fi(m0)). Therefore, the program is
judged secure by explicit secrecy, since no information is
leaked through an explicit flow.

However, a program such as if h =
0 then out h else out 0 will be judged as insecure
since, if m0(h) = 0, the extracted state transformer is
f(m) = (m, [m(h)]), due to the elimination of control-flow
information. Even though this program is secure in the
sense of noninterference, the program is not secure in the
sense of explicit secrecy, since information is propagated
using an explicit flow.

After performing a series of steps (c,m) −→
f

∗ (c′,m′),

the function f that is extracted from the run corresponds to
the sequence of assignments and output statements executed;
since the steps that only alter the control flow, such as if
statements, do not change the memory, these statements
are not reflected in f . This corresponds to the sequence
of commands that is extracted by Weak Secrecy and in
fact, weak secrecy and explicit secrecy for while programs
coincide:

2.4.1 Theorem: ES � c iff WS � c, for any command c.

A natural question that arises is how explicit secrecy
applies to languages with richer features, such as pointers
or reflection. For example, in a language supporting pointers,
the extracted state transformers, depending on the exact se-
mantics, would replicate the changes pointer-based features
make to the memory. A statement like ∗e1 := e2 in a C-like
language assigning the result of e2 to the location pointed
to by e1 would result in the expected state transformer f :
Namely f(m) would evaluate e1 in m, and assign the result
of evaluating e2 in m to that location and return the modified
memory. This captures the state modification performed by
the original statement. This would imply that an enforcement
mechanism which taints all variables occurring in e1 would
be sound, provided the rest of the language features are
handled properly. This is discussed in more detail in the
context of machine code in the following section.

Similarly, features like Java-style reflection would re-
sult in state transformers capturing the modifications they
perform to the stack and heap, but ignore implicit flows
resulting from it; for example code constructed at runtime.

2.4.2. Instantiation for Machine Code. We next demon-
strate how to instantiate explicit secrecy for a simple RISC-
style machine. We denote the set of machine words by W
and the set of registers by Reg . We consider the following
instruction set:

i ::= nop | halt | out r | const i r | mov rsrc rdst |
op⊕ r1 r2 rdst | load raddr rdst | store raddr rval |
jump r | bnz r i | jal r



The semantics of instructions are standard (full details are
in the extended version.): nop performs no operation, halt
halts execution, and out r outputs the content of register r.
Instructions of the form const i r load constant i ∈W into
register r, op⊕ r1 r2 rdst combines registers r1 and r2 using
operator ⊕ and stores the result in register rdst . Memory
access is performed using load and store instructions where
load raddr rdst loads from the address in raddr into rdst
and store raddr rval writes the value in rval to the memory
address stored in raddr . The control flow can be manipulated
using jump r, which jumps to the address in register r, or
bnz r i, which jumps to address i if the value in r is non-
zero. Function calls can be performed using an instruction
of the form jal r which stores the current program counter
at the address pointed to by a special register sp and jumps
to the address in register r.

A configuration (mem, reg , pc) of this machine consists
of a memory state mem : W → W, a register state
reg : Reg →W, and a program counter pc ∈W. Evaluation
of configuration (mem, reg , pc) in one step to configuration
(mem ′, reg ′, pc′) while producing trace α ∈W∗ is denoted
by (mem, reg , pc)

α−→ (mem ′, reg ′, pc′). Machine code in-
structions are also encoded as machine words; decode(w)
turns a machine word into a symbolic representation of the
instruction (if possible), while encode(i) maps instruction i
to the corresponding machine word. A program (is, pc0) for
this machine consists of a list of machine words is ∈W∗ to-
gether with a word indicating the expected starting address.
A starting machine configuration for (is, pc0) is produced
from an initial memory mem and initial register state reg
by overriding the words at pc0, . . . , pc0 + |is| − 1 by the
instructions is and setting the program counter to pc0. We
denote this by (mem[pc0 7→ is], reg , pc0).

We assume that each memory location a ∈ W has an
associated security level Γ(a) ∈ L; similarly, each register
r ∈ Reg is associated with a security level Γ(r) ∈ L.

We instantiate the parameters from Section 2.2 as fol-
lows:

i. States consist of a function mapping addresses, repre-
sented as machine words, to words and a function map-
ping registers to words: State = (W→W)× (Reg →
W). The commands are given by a sequence of instruc-
tions together with a starting address Com = W∗×W.
A configuration (mem, reg , pc) is a triple, consisting
of a memory state mem , a register state reg, and a
program counter pc. I.e., Conf = (W→W)×(Reg →
W)×W.

ii. The evaluation relation −→ is standard (details in the
extended version).

iii. (mem1, reg1) =L (mem2, reg2) holds iff ∀a. Γ(a) =
L ⇒ mem1(a) = mem2(a) and ∀r. Γ(r) = L ⇒
reg1(r) = reg2(r).

iv. Extracting the state of a configuration returns the
memory and registers: state((mem, reg, pc)) =
(mem, reg). Extracting the next instruction returns
the current instruction and the value of the program
counter:

com((mem, reg, pc)) = (mem[pc], pc). Note that this
does not extract the entire program; only the next
instruction to be executed is returned.
Constructing a new configuration is defined by

〈(is, pc0), (mem, reg)〉 = (mem[pc0 7→ is], reg, pc0)

where mem[pc0 7→ is] denotes replacing the words at
pc0, pc0 + 1, . . . , pc0 + |is| by is0, is1, . . . , is|is|.

The extracted functions model the effect the various
instructions have on the memory and registers. For example,
the instruction mov rs rd results in f((mem, reg)) =
((mem, reg [rd 7→ reg [rs]]), ε), while store ra rv generates
the state transformer f((mem, reg)) = ((mem[reg [ra] 7→
reg [rv]], reg), ε). Performing an output instruction out r
induces the function f((mem, reg)) = ((mem, reg), reg [r]).

Note that mixing instructions and memory to create
a configuration rules out some invalid initial states: For
example, consider the following program that outputs the
value of (mem[5]− x)×mem[h], for some constant x.

1 const 5 r1 // load constant 5 into r1
2 load r1 r2 // load mem[5] into r2
3 const x r1 // load constant x into r1
4 sub r2 r1 r2 // r2 = mem[5] - x
5 const h r1 // load constant h into r1
6 load r1 r3 // load mem[h] into r3
7 mul r2 r3 r2 // r2 = (mem[5] - x) * mem[h]
8 out r2 // output (mem[5] - x) * mem[h]

In the case where x = encode(load r1 r3), the program
always produces the trace [0], since this instruction will
always be inserted at address 6 when creating a starting
configuration. The function that is extracted from a run of
this program is

f((mem, reg)) = ((mem, reg), [(mem[6]− x)×mem[h]]

which will produce a trace different from [0] if mem[6] 6=
encode(load r1 r3). However, such a state does not cor-
respond to a valid execution of the program and should
not be considered when judging its security. This is ad-
dressed by the notion of valid initial states from Section 2.2.
For any machine-code program (is0 . . . isn, pc0), it holds
that S0((is, pc0)) = {(mem, reg) | mem[pc0] = is0, . . .
mem[pc0 + |is| − 1] = isn}, thereby ruling out impossible
starting states when determining whether or not a program
satisfies explicit secrecy.

Recall the key intricacy connected to applying weak
secrecy to low-level programs: programs exist in the mem-
ory and their instructions can then be read and used for
computations. As a simplified example, on how this can
affect a security analysis, consider the following program:

1 const 3 r1 // put 3 into r1
2 load r1 r2 // load from mem[r1] into r2
3 bnz 17 r2 // assume a non-zero opcode
4 const r1 x // load constant x into r1
5 sub r2 r1 r2 // set r2 := mem[3] - x
6 const h r1 // load address h into r1
7 load r4 r1 // load mem[r4] into r1
8 mul r1 r4 r2 // set r2 := (mem[3] - x) * mem[h]
9 out r2 // output (mem[3] - x) * mem[h]

This program reads the opcode of instruction 3, i.e., loads
the value encode(bnz 17 r2) into register r2, subtracts



a constant x and outputs the result of multiplying r2
with a value from a high memory location h. If we set
x = encode(bnz 17 r2), then every run of this program will
produce [0]. An adaptation of weak secrecy to the machine
code would involve modifying the executed sequence of
instructions by eliminating branching instructions such as
bnz 17 r2. But such a modification might well result in a
different value than encode(bnz 17 r2) being loaded into
register r1 in the second instruction, resulting in a trace that
depends on the value of h and renders the program insecure.
In contrast, explicit secrecy handles such programs seam-
lessly since the same memory as in the original execution
is used.

2.5. Explicit Secrecy in the Big Picture

We close the discussion of soundness conditions for taint
tracking by examining the relation between explicit secrecy
and standard notions from the area of information-flow
control. We present an intuitive property aimed at capturing
explicit flows as a variant of gradual release, a knowledge-
based approach to noninterference with a declassification
policy, and we review how explicit secrecy relates to non-
interference. We discuss this approach in the context of the
while language from Section 2.1, but it should generalize
straightforwardly to other settings, such as machine code.

Intuitively, allowing information leakage due to implicit
flows can be thought of as releasing (or declassifying) in-
formation about control-flow decisions taken during the run
of a program; i.e., any high information used to determine
control flow is considered to be disclosed to the attacker, but
they should learn nothing else. To accommodate this form of
declassification, we extend traces with release events of the
form rel(v) where v ∈ Z. Every control-flow decision then
generates an event of this form to release information about
implicit flows to the attacker. Concretely, we modify the
rules for control-flow commands in the semantics to produce
release events. Below we show the rules for the “true” case
for if and while commands (the other cases produce similar
events).

m(e = 0) = n n = 0

(if e then c1 else c2,m)
rel(n)−−−−→ (c1,m)

(E-IFTRUE)

m(e = 0) = n n = 0

(while e do c,m)
rel(n)−−−−→ (c; while e do c,m)

(E-WHILETRUE)

The intuition is then to allow the attacker’s knowledge to
increase based on release events, but not at any other point
during the execution. We first define the knowledge of the
attacker in the standard way [12]:

2.5.1 Definition [Knowledge]: The knowledge set for
statement c, initial memory m0, and trace ` is given by
k(c,m0, `) = {m | m =L m0 ∧ (∃c′,m′. (c,m)

`−→∗
(c′,m′))}.

Based on this, we introduce control-flow gradual release,
specifying that changes in knowledge are only allowed due
to release events:

2.5.2 Definition [Control-flow gradual release]: A
program c satisfies control-flow gradual release, written
CFGR � c, iff whenever (c,m)

`.α−−→∗ (c′,m′) and
∀n. α 6= r(n), we have k(c,m, `) = k(c,m, `.α).

As an example, consider again the program cimpl from
Section 2.1, executed with some initial memory m0 where
m0(h) = 0. Initially, k(cimpl ,m0, ε) = [m0]L. After
performing the branching for if (h = 0), the release
event r(1) is produced, changing the knowledge set to
k(cimpl ,m0, [r(1)]) = {m|m =L m0 ∧ m(h) = 0}. Per-
forming the output out 1 produces the event 1. However, the
knowledge set remains unchanged: k(cimpl ,m0, [r(1), 1]) =
k(cimpl ,m0, [r(1)]). The knowledge changes in an analo-
gous way if m0(h) 6= 0.

Control-flow gradual release is more permissive than
explicit secrecy:

2.5.3 Theorem: If ES � c, then CFGR � c.

Perhaps surprisingly, this inclusion is strict: there are
programs satisfying control-flow gradual release but not
explicit secrecy. For example, consider a program that leaks
the same information twice, first using an implicit and then
an explicit flow:

i f (h = 0)
then out 1
e l s e out 2;

out (h = 0)

Upon reaching out (h = 0), the knowledge set is already
reduced to memories m where m(h = 0) = m0(h = 0).
Thus, seeing the last output does not affect the knowledge
of the attacker.

This program, however, is not accepted by explicit se-
crecy, as the extracted functions have the form f(m) =
(m, [i,m(h = 0)]) for either i = 1 or i = 2, which produce
different traces depending on whether or not h = 0. Practical
taint-tracking systems would also reject this program.

What about the relation to ordinary noninterference?
As Volpano pointed out, weak secrecy (and therefore also
explicit secrecy), despite its name, is in fact not weaker
than noninterference. For example, consider the following
program (cni):

i f (h = 0)
then out h
e l s e out 0

In both branches, this program will produce the trace
[0]. However, one sequence of outputs and assignments that
can be extracted is out h and hence WS 6� cni.

In the case of straight-line programs, noninterference and
weak secrecy do coincide. In particular this entails that weak
secrecy and explicit secrecy, like noninterference, cannot be
expressed as a property on traces [44]: both conditions are
hyperproperties [25].



Since control-flow gradual release relaxes noninterfer-
ence using a fixed declassification policy, the former is
weaker than the latter:

2.5.4 Theorem: If NI � c, then CFGR � c.

The relations between the various properties can be
summarized as follows. (We will see the enforcement mech-
anisms in Section 3.)

dynamic
enforcement

static
enforcement

control-flow gradual release

explicit 
secrecy noninterference

3. Enforcement

A large body of research literature shows that static and
dynamic taint tracking can mitigate a wide range of confi-
dentiality and integrity vulnerabilities. Applications of taint
analysis cover the full range of the hardware and software
stack, including memory safety violations such as buffer
overruns in low-level code, injection attacks such as cross-
site scripting in web applications, and recently also privacy
leaks in smart phone apps. On the practical side, numerous
existing tools and languages substantiate the applicability of
taint tracking in these settings. For instance, binary analysis
platforms such as BAP [19] and BitBlaze [56] implement
taint tracking for analyzing native applications. Languages
such as Perl [4] and Ruby [3] have built-in support for taint
analysis, while language extensions such as Andromeda [60]
and Pixy [39] support tainting in web applications. In the
mobile context, TaintDroid [34] and FlowDroid [8] leverage
taint tracking to enforce security for phone apps.

Despite the widespread usage of taint tracking, there has
been little effort to formally define policies and mechanisms
implemented by these tools. Notably, Schwartz et al. [54]
and Livshits [42] formalize the essence of dynamic taint
tracking by instrumenting the operational semantics of a
core language for assembly and Java programs, respectively.
Recent work by Bodin et al. [18] presents a technique
for deriving semantic dependency analyses from a natural
semantics of an imperative language with objects, which
stands at the core of taint analysis. While this line of
works provides useful insight for implementing correct taint
analysis, it does not formally justify soundness for a security
condition like weak secrecy. Such a condition however can
help to understand what policies taint tracking ensures.

Our goal in this section is to check that weak secrecy and
explicit secrecy correctly capture the intuition of existing
taint-tracking systems. We prove soundness of flow-sensitive
dynamic taint tracking for high-level code (Section 3.1) and
machine code (Section 3.2) for explicit secrecy. Further,
we present a static analysis for Java-like code based on
symbolic execution and automated theorem proving and
prove it sound for explicit secrecy (Section 3.3).

3.1. Dynamic Tainting for Imperative Code

We first discuss taint tracking in the context of the while
language introduced in Section 2.1 and prove it sound with
respect to the instantiation of explicit secrecy as described
in Section 2.4.1.

A flow-sensitive dynamic taint tracker, as in real-world
languages such as Perl or Ruby, keeps track of what vari-
ables have tainted content at each point during execution.
To formalize this, we extend configurations with a function
τ : Var → L mapping program variables to security
levels. We replace the evaluation rules for assignments and
output as follows (the other rules simply propagate the
taints unchanged, as illustrated by T-IFTRUE). As before,
initial security labeling of program inputs, i.e., memories, is
determined by Γ and we write τ0 for Γ.

m(e) = n

(x := e,m, τ) ↪−→ (ε,m[x 7→ n], τ [x 7→ τ(e)])
(T-ASSIGN)

m(e) = n τ(e) = L

(out e,m, τ)
n
↪−→ (ε,m, τ)

(T-OUTL)

τ(e) = H
(out e,m, τ) ↪−→ E

(T-OUTFAIL)

m(e = 0) = n n = 1

(if e then c1 else c2,m, τ) ↪−→ (c1,m, τ)
(T-IFTRUE)

Figure 1. Dynamic Tainting for Imperative Code

When evaluating an assignment x := e, the taint state
τ(x) of variable x is updated to match the taint of the
expression that is being assigned to x. We extend τ to
arbitrary expressions by defining τ(e) =

⊔
x∈vars(e) τ(x)

where vars(e) denotes the set of variables appearing (syn-
tactically) in e. If a tainted variable occurs in an expression
that is output, then the execution is stopped (written E).
(Some tainting tools [47] use more precise analyses that
can avoid fake dependencies such as l := h − h.) We can
now show that whenever the dynamic taint tracker reaches a
configuration (c′,m′) starting from an initial configuration
(c,m), the program c satisfies explicit secrecy with respect
to that run.

3.1.1 Theorem [Soundness of Tainting]: For any
program c, initial state m, and initial security labeling τ0,
if (c,m, τ0) 6↪−→∗ E, then ES � (c,m).

3.2. Dynamic Tainting for Machine Code

We now show how to enforce explicit secrecy by a flow-
sensitive dynamic taint tracker for the machine language
presented in Section 2.4.2. Analogously to taint tracking
for imperative programs, we extend machine configurations
with another component keeping track of which memory
addresses and registers contain tainted data. The taint state
is represented by a function τ : Reg ∪ W → L which
maps registers and memory addresses to security levels. This
function records the taint status for all registers and memory
addresses, and uses them to derive the taint status for all



decode(mem[pc]) = out r τ(r) = H

(mem, reg, pc, τ)
reg[r]−−−−→ E

(T-OUTFAIL)

decode(mem[pc]) = out r τ(r) = L

(mem, reg, pc, τ)
reg[r]−−−−→ (mem, reg, pc+ 1, τ)

(T-OUTL)

decode(mem[pc]) = jal r
a = reg[sp] mem′ = mem[a→ pc]

(mem, reg, pc, τ) ↪−→
(mem′, reg, reg[r], τ [a 7→ τ(sp) t τ(pc)])

(T-JAL)

decode(mem[pc]) = load ra rd
v = mem[reg[ra]]

(mem, reg, pc, τ) ↪−→
(mem, reg[rd 7→ v], pc+ 1, τ [rd 7→ τ(ra) t τ(reg[ra])])

(T-LOAD)

Figure 2. Dynamic Tainting for Machine Code

values during the execution. Figure 2 presents an excerpt of
the instrumented semantics rules for a dynamic taint tracker
that handles self-modifying machine code (the extended ver-
sion gives the full set of rules). Our formalization resembles
the ones used by real-world dynamic taint trackers such as
those implemented by the CMU Binary Analysis Platform
(BAP) [19] and the BitBlaze binary analysis platform [56]; it
can also cope with self-modifying code (which they cannot).
Schwartz et al. [54] formalize dynamic taint analysis by
means of operational semantics for a low level language
used in BAP and BitBlaze. Most of the challenges involve
soundness of the taint-tracking mechanisms, especially un-
dertainting. Explicit secrecy allows deciding which design
choices result in unsoundness, making it easier to show
whether this is appropriate in a particular scenario. E.g.,
time-of-detection vs. time-of-attack issues can be addressed
by appropriately choosing the attacker observations.

The taint state τ is updated as for the imperative pro-
grams. If a tainted register is used to output a value (rule T-
OUTFAIL), the execution is stopped. Otherwise the program
performs the output and the execution proceeds (rule T-
OUTL). Rule T-JAL updates the taint state by applying the
join operator to combine the taint status of the address
pointed by register sp with the taint status of the current
program counter pc. Rule T-LOAD combines the taint status
of address it loads from with the taint status of target register
and assigns the resulting label to that register.

The following theorem shows that whenever the instru-
mented semantics in Figure 2 is accepted by taint tracking
(i.e., it does not fail because of a violation of the taint
policy), the original program satisfies explicit secrecy.

3.2.1 Theorem [Soundness of Tainting]: For any
program c = (is, pc0), initial state s0 = (mem0, reg0)
and initial security labeling τ0, if (mem0[pc0 7→
is], reg0, pc0, τ) 6↪−→∗ E then ES � (c, s0).

3.3. Static Analysis for Taint Tracking

Lastly, we present a static analysis for enforcing explicit
secrecy for imperative programs with a heap. The analy-
sis leverages symbolic execution and theorem proving to
statically certify the security of simple Java-like programs
with respect to explicit secrecy. Static analysis stands at the
core of several taint tracking tools. For instance, Andromeda
and FlowDroid perform static taint analysis for web and
mobile applications. While Andromeda’s and FlowDroid’s
static analysis target the more challenging setting of real
Java code, we extend our simple imperative language from
Section 2.1 with a heap to provide a static analysis that
checks for explicit secrecy. This new language is the same
as the one used to describe the essence of static taint analysis
implemented by the tools above [60], [8].

The language from Section 2.1 is extended with heap
locations and fields, object creation, and load and store
expressions on object fields.

c ::= · · · | x := new Object() | x := y.f | x.f := y

We extend the set of values Val with a set of object
locations Loc and a null value. A configuration (c,m, h)
consists of a program c, a memory m ∈ Mem and a heap
h ∈ Heap mapping locations and field identifiers to values,
i.e. Heap = Loc × Fld → Val . The evaluation relation is
extended as expected; details can be found in the extended
version.

We reason about the behavior of a Java-like program by
means of forward symbolic execution. Symbolic execution
allows us to build a logical formula, which corresponds to
a set of concrete program executions, and use first-order
reasoning to statically prove whether or not that program
satisfies explicit secrecy. We assume that there is a sound
(but not necessarily complete) procedure for determining
validity of first-order formulas. Concretely, such a procedure
could be implemented by an SMT solver. We denote that a
formula ϕ is reported as valid by SMT ` ϕ. The program
is executed on symbolic inputs, hence the state and the
configuration are also symbolic.

A symbolic configuration 〈c, δ, ϕ〉 consists of a com-
mand c, a symbolic state δ, and a path condition ϕ, where
ϕ is a (quantifier-free) first-order formula. A symbolic state
δ : (Var → Expr) ∪ (Loc × Fld → Expr) is a mapping
from program variables and object fields to expressions. The
intuition is that δ(x) expresses the value of a variable x
or an object field y.f at some point of the execution in
terms of the values of initial variables. The symbolic state
is updated when processing assignments to reflect changes
to variables or fields. For example, after performing the
assignments x := y ; x := x+ z, the symbolic state records
the value of x as δ(x) = y + z. Similarly, the program
x := new Object() ; x.f := y yields a symbolic state
δ such that δ(x) = l, for some fresh location l ∈ Loc,
and δ(l, f) = y. A path condition ϕ is a symbolic boolean
expression built over the initial variables and it constrains
the set of concrete initial states to those that execute a given
program path.



Figure 3 presents an excerpt of the symbolic evaluation
rules for statically checking explicit secrecy for the Java-like
language. We denote a symbolic expression e where all high
(tainted) variables have been renamed (deterministically)
to fresh variables by ẽ. Consider for example a boolean
expression e = (l + h > 0) such that Γ(l) = L and
Γ(h) = H. Then ẽ = (l+h′) for some fresh variable h′. This
simulates a second run with a low-equivalent memory in
the style of self-composition [15]. Output instructions out e
are validated by checking for equivalence of the expression
in the two memories by requiring that δ(e) = δ̃(e). The
merging of two symbolic states δ1 and δ2 when branching
on expression e is defined by (δ1 ⊕e δ2)(x) = δ1(x) if
δ1(x) = δ2(x) and (δ1 ⊕e δ2)(x) = (e ? δ1(x) : δ2(x)) if
δ1(x) 6= δ2(x). The merging operation allows for a compact
representation of symbolic state modifications occurring in
each branch: Instead of tracking modifications for each
branch separately, we encode changes that occurred in each
branch as one expression. For example, after the command
if e then x := 1 else x := 2, the variable contains either
1 or 2 depending on the branch that was taken. To avoid
exploring the rest of the program for both possible values
of x, we encode this dependency as δ(x) = (e ? 1 : 2). At
the same time, the branch condition is only needed to check
whether branches are reachable. This analysis benefits from
recording precise dependency information about x instead
of just tracking just 1 and 2 as possible values.

In order to simulate executions taking the same branches,
control-flow information has to be removed from δ. We
introduce a function forget(·) : Expr → Expr , where
forget(e) removes information resulting from merging of
symbolic states after if statements. For example, consider
the implicit flow example, cimpl . The dependency recorded
for l after performing the assignment in the branch is
δ(l) = (h ? 1 : 2). Since this expression depends on
h, checking (h ? 1 : 2) and (h′ ? 1 : 2) for equiva-
lence will fail, leading to the program being rejected the
program as insecure. The reason for this is that control-
flow information about how l was modified is present in
δ. Concretely, the solver would fail to show validity of the
formula ((if h then 1 else 2) = (if h′ then 1 else 2)),
which does not hold, for example, when h = ¬h′. Such
information is removed by recursively replacing all occur-
rences of (e′ ? e1 : e2) in e by (v ? e1 : e2), where v is
a fresh low variable. A low variable is introduced to force
the program to take the same branch in both executions; the
variable is fresh so that both branches will be considered
by the prover. In fact, the formula ((if v then 1 else 2) =
(if v then 1 else 2)) is now valid.

The rules in Figure 3 force the symbolic execution
engine to apply a breadth-first search strategy for analyzing
the program. Rule S-OUT considers an output expression
e as secure whenever the state transformation leading to
that expression is unaffected by initial tainted values. In-
deed, the validity of the first-order formula forget(δ(e)) =

forget(δ̃(e)) forces all initial concrete memories that start
with the same values for untainted variables (as enforced

SMT ` forget(δ(e)) = forget(δ̃(e))

〈out e, δ, ϕ〉; (ε, δ, ϕ)
(S-OUT)

〈x := e, δ, ϕ〉; 〈ε, δ[x 7→ δ(e)], ϕ〉 (S-ASSIGN)

〈c1, δ, ϕ ∧ δ(e)〉;∗ 〈ε, δ1, ϕ1〉
〈c2, δ, ϕ ∧ ¬δ(e)〉;∗ 〈ε, δ2, ϕ2〉

SMT 6` ϕ→ δ(e) SMT 6` ϕ→ ¬δ(e)
〈if e then c1 else c2, δ, ϕ〉; 〈ε, δ1 ⊕δ(e) δ2, ϕ〉

(S-IF)

〈while e do c, δ, ϕ〉;
〈if e then (c ; while e do c) else ε, δ, ϕ〉

(S-WHILEUNROLL)
l ∈ Loc fresh δ′ = δ[x 7→ l]

〈x := new Object(), δ, ϕ〉; 〈ε, δ′, ϕ〉 (S-NEW)

l = δ(y) δ′ = δ[x 7→ δ(l, f)]

〈x := y.f, δ, ϕ〉; 〈ε, δ′, ϕ〉 (S-LOAD)

l = δ(x) δ′ = δ[(l, f) 7→ y]

〈x.f := y, δ, ϕ〉; 〈ε, δ′, ϕ〉 (S-STORE)

Figure 3. Static Analysis for Taint Tracking

by the renaming in δ̃(e)) and follow the same execution
path (as enforced by function forget(·)) to always output
the same value to the attacker. This implies that the output
observed by the attacker is unaffected by initial tainted
values, as required by explicit secrecy. Rule S-IF symboli-
cally evaluates each branch of a conditional and merges the
respective symbolic states if the execution of both branches
succeeds. Rule S-WHILEUNROLL unrolls a while loop one
time. (Unless the number of loop iterations is known a priori,
this rule may apply indefinitely, leading to nontermination.
Some tools apply loop unrolling for a fixed number of
iterations and leave open the possibility of false negatives.
This approach is usually taken whenever a tool is used for
bug finding, where full automation is more important than
possible unsoundness.) Rule S-NEW creates a fresh object
location that maps the program variable to that location.
Rules S-LOAD loads the symbolic expression contained at
some object field by first looking up the object location
and then the field value of that object location, while rule
S-STORE stores the symbolic expression of some program
variable to an object field.

Static taint trackers which are more tailored towards
verification would attempt either to infer a loop invariant
or ask the user to provide one manually. The inference of
loop invariants is discussed in the extended version of the
paper. We then show soundness of the static enforcement:
whenever the symbolic execution engine terminates success-
fully, the program satisfies explicit secrecy.

3.3.1 Definition: A program c satisfies static enforcement,
written `s c, iff there exist δ′, ϕ′ such that 〈c, δ0,>〉 ;∗
〈ε, δ′, ϕ′〉.
3.3.2 Theorem [Soundness of Static Analysis]: If `s c
then ES � c.



Note that this static enforcement technique can establish
security of some programs that are rejected by the dynamic
monitoring presented in Section 3.1, such as out (h − h).
Depending on the power of the SMT solver, static enforce-
ment can fail to validate a program due to dead code. For
example, consider if e then out h else out 0, where e is
a complex expression that always returns 0. If the solver
fails to establish that e is equivalent to 0, the program
will be rejected. SMT solvers can indeed be expensive,
especially for languages pointers and higher-order features.
Perhaps this can be remedied by leveraging sound data-flow
analysis (à la FlowDroid) or security type systems (as in
Section 3.2). We have preliminary experiments along these
lines with simple programs (no quantifier alternation or non-
linear arithmetic); however, over-approximation is needed
for richer languages.

Compared to the tainting algorithms used to justify
soundness of Andromeda and FlowDroid, the analysis pro-
posed in this section is more precise, i.e., it accepts more
secure programs. The rationale behind this choice is that for
complex languages as Java, scalability may become an issue
as precision increases. Indeed, one central problem in the
static analysis of production code is to reconcile precision
(object-, field-, context-, flow-sensitivity), scalability (lines
of code analyzed) and soundness (FlowDroid is unsound
for certain language features). FlowDroid achieves this goal
using the IFDS framework by Reps et al. [49] to implement a
modular inter-procedural data-flow analysis with on-demand
aliasing.

4. Related Work

Taint-tracking Policies. Our framework is the first to offer
a general characterization of policies for taint tracking.
The direct precursor of our approach, weak secrecy [63],
relies on extracting assignment commands from the original
program and, due to its syntactic nature, requires custom-
tailored extensions to address such language features as
reflection and expressions with side effects.

Chaudhuri et al. [21] implement a calculus for data-flow
integrity on Windows Vista. They use a type system and
runtime checks to conservatively enforce a tainting policy
with respect to an instrumented operational semantics. The
instrumented semantics enriches standard semantics with
security labels allowing to express explicit secrecy as a
safety property. As discussed earlier, explicit secrecy is a
hyperproperty [25], hence our condition can be used to
justify the soundness of their enforcement mechanism with
respect to uninstrumented semantics.

Livshits and Chong [43] address the problem of auto-
matic placement of sanitizers through hybrid taint analyses.
They express security policies in terms of sanitizers for a
source-sink pair and apply taint tracking to an interprocedu-
ral data-flow graph to place the sanitizers. The correctness
criteria for tainting algorithms state that sanitizers are placed
as described by the policy. Livshits [42] provides a taxon-
omy of dynamic taint tracking approaches for high-level

languages, mainly targeting web security. Taint tracking
is an instance of data-flow analysis [40], a method for
computing properties about data by observing how it flows
through the program. Static and dynamic data-flow analysis,
ranging from security types to symbolic executions, have
been applied to enforcing security [54], [42], [18]. The
semantic notion of explicit secrecy can serve as a criteria
for validating the correctness of these approaches.

Information-flow Policies. A large array of works on secu-
rity policies address information-flow control. These policies
include the baseline notion of noninterference [35], and
variations which account for different policies, languages
and computation models [51]. The policies proposed in this
paper stand to taint-tracking mechanisms as noninterference-
like policies stand to information-flow control mechanisms.

As discussed earlier, there has been work on explor-
ing connections between information-flow control and taint
tracking. Denning and Denning [32] are the first to distin-
guish between explicit (as in tainting) and implicit flows.
Russo et al. [50] show how a lightweight control-flow graph
analysis can be combined with explicit flow analysis for
non-malicious code. Coppens et al. [29] leverage explicit
flow analysis for information-flow security by selective if-
conversion to remove branching on secrets in programs by
transformation [29]. This technique is a particularly good fit
for the implementation of cryptographic algorithms where
transforming away branching helps mitigating the timing
side channel [14].

A line of work by Vachharajani et al. [61], Graa et
al. [36], Beringer [16], and Shen et al. [55] utilizes taint
tracking for information-flow control by turning control-
flow checks for a source program into data-flow checks
of the resulting program. The control-flow checks can be
injected by program transformation so that taint tracking on
the resulting program can be used for tracking information
flow in the source program.

Our knowledge-based condition draws on the notion of
gradual release introduced by Askarov and Sabelfeld [12].
Knowledge-based conditions have also been used to pro-
vide intuitive semantics for dynamic information-flow poli-
cies [9], [62]. This is done by considering attackers that
partially forget the observations made during the compu-
tation. Although the tainting attacker is forgetful in the
sense that it only recalls a single observable event, a precise
characterization of tainting policies in terms of forgetful
attacker knowledge is non-obvious because it requires to
encode attackers that forget the control flow of the program.

Dynamic/Hybrid Enforcement. Taint analysis provides a
good balance between implementation effort, bug coverage
and performance overhead. This has led to a pervasive
application of dynamic taint tracking for enforcing security
at all levels of hardware and software stacks. Many systems
implement tainting mechanisms in hardware by adding ar-
chitectural extensions to processors [58], [30], [23], [33]
or in software by extending and instrumenting machine
code [47], [22], [56], [26], web and mobile applications [34],
[46], [59], [43], [31] or high-level languages [4], [3].



Customized hardware and emulators have been used to
implement taint tracking policies. Suh et al. [58] introduce a
hardware mechanism for dynamically tracking information
flows in a program. On every instruction, the processor
determines whether the result is tainted or not based on
the inputs and the instruction type. Various vulnerabilities
such as buffer overflows and format strings are captured
by disallowing tainted data to be used as instructions or
jump target addresses. Crandall et al. [30] introduce Minos,
a microarchitecture that implements Biba’s integrity policies
at word level. Minos tracks the integrity of all data and it
protects from control flow hijacking by checking tainted-
ness whenever a program uses that data to transfer control.
TaintBoch [23] uses tainting to track sensitive data across
operating system, language, and application boundaries, thus
permitting analysis at a whole system level. In principle,
all these approaches can handle self-modifying code and
thus benefit from our security condition to justify their
correctness.

Many tools use dynamic instrumentation of machine
code to monitor system activities through taint tracking.
TaintTrace [22] uses the DynamoRIO framework [1] to
instrument machine code. Similarly, TaintCheck [47] offers
both Valgrind-based [5] and DynamoRIO-based implemen-
tations for the same purpose. Notably, the CMU Binary
Analysis Platform [19] and the BitBlaze toolchain [56] offer
a unified platform for static and dynamic security analysis
of binary code. They explicitly represent all side effects
of machine instructions in an intermediate language (IL),
for which various forms of data-flow analysis, including
taint tracking, are implemented. Assuming correctness of the
transformation between binary code and IL code, one may
use the well-defined semantics of IL to show soundness for
the data-flow analysis implemented by these tools.

Dynamic taint tracking has been successfully used for
bug finding in mobile and web applications. TaintDroid [34]
is an extension to the Android platform that monitors how a
potentially untrusted application uses user data. TaintDroid
uses dynamic tainting to automatically track propagation of
sensitive data through program variables or files and ensures
that tainted data are transmitted over the network only with
user’s consent.

Perl’s taint mode [4] is one of the first applications
of dynamic taint tracking to high-level languages. When
the interpreter is run in this mode, several data sources
such as environment variables or command-line parameters
produce tainted values. Tainted data may not be used by
any command that invokes a sub-shell, nor in any command
that modifies files, directories, or processes, with a few
exceptions: (1) arguments to print and syswrite are not
checked for taintedness; (2) symbolic methods and symbolic
sub references are not checked for taintedness; and (3)
hash keys are never tainted. These exceptions allow for
laundering (i.e., declassifying) tainted values either by using
them as hash keys or by regexp-matching against them and
using the sub-match strings $1, $2, etc.

Several generic frameworks offer customizable data-flow
analysis and policies to account for the lack of generality and

the high performance overhead in traditional taint-tracking
systems. GIFT [41] is a compiler for programs written in C
that takes programmer-specified rules for taint initialization,
propagation and combination, and automatically instruments
programs so as to execute these rules as part of the program
execution. Chang et al. [20] build a compiler to transform
untrusted programs into policy-enforcing programs. The
compiler can be reconfigured to support new analyses and
policies and it uses static analysis reduce the amount of data
that must be dynamically tracked. Our work lays ground for
turning informal soundness claims in this work into formal
ones.
Static Enforcement. Purely static analysis has been pro-
posed to tracking explicit flows in various application do-
mains. Bodden et al. [8] present FlowDroid, a context-,
flow-, field-, object-sensitive static taint analysis tool for
Android applications. FlowDroid analysis is claimed to be
conservative and sound with respect to the analysis it imple-
ments. However, unsoundness can arise in case the sequen-
tial consistency of thread execution is broken, or through
native methods that are possibly modeled incorrectly.

Sridharan et al. [57] present F4F, a system for effective
taint analysis of framework-based web applications. F4F
initially analyses application code and configuration files to
generate specifications of framework-related behaviors, and
then uses a taint engine to perform more precise analysis of
the framework-based applications.

Pixy [39] is a static taint analysis tool for detecting
cross-site scripting and SQL injection vulnerabilities in PHP
programs. It implements flow-sensitive, interprocedural and
context-sensitive data-flow analysis to discover vulnerable
program points.

The Parfait bug checker [53] builds on top of the LLVM
compiler, performing a staged dependency analysis which
takes into account both data and control dependencies. The
tool is inherently tunable to different precision levels and it
allows for demand driven analysis.

Balliu et al. [13] implement an automated tool for infor-
mation-flow analysis of machine code. The tool transforms
ARMv7 binaries into an architecture-independent format
using the BAP platform [19] by means of a verified transla-
tor. This approach leverages symbolic execution and SMT
solvers for machine-code verification, hence it is possible to
extend the symbolic algorithm in Section 3.3 to that setting
and thus verify explicit secrecy.

5. Conclusion

We have presented a generic semantic framework for rea-
soning about explicit flows as tracked by taint checking. The
framework generalizes previous work by giving a condition
that enables reasoning about what taint tracking guarantees
and covers a wide range of settings, declassification/san-
itization policies, and including low-level machines and
languages with reflection. The framework has allowed us
to formally compare security conditions, establishing a re-
lation to such known characterizations as noninterference



and gradual information release. We have demonstrated the
usefulness of the framework by instantiations to high- and
low-level languages.

Explicit secrecy contributes to understanding of what is
achieved by popular taint tracking tools, both dynamic and
static. We have demonstrated that taint mechanisms at the
core of dynamic tools such as BAP [19] and BitBlaze [56]
and languages as Perl [4] and Ruby [3] are sound with
respect to explicit secrecy. Similarly, we have showed the
soundness of a mechanism reminiscent of FlowDroid [8] to
guarantee the absence of explicit flows.

Our work opens up promising opportunities to formal-
izing informal soundness claims made in the taint tracking
literature, following the initial steps in Section 3. An im-
portant track for future work is generalizing the soundness
results to include declassification/sanitization, as defined in
Section 2.3. Section 4 discusses several future tracks for
applying our approach to the static and dynamic enforce-
ment mechanisms from the literature. The expected benefits
are greater confidence in these mechanisms and possibly
discovering corner cases where soundness can be improved.
Acknowledgments. This work was funded by the European
Community under the ProSecuToR project and the Swedish
research agencies SSF and VR.

References

[1] Dynamic instrumentation tool platform. http://www.dynamorio.org/
home.html.

[2] IDS03-J. Do not log unsanitized user input - CERT Ora-
cle Coding Standard for Java - CERT Secure Coding Stan-
dards. https://www.securecoding.cert.org/confluence/display/java/
IDS03-J.+Do+not+log+unsanitized+user+input. Accessed: 2015-8-5.

[3] Locking ruby in the safe. http://phrogz.net/programmingruby/taint.
html.

[4] Perl security and taint mode. http://perldoc.perl.org/perlsec.html.

[5] Valgrind. http://valgrind.org/.

[6] Explicit secrecy: A policy for taint tracking. Full version. http://www.
cse.chalmers.se/~schoepe/tainting.html.

[7] M. Abadi, A. Banerjee, N. Heintze, and J. G. Riecke. A core calculus
of dependency. In POPL, 1999.

[8] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le
Traon, D. Octeau, and P. McDaniel. Flowdroid: precise context, flow,
field, object-sensitive and lifecycle-aware taint analysis for android
apps. In PLDI, 2014.

[9] A. Askarov and S. Chong. Learning is change in knowledge:
Knowledge-based security for dynamic policies. In CSF, 2012.

[10] A. Askarov, S. Hunt, A. Sabelfeld, and D. Sands. Termination-
insensitive noninterference leaks more than just a bit. In ESORICS,
2008.

[11] A. Askarov and A. Myers. A semantic framework for declassification
and endorsement. In ESOP, 2010.

[12] A. Askarov and A. Sabelfeld. Gradual release: Unifying declassifi-
cation, encryption and key release policies. In S&P, 2007.

[13] M. Balliu, M. Dam, and R. Guanciale. Automating information flow
analysis of low level code. In CCS, 2014.

[14] G. Barthe, G. Betarte, J. D. Campo, C. D. Luna, and D. Pichardie.
System-level non-interference for constant-time cryptography. In
CCS, 2014.

[15] Gilles Barthe, Pedro R. D’Argenio, and Tamara Rezk. Secure infor-
mation flow by self-composition. MSCS, 2011.

[16] Lennart Beringer. End-to-end multilevel hybrid information flow
control. In Ranjit Jhala and Atsushi Igarashi, editors, APLAS, 2012.

[17] Arnar Birgisson, Alejandro Russo, and Andrei Sabelfeld. Unifying
facets of information integrity. In ICISS, 2010.

[18] M. Bodin, T. Jensen, and A. Schmitt. Pretty-big-step-semantics-based
certified abstract interpretation (preliminary version). In Semantics,
Abstract Interpretation, and Reasoning about Programs: Essays Ded-
icated to David A. Schmidt on the Occasion of his Sixtieth Birthday,
2013.

[19] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz. BAP: A
binary analysis platform. In CAV, 2011.

[20] W. Chang, B. Streiff, and C. Lin. Efficient and extensible security
enforcement using dynamic data flow analysis. In CCS, 2008.

[21] A. Chaudhuri, P. Naldurg, and S. K. Rajamani. A type system for
data-flow integrity on windows vista. SIGPLAN Notices, 2008.

[22] W. Cheng, Q. Zhao, B. Yu, and S. Hiroshige. TaintTrace: Efficient
flow tracing with dynamic binary rewriting. In ISCC, 2006.

[23] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and M. Rosenblum.
Understanding data lifetime via whole system simulation. In USENIX
Security Symposium, 2004.

[24] D. Clark and S. Hunt. Non-interference for deterministic interactive
programs. In FAST, 2008.

[25] M. R. Clarkson and F. B. Schneider. Hyperproperties. JCS, 2010.

[26] J. A. Clause, W. Li, and A. Orso. Dytan: A generic dynamic taint
analysis framework. In ISSTA, 2007.

[27] E. S. Cohen. Information transmission in sequential programs. In
FSC. 1978.

[28] J. J. Conti and A. Russo. A taint mode for Python via a library. In
NordSec, 2010.

[29] B. Coppens, I. Verbauwhede, K. De Bosschere, and B. De Sutter.
Practical mitigations for timing-based side-channel attacks on modern
x86 processors. In S&P, 2009.

[30] J. R. Crandall and F. T. Chong. Minos: Control data attack prevention
orthogonal to memory model. In MICRO, 2004.

[31] M. Dam, G. Le Guernic, and A. Lundblad. Treedroid: a tree
automaton based approach to enforcing data processing policies. In
CCS, 2012.

[32] D. E. Denning and P. J. Denning. Certification of programs for secure
information flow. Commun. ACM, 1977.

[33] U. Dhawan, N. Vasilakis, R. Rubin, S. Chiricescu, J. M. Smith, T. F.
Knight, B. C. Pierce, and A. DeHon. PUMP – A programmable unit
for metadata processing. In HASP, 2014.

[34] W. Enck, P. Gilbert, S. Han, V. Tendulkar, Byung-Gon Chun, L. P.
Cox, J. Jung, P. McDaniel, and A. N. Sheth. Taintdroid: An
information-flow tracking system for realtime privacy monitoring on
smartphones. ACM Trans. Comput. Syst., 2014.

[35] J. A. Goguen and J. Meseguer. Security policies and security models.
In S&P, 1982.

[36] M. Graa, N. Cuppens-Boulahia, F. Cuppens, and A. R. Cavalli.
Detecting control flow in smarphones: Combining static and dynamic
analyses. In CSS, 2012.

[37] V. Haldar, D. Chandra, and M. Franz. Dynamic taint propagation for
Java. In ACSAC, 2005.

[38] D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld. JSFlow: Tracking
information flow in JavaScript and its APIs. In SAC, 2014.

[39] N. Jovanovic, C. Kruegel, and E. Kirda. Static analysis for detecting
taint-style vulnerabilities in web applications. JCS, 2010.

http://www.dynamorio.org/home.html
http://www.dynamorio.org/home.html
https://www.securecoding.cert.org/confluence/display/java/IDS03-J.+Do+not+log+unsanitized+user+input
https://www.securecoding.cert.org/confluence/display/java/IDS03-J.+Do+not+log+unsanitized+user+input
http://phrogz.net/programmingruby/taint.html
http://phrogz.net/programmingruby/taint.html
http://perldoc.perl.org/perlsec.html
http://valgrind.org/
http://www.cse.chalmers.se/~schoepe/tainting.html
http://www.cse.chalmers.se/~schoepe/tainting.html


[40] J. B. Kam and J. D. Ullman. Global data flow analysis and iterative
algorithms. J. ACM, 1976.

[41] Lap-Chung Lam and Tzi-cker Chiueh. A general dynamic information
flow tracking framework for security applications. In ACSAC, 2006.

[42] B. Livshits. Dynamic taint tracking in managed runtimes. Technical
Report MSR-TR-2012-114, Microsoft, November 2012.

[43] B. Livshits and S. Chong. Towards fully automatic placement of
security sanitizers and declassifiers. In POPL, 2013.

[44] J. McLean. A general theory of composition for trace sets closed
under selective interleaving functions. In S&P, 1994.

[45] Jasvir Nagra and Christian Collberg. Surreptitious Software: Obfus-
cation, Watermarking, and Tamperproofing for Software Protection.
Pearson Education, 2009.

[46] Netscape. Using data tainting for security.
http://www.aisystech.com/resources/advtopic.htm, 2006.

[47] J. Newsome and D. X. Song. Dynamic taint analysis for automatic
detection, analysis, and signature generation of exploits on commod-
ity software. In NDSS, 2005.

[48] F. Nielson, H. R. Nielson, and C. Hankin. Principles of program
analysis. Springer, 1999.

[49] Thomas W. Reps, Susan Horwitz, and Shmuel Sagiv. Precise inter-
procedural dataflow analysis via graph reachability. In POPL, 1995.

[50] A. Russo, A. Sabelfeld, and K. Li. Implicit flows in malicious and
nonmalicious code. Marktoberdorf Summer School (IOS Press), 2009.

[51] A. Sabelfeld and A. C. Myers. Language-based information-flow
security. JSAC, 2003.

[52] A. Sabelfeld and D. Sands. Declassification: Dimensions and princi-
ples. JCS, 2009.

[53] B. Scholz, C. Zhang, and C. Cifuentes. User-input dependence
analysis via graph reachability. In SCAM, 2008, 2008.

[54] E. J. Schwartz, T. Avgerinos, and D. Brumley. All you ever wanted to
know about dynamic taint analysis and forward symbolic execution
(but might have been afraid to ask). In S&P 2010, 2010.

[55] Haichen Shen, Aruna Balasubramanian, Anthony LaMarca, and
David Wetherall. Enhancing mobile apps to use sensor hubs without
programmer effort. In UbiComp, 2015.

[56] D. X. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang,
Z. Liang, J. Newsome, P. Poosankam, and P. Saxena. BitBlaze: A
new approach to computer security via binary analysis. In ICISS,
2008.

[57] M. Sridharan, S. Artzi, M. Pistoia, S. Guarnieri, O. Tripp, and
R. Berg. F4F: taint analysis of framework-based web applications.
In OOPSLA, 2011.

[58] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Secure program
execution via dynamic information flow tracking. In ASPLOS, 2004.

[59] O. Tripp, M. Pistoia, S. J. Fink, M. Sridharan, and O. Weisman. Taj:
effective taint analysis of web applications. In PLDI, 2009.

[60] Omer Tripp, Marco Pistoia, Patrick Cousot, Radhia Cousot, and
Salvatore Guarnieri. Andromeda: Accurate and scalable security
analysis of web applications. In FASE, 2013.

[61] Neil Vachharajani, Matthew J. Bridges, Jonathan Chang, Ram Ran-
gan, Guilherme Ottoni, Jason A. Blome, George A. Reis, Manish
Vachharajani, and David I. August. RIFLE: An Architectural Frame-
work for User-Centric Information-Flow Security. In MICRO, 2004.

[62] B. van Delft, S. Hunt, and D. Sands. Very static enforcement of
dynamic policies. In POST, 2015.

[63] D. M. Volpano. Safety versus secrecy. In SAS, 1999.


