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Abstract. Taint tracking has been successfully deployed in a range
of security applications to track data dependencies in hardware and
machine-, binary-, and high-level code. Precision of taint tracking is key
for its success in practice: being a vulnerability analysis, false positives
must be low for the analysis to be practical. This paper presents an ap-
proach to taint tracking, which does not involve tracking taints through-
out computation. Instead, we include shadow memories in the execution
context, so that a single run of a program has the effect of comput-
ing on both tainted and untainted data. This mechanism is inspired by
the technique of secure multi-execution, while in contrast to the lat-
ter it does not require running the entire program multiple times. We
present a general framework and establish its soundness with respect to
explicit secrecy, a policy for preventing insecure data leaks, and its preci-
sion showing that runs of secure programs are never modified. We show
that the technique can be used for attack detection with no false posi-
tives. To evaluate the mechanism in practice, we implement DroidFace,
a source-to-source transform for an intermediate Java-like language and
benchmark its precision and performance with respect to representative
static and dynamic taint trackers for Android. The results indicate that
the performance penalty is tolerable while achieving both soundness and
no false positives on the tested benchmarks.

1 Introduction
Taint tracking has been successfully deployed in a range of security applica-
tions to track data dependencies in hardware [14,35] and binary [13,34] code,
as well as high-level code, with popular usage in mobile [22,19,1,40,21,10] and
web [28,36,26] applications.

Background Taint tracking is about tracking direct data dependencies, or ex-
plicit flows [16], when data is passed directly from one data container to another.
Taint tracking typically ignores implicit flows [16], when the information flows
through the control structure of the program, as in, e.g., branching on a secret
and assigning to different publicly observable variables in the branches.

What makes taint tracking a popular security mechanism? Missing out on
implicit flows is clearly a disadvantage from the security point of view. This
makes taint tracking a vulnerability finding mechanism rather than a mechanism
that provides comprehensive security assurance. This brings us to an important
observation: precision of taint tracking is key for its success in practice: being a
vulnerability analysis, false positives must be low for the analysis to be practical.



This observation is echoed by the state of the art on taint tracking for Android
applications (detailed in Section 5). Static taint trackers (such as FlowDroid [1],
Amandroid [40], DroidSafe [21], and HornDroid [10]) and dynamic taint trackers
(such as TaintDroid [19] and AppFence [22]) incorporate increasingly sophisti-
cated features to catch data leaks while reducing the false positives.

Problem Motivated by the above, we seek to devise a general technique for
tracking data leaks with high precision. Our goal is to formally establish the
soundness and precision as well as demonstrate them in practice, with taint
tracking in Android applications as a target for case studies.

The general setting is a program that operates in an environment with in-
formation sources and sinks. The goal of taint tracking is to prevent informa-
tion from sensitive sources to directly affect the information sent to insensitive
sinks. For confidentiality, this corresponds to not directly propagating informa-
tion from secret sources to public sinks. This is often a desirable goal in the
context of Android apps, as in e.g. allowing an app to access the file system to
choose an image for a user profile but ensuring that no other files are leaked.
In the examples throughout the paper, we will stick to confidentiality policies,
noting that taint tracking has also been used successfully for integrity checks,
e.g., [14,35,13,34].

Facelifted values This paper presents an approach to taint tracking, which,
somewhat surprisingly, does not involve tracking taints throughout computation.
Instead, we include shadow memories in the execution context, so that a single
run of a program has the effect of computing on both sensitive and non-sensitive
data. We refer to such values that carry both secret data as well as a public
shadow value as facelifted values, in reference to the faceted value approach [2]
by Austin and Flanagan.

Consider a simple example program:

h← in(H); l := h;out(L, l) (1)

Secret, or high (H), input is stored in a variable h and is explicitly leaked into the
variable l, which in turn is output on a public, or low (L), channel. In essence,
our approach has the effect of running the program:

h← in(H) ; h′ := d ; // secret input and shadow input with default value d
l := h ; l′ := h′ ; // original assignment and shadow assignment
out(l′,L) // public output from shadow memory

The shadow memory is represented by the shadow variables h′ and l′. This
represents the public view of the system. On a secret input, a default value d is
stored in the shadow variable h′. On a public output, the value is retrieved from
the shadow memory.

Soundness and precision This mechanism is inspired by the technique of
secure multi-execution (SME) [11,17], where programs are executed as many
times as there are security levels, with outputs at each level computed by the
respective runs. SME addresses both explicit and implicit flows, enforcing the



policy of noninterference [15,20] that prescribes no leaks from sensitive inputs
to insensitive outputs.

In contrast to SME, our mechanism does not re-run the entire program, fo-
cusing on secure-multi execution of the individual side-effectful commands that
cause explicit flows. Moreover, it is independent of the choice of scheduling strat-
egy for different runs. As such, this technique is similar to Austin and Flanagan’s
faceted values [2]. Re-purposing faceted values to track explicit flows results in
a powerful mechanism for a policy that the original faceted values were not in-
tended for: explicit secrecy [33], a policy that captures what it means to leak
information explicitly. Further, facelifted values are different in that: i) Faceted
values face challenges with tracking implicit flows, which results in propagat-
ing context labels through the computation. ii) Facelifted values are sound and
precise for explicit secrecy, while faceted values are sound and not precise for
noninterference [6]. iii) Facelifted values only require a single path through the
program, while faceted values may execute both branches of a conditional [2].
iv) As a consequence, facelifted values can be implemented by means of a rela-
tively simple program transformation whereas faceted values require modifica-
tion of the runtime or explicit use of a library [32].

We present a general framework and establish its soundness with respect to
explicit secrecy. Our results guarantee that the attacker learns nothing about
secrets via explicit flows.

Similarly to SME, our mechanism may “repair” programs, i.e. force their
security by modifying their original behavior. Yet, we show that the mechanism
is precise in the sense that runs of secure programs are never modified. An
example where classical taint trackers (e.g. [19]) are conservative is related to
the handling of arrays. Modify the assignment in the simple example program
above to be:

int[] a := [0, 0]; a[h%2] := h; l := a[1− h%2]

This is a secure program as the value assigned to the secretly-indexed element
is never used. However, a typical taint tracker would taint the entire array and
raise an alarm. In contrast, our approach will accept runs of this program.

Attack detection Further, our technique can be used for attack detection. We
detect attacks by matching the outcomes of the insensitive outputs from the
sensitive and insensitive runs. If the values mismatch it means that there is an
influence from the sensitive data to insensitive data in the original run.

In the example above, assume the default value is 0 and the secret input is 1.
The detection mechanism will compare l and l′ before outputting on the public
sink to find out that they mismatch, being 1 and 0, respectively.

Implementation Our technique can be deployed either by extending the run-
time system with shadow memories or by a source-to-source inlining transfor-
mation that injects computation on shadow memories in the original code. We
implement the approach by a source-to-source transformation for an intermedi-
ate Java-like language and benchmark its precision and performance with respect
to static and dynamic taint tracking. Noteworthy, language constructs such as
exceptions and multithreading require no special treatment. The practical evalu-
ation of soundness and precision uses the DroidBench [18] test suite. The results



demonstrate that performance penalty is tolerable while achieving both sound-
ness and no false positives on the tested benchmarks.

Contributions The paper comprises these contributions: i) We present a frame-
work of facelifted values. We illustrate the concepts for a simple imperative lan-
guage with pointers and I/O (Section 2.1). ii) We establish precision results
showing that runs of secure programs are never modified by the enforcement
framework (Section 2.2). iii) We give a general, language-independent, view of
the framework and show that our approach guarantees soundness with respect
to explicit secrecy (Section 2.5). iv) We leverage our approach to build an at-
tack detection mechanism that is free of false positives: whenever an execution
is flagged by the enforcement, there is an actual attack detected (Section 2.3).
v) We present DroidFace, a tool that implements our approach as a source-to-
source transformation for a core of Java (Section 3). vi) We evaluate the precision
and performance of DroidFace with respect to the state-of-the-art static and dy-
namic tools for Android applications (Section 4).

2 Facelifted Values for Taint Tracking
We present the facelifted values technique and show that it enforces explicit se-
crecy. To illustrate the essence of facelifted values, we introduce a simple impera-
tive language with pointers and I/O. We briefly review explicit secrecy and show
that facelifted executions enforce the property. We elaborate on the use of the
enforcement technique to detect potential attacks. Lastly, we present a source-
to-source transformation for statically inlining facelifted values. The proofs for
lemmas and theorems can be found in the full version of the paper [5].

2.1 Language with Facelifted Values

At the heart of our mechanism is the intuition that every computation that is
not related to control flow is executed multiple times, once for each security
level, using default values for data from higher security levels. Consider a simple
imperative language with pointers and I/O primitives:

e ::= x | n | e1 ⊕ e2 | &x | ∗e
c ::= skip | c1; c2 | x ← alloc | x := e | ∗e1 := e2

| x← in(`) | out(`, e) | if e then c1 else c2 | while e do c

The language expressions consist of global variables x ∈ Var , built-in values
n ∈ Val , binary operators ⊕, variable references &x and dereferences ∗e. Addr
is the set of memory addresses and, for simplicity, Addr ⊆ Val . The language
constructs contain assignment, conditional, loops, input and output. In addi-
tion, the language includes dynamic memory allocation x ← alloc and pointer
assignment ∗e1 := e2. We use nil as a way to represent uninitialized memory.

We assume a bounded lattice of security levels (L,v,t,u). We write > and ⊥
to denote the top and the bottom element of the lattice, respectively (actually a
partially ordered set suffices). Each I/O channel is annotated with a fixed security
label ` ∈ L. In the examples, we use a two-level security lattice consisting of H
for variables containing confidential information and L for variables containing
public information and L v H. Input to programs is modeled by environments



mapping channels to streams of inputs values; we denote the set of environments
by Env . Without loss of generality, we consider one stream for each level ` ∈
L. An environment E : L → ValN maps levels to infinite sequences of values.
A facelifted value v ∈ ValL maps levels to values; to distinguish streams and
facelifted values from other functions, we write AB for the function space B → A.

We define equivalence at security level ` ∈ L for environments, facelifted
memories and traces. Intuitively, two environments, memories or traces are
equivalent at level ` iff they look the same to an observer at level `, i.e. one
that can observe events at any level `′ v `, as defined by the lattice L.

Definition 1. Two environments E1 and E2 are `-equivalent, written E1 ≈` E2,
iff ∀`′. `′ v `⇒ E1(`′) = E2(`′).

A facelifted memory m : Addr → ValL maps addresses to facelifted values,
i.e. to functions mapping levels to values. We globally fix a mapping A(·) :
Var → Addr from variables to addresses. Note that environments are the only
source of inputs. Programs start executing with the fixed memory m0 where
m0(a)(`) = nil for all a ∈ Addr and ` ∈ L. To support pointers, we assume
that Addr ⊆ Val . We write m(·)(`) to denote the facelifted memory projected at
level `, i.e. the function a 7→ m(a)(`). In the following, this is called `-facelifted
memory or non-facelifted memory (whenever the level ` is unimportant). We
use m,m1, . . . to range over facelifted memories and m̃, m̃1, . . . to range over
non-facelifted memories.

Definition 2. Two facelifted memories m1 and m2 are `-equivalent, written
m1 ≈` m2, iff ∀`′. `′ v `⇒ m1(·)(`′) = m2(·)(`′).

An observation is a pair of a value and a security level, i.e. Obs = Val × L,
or empty. We write π1 (resp. π2) for the first (resp. second) projection of a
tuple. A trace τ is a finite sequence of observations. We write ε for the empty
trace/observation. We write τ �` for the projection of trace τ at security level `.

Definition 3. Two traces τ1 and τ2 are `-equivalent, written τ1 ≈` τ2, iff ∀`′. `′ v
`⇒ τ1 �`′= τ2 �`′ .

We now present the semantics of the language in terms of facelifted memories
and environments. We evaluate expressions in the context of a facelifted memory
and, for each security level, use the memory facet of that level.

Definition 4. The evaluation of an expression e in a facelifted memory m,
written JeKm ∈ ValL, is defined by:

JxKm(`) = m(A(x))(`)

JnKm(`) = n

Je1 ⊕ e2Km(`) = f⊕(Je1Km(`), Je2Km(`))

J&xKm(`) = A(x)

J∗eKm(`) = m(JeKm(`))(`)

where f⊕ denotes the semantics of the operator ⊕.



Figure 1 gives the operational semantics of facelifted evaluation. A state
(E ,m) is a pair of an environment E and a memory m. A configuration E `
〈c,m〉 consists of an environment E , a command c and a memory m. We write
E ` 〈c,m〉 τ−→→ E ′ ` 〈c′,m′〉 to denote that a configuration E ` 〈c,m〉 evaluates in
one step to configuration E ′ ` 〈c′,m′〉, producing observations τ ∈ Obs∗. We use
ε and E to denote normal and abnormal termination of a program, respectively.

F-Assign

E ` 〈x := e,m〉 −→→ E ` 〈ε,m[A(x) 7→ JeKm]〉

F-IfTrue
JeKm(>) = tt

E ` 〈if e then c1 else c2,m〉 −→→ E ` 〈c1,m〉

F-Out

E ` 〈out(`, e),m〉 [(JeKm(`),`)]−−−−−−−−→→ E ` 〈ε,m〉

F-AssignPtr
Je1Km = l l ∈ AddrL m′ = update(m, l, e2)

E ` 〈∗e1 := e2,m〉 −→→ E ` 〈ε,m′〉

F-In
E ′ = E [` 7→ n 7→ E(`)(n+ 1)] m′ = m[A(x) 7→ `′ 7→ Fin(E , `, `′)]

E ` 〈x← in(`),m〉 −→→ E ′ ` 〈ε,m′〉

F-Alloc
m′ = m[A(x) 7→ ` 7→ a, a 7→ ` 7→ 0] a = min{a|a 6∈ rng(A) ∧ ∀`. m(a)(`) = nil}

E ` 〈x ← alloc,m〉 −→→ E ` 〈ε,m′〉

Fin(E , `, `′) =

{
E(`)(0) ` v `′

d ` 6v `′
update(m, l, e)(a′)(`) =

{
JeKm(`) a′ = l(`)

m(a′)(`) otherwise

Fig. 1. Excerpt of Operational Semantics of Facelifted Evaluation

We comment on some of the interesting rules in Figure 1.The full table of
rules can be found in the full version. Rule F-Assign evaluates an expression e
in the context of a facelifted memory m, as in Def. 4, and yields a new facelifted
memorym′ where variable x is mapped to the resulting facelifted value. Similarly,
rule F-AssignPtr evaluates expressions e1 and e2 to obtain a facelifted address
and a facelifted value, respectively, and uses the function update to assign the
latter to the former. Rule F-Alloc allocates a fresh global variable, assigns the
address to x, and initializes all its facets with the default value 0. Rule F-In
reads the next (non-facelifted) input value from the environment stream E at
security level ` and uses the function Fin to create a facelifted value which is
then assigned to global variable x. Rule F-Out evaluates an expression e in the
context of the `-facelifted memory and outputs the resulting (`-facelifted) value
to an observer at security level `. Rule F-IfTrue evaluates the branch condition
e only in the context of the >-facelifted memory and executes the command in
the true branch. We denote the standard evaluation relation with non-facelifted
memories by −→; associated functions are defined analogously and reported in
the full version [5].



To illustrate the facelifted semantics, consider program 1 from the introduc-
tion. Assume the domain of variables l and h is {0, 1} and the default value
d is 0. The program starts executing with facelifted memory m0 such that
m0(A(l))(`) = m0(A(h))(`) = nil for all ` ∈ L. If the secret input is 1, the
facelifted semantics will apply the rules F-In, F-Assign and F-Out, and out-
put the default value 0 on the low channel. Similarly, if the secret input is 0, the
output will again be 0, thus closing the leak of the insecure program. On the
other hand, if we replace the output instruction in program 1 with out(H, l),
the program is secure. In fact, the variable l will be evaluated in the context of
the H-facelifted memory and yield the correct result for an observer with high
security level.

Note that declassification policies can be naturally enforced by pumping high
values into low memories since the runtime has access to both during the exe-
cution (cf. Figure 1).

2.2 Explicit Secrecy

Explicit secrecy [33] is a knowledge-based security condition that formalizes the
idea of “security with respect to explicit flows only”. To achieve this, explicit
secrecy distinguishes between changes to the state of the program and changes
to the control flow, and demands security of information flows for the state part
only. Concretely, it leverages the (small-step) operational semantics to extract a
function that captures the state modification and the possible output for each
execution step.

Definition 5. Whenever E ` 〈c,m〉 α−→→ E ′ ` 〈c′,m′〉, we define a function
f : Env × Mem → ((Env × Mem) × Obs) associated with the step. For every
E ∈ Env and m ∈ Mem, we define f((E ,m)) = ((E ′,m′), α) where E ′, m′ and α
are unique and E ` 〈c,m〉 α−→→ E ′ ` 〈c′,m′〉. We write E ` 〈c,m〉 α−→

f
→ E ′ ` 〈c′,m′〉

to denote this function.

Intuitively, for each step E ` 〈c,m〉 α−→→ E ′ ` 〈c′,m′〉, f((E1,m1)) simulates
how the input state (E1,m1) would change by executing the same step that
E ` 〈c,m〉 performs. In general, it is the language designer who defines which
parts of a configuration hold state and which hold the control flow of a program.
We extend the construction of state transformers to multiple steps by composing
the state modifications and concatenating the output.

Example 1. Given a state (E ,m) and command c, the state transformer for our
language (cf. Def. 5) is f((E ,m)):

((E ,m[A(x) 7→ JeKm]), ε) if c = x := e
((E , update(m, Je1Km, e2)), ε) if c = ∗e1 := e2
((E ,m[A(x) 7→ ` 7→ a]), ε) if c = x ← alloc

where a 6∈ rng(A) ∧ ∀`. m(a)(`) = nil
((E ,m), [(JeKm(`), `)]) if c = out(`, e)
((E ′,m[A(x) 7→ `′ 7→ Fin(E , `, `′)]), ε) if c = x← in(`)

and E ′ = E [` 7→ n 7→ E(`)(n+ 1)]
((E ,m), ε) otherwise



The state transformer f acts on the memory part of the configuration (assign-
ments, memory allocation, input and output), and leaves the control-flow state-
ments unchanged.

We can now define the knowledge an attacker at security level ` obtains from
observing only outputs from a sequence of changes to the state. We capture
this by the set of initial environments that the attacker considers possible based
on their observations. Concretely, for a given initial state (E0,m0) and a state
transformer f , an environment E is considered possible if E0 ≈` E and it matches
the trace produced by f((E0,m0)), i.e. π2(f((E0,m0))) ≈` π2(f((E ,m0))).

Definition 6 (Explicit knowledge). The explicit knowledge at level ` for an
environment E0, memory m0 and function f , written ke(`, E0, f) ⊆ Env , is de-
fined by ke(`, E0, f) = {E|E0 ≈` E ∧ (π2 ◦ f)((E0,m0)) ≈` (π2 ◦ f)((E ,m0))}.

Intuitively, the attacker considers as possible all environments E from the
set ke(`, E0, f). Then, given an initial state (E ,m0), a program satisfies explicit
secrecy iff no indistinguishable initial states can be ruled out from observing the
output generated by the extracted state transformer f . We define id(s) = (s, []).

Definition 7 (Explicit secrecy). A program c satisfies explicit secrecy for
security level ` and evaluation relation ↪−→, written ES (↪−→, `) � c, iff whenever
E ` 〈c,m0〉 ↪−→

f

∗ E ′ ` 〈c′,m′〉, then ∀E0. ke(`, E0, f) = ke(`, E0, id). We write

ES (↪−→) � c iff ∀`. ES (↪−→ , `) � c.

Let us consider again program 1 with the initial conditions defined as above.
The program satisfies explicit secrecy for the facelifted semantics in Figure 1, i.e.
ES (−→→, `) � c1. Following Example 1 and Def. 5, we sequentially compose the
state transformers for the input, assignment and output statements and obtain
the state transformer f((E ,m0)) = ((E ′,m′), [(0,L)]), for some E ′ and m′ such
that E ` 〈c1,m0〉 −→→∗ E ′ ` 〈ε,m′〉. Independently of the initial environment,
f will always produce the output trace 0 for an observer at level L. Therefore,
∀E0. ke(L, E0, f) = ke(L, E0, id).

Program 1 does not satisfy explicit secrecy with respect to the standard eval-
uation relation. In this case, the state transformer is extracted as f((E ,m0)) =
((E ′,m′), [(E(H)(0),L)]), capturing that the program explicitly sends the input
from a high channel to a low one, thus increasing the knowledge of the observer.

The following theorems prove that facelifted execution ensures soundness and
precision for any program.

Theorem 1 (Soundness). For any program c, ES (−→→) � c.

Theorem 2 (Precision). If ES (−→) � c, then E ` 〈c, m̃0〉
τ−→
∗
if and only if

E ` 〈c,m0〉
τ−→→∗.

Explicit secrecy assumes totality on the transition relation and on the cor-
responding state transformers. As a result, it does not account for informa-
tion leaks due to abnormal termination of a program, e.g. by applying a par-
tial function such as division by zero. Arguably, we can consider the program



h ← in(H);x := 1/h;out(L, 1) insecure since it may or may not execute the
output statement depending on the input value of h, and thus leak information.
We call this crash-sensitive explicit secrecy. Crash sensitivity can be captured by
making abnormal termination visible to a low observer, e.g. by adding a special
observation E. On the other hand, leaks due to program crashes generally trigger
exceptions, which can be seen as control flows, hence the program above should
then be secure. We call this crash-insensitive explicit secrecy. Crash insensitivity
can be formalized by constructing partial state transformers.

The proposed enforcement mechanism is fully precise with respect to crash-
sensitive explicit secrecy, however, it may lose precision when enforcing the crash-
insensitive version. We further discuss these issues in the full version [5].

2.3 Attack Detection

Theorem 2 shows that if a program is already secure, the facelifted execution
produces the same outputs as the standard execution. Otherwise, the standard
semantics is intentionally changed for the sake of security. Thus, a user can not
tell whether or not the outcome of the computation is correct, let alone decide
whether an unexpected result is due to a software bug or a security attack.

We show that facelifted semantics can be extended to detect changes to the
standard program semantics and thus unveil potential attacks. Concretely, attack
detection can be performed by using the following rules for output statements:

F-OutT
JeKm(`) = JeKm(>)

E ` 〈out(`, e),m〉 [(JeKm(`),`)]−−−−−−−−→→ E ` 〈ε,m〉

F-OutFail
JeKm(`) 6= JeKm(>)
E ` 〈out(`, e),m〉 −→→ E

For each output statement at some security level `, we evaluate the output
expression both in the context of the `-facelifted memory and in the context of
the >-facelifted memory, and compare the results. Since the >-facelifted mem-
ory is never affected by the default values, it will always contain the result of
evaluation under the standard semantics. Therefore, if the two values differ, we
have detected an attack and thus terminate the execution abnormally. The fol-
lowing theorem shows that the abnormal termination implies real attacks (only
true positives).

Theorem 3 (Attack Detection). If E ` 〈c,m0〉 −→→∗ E, then ES (−→) 6� c.

Like SME [17] and faceted execution [2], the mechanism can fail to detect
insecurities, i.e. ES (−→) 6� c 6⇒ (∀E . E ` 〈c,m0〉 −→→∗ E). This happens if the
the chosen default values produce the same outputs as the real execution, for
example if the default values are equal to the real inputs. Even if the program
is run with multiple different default values, this may not be detected (consider,
for example the program h← in(H);out(L, (h−d1)× (h−d2)) where d1 and d2
are possible default values. For an environment E where E(H)(0) ∈ {d1, d2}, the
above detection will never see the attack, despite the program being insecure.
More generally, trying to detect an attack using a finite set D of default values
will yield a false negative if the high input matches any of the default values; then
the following program will hide an insecurity: h← in(H) ; out(L, Πd∈D(h−d)).



In practice, random defaults or multiple defaults for a single location take us a
long way. We obtain no false negatives on the DroidBench suite, as reported in
Section 4.

This also entails that despite the precision and soundness results, this mech-
anism does not give rise to a decision procedure for (per-run) explicit secrecy.

2.4 Inlining Facelifted Values through Static Program
Transformation

Facelifted evaluation enforces explicit secrecy dynamically by means of uncon-
ventional semantics, as described in Figure 1. This requires modification of the
underlying language runtime which makes it difficult to deploy for many set-
tings. We present a program transformation that statically inlines facelifted val-
ues into the source code and uses standard semantics to achieve the same result
as facelifted evaluation. We transform a program c ∈ Com by applying a trans-
formation function T (·) : Com → Com. For each security level ` ∈ L and for
each variable x, we introduce a shadow variable x` to carry the `-facelifted value
for an observer at level `. We write [e]` to denote the renaming of all variables
x in e with x` and ;S to denote the sequential composition of commands from
a set S.

T (skip) = skip
T (x ← alloc) = ; {[x]` ← alloc | ` ∈ L}
T (x := e) = ; {x` := [e]` | ` ∈ L}
T (∗e1 := e2) = ; {∗[e1]` := [e2]` | ` ∈ L}
T (out(`, e)) = out(`, [e]`)
T (x← in(`)) = x` ← in(`); ; {Tin(`, `′) | `′ ∈ L and ` 6= `′}
T (c1 ; c2) = T (c1) ; T (c2)
T (if e then c1 else c2) = if [e]> then T (c1) else T (c2)
T (while e do c) = while [e]> do T (c)

where Tin(`, `′) equals x`′ := x` if ` v `′, otherwise x`′ := d.
Note that faceted values and SME can not be implemented as easily with a

program transformation [4]. We then show the correctness of the transformation.

Theorem 4 (Correctness). E ` 〈c,m0〉
τ−→→∗ iff E ` 〈T (c), m̃0〉

τ−→
∗
.

Corollary 1 (Soundness and Precision). T (c) is sound and precise.

2.5 General Framework

The presented approach is not specific to a concrete language. The full version [5]
presents a general version of this technique applicable to a wide range of lan-
guages under fairly unrestrictive assumptions: The number and level of outputs
performed by an evaluation step may not depend on the memory; moreover, the
semantics is assumed to be total and deterministic. Under these assumptions,
satisfied by many realistic languages, the framework provides soundness and
precision guarantees. Moreover, we also sketch an approach to lift the totality
assumption on the semantics.



3 Implementation
This section presents DroidFace, a dynamic analysis tool for taint tracking in
Android applications, based on the facelifted values from Section 2. The tool
is a prototype built on top of the Soot framework [37]. DroidFace leverages an
intermediate bytecode language, Jimple [37], to implement the static source-to-
source transformation for facelifted evaluation. As a result, the implementation
works with both ordinary Java class files as well as APK files for the Android
platform. We further discuss Jimple in the full version of the paper [5].

DroidFace We give a general overview of the architecture, features and limita-
tions of DroidFace. We emphasize that the main contribution is the development
of a fundamentally new approach to taint tracking applicable in many settings.
Our main goal is to demonstrate feasibility of our approach in terms of precision,
performance and flexibility, not to fully cover the Android platform.

DroidFace takes as input an Android APK file (a compressed archive) and
uses Soot to convert it to a set of Jimple programs. Next, it applies the source-
to-source transformation (as outlined in Section 2.4) to inline facelifted values
and therefore produce a secure version of the input program. Finally, DroidFace
converts the program back to an APK file that can be run on the Android
platform. The source code of DroidFace is available online [5].

DroidFace is implemented in Scala [29] and supports an arbitrary lattice,
represented as a Scala class. Noteworthy, many language constructs such as
exceptions and multithreading require no special treatment and are transformed
correctly by DroidFace. Control-flow statements like if e goto pc are transformed
to refer to the variable copies at level >. Similarly, method invocations with
virtualinvoke may select an object based on secret data, resulting in a control-
flow leak; as an example, consider a program allocating two objects of type A
and calling a method that sends the first constructor argument:

A[] x = [new A(1),new A(2)];x[h%2].send()
This is a leak through the program’s control-flow (execution jumps to a

different object’s method depending on h), hence we use the values at level >.
Since secret input usually consists of primitive data, such as numbers or

strings, the transformation only replicates variables and fields of primitive types.
Moreover, this is needed to avoid duplicating calls to constructors and other
methods, as they may have side effects that should only be performed once.
Since bodies of built-in methods are not affected by the program transforma-
tion, such calls need to be handled specially. Calls to side-effect free methods,
e.g. java.lang.Math.sin(), can be duplicated for each level. However, other
methods, e.g. sending data over the network, must only be performed once. A
whitelist is used to determine which methods are side-effect free.

The implementation makes a number of simplifications. For example, file
access is not handled in a precise way: While an implementation could duplicate
file contents to maintain both soundness and precision, doing so in an efficient
manner would require deduplication to manage the storage space overhead. As a
result, the implementation writes either the low or high data to a file, depending
on a configuration parameter. Inter-application communication (IAC) has not
been modified to propagate facelifted values. However, the approach extends
naturally to IAC by adding data for all levels to objects passed between apps.



Facelifted values are passed between methods by creating objects that contain
one field for each level in the lattice. These objects are constructed for each
primitive argument at a call site and returned by each non-entry method with a
primitive return type. This creates additional overhead due to object creation;
however, this can be avoided if facelifted values are implemented by modifying
the runtime. More details on the performance impact can be found in Section 4.

Since source and sink detection is covered in related work [21,1], we use an
incomplete set of known sources and sinks for the purposes of this evaluation.

Alternative strategiesWhile implementing facelifted values via program trans-
formation as presented here provides a reasonable proof-of-concept implementa-
tion, there are a number of alternative techniques that can be explored. A minor
optimization is to avoid creating a new object when passing facelifted values to
methods; however, this is still necessary when passing facelifted return values.
One possible approach is to simply run the program twice, once with real val-
ues while recording control-flow decisions and once with default values making
use of the recorded control flow. However, this requires careful suppression of
publicly observable side effects and outputs in the run with real values and vice
versa. Moreover, this technique requires synchronization of the two runs of the
program, leading to similar issues as SME [17].

4 Benchmarks
This section evaluates our prototype. Soundness and precision are evaluated us-
ing the DroidBench [1] benchmark suite. DroidBench is a set of small Android
apps to evaluate static analysis tools for the Android platform. The main goal is
to test sensitivity of a static analysis with respect to complex language features.
To obtain better coverage for dynamic analysis, we have developed additional
micro-applications that exercise other features such as path sensitivity and com-
plex expression evaluation. As described in Section 3, the implementation does
not support the full range of Android features; as a result we only provide par-
tial benchmark results. However, the current results indicate that the presented
approach prevents information leaks while not producing false positives. For per-
formance evaluation, we use the CaffeineMark [8] benchmark suite to compare
our implementation to both, unmodified Android, as well as TaintDroid [19].

Precision We run DroidFace on a number of examples from DroidBench. Due
to constraints outlined in Section 3, not all examples are used for this evaluation.
Moreover, a number of examples, such as emulator detection, are not relevant to
a dynamic enforcement technique. Furthermore, some examples produced errors
(e.g. missing permissions) when executed and could not be tested.

For the tested examples, DroidFace remains both sound and precise. A more
detailed comparison to other taint-tracking systems can be found in the full
version. Note that TaintDroid also maintains soundness and precision for all
tested APKs (with the exception of PublicAPIField1.apk for which TaintDroid
is unsound). However, TaintDroid does not remain fully precise in the presence
of arrays. Consider the following secure program similar to the example from
Section 1:

int[] a := [0, 0]; a[h%2]← in(H); out(L, a[1− h%2])



Since a secret value h is assigned to a position in an array that depends on
a secret, TaintDroid taints the entire array a and hence yields a false positive.
DroidFace, however, produces the unmodified trace.

Performance We compare the performance of DroidFace to TaintDroid and
unmodified Android using the CaffeineMark benchmark suite. For running the
benchmark on Android, we used a CaffeineMark app [9] from Google Play. Fig-
ure 2 shows a comparative performance evaluation using an ARM-based An-
droid emulator running Android 4.3. The emulator was run on a Dell Latitude
E7440 laptop with a i7-4600U CPU. Performance benchmarks on an emulator
are indicative at best, but we did find that the results reported by CaffeineMark
stabilize after running the benchmarks a few times to allow for startup effects
to die out. The figure shows the scores of the fifth run of the benchmark.
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Fig. 2. Performance Comparison using CaffeineMark

CaffeineMark reports a custom score value useful for relative comparison only.
The scores for individual categories are proportional to the number of times a
test is run divided by the average time of a test execution. The Overall score is
the geometric mean of the scores in the individual categories. A description of
the individual categories can be found in the full version.

The performance overhead is not prohibitively high given that DroidFace,
being a proof-of-concept, produces unoptimized code. Note that due to different
experimental setup and different versions of TaintDroid and CaffeineMark, our
measurements for TaintDroid differ from the previously reported results [19].
Also note that many popular applications are not bound by CPU performance,
but by user interaction[19]; hence, the real-world impact of these performance
results may be negligible. The increase in code size is minor, as the bytecode
itself is probably much smaller than other resources that ship with Android ap-
plication. A more detailed comparison can be found in the full version. Similarly,
preliminary experiments show the increase in memory usage to be insignificant as
well, as the memory required for duplicates of primitive values is overshadowed
by other resources loaded by the application.
5 Related Work
This section compares our work with closely related works for Android security.
Table 1 gives a comparative overview of the state-of-the-art (static and dynamic)



approaches to enforcing confidentiality for Android apps. We elaborate on the
data from Table 1 (on a scale from 7, 1, 2 to X) and other related work.
Reasoning about Taint Tracking. Taint tracking has been widely adopted
as an ad-hoc technique in many security settings both for confidentiality and in-
tegrity. As a result, the majority of existing works either propose taint tracking
as a bug-finding tool or justify its correctness using informal and custom-tailored
soundness criteria [12,26,1,19,21,10]. Recently, Schoepe et al. [33] have proposed
explicit secrecy, a semantic characterization of policies for taint tracking that
captures the intuition of tracking direct data dependencies and generalizes Vol-
pano’s weak secrecy [39].

Table 1. Comparison of State-of-the-art Taint Trackers

Tool Value Flow Context Object Path Arrays Native Enforcement Sound Precise
FlowDroid 7 X X X 7 7 1 Static 7 7
Amandroid X X X X 7 7 1 Static 7 7
DroidSafe 7 7 X X 7 7 1 Static 7 7
HornDroid X 1 X X 7 1 1 Static 1 7
TaintDroid X X X X X 1 1 Dynamic 7 7
AppFence X X X X X 7 1 Dynamic 7 7
DroidFace X X X X X X 2 Dynamic X X

Our work presents a general technique for precise enforcement of explicit se-
crecy through facelifted execution and establishes soundness and precision. As
reported in Table 1 (Sound), the majority of existing approaches use taint-
tracking in an ad-hoc manner without providing formal security justifications
(7). It is noteworthy that HornDroid [10] presents a correctness proof for their
abstract data-flow analysis with respect to an instrumented semantics of An-
droid activities. Instrumented semantics allow to approximate non-safety secu-
rity properties such as explicit secrecy in terms of safety properties, thus not cap-
turing the precise semantics of taint tracking. Chaudhuri et al. [12] and Livshits
and Chong [26] propose similar conditions. Our enforcement is the first fully pre-
cise mechanism with respect to explicit secrecy (no false positives). As discussed
before, existing approaches differ in precision, yet none of them is fully precise.
Static Taint Analysis. Static analysis has been proposed to tracking explicit
flows in the Android domain. As shown in Table 1, static approaches differ on the
features of analysis they implement. The complexity of the Android stack makes
static analysis cumbersome and often leads to unsoundness or false positives [21].

Bodden et al. [1] present FlowDroid, a static taint analysis tool for Android
applications. The analysis is path- and value- insensitive and it overapproximates
arrays in a coarse manner. Due to event-driven nature of Android apps (multi-
ple entry point, asynchronous components, callbacks, · · · ), flow sensitivity often
leads to incompleteness and false negatives [21]. Li et al. [25] present IccTA, an
extension of FlowDroid analysis with inter-component communication. Gordon
et al. present DroidSafe [21], a static taint analysis tool that offers a high de-
gree of precision and soundness. DroidSafe is a significant engineering effort to
model the Android runtime behavior for non-Java code (native methods, event
callbacks, component lifecycle, hidden state) using analysis stubs. The analysis



is flow insensitive since interactions between apps and the Android environment
are mediated by asynchronous callbacks, hence all event orderings are to be con-
sidered. Points-to and information flow analysis are also flow insensitive, which
improves scalability at the expense of losing precision. DroidSafe may raise false
positives due to the coarse modeling of arrays, maps, lists, flow insensitivity or
event ordering. It is worth noting that although DroidSafe is more precise than
FlowDroid, yet the number of false positives is too high for unknown applica-
tions. Wei et al. [40] present Amandroid, a general framework for determining
points-to information for all objects in Android apps in a flow and context-
sensitive way across Android apps components. Amandroid can be specialized
to solve security problems including taint tracking with high precision.

Calzavara et al. [10] present HornDroid, an approach that uses Horn clauses
for soundly abstracting the semantics of Android applications. HornDroid ex-
presses security properties as a set of proof obligations that are automatically
discharged by an off-the-shelf SMT solver. The analysis is value- and context-
sensitive. The authors argue that these features in combination are important.
The analysis is flow sensitive on registers and flow insensitive on heap locations
and callback methods, which increases precision without compromising sound-
ness. Moreover, the static analysis is field-insensitive on arrays, although, being
value-sensitive, HornDroid supports a more precise treatment of array indexes.

Static analysis approaches have the advantage of no-runtime overhead, how-
ever, especially for Android, they are fated to be imprecise. This is not only
due to the complexity of the language and the execution lifecycle, but also to
theoretical and practical limitations of current verification technologies. For in-
stance, DroidSafe uses analysis stubs for native methods to approximate the data
flow, object instantiation and aliasing of the missing native code. As recognized
by the authors, this approach is not always sound. DroidFace faces the same
problems with respect to native code with side effects, yet being fully precise
for side-effect free native code. On the downside, DroidFace introduces runtime
overhead which may deteriorate the performance.

Dynamic Taint Analysis. Dynamic taint analysis has been proposed for track-
ing privacy leaks at runtime in Android applications. Enck et al. present Taint-
Droid [19] a system-wide integration of dynamic taint tracking into Android.
TaintDroid simultaneously tracks sensitive data from multiple sources by ex-
tending and modifying the Android environment with taint tags. Tracking is
done at different levels: (i) variable-level: by instrumenting the Dalvik VM; (ii)
message-level for IPC communication: by assigning one taint per serialized object
(parcel); (iii) method-level: by providing method summaries for native methods;
(iv) file-level: by assigning one taint per file. TaintDroid has different sources of
false positives: for instance, by assigning one taint per file or one taint per parcel.
Surprisingly, we found out that although the paper claims to assign one taint per
array [19], the TaintDroid tool appears to assign one taint per array cell in our
experiments. Native methods take the union of arguments’ taints as resulting
taint for the method return, which may cause false negatives due to possible
side effects. TaintDroid requires modification of the JIT compiler in order to im-
plement the taint propagation logic for applications using JIT. By contrast, our
source-to source transformation requires no modification of the Android runtime



and it is more precise. Hornyack et al. present AppFence [22], an extension of
TaintDroid with shadow data for sensitive information that a user does not want
to share. As for TaintDroid, AppFence implements modifications at the Android
OS level. In addition to the precision issues inherited by TaintDroid, AppFence
modifies the semantics of secure apps that never leak sensitive information.
Beyond Taint Tracking. DroidFace does not prevent insecure information
flows through covert channels. For instance, applications can still leak sensitive
information through implicit flows [16], where the information may flow through
the control structure of the program. Information flow control [31] comprises
methods and techniques that, in addition to explicit flows, also prevent implicit
flows. Soundness is typically shown with respect to the semantic property of
noninterference [20]. Information flow security has been explored in the context
of Android apps by, e.g., Lortz et al. [27] and Jia et al. [23].

Our work draws inspiration from SME [17]. SME provides a precise enforce-
ment of noninterference by running a program in a controlled manner, once for
each security level. Kashyap et al. [24] study different scheduling strategies for
SME and address the subtleties of timing- and termination-sensitive noninter-
ference. Rafnsson and Sabelfeld [30], and Zanarini et al. [42] explore scheduling
strategies with the goal to leverage SME for attack detection. By contrast to
SME, our enforcement does not require scheduling different program copies.

Austin and Flanagan [2,32] enforce noninterference by runtime manipulation
of faceted values. A challenging aspect for this line of work is dealing with non-
local control flow and I/O, as the facets must record what can happen when
the program takes different control-flow paths. Having explicit secrecy as the
goal, our approach is free of these challenges because under our enforcement the
program takes the same control-flow path as the original run. Section 1 offers
further points of contrast to facelifted values.

Barthe et al. [4] implement SME for noninterference through static program
transformation. This approach inherits the scheduling issues from SME and re-
quires the buffering of inputs from lower security levels so that these inputs can
be reused by executions running at higher security levels. These issues are not
present in our work at the expense of enforcing the more liberal security policy.

Jeeves [41] is a programming language that uses symbolic evaluation and
constraint-solving for enforcing information-flow policies. Austin et al. [3] show
how to extend Jeeves with faceted values to propagate multiple views of sensitive
information in a single faceted execution.

Boloşteanu and Garg propose asymmetric SME with declassification [7], fo-
cusing on robustness of SME wrt. modified inputs. This is achieved by producing
a low slice, a program to compute the public results of the original program.

6 Conclusion
We have presented a dynamic mechanism for taint tracking. Its distinguishing
feature is that it does not track taint propagation. Instead, it duplicates the
state, representing its tainted and untainted views. We have showed that the
mechanism is sound with respect to the policy of explicit secrecy and that it is
precise in the sense that runs of secure programs are never modified. Further,
we have leveraged the mechanism to detect attacks with zero false positives:



whenever a mismatch between tainted and untainted views is detected, it must
be due to an attack. Finally, we have implemented DroidFace, a source-to-source
transformation for an intermediate Java-like language and benchmarked its pre-
cision and performance with respect to typical static and dynamic taint trackers
for Android apps. The results show that performance penalty is tolerable while
achieving both soundness and no false positives on the tested benchmarks.

Future work includes support for declassification policies. Recent progress
on declassification for SME [2,30,38,7] gives us an encouraging start. Exploring
facelifted values for machine code integrity is another promising line of future
work. We are also interested in extending and optimizing the DroidFace tool as
to make it suitable for a large-scale study of Android apps from Google Play.
Finally, we will also explore memory optimizations in cases of large numbers of
security levels, avoiding duplication.
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